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We include quadrupolar fields beyond the Fröhlich interaction in the first-principles electron-
phonon vertex of semiconductors, and demonstrate their importance in calculations of carrier mo-
bilities. Without such quadrupolar corrections, jump discontinuities for q → 0 remain in the
short-range components. They lead to Gibbs oscillations in the interpolant, and affect the accuracy
of the physical results. We apply our formalism to Si (non-polar), GaAs and GaP (polar). Electron
mobilities converge much faster with the initial ab initio q-mesh when dynamical quadrupoles are
properly included.

The electron-phonon (e-ph) interaction plays a key role
in the description of a variety of physical phenomena
such as electronic transport, phonon-assisted light ab-
sorption, and phonon-mediated superconductivity [1]. In
state-of-the-art ab initio methods, the e-ph coupling is
described within density functional theory (DFT) by ex-
panding the Kohn-Sham (KS) effective potential [2] in
the nuclear displacements, and the vibrational properties
are obtained with density-functional perturbation theory
(DFPT) [3, 4]. This DFPT-based computational scheme
enables the calculation of screened e-ph matrix elements
on a microscopic level with ab initio quality [1]. However,
e-ph related properties require an accurate description of
the coupling on very dense grids in the full Brillouin zone
(BZ) thus rendering direct ab initio e-ph computations
in real materials impracticable.

For this reason, different methods have been pro-
posed to interpolate the e-ph matrix elements from ini-
tial coarse grids to dense ones. These approaches rely on
localized basis sets such as maximally-localized Wannier
functions [5–7] or atomic orbitals [8] to perform a Fourier
interpolation of the e-ph vertex. Other works suggested
to employ Fourier transforms to interpolate the local part
of the scattering potentials and then use Bloch states to
obtain the e-ph matrix elements on dense grids [9, 10].

Despite formal differences in the treatment of the elec-
tron wavefunctions, all these approaches rely on the spa-
tial localization of the scattering potentials for obtaining
a reliable interpolation in the phonon wavevector q. In
Fourier-based interpolation schemes, indeed, the signal
in real space is assumed to be negligibly small beyond
a certain distance so that a faithful interpolation in q-
space can be obtained with a relatively coarse sampling
of the BZ. In semiconductors and insulators, however,
the incomplete screening of the external potential gen-
erated by the atomic displacements leads to long-range

(LR) interactions. In polar materials, these interactions
manifest in the long-wavelength limit (q → 0) by the
LO-TO splitting of the optical frequencies [11] and the
Fröhlich divergence of the e-ph matrix elements [12] that
are not amenable to Fourier interpolation due to their
non-analytic behavior. The treatment of the LR dipole-
dipole interaction in the Fourier interpolation of the dy-
namical matrix was developed in the early days of DFPT
and the methodology is well documented [3, 4]. Only re-
cently, it was shown how to generalize the Fröhlich contri-
bution to e-ph matrix elements to anisotropic materials
and how to integrate it with Wannier-based interpolation
schemes [6, 13].

In this letter, we go beyond these contributions by
demonstrating the importance of the next-to-leading or-
der terms derived by Vogl [14]. We develop an approach
to interpolate the short-range (SR) part of the scatter-
ing potentials on dense q-grids while the LR contribu-
tions are expressed in terms of the high-frequency di-
electric tensor, Born effective charges (dipole potential),
dynamical quadrupoles computed from first principles us-
ing the theory of spatial dispersion [15, 16] (quadrupole
potential) and the response to a homogeneous static elec-
tric field (local-field potential, also quadrupolar) already
available in many DFPT implementations [3, 4]. In non-
polar materials, the quadrupolar fields represent the lead-
ing contribution to the LR part, that should therefore be
taken into account for accurate interpolations. In polar
semiconductors, quadrupole terms are in principle small
when compared to the divergent Fröhlich interaction but
their non-analytical behavior for q → 0 implies a LR
behavior in real space that will spoil any Fourier-based
interpolation technique if not handled properly. Our for-
malism generalizes the previous approaches [6, 13] by in-
cluding contributions that are crucial to achieve reliable
and accurate e-ph calculations in semiconductors. We
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demonstrate the importance of the quadrupole correc-
tions by analyzing the convergence rate of electron mo-
bilities in Si and GaAs. Additional results for GaP can
be found in the Supplemental Material [17]. Without
quadrupoles, carrier mobilities are plagued by an exceed-
ingly slow convergence with respect to the initial ab ini-
tio q-mesh. Stable results can be achieved with reason-
able q-meshes only when quadrupolar fields are separated
from the SR part before the interpolation. Further de-
tails concerning our implementation including additional
convergence studies and results for the electron mobility
of GaP are given in our accompanying manuscript [18].

