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a b s t r a c t

This paper analyzes the influence of turbulence on a wake-oscillator model. Turbulence
is introduced by randomizing the model proposed by Facchinetti et al. under the quasi-
steady assumption. A multiple scale analysis of the deterministic model shows that
the response is governed by a dimensionless group D, expressed as a function of the
amplitudes of the forcing terms in the two governing equations, the total (aerodynamic
plus structural) damping and the parameter ε of the fluid Van der Pol oscillator. The
influence of turbulence is interpreted as a stochastic noise of small intensity and with
a slower timescale than the (fast) oscillations, which is typical of wind engineering
applications. A slow phase model of the problem is then derived by assuming that
the small turbulence drives the system only slightly away from its limit cycle in
smooth flow conditions. Standard modeling techniques borrowed from other fields of
physics, in particular the observation of phase shifts and their accumulation, are used to
highlight conditions under which the turbulence of the oncoming flow might reduce the
amplitudes of vibrations of the body. The slow phase model is derived in smooth flow
conditions, then extended to turbulent flow. It recalls that the phase plays a central role
in synchronization problems, and that the response amplitude should only be considered
as a sub-product of the slow phase. The slow phase model is expressed by means of a
first order nonlinear differential equation for the phase and a memoryless transformation
for the response amplitudes. Its solution is explicit and simple in some limiting cases.
In particular, for small turbulence intensity, the response is shown to be insensitive
to turbulence when its frequency content is not low enough. This major dependence
upon the frequency content of the turbulence explains that the reduction of VIV due to
turbulence cannot be explained by the turbulence intensity only, as usually considered
today. The required relative smallnesses of the turbulence and its frequency content
naturally appear in the derivation, which is led in a dimensionless manner. Finally, the
present study constitutes an analysis of a phenomenological model which could be used
in a much wider concept than of the elastically-mounted circular cylinder.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

Models describing vortex-induced vibrations (VIV) of bodies immersed in smooth flows are based on an equation of
otion for the structural vibrations which is appropriately modified or complemented in order to model the interaction
ith the fluid in a more or less sophisticated manner. Existing two-dimensional models are typically classified in three
ifferent families (Païdoussis et al., 2010). In family I (forced), the fluid is modeled as a passive external lift force on the
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tructural oscillator; the root-mean-square value of the lift is calibrated with ad hoc measurement (Simiu and Scanlan,
996). In family II (forced feedback), the lift force depends on the state –usually the amplitude– of the structural oscillator.
he model consists therefore in a nonlinear differential equation which is capable of modeling the self-limiting features
f this problem (e.g. Larsen, 1995; Lupi et al., 2018; Marra et al., 2011). In family III (wake-oscillator), the fluid is
ore accurately modeled as a dynamical system with a limit cycle. A Van der Pol or Rayleigh differential equation is

ypically used for this and is coupled with the structural oscillator in various possible ways (Hartlen and Currie, 1970;
AMURA and Matsui, 1980; Krenk and Nielsen, 1999; Facchinetti et al., 2004; Farshidianfar and Zanganeh, 2010). After
n exhaustive analysis, Facchinetti et al. (2004) suggested to adopt a forcing of the fluid equation which is proportional
o the acceleration of the elastic body. Tamura’s model (TAMURA and Matsui, 1980) is based on a formal derivation and
hysical arguments. By combining the velocity and acceleration of the body into the forcing term of the fluid, it is more
eneral than Facchinetti’s model. It is for instance able to mimic the asymmetry of the lock-in response, as in the seminal
irkhoff (1953) or Hartlen and Currie (1970) models.
The influence of turbulence on VIV of elastically mounted cylinders or more complicated shapes like bridge decks has

een experimentally investigated in many studies (Howell and Novak, 1980; Matsumoto et al., 2001; So et al., 2008;
rush et al., 2017). It appears that there is no clear consensus on the influence of turbulence. Anyways, the answer
hall not necessarily be dichotomic; at least, the influence of turbulence should depend on the type of turbulence (its
requency content) and its intensity. In some studies, turbulence is shown to have a strong effect on the synchronization
echanism and may lead to a complete suppression of VIV (Cao and Cao, 2017). Other works tend to indicate that the
rid turbulence of the oncoming flow has virtually no influence on the response amplitude (Goswami et al., 1993). The
ivergent conclusions of these studies indicate the complexity of the problem. In fact, the flow physics in the whole lock-in
egime is much more complex than the von Karman vortex street, which appears for fixed bluff bodies (Williamson and
oshko, 1988; Pasto, 2008). Computational fluid dynamics simulations have shed a different light on the problem and
elped understand the peculiarities of the flow, locally, where detachment is affected by turbulence (Guilmineau and
ueutey, 2004; Nguyen et al., 2018). Yet, the analysis that is carried out in this paper does not pretend to enter such a
etailed level of analysis and, quite the opposite, aims at analyzing a simple and adjustable phenomenological model.
Available mathematical models to describe VIV in a turbulent oncoming flow are much scarcer than for smooth flows.