The key ingredients in e-ph computations are the cou-
pling matrix elements gmnν(k,q) = 〈ψmk+q|∆qνV |ψnk〉
with ψnk the nk Bloch state and ∆qνV the first-order
variation of the KS potential V due to a phonon mode
of wavevector q and branch index ν [1]. The scattering
potential is defined as

∆qνV = eiq · r 1√
2ωqν

∑

κα

eκα,ν(q)√
Mκ

Vκα,q(r) (1)

with ωqν the phonon frequency and eκα,ν(q) the α-th
Cartesian component of the phonon eigenvector for the
atom κ of massMκ in the unit cell. Vκα,q(r) is the lattice-
periodic scattering potential computed with DFPT [19].
Following the same approach as Verdi et al. [13], the e-ph
scattering potential is separated into SR (S) and LR (L)
contributions:

Vκα,q(r) = V Sκα,q(r) + V Lκα,q(r). (2)

V L is supposed to include all the LR components so that
V S is smooth in q-space and therefore tractable with
Fourier interpolation. In the interpolation algorithm, V L

is first subtracted from the DFPT potentials, then the
Fourier interpolation is performed on the SR part only,
finally V L evaluated at the interpolated q-point is added
back [18]. In polar materials, the leading contribution
to the LR part stems from the diverging Fröhlich-like
potential [13]:

V L(F )
κα,q (r) = i

4π

Ω

∑

G6=−q

(qβ +Gβ)Z∗κα,βe
i(qη+Gη)(rη−τκη)

(qδ +Gδ)ε∞δδ′(qδ′ +Gδ′)

(3)
with Ω the unit cell volume, G a reciprocal lattice vec-
tor, Z∗κ the Born effective charge tensor, ε∞ the high-
frequency dielectric tensor and τκ the position of the κ-
th atom in the unit cell. The summation over repeated
indices (β, η, δ and δ′) is implied in Eq. (3) and in the
following, unless the sum is explicitly written.

Most investigations so far have been focusing on the
treatment of Eq. (3) because the (integrable) divergence
for q→ 0 is expected to give an important contribution
to the BZ integrals. However, as discussed by Vogl [14]
and rederived in a DFPT context in Ref. [18], a care-
ful analysis of the asymptotic behavior of the scattering
potential in the long-wavelength limit reveals the pres-
ence of additional non-analytical terms besides Eq. (3).
These are finite for q→ 0 but their non-analytic behavior
(discontinuities) will affect the spatial decay of the scat-
tering potentials even when the dipole interaction given
by Eq. (3) is properly accounted for. Both dipole and
quadrupole terms can be included in the LR potential
using the generalized expression [18]:

V Lκα,q(r) =
4π

Ω

∑

G6=−q

i(qβ +Gβ)Z∗κα,β − (qβ +Gβ)(qγ +Gγ)(Z∗κα,βQvHxc,Eγ (r)− 1
2Q

βγ
κα)

(qδ +Gδ)ε∞δδ′(qδ′ +Gδ′)
ei(qη+Gη)(rη−τκη), (4)

where Qκα is the dynamical quadrupole tensor, Q is the
electronic charge in atomic units, that is, −1, and vHxc,Eγ

is the change of the Hartree and exchange-correlation
potential with respect to the electric field E in Cartesian
coordinates (see Ref. [18] for the derivation). In Eq. (4),
the term related to Qκα is non-zero even in non-polar
semiconductors while the contribution associated to E
is present only in systems with non-zero Born effective
charges.