ivil engineering applications such as bridge aerodynamics (Hansen, 2007; Komatsu and Kobayashi, 1980; Larsen, 1995;
arwar and Ishihara, 2010; Wu and Kareem, 2013), cable aerodynamics (Dyrbye and Hansen, 1996; Matsumoto et al.,
001; Denoël and Andrianne, 2017), chimneys (Daly, 1986; Pritchard, 1984; Ruscheweyh and Sedlacek, 1988) and tall
uildings (Kawai, 1992) are all concerned by vortex induced vibrations in the atmospheric boundary layer where the
agnitude of the fluctuating component (turbulence) can reach up to 20% or more of the average wind velocity. There
re therefore obvious needs for simple models of VIV in the presence of noise. In the family of externally forced models
family I), Vickery and coworkers (Vickery and Clark, 1972; Vickery and Basu, 1983; Vickery, 1995, 1998) have proposed
loading model of tapered stacks which is still widely used today. It constitutes a cornerstone of the modeling of the

nfluence of turbulence on vortex-induced vibrations. This model has been constructed as a simple generalization of the
xternally forced model (family I), by modeling the aerodynamic loading as a narrow band stochastic process, instead of
deterministic harmonic loading. Stochastic versions of the family II models are also available in the literature, see e.g.
e and Caracoglia (2015). Following the same spirit, this paper presents and analyzes a randomized version of a simple
ake oscillator model (family III). A seminal randomized version of the Hartlen–Currie model is studied in Benaroya
nd Lepore (1983) by means a convolution integral of the linear structural oscillator and the derivation of the Fokker–
lanck–Kolmogorv equations for the nonlinear fluid equation, externally forced by a narrow-band stochastic structural
otion. Using a Monte Carlo approach, Krenk’s wake-oscillator model, based on an energy balance, has been studied in
tochastic conditions using the quasi-steady approach too (Nielsen and Krenk, 1997), after which it is concluded that
he stochastic response resembles the observed behavior in experiments and full-scale testing. Monte Carlo simulations
re the simplest way to tackle non deterministic problems since the solution just requires the generation of synthetic
ealizations of the turbulent flow and the statistical analysis of the response (Tagliaferri and Srinil, 2017). This approach
as also been used to determine the response of structures with many more degrees-of-freedom (Li, 2019) or in more
omplicated geometries than the 2-D case of simple wake-oscillator models (Ulveseter et al., 2017). Although being simple
o implement, the Monte Carlo approach does not offer the same depth of understanding as explicit closed form solutions
hich are only valid in some simple configurations, e.g. in the analysis of the Van der Pol equation alone in stochastic

oading conditions (Leung, 1995; Gu et al., 2011). More recently Facchinetti’s wake-oscillator model has also been studied
n stochastic conditions, under the quasi-steady assumption. While Aswathy and Sarkar study the stochastic version of
his model and the influence of parametric noise with the help of Monte Carlo simulations (Aswathy and Sarkar, 2019),
hoshani examines the responses of the coupled system by means of stochastic averaging (Shoshani, 2018).
As explained above the quasi-steady assumption shall not strictly apply, nor be used in a predictive manner (a simple

rgument is to observe that both the Strouhal number and the aerodynamic coefficients are affected by turbulence of
he oncoming flow), it is still interesting to understand the specific features of a model. This paper does not pretend to
ffer more that the understanding of a phenomenological model, that could be fitted to observed experimental or in-situ
easured data. With this in mind, this paper analyzes the stochastic version of the Facchinetti model with the pragmatical

ools of nonlinear stochastic dynamics. Quite interestingly, it also introduces a slow phase model for this problem. As
een next, this model is simple enough to derive approximate solutions of the problem, encapsulating the major problem
Please cite this article as: V. Denoël, Derivation of a slow phase model of vortex-induced vibrations for smooth and turbulent oncoming flows. Journal of
Fluids and Structures (2020) 103145, https://doi.org/10.1016/j.jfluidstructs.2020.103145.
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parameters in the governing leading dimensionless groups. This approach might be attractive to complement attempts at
standardizing the design of VIV-sensitive structures (Hansen, 2007; Standard, 1991).

The paper is organized as follows. In Section 2, the considered (Facchinetti) model is introduced, together with
its randomized version. The averaged version of the deterministic system is introduced in Section 3. This derivation
emphasizes the central role of the dimensionless group D and the slow phase between the structural and fluid oscillators.
It is also emphasized that it is not necessary to resolve the fast dynamics as long as the slow dynamics of the phase and
the response envelopes are studied. In Section 4, the stochastic version of the problem, is presented. Phase slips and their
accumulation are evoked to explain why and how turbulence is able to affect the VIV response. Then, a slow phase model
is derived and simple analytical solutions are provided. They offer a simple outlook on the parameters and dimensionless
groups driving the response of the coupled system in stochastic conditions. Illustrations are finally given to feed the
discussion about the validity of the proposed simplified solutions.