In the polar systems that we investigated so far, we
observed that Qκα gives the most important contribu-
tion to Eq. (4) when compared to the E term [17]. For
instance, ignoring the E term changes the electron mo-
bility in GaAs by 0.1% and by 0.01% in GaP (see next

paragraphs for more details about the mobility compu-
tations). Qualitatively, this behavior can be rationalized
as follows. In the ionic limit, the potential change due to
E can be understood as a local linear potential created
around each atom. Its average must be zero, but there
will be regions of constant positive shift and zones of con-
stant negative shift. If the orbitals are centered on each
atom (so that the charge density is symmetric around
it), the symmetry of the charge and the anti-symmetry
of the potential give a vanishing contribution. In other
words, after the Fröhlich divergence, the spatial decay of
the scattering potentials is governed by the dynamical
quadrupoles Qκα at least as far as the materials con-
sidered here are concerned. Strictly speaking, it is not
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possible to generalize this observation on the predomi-
nance of Qκα to other non-polar systems although it is
reasonable to expect that the same picture will be valid.

Note also that Qκα introduces additional dipole-
quadrupole and quadrupole-quadrupole terms at the
level of the dynamical matrix [16] that are important to
improve the accuracy of the interpolated phonon spec-
trum. Our calculations in Si, GaAs and GaP revealed
that these extra terms in the Fourier interpolation of the
dynamical matrix can accelerate the convergence of mo-
bilities at the level of ∼1%, an effect that is smaller when
compared to the error introduced by the Fourier interpo-
lation of the e-ph potentials (discussed below) and yet
larger than the correction due to the electric field. In the
following, we will therefore focus on the contribution of
Qκα while the effects associated to the electric field, the
dipole-quadrupole and the quadrupole-quadrupole inter-
actions in the dynamical matrix are discussed in [17].

We begin by analyzing the effect of Qκα on the inter-
polation of the scattering potentials and of the matrix
elements. Then we discuss the convergence behavior of
electron mobilities with respect to the ab initio q-grid.
The numerical values of Qκα are computed using the re-
cent implementation of Royo et al. [15] that has been
integrated with the e-ph part of Abinit [18, 20, 21].

In Figs. 1(a) and (b) we plot the average over the unit
cell of the lattice-periodic part of the scattering potential,

V̄κα,q =
1

Ω

∫

Ω

drVκα,q(r)e−iq · r, (5)

for selected atomic perturbations in Si and GaAs, along
a high-symmetry q-path. The exact DFPT results (blue
lines) are compared with those obtained with the mod-
els with (green) or without (red) quadrupole corrections
of Eqs. (3) and (4) [22]. The other potentials, for all
perturbations, are reported in the Supplemental Mate-
rial [17]. In Si, the Born effective charges are zero and
the imaginary part of the potential does not diverge for
q → 0 (see dashed lines in Fig. 1(a)). In GaAs, the
Fröhlich-like model in Eq. (3) correctly describes the di-
vergence of the imaginary part of the potential close to
Γ (see green dashed line in Fig. 1(b)). In both materi-
als, however, the real part of the potential (solid lines)
presents a jump discontinuity for q → 0. Note that the
Fröhlich term alone does not capture this non-analyticity.
On the contrary, if the quadrupole Qκα contributions are
included through Eq. (4), the LR model reproduces these
jumps as shown by the solid green lines in Figs. 1(a) and
(b). Figure 1(c) shows the real part of the average of the
scattering potential in Si interpolated from a 9 × 9 × 9
q-point grid onto the same q-path as in Fig. 1(a). If
the Qκα terms are not removed from the input DFPT
potentials, the Fourier interpolation introduces unphysi-
cal sharp oscillations for small q (see red line, FI). The
correct behavior is properly reproduced only when Qκα
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FIG. 1. Comparison between the average over the unit cell

of the exact DFPT potentials (V
DFPT

) and the models of

Eqs. (3) (V
L(F )

) and (4) (V
L

) in (a) Si and (b) GaAs. We
consider the first reduced component x̂ of the DFPT poten-
tials for (a) the Si and (b) the Ga atoms located at (0,0,0).
(c) Fourier interpolation (FI) of the real part of the poten-
tials shown in (a) with (FI+Q) and without (FI) quadrupolar
contribution. The potentials are given in Hartree/Bohr. The
path has been sampled with 278 q-points.

is included (see green line, FI+Q). Small oscillations are
still appreciable around Γ when a 9 × 9 × 9 q-mesh is
used but these deviations have a limited effect on the
final electron mobilities.