Nomenclature

Model parameters Units Scaling Dimensionless
t T, T−1 Time t⋆ = 1/ω0 τ

y(t) L Transverse displacement of cylinder y⋆ = εD Y (τ , T = ετ)
q(t) – Generalized lift (Fdlb model) q⋆ = 1 Q (τ , T = ετ)
ε – a van der Pol coefficient in wake equation
D L Crossflow dimension of cylinder
ω0 T−1 Natural circular frequency of elastically

mounted cylinder
mS, mF, cS, kS, mixed Parameters of the Facchinetti–de

Langre–Biolley...
ρ, U∞, CD, C0

L , A0 mixed ...model (Fdlb), see definition in (1)
µ – Fluid/Structure mass ratio

(µ =
ρπD2

4(mS+mF)
=

ρ

ρS
), see (4)

M0

St – Strouhal number
fshedding T−1 Shedding frequency (fshedding = StU∞/D)
Sc⋆ = Sc ξ/ξs – Scruton number, defined with total

damping, see (17)
SG⋆ = SG ξ/ξs – Skop–Griffin number, defined with total

damping, see (18)
u(τ ) L T−1 Turbulence velocity (Gaussian random

process)
σu U (T = ετ)

σu L T−1 Standard deviation of turbulence velocity
Iu – a Turbulence intensity (Iu = σu/U∞)
Su L2 T−1 Power spectral density of turbulence σ 2

u /ω0 SU (ω̃ = ω/ω0)
α – a Dimensionless characteristic turbulence

frequency

Model parameters Units
M0 – Dimensionless fluid/structure mass ratio, see (10)
ξs, ξa – a Structure and fluid damping ratios, see (4)
ξ = ξs + ξa – a Total damping ratio, see (4)
Ω – b Mistuning, bifurcation parameter, see (4)
δ = (Ω − 1) /ξ – Centered and scaled mistuning, bifurcation parameter, see (22)
D – Unique dimensionless group characterizing the deterministic response of

the Fdlb model, see (28)
Ry (T ) – Slow envelope of the structural response Y
Rq (T ) – Slow envelope of the reduced lift Q
ψ(T ) – Slow phase between Y(τ , T ) and Q(τ , T )
ξ0 = ξ/ε – Reduced damping ratio
I0 = Iu/ε – Reduced turbulence intensity
Υ (T ) = cotψ(T ) – Cotangent of the slow phase, see (45)
ΥLC = cotψLC – Cotangent of the slow phase on the limit cycle, ΥLC ≡ ΥLC (δ;D), see (27)
B – Dimensionless group characterizing the stochastic response of the Fdlb

model, see (47)
V – VIV reduction factor accounting for the frequency content of turbulence

(vs. the slow memory of the structure), see (54)
Please cite this article as: V. Denoël, Derivation of a slow phase model of vortex-induced vibrations for smooth and turbulent oncoming flows. Journal of
Fluids and Structures (2020) 103145, https://doi.org/10.1016/j.jfluidstructs.2020.103145.
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Model parameters Units
∆Υ (T ) – Deviation from limit cycle solution ∆Υ (T ) = Υ (T ) − ΥLC
µ∆Υ , σ∆Υ – Average and standard deviation of the deviation from limit cycle solution
µΥ , σΥ – Average and standard deviation of the cotangent of the slow phase,

µΥ = µ∆Υ + ΥLC, σΥ = σ∆Υ
ry – Reduction factor of the maximum structural response, random variable

ymbols with a naught underscore ·0 indicate quantities that have been scaled by a power of ε (ξ0, I0,A0,M0). Calligraphic
ymbols are used to represent dimensionless numbers or groups.
Small numbers.
Bifurcation parameter centered around unity (lock-in range).

. Considered wake-oscillator model

The Facchinetti–de Langre–Biolley (Fdlb) model reads (Facchinetti et al., 2004)

(mS + mF) ÿ +

(
cS +

CD

2
ρU∞D

)
ẏ + kSy =

1
4
ρU2

∞
DC0

L q (1)

q̈ + 2πSt
U∞

D
ε
(
q2 − 1

)
q̇ +

(
2πSt

U∞

D

)2

q = 2A0
ÿ
D

(2)

where y(t) (units: L) and q(t) (units: -) represent the two degrees-of-freedom associated with the cross-flow structural
motion and the lift force resulting from vortex shedding. The parameters of the model are mS, cS and kS, the mass, viscosity
and stiffness of the structure (per unit length), D the cylinder diameter (or characteristic cross-flow dimension), ρ and U∞

he density and the constant velocity of the fluid, CD and C0
L the stationary drag and the magnitude of the lift fluctuations

n the fixed body and St the Strouhal number. Finally A0 is a dimensionless parameter related to the influence of the
tructural motion on the dynamics of the wake (2A0 corresponds to symbol A used in Facchinetti et al., 2004), while ε is
nother dimensionless parameter that describes the memory in the wake equation and is related to the magnitude of the
onlinearity in the Van der Pol equation for the wake, therefore to the strength of the limit cycle. The equivalent mass of
isplaced fluid mF = CMρD2 π

4 (which is negligible in wind engineering applications) is added to the structural mass mS
in order to define the structural circular frequency ω0 =

√
kS/(mS + mF) =

√
kS/m. The Fdlb model has been imagined

or subcritical flows 300 ≲ Re ≲ 1.5 · 105 (Facchinetti et al., 2004). Addition of turbulence in the oncoming flow is known
o promote early transition to supercritical (Blackburn and Melbourne, 1996), which truncates the domain of applicability
f this model.

.1. Dimensionless version of problem

A dimensionless version of the governing equations is obtained by introducing the characteristic time t⋆ = 1/ω0 and
a characteristic structural displacement y⋆ (to be defined soon) and defining

τ =
t
t⋆

, Y(τ ) =
y [t(τ )]

y⋆
and Q(τ ) =

q [t(τ )]
q⋆

(3)

ith q⋆ arbitrarily chosen as 1. With the usual dimensionless numbers, characterizing the structural damping ratio ξs and
erodynamic damping ratio ξa, as well as the reduced wind velocity Ω and the mass ratio µ

ξs =
cS

2
√
kSm

, ξa =
ρU∞D
4
√
kSm

CD, Ω =
StU∞/D
ω0/2π

=
fshedding

f0
, µ =

ρπD2

4m
=
ρ

ρS
, (4)

ith ρS the equivalent density of the cylinder, the governing equations become

Y ′′
+ 2 (ξs + ξa)Y ′

+ Y =
1
4

1
kSy⋆

ρU2
∞
DC0

L Q =
µ

4π3

D
y⋆

(
Ω

St

)2

C0
L Q (5)

Q′′
+ εΩ

(
Q2

− 1
)
Q′

+Ω2Q = 2A0
y⋆

D
Y ′′ (6)

where the prime symbol denotes derivatives with respect to the dimensionless time τ . In the wake equation, the small
parameter ε plays a major role. It is small to moderate, say in the range [0.01; 0.4]; it is always certainly not equal to
zero, otherwise there would not be any synchronization. It appears therefore as a good candidate to derive an asymptotic
solution of this problem. In order to derive a consistent distinguished limit, we study the solutions of the problem where
the structural displacement y is small compared to the diameter D of the body, which anyways correspond to the domain
of applicability of the wake-oscillator model (2-S shedding mode, see e.g. Williamson and Roshko, 1988). It is therefore
natural to choose

y⋆ = εD (7)
Please cite this article as: V. Denoël, Derivation of a slow phase model of vortex-induced vibrations for smooth and turbulent oncoming flows. Journal of
Fluids and Structures (2020) 103145, https://doi.org/10.1016/j.jfluidstructs.2020.103145.
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as a characteristic displacement, and to solve the problem for Y(τ ) ∼ 1. Seeking applications in wind engineering, the
(fluid-over-structure) mass ratio is assumed to be very small, of the order of ε2 or smaller (typically 10−3). The mass ratio
µ is therefore written µ = µ0ε

2 with µ0 ∼ 1 so that the governing equations become

Y ′′
+ 2 (ξs + ξa)Y ′

+ Y = 2εM0Ω
2Q (8)

Q′′
+ εΩ

(
Q2

− 1
)
Q′

+Ω2Q = 2εA0Y ′′ (9)

where M0 ∼ 1 has been defined as

M0 :=
µ

8π3ε2

C0
L

St2
. (10)

It therefore carries information about the mass ratio, the lift force and the shape of the body (through the Strouhal number
and lift coefficient). The Skop–Griffin parameter is expressed as a function ofM0 because it is the sole dimensionless group
carrying information about the mass ratio. The smallness of the righthand side of (8) also translates that the lift created
by vortex shedding is small compared to the elastic forces in the body (energy is slowly pumped in/out of the system).

In this paper, the turbulence of the oncoming flow is introduced in the model, following the quasi-steady ap-
proach (Simiu and Scanlan, 1996; Dyrbye and Hansen, 1996). A randomized version of the governing equations, obtained
by substituting U∞ + u(t) for U∞ in (8)–(9) is here developed. It is assumed that u(t) is a zero-mean Gaussian stochastic
process with known variance σu and known power spectral density Su (PSD). The validity is this randomization procedure
is still debatable with regards to the available information today, although this is common practice as stated in the
introduction; however, seeking applications in the atmospheric boundary layer, the turbulence of the oncoming flow
is characterized by a slow timescale which is one or several orders of magnitude slower than the structural oscillations
and, hence, aeroelastic effects. This argument contributes to the separation of the aeroelastic and buffeting effects, which
is favorable to this decomposition, (see Cremona et al., 2002, p.88). Noticing that U∞ appears in the definition of ξa and
Ω , this substitution readily provides the resulting system of equations in its most simple form,

Y ′′
+ 2 (ξs + ξa (1 + IuU))Y ′

+ Y = 2εM0 (1 + IuU)2Ω2Q

Q′′
+ εΩ (1 + IuU)

(
Q2

− 1
)
Q′

+Ω2 (1 + IuU)2 Q = 2εA0Y ′′
(11)

where a dimensionless turbulence U(τ ) has been defined by normalizing the velocity fluctuation u(t) by is standard
eviation σu,

u [t (τ )] = σuU(τ ) = IuU∞U(τ ), (12)

ith Iu = σu/U∞ the turbulence intensity, usually in the range [0; 0.25]; it is therefore considered as a small number,
.e. Iu ≪ 1.