It is worth stressing that these considerations hold
for any approach employing Fourier-based interpolations.
The discontinuity of the matrix elements at Γ and the dis-
crepancy between the interpolant and the exact DFPT
results in the region around Γ have already been noticed
for Si and diamond [8]. The resulting error was con-
sidered harmless under the assumption that it is always
possible to improve the accuracy of the Fourier interpo-
lation by densifying the initial ab initio q-mesh [8]. Un-
fortunately, this assumption does not hold in the pres-
ence of non-analytical behavior since, strictly speaking,
an infinite number of Fourier components (i.e. an in-
finite number of real space lattice vectors R) would be
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FIG. 2. E-ph matrix elements in Si computed with QE,
and interpolated using Wannier functions with the standard
EPW approach (WF) or including the quadrupolar correc-
tions (WF+Q).

needed to represent the discontinuous signal. To con-
firm our hypothesis, we modified the EPW code [7] to
include the Qκα terms in the interpolation of the e-ph
matrix elements in the Wannier representation in Si [23].
Figure 2 shows the e-ph matrix elements connecting the
electron state at the valence band maximum at k = Γ
to the other highest states of the valence band through
the highest phonon mode at L as in Ref. [8]. The DFPT
results (blue solid line) and the Wannier-interpolated re-
sults (red and green dashed lines) are compared in this
figure. The interpolation of the matrix elements using
the standard approach (i.e. without Qκα) leads to sys-
tematic errors in the region around the Γ point associated
to electronic transitions with small momentum transfer.
Including the dynamical quadrupoles in the model sig-
nificantly improves the quality of the interpolant around
the Γ point. Similar behaviour is also expected in e-ph
calculations based on supercells and finite differences [10].

At this point, one question arises spontaneously: can
we ignore such physical effects, and simply interpolate
with an exceedingly dense grid around Γ? To answer
this question, we need to quantify the error introduced
by these spurious oscillations in the final physical results.
Because of intra-valley transitions, the region around Γ
is one of the most important for the description of e-
ph scattering processes [17, 18]. An accurate description
in this region is crucial for reliable calculations of the
phonon-induced electron linewidths,

τ−1
nk =2π

∑

m,ν

∫

BZ

dq

ΩBZ
|gmnν(k,q)|2

× [(nqν + fmk+q)δ(εnk − εmk+q + ωqν)

+(nqν + 1− fmk+q)δ(εnk − εmk+q − ωqν)] ,

(6)

with ΩBZ the BZ volume, nqν and fmk+q the Bose-
Einstein and Fermi-Dirac occupation functions and εnk
the energy of the electronic state nk. These linewidths
represent the phonon-dependent ingredients needed to

compute carrier mobilities within the self-energy relax-
ation time approximation [1, 18, 24, 25]:

µe,αβ =
−1

Ωne

∑

n

∫
dk

ΩBZ
vnk,αvnk,βτnk

∂f

∂ε

∣∣∣∣
εnk

, (7)

where vnk,α is the α-th component of the velocity oper-
ator [18]. Figures 3(a) and (b) report the electron mo-
bilities in Si and GaAs computed using plane waves with
Abinit as described in Ref. [18], as a function of the ini-
tial q-grid. For each initial ab initio DFPT mesh, we
interpolate the scattering potentials to obtain the life-
times on k- and q-point meshes that are dense enough to
reach convergence in the mobility within 5%. If the terms
associated to the dynamical quadrupoles are included in
the LR part of the potentials, a 9×9×9 (6×6×6) q-mesh
is already sufficiently dense in Si (GaAs) for the correct
interpolation of the potentials (green lines) whereas with-
out Qκα the convergence is much slower and not even
reached with a 21 × 21 × 21 q-mesh (red lines). Using
q-grids typically reported in the literature (8 × 8 × 8)
can therefore lead to significant errors at the level of the
mobility. The error is around 10% in Si and goes up
to 30% in GaAs where, due to the small effective mass,
most of the scattering channels for electrons close to the
band edge involve small momentum transfer. E-ph in-
terpolations are usually performed starting from coarse
q-meshes because both the memory requirements and the
computational cost of the interpolation quickly increase
with the number of q-points in the initial ab initio mesh
hence it is not surprising that this behavior has been
largely overlooked so far.