The objective of the study reported in this paper is to analyze this set of equations with the qualitative and quantitative
ools in nonlinear dynamics, in order to sketch the important features of this model and explain them with simple
oncepts. As seen next, this will provide a possible explanation of the influence of turbulence on the lock-in phenomenon.
n Sections 3 and 4 we derive an asymptotic solution of this problem. In Section 5, we study the accuracy of the proposed
odel by comparison with Monte Carlo simulations of (11), which will serve as a reference solution.

.2. The dimensionless turbulence U(τ )

In the governing equations, U(τ ) is a zero-mean unit-variance process indexed on the dimensionless time τ (µU = 0,
U = 1). The corresponding PSD can be expressed as a function of the power spectral density of u(t), since U(τ ) and u(t)
re related to each other by means of a stretch and a re-scaling. Let us write Su (ω; p) the PSD of u(t), where p represents
ome possible parameters of the model such as σu, the variance of u(t), or the turbulence lengthscale Lxu, or the mean
ind velocity U∞. For instance, the following PSD’s

Su

(
ω;

U
L
, σ 2

u

)
= σ 2

u
0.546 L

U(
1 + 1.64 L

U |ω|
)5/3 , Su

(
ω; a, σ 2

u

)
= σ 2

u
a
π

1
ω2 + a2

, (13)

represent an existing model of the power spectral density of atmospheric turbulence (Dyrbye and Hansen, 1996) and the
power spectral density of the Ornstein–Uhlenbeck process (Papoulis and Pillai, 2002). This latter example will be used in
the following illustrations. The PSD of the zero-mean unit-variance process U(τ ) is then given by

SU (ω̃;α) =
ω0

σ 2
u
Su

(
ω̃ ω0;α ω0, σ

2
u

)
(14)

here ω̃ = ω/ω0 is the dimensionless frequency parameter (associated with time τ ) and α a dimensionless characteristic
requency of the turbulence velocity. For the two examples given above α = U/Lω0 and α = a/ω0, respectively. This
umber relates the characteristic frequency of turbulence (U/L or a) to the characteristic frequency ω0 of the structure.
t is typically small in wind engineering applications, in the range [10−3

; 10−1
]. Its smallness will also be exploited in the
Please cite this article as: V. Denoël, Derivation of a slow phase model of vortex-induced vibrations for smooth and turbulent oncoming flows. Journal of
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Table 1
Typical range of variation of the parameters of the problem.
Model Range of Governing Range of Reduced Range of
parameters variation parameters variation parameters variation

ξs [5 · 10−4, 10−2
] Ω [0.5, 1.5] D [1; 30]

ξa [10−3, 5 · 10−2
] ε [0.05; 0.3] ξ0 = ξ/ε [5 · 10−2

; 1]
ξ = ξs + ξa [10−3, 5 · 10−2

] I0 = Iu/ε [0; 10]
Turbulence M0 [0.01; 1]
α [10−3

; 10−1
] A0 [1; 10]

Iu [0; 0.25]

sequel in order to derive closed-form solutions of this problem. The PSDs of the normalized turbulence corresponding to
(13) are therefore given by

SU (ω̃;α) =
0.546(

α3/5 + 1.64|ω̃|
)5/3 , SU (ω̃;α) =

α

π

1
ω̃2 + α2 . (15)

The normalization property of the PSD translates into∫
+∞

−∞

SU (ω̃;α) dω̃ = 1 (16)

regardless of the value of the parameter α (Denoël and Carassale, 2015). Notice that SU (ω̃;α) might be expressed as a
function of additional parameters, should the original density Su (ω) be more complex than (13). It is just independent of
σu as a result of the re-scaling.

2.3. Order of magnitude of the parameters of the model

In typical applications, ξs, ξa, ε, α and Iu are small parameters. The orders of magnitude of the parameters of the model
are given in Table 1 while the numerical values that are chosen in the following illustrations (Data Set 1 and Data Set
2) are given in Table 2. These values are inspired from the examples given in TAMURA and Matsui (1980) (Data set 1)
and Facchinetti et al. (2004) (Data set 2). Some other important rescaled parameters such as ξ0 = ξ/ε = (ξs + ξa) /ε

and dimensionless groups such as D = A0M0/ξ
2
0 will naturally appear in the following developments. In order to be

exhaustive and collect all relevant information at the same place, the values for these dimensionless groups are also
reported in the same Tables. The origin of these parameters will become clearer in Sections 3 and 4.

The parameters of the Fdlb model can be related to other standard mass-damping parameters that are used to describe
vortex-induced vibrations. In particular, using the standard definition for the Scruton number (Scruton, 1981)

Sc⋆ :=
4π (ξs + ξa)m

ρ D2 = π2 ξ

µ
, (17)

but referring to the total damping ξ (instead of only the structural damping ξs), with µ the mass ratio defined in (10) and
= ξs + ξa the total damping, the Skop–Griffin parameter defined by SG⋆ := 2πSt2Sc⋆ (Griffin and Koopmann, 1977) is

ound to be given by

SG⋆ = 2π3St2
ξ

µ
=

ξ C0
L

4ε2M0
. (18)

These notations are different from the usual mass-damping parameter SG which is calculated with the structural damping
only, SG = 2π3St2ξs/µ, or from the usual Scruton number Sc = π2ξs/µ also defined for the structural damping only.
Rewriting the former equation, it is seen for instance that

4M0

ξ
ε2 =

4M0

ξ0
ε =

C0
L

SG⋆
and D =

A0M0

ξ 20
=

A0

ε ξ0

C0
L

4SG⋆
. (19)

hese relations allow to translate the main results of the following analysis, which are presented with the parameters of
he wake-oscillator model, into more usual dimensionless numbers.

The smallness of the five parameters ξs, ξa, ε, α and Iu is fully exploited in the following developments by means of a
erturbation approach. This makes possible the establishment of analytical expressions for the stochastic response of the
ake-oscillator model.
Please cite this article as: V. Denoël, Derivation of a slow phase model of vortex-induced vibrations for smooth and turbulent oncoming flows. Journal of
Fluids and Structures (2020) 103145, https://doi.org/10.1016/j.jfluidstructs.2020.103145.
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Table 2
Considered numerical values used for the illustrations. Below first separation: derived
quantities.

Data Set 1 Data Set 2
Model Dimensionless Dimensionless
parameters parameters parameters

ε ε = 0.05 ε = 0.2
ξs ξs = 0.015 ξs = 0.0075
ξa ξa = 0.015 ξa = 0.0075
M0 M0 = 0.9 M0 = 0.0187
A0 A0 = 1 A0 = 6
α Variable Variable
Iu , I0 = Iu/ε Variable Variable

ξ = ξs + ξa ξ = 0.03 ξ = 0.015
ξ0 = ξ/ε ξ0 = 0.6 ξ0 = 0.075
D D = 2.5 D = 20

ξ (1 + D) ∆Ω = ±0.105 ∆Ω = ±0.315

3. Deterministic wake-oscillator model

3.1. Averaged governing equations

When the turbulence is discarded (U (τ ) = 0 or Iu = 0), the set of equations boils down to the governing equations
tudied by Facchinetti et al. (2004),

Y ′′
+ 2ξY ′

+ Y = 2εM0Ω
2Q

Q′′
+ εΩ

(
Q 2

− 1
)
Q ′

+Ω2Q = 2εA0Y ′′
(20)

here ξ = ξs + ξa represents the sum of structural and aerodynamic dampings. We only focus on the specific case where
ξ, ε} ≪ 1 and this is formalized by introducing

ξ = ξs + ξa = ξ0 ε (21)

here ξ0 ∼ 1 (is of order 1 at most). We also focus on small mistuning conditions, i.e. assume that the vortex shedding
requency of the fixed cylinder is close to the natural frequency of the structure. This is formalized by writing

Ω = 1 + ξ δ = 1 + ξ0ε δ ⇔ δ =
Ω − 1
ξ

=
fshedding − f0

ξ f0
(22)

here δ ∼ 1 is a detuning parameter of order 1. The detuning is scaled with respect to ξ which might appear unusual at
irst glance. In the forced case where the same problem is reconsidered by imposing a prescribed motion to the body, the
tructural damping ratio vanishes and the proper scaling is ω = (Ω − 1) /ε, see Appendix A.2. The choice to scale here
the mistuning with ξ , in the free vibration test, will appear natural in the light of the following results.

The set of governing Eqs. (20) is then solved by considering a multiple scales solution, in the form of the following
ansatz

Y(τ ; ε) = Y0 [τ , T (τ ) ; ε] + εY1 [τ , T (τ ) ; ε] + · · ·

Q(τ ; ε) = Q0 [τ , T (τ ) ; ε] + εQ1 [τ , T (τ ) ; ε] + · · · (23)

where Yi and Qi (i = 0, 1, . . .) are of order 1, which indicates that the solution is sought as a function of a fast time τ and
a slow time T chosen as T = ετ . Application of standard techniques in multiple timescales (Bender and Orszag, 2013)
shows that the leading order solution of the set of governing equations is

Y0 = Ry(T ) cos [τ + ϕ(T )] ; Q0 = Rq(T ) cos [τ + ϕ(T ) + ψ(T )] (24)

where the slowly varying amplitudes Ry(T ), Rq(T ) and the relative phase ψ(T ) satisfy the secularity equations (see details
n Appendix A.1)

R′

q = A0Ry sinψ −
1
8
R3
q +

1
2
Rq

R′

y = M0Rq sinψ − ξ0Ry

ψ ′
=

(
A0

Ry

Rq
+ M0

Rq

Ry

)
cosψ + ξ0δ. (25)

This way of averaging the governing equations reveals that the 4-dimensional dynamical system described by the
original Eqs. (11) in the state-space actually evolves on a 3-dimensional subspace, at leading order. This is consistent
Please cite this article as: V. Denoël, Derivation of a slow phase model of vortex-induced vibrations for smooth and turbulent oncoming flows. Journal of
Fluids and Structures (2020) 103145, https://doi.org/10.1016/j.jfluidstructs.2020.103145.