In conclusion, we have included quadrupolar fields
beyond the Fröhlich interaction in the first-principles
electron- phonon vertex of semiconductors. Their im-
portance was demonstrated in calculations of mobili-
ties. Accurate calculations of e-ph properties in semi-
conductors and insulators can be achieved with reason-
ably coarse ab initio q-meshes provided that a careful
treatment of the long-range interaction associated to dy-
namical quadrupoles is properly taken into account. We
presented a fully ab initio formalism that employs Qκα

computed with DFPT to improve the description of the
non-analytical behavior of the e-ph scattering potentials
in the long-wavelength limit. Our approach improves
state-of-the-art techniques that were mainly designed to
cope with the Fröhlich-like interaction in polar materials.
Since long-range macroscopic interactions play a key role
in semiconductor physics, we believe that the quest for
accurate ab initio descriptions of phonon-limited carrier
mobilities should start from a proper treatment of these
physical phenomena.
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5Catalan Institute of Nanoscience and Nanotechnology (ICN2),

Campus UAB, 08193 Bellaterra, Spain and

6Skolkovo Institute of Science and Technology, Moscow, Russia

(Dated: February 4, 2020)

I. CONTRIBUTION OF THE ELECTRIC-FIELD PERTURBATION TO THE

LONG-RANGE POTENTIALS

In this section, we discuss the relative importance of the different terms in the LR model

with particular emphasis on the effect associated to the response to the electric field E . Fig-

ures S1–S4 show the average over the unit cell of the long-range model including different

contributions: V L includes Fröhlich, dynamical quadrupoles Qκα and electric-field contribu-

tions, V L(F ) includes only the Fröhlich-like part, V L(F+Q) includes all but the electric-field

perturbation while V L(F+E) includes all but the dynamical quadrupoles. The potentials are

plotted along a q-path, for a given atom (Ga, As, or Si) displaced along the first reduced

direction (x̂). The average of the model is compared to the average of the exact DFPT

potentials obtained along the same q-path. Comparing the different subplots produced with

different models allows one to have a qualitative understanding of the importance of the
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different terms and of their effect on the Fourier interpolation of the short-range part. More

specifically, the plots show that the Fröhlich dipolar term alone is not able to capture the

jump discontinuities around the Γ point, and that quadrupolar fields are necessary (in partic-

ular the term stemming from Qκα as the contribution given by the electric-field perturbation

is much smaller).

Figures S5–S8 show the average over the unit cell of the periodic part of the Fourier

interpolated potentials including the same contributions as in Figs. S1–S4, and compared

again to the exact DFPT potentials. These figures reveal that, without Qκα, the interpolated

scattering potentials are affected by unphysical Gibbs oscillations around Γ because the

discontinuity in q-space is not removed when a model containing only the dipolar term is

subtracted from the initial DFPT potentials before computing the Fourier transform.

As mentioned before, the term associated to E plays a very minor role if we focus on the

average of the potential over the unit cell that corresponds to the G = 0 Fourier component.

To appreciate the effect of the electric-field term, we need to focus on the q-dependence of

the Fourier components of the scattering potentials

V̄κα,q(G) =
1

Ω

∫

Ω

drVκα,q(r)e−i(q+G) · r, (S1)

for small G 6= 0. In our tests we found that, for particular G-vectors, the quantity in

Eq. S1 as a function of q presents (small) jump discontinuities for q → 0 and that the

discontinuity is better described when the E-term is included in the LR model. The results

are summarized in Figs. S9 and S10. We performed the same analysis for GaP (not shown)

and found very similar behavior. At the level of the mobility, the inclusion of the electric-

field perturbation in the LR model changes the final results by 0.1% in GaAs and 0.01%

in GaP when compared to calculations in which only dipoles and Qκα are included. These

results corroborate our affirmation done in the main text about the predominance of the

dynamical quadrupoles over the electric field term in the case of GaAs and GaP.