21



YJFLS: 103145

8 V. Denoël / Journal of Fluids and Structures xxx (xxxx) xxx

w1
d2

3
d4

5
6
7
8

9

10
11

12

13

14

15
16
17

18

T19
20

t21
d22

23
t24

25
26
27
28

i29

30

31
32
33
34
35
36
37
38
39
40
41

42

43
44
45
46
ith the usual features of multiple scale analysis in the time (Bender and Orszag, 2013) or frequency (Denoël, 2015)
omains.
The multiple scale analysis that has resulted in the averaged Eqs. (25) has some advantages compared to assuming

elayed harmonic responses for Y and Q as in Facchinetti et al. (2004): (i) it explicitly introduces the slow amplitude and
slow phase, (ii) it also explicitly introduces the governing equation for the dynamics of the slow phase, the third equation
in (25), which is a central concept in synchronization, (iii) final results take simple expressions since they correspond to
secularity conditions instead of long derivations involving trigonometry and algebra. On the flip side, the mistuning needs
to be small.

3.2. The slow phase on the limit cycle

The steady state solution is obtained when the time derivatives on the lefthand sides in (25) vanish. In particular the
second equation yields M0Rq sinψ = ξ0Ry, so that the ratio

Ry

Rq
=

M0

ξ0
sinψ (26)

is known and its substitution into the last equation indicates that the phase on the limit cycle cotψLC thus satisfies

cot3 ψLC + δ cot2 ψLC +

(
1 +

A0M0

ξ 20

)
cotψLC + δ = 0. (27)

If the lefthand sideψ ′ had been kept, this would have provided the slow phase model in smooth oncoming flow conditions.
It is not written here since only the limit cycle usually matters in smooth flow conditions. The phase on the limit cycle
ψLC ≡ ψLC (δ,D) only depends on the mistuning δ and on the dimensionless group

D :=
A0M0

ξ 20
=

A0M0

ξ 2
ε2 =

2A0

ε

1
2ξ
ρU2

∞
C0
L

8kS
=

A0

ε ξ0

C0
L

4SG⋆
. (28)

his group translates the relative magnitude between the two (small) forcing terms in the coupled governing equations.
Since the mistuning parameter δ appears in all even powers of cotψLC and only there, at leading order, the phase on

he limit cycle ψLC is symmetric with respect to δ, i.e. not affected by a change of sign of δ. As a consequence, the lock-in
omain is symmetric with respect to the reduced velocity. This is an important feature of the Fdlb model.
General solution. If δ = 0, the polynomial (27) in cotψLC has only one real root (because D > 0) corresponding

o cotψLC = 0, i.e. ψLC = ±
π
2 , which corresponds to a perfect lock-in condition. Indeed, as seen next, this maximizes

the response of the system (it is possible to anticipate that a phase shift of ±
π
2 maximizes the energy pumped into the

structural degree-of-freedom). Invoking Descartes’ rule of sign, it is observed that the polynomial (27) has one or three
positive roots if δ < 0 and one or three negative roots if δ > 0. Furthermore, using Cardano’s formula, it is possible to
prove that, if D < 8, there is only one real root no matter the value of δ. On the contrary, if D > 8, there are three roots
f |δ| lies in the interval [I(−); I(+)] and only one root otherwise. The bounds of this interval are given by

I(±) =

√
D2 + 20D − 8 ±

√
D (D − 8)3

2
√
2

. (29)

The upper bound can be approximated by I(+) ≃ (4 + D)
√
3
4 for values of D in the range [8,∼ 20], which corresponds to

typical applications.
The existence of three real roots is associated with some hysteresis in the model (Païdoussis et al., 2010). Fig. 1

represents the one or three roots of the polynomial equation as a function of δ and for various values of D. The figure
indeed illustrates that there is only one root for D < 8 and therefore no hysteresis (blue lines), while there might be
three real roots and hysteresis in the system for D ≥ 8 (red lines).

Exact solutions of the 3rd degree polynomial (27) can be obtained by means of Cardano’s formula. The resulting
expressions are rather long; they are not reported here. Instead we focus on simple approximate solutions.

Small-root asymptote (Bulk of lock-in region). Let us examine first the conditions under which it is possible to have
a small root. This case is the most important since it corresponds to the lock-in phenomenon, |cotψLC| ≪ 1 meaning
ψ ≃ ±

π
2 . A small-root asymptote is obtained by dropping terms in cot2 ψLC and cot3 ψLC in (27). This yields

cotψsmall ≃
−δ

1 + D
. (30)

This approximation ceases to be valid when either cot3 ψLC either δ cot2 ψLC enters in the balance in (27), that is when
either (i) cot3 ψLC ∼ δ, i.e.