II. EFFECT OF DYNAMICAL QUADRUPOLES ON THE INTERPOLATED

PHONON DISPERSION

E-ph calculations are quite sensitive to the fine details of the electron and phonon dis-

persions. As discussed in more details in Ref. [15] of the main text, an expansion of the
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FIG. S1. (a) Average over the unit cell of the x̂ component of the DFPT (full lines) and long-range

(dashed) e-ph potentials in Si, for the first atom located at (0,0,0). (b) Same as (a) but with the

Fröhlich interaction only (equivalent to zero in Si).

dynamical matrix for q→ 0 contains additional LR terms beyond the dipole-dipole interac-

tion. These corrections are supposed to improve the quality and the stability of the Fourier

interpolation of the phonon frequencies. It is therefore interesting to analyze the effect of

the Qκα on the convergence rate of the vibrational spectra for the three systems considered

in this work.

Figure S11 shows the influence of the dipole-quadrupole and quadrupole-quadrupole in-

teractions on the Fourier interpolation of the dynamical matrix in Si. The effects are small

on the scale of the graph nevertheless the inclusion of these higher-order terms accelerates

the convergence of the interpolation of the phonon spectrum with respect to the ab initio

q-grid. As mentioned in the main article, the effect on the mobility is estimated to be of
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FIG. S2. (a) Average over the unit cell of the x̂ component of the DFPT (full lines) and long-range

(dashed) e-ph potentials in Si, for the second atom located at (1/4,1/4,1/4). (b) Same as (a) but

with the Fröhlich interaction only (equivalent to zero in Si).

the order of 1%, value that is anyway larger than the one observed from the E-term. We

speculate that, in more “complicated” materials, the inclusion of these higher-order terms

will play a more important role for the accurate description of the phonon dispersion in the

long-wavelength limit. Figures S12 and S13 show the same comparison for GaP and GaAs.

III. CONVERGENCE OF THE MOBILITY IN GAP

Figure S14 shows the convergence of the electron mobility of GaP as a function of the

initial ab initio q-mesh. Similarly to what is observed in GaAs and Si, the inclusion of

dynamical quadrupoles greatly accelerates the convergence with respect to the initial ab
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FIG. S3. (a) Average over the unit cell of the x̂ component of the DFPT (full lines) and long-range

(dashed) e-ph potentials in GaAs for the Ga atom located at (0,0,0). (b), (c) and (d) show the

decomposition of the different contributions to the long-range model.
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FIG. S4. (a) Average over the unit cell of the x̂ component of the DFPT (full lines) and long-range

(dashed) e-ph potentials in GaAs, for the As atom located at (1/4,1/4,1/4). (b), (c) and (d) show

the decomposition of the different contributions to the long-range model.
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FIG. S5. (a) Average over of the unit cell of the x̂ component of the DFPT (full lines) and Fourier-

interpolated (dashed) e-ph potentials in Si, for the first Si atom located at (0,0,0). (b) Same as (a)

but with the Fröhlich interaction only (equivalent to zero in Si).

initio q-mesh.

IV. IMPORTANCE OF THE REGION AROUND Γ

Figures S15 and S16 show the number of q-points included in the computation of the

imaginary part of the e-ph self-energy and the sum of the absolute value of the e-ph matrix

elements as a function of the length of the q-point. An important fraction of phonon-
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FIG. S6. (a) Average over the unit cell of the x̂ component of the DFPT (full lines) and Fourier-

interpolated (dashed) e-ph potentials in Si, for the second atom located at (1/4,1/4,1/4). (b) Same

as (a) but with the Fröhlich interaction only (equivalent to zero in Si).

mediated transitions involve small momentum transfer with significant probability ampli-

tude. In GaAs (Fig. S16) the e-ph matrix elements show a sudden increase for small |q|
because of the Fröhlich divergence. Note that the analysis of the e-ph matrix elements takes

into account crystal momentum conservation but not energy conservation in the sense that

all the phonon modes ν are included in the sum of the absolute value of the e-ph matrix

elements.
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FIG. S7. (a) Average over the unit cell of the x̂ component of the DFPT (full lines) and Fourier-

interpolated (dashed) e-ph potentials in GaAs for the Ga atom located at (0,0,0). (b), (c) and (d)

show the decomposition of the different contributions to the long-range model.
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FIG. S8. (a) Average over the unit cell of the x̂ component of the DFPT (full lines) and Fourier-

interpolated (dashed) e-ph potentials in GaAs, for the As atom located at (1/4,1/4,1/4). (b), (c)

and (d) show the decomposition of the different contributions to the long-range model.



11

0.3

0.2

0.1

0.0

V G
ax

,q

(a) G = [2 2 2]

Re (VDFPT V )
Im (VDFPT V )

0.3

0.2

0.1

0.0

V G
ax

,q

(b)

Re (VDFPT V (F))
Im (VDFPT V (F))

0.3

0.2

0.1

0.0

V G
ax

,q

(c)

Re (VDFPT V (F + Q))
Im (VDFPT V (F + Q))

L X W K W
q path

0.3

0.2

0.1

0.0

V G
ax

,q

(d)

Re (VDFPT V (F + ))
Im (VDFPT V (F + ))

FIG. S9. (a) Fourier component of the x̂ component of the DFPT (full lines) and long-range

(dashed) e-ph potentials in GaAs, for the Ga atom located at (0,0,0). (b), (c) and (d) show the

decomposition of the different contributions to the long-range model. Only a specific G component

of the potential is shown.
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FIG. S10. (a) Fourier component of the x̂ component of the DFPT (full lines) and Fourier-

interpolated (dashed) e-ph potentials in GaAs, for the Ga atom located at (0,0,0). (b), (c) and (d)

show the decomposition of the different contributions to the long-range model. Only a specific G

component of the potential is shown.
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FIG. S11. Phonon dispersion in Si without (a) and with (b) the inclusion of dipole-quadrupole

and quadrupole-quadrupole interactions in the Fourier interpolation of the dynamical matrix. (c),

(d) Zoom over the regions in (a), (b) containing the most important changes.
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FIG. S12. Phonon dispersion in GaP without (a) and with (b) the inclusion of dipole-quadrupole

and quadrupole-quadrupole interactions in the Fourier interpolation of the dynamical matrix. (c),

(d) Zooms over the regions in (a), (b) containing the most important changes.
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FIG. S13. Phonon dispersion in GaAs without (a) and with (b) the inclusion of dipole-quadrupole

and quadrupole-quadrupole interactions in the Fourier interpolation of the dynamical matrix. (c),

(d) Zoom over the regions in (a), (b) containing the most important changes.
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FIG. S14. Convergence of the electron mobility in GaP as a function of the initial DFPT q-grid.

The linewidths and the mobilities are obtained by interpolating from these initial DFPT grids to

78× 78× 78 k- and 156× 156× 156 q-point grids. The green curve includes the Fröhlich term only

in the LR model whereas the black curve includes both dipoles and dynamical quadrupoles.
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FIG. S15. (a) Distribution of the number of q-points used in the integration of the electron lifetimes

in Si as a function of |q|. (b) Values of the e-ph matrix elements gmnν(k,q) summed over m and

ν, for all the nk states considered relevant for the computation of the mobility. The weight of the

q-points are also taken into account. This figure reveals that the sampling of the region around Γ

significantly contributes to the final results.
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FIG. S16. (a) Distribution of the number of q-points used in the integration of the electron lifetimes

in GaAs as a function of |q|. (b) Values of the e-ph matrix elements gmnν(k,q) summed over m

and ν, for all the nk states relevant for the computation of the mobility. The weight of the q-

point is also taken into account. These show that the the sampling of the region around Γ is very

important.