(
δ

1+D

)3
∼ δ or |δ| ∼ (1 + D)3/2, either (ii) δ cot2 ψLC ∼ δ, i.e. |δ| ∼ 1 + D. All in all, the

small-root asymptote is therefore valid when |δ| ≪ 1 + D. The small-root asymptote is represented by dashed lines in
Fig. 1; this root is represented in the range of validity, |δ| ≲ 1 + D.
Please cite this article as: V. Denoël, Derivation of a slow phase model of vortex-induced vibrations for smooth and turbulent oncoming flows. Journal of
Fluids and Structures (2020) 103145, https://doi.org/10.1016/j.jfluidstructs.2020.103145.
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Fig. 1. Steady-state phase between wake and oscillator on the limit cycle. There are three possible solutions for D ≥ 8 (in red) and just one solution
for D < 8 (in blue). Represented for D = 0, 2, 4, 6 (in blue), D = 8 (in black), D = 10, 12, 14, 16 (in red). Dashed line represent the small-root and
large-root asymptotes. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Large-root asymptote. For |δ| > I (+), far from the center of the lock-in region, there is only one large root, and
the root can be approximated by the solution of cot3 ψ + δ cot2 ψ = 0, i.e. cotψ + δ = 0. Reconsidering the
polynomial (27) we observe that, in the limit case, the independent term balances the term cotψ so that we are left
with cot3 ψLC + δ cot2 ψLC + D cotψLC = 0 whose solution is

cotψlarge ≃
−δ ±

√
δ2 − 4D
2

. (31)

This is the asymptotic solution far from the bulk of the lock-in region. It is just given here for information; it is not used
in the sequel since it corresponds to a regime that falls out of the lock-in range and is therefore less interesting. This
approximate solution is also represented by dashed lines in Fig. 1.

The extent of the lock-in region. The range of validity of the small-root corresponds to the domain where the fluid
and structure oscillators find a steady state solution with a phase shift close to π/2, indicating that there is a significant
energy exchange between the two oscillators, the fluid one being able to store energy and resulting therefore in large
structural oscillations. This translates the so-called lock-in phenomenon observed in vortex-induced vibrations. The size
of the lock-in region corresponds therefore to the region where the small-root asymptote is accurate, i.e. |δ| ≪ 1 + D.
With dimensional parameters, it translates into ∆Ω ≪ ξ (1 + D). This solution is however only valid under the condition
D < 8, where cotψLC grows monotonically with −δ. Indeed, in the case D > 8, the folding in the solution is such that the
branch associated with the large root can connect the small-root asymptote before it becomes large. In that case, the extent
of the lock-in region is precisely given by the upper bound of the interval [I(−); I(+)], i.e. approximately δ < (4 + D)

√
3
4 .

Aggregating these two conditions (and using
√
3
3 in the first condition to make the transition from D < 8 to D > 8

continuous), the extent of the lock-in regime can be simply expressed by

∆Ω = ξ ∆δ =

{
2ξ (1 + D)

√
3
3 if D ≤ 8

2ξ (4 + D)
√
3
4 if D ≥ 8.

(32)

This proves, as introduced earlier, that the extent of the lock-in region scales with the total damping ratio ξ = ξs + ξa
and that the parameter D, related to the relative amplitude of the coupling terms, finely quantifies this extent. Because D
is expressed as the product of A0 and M0, it is sufficient that one of the two righthand sides in the governing equations
vanishes to obtain D = 0, i.e. the largest gradient in cotψLC vs. δ, see Fig. 1, and therefore the smallest lock-in domain.
The actual influence of the damping ratio on the size of the lock-in domain is actually misleading in this dimensionless
formulation. Substituting in (32) the definition of D, i.e. ξD = A0ε

2M0/ξ , this is also equivalent to

∆Ω = ξ ∆δ =

⎧⎨⎩2
√
3
3

(
ξ +

A0ε
2M0
ξ

)
if D ≤ 8

2
√
3
(
4ξ +

A0ε
2M0

)
if D ≥ 8
Please cite this article as: V. Denoël, Derivation of a slow phase model of vortex-induced vibrations for smooth and turbulent oncoming flows. Journal of
Fluids and Structures (2020) 103145, https://doi.org/10.1016/j.jfluidstructs.2020.103145.
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n the most usual cases where D ≫ 1 (or even D > 8), the second term in the brackets leads even for moderate to large
damping ratios, and the extent of the lock-in regime ∆Ω tends to decrease with increasing damping. This is consistent
with experimental evidences, see e.g. Marra et al. (2015) in air and Soti et al. (2018) in water.

Also, as the total structural damping decreases, the width of the peak in the frequency response function of the
structural oscillator decreases and the bandwidth over which it is able to interact with the fluid oscillator decreases.
This explains why, as ξ tends to zero, the size of the lock-in domain is reduced. This might have looked paradoxical; it is
important to notice however that the amplitude of the resulting motion increases as ξ → 0.

3.3. The response amplitudes on the limit cycle

The phase shift ψ plays a significant role in the analysis of the limit cycle and consequently of the possible
synchronization in the presence of external forcing. This naturally appears since the first equation to solve is in cotψ ,
while the determination of Rq and Ry can be seen as a secondary result. Once the phase shift between the fluid and
structure oscillators is known on the limit cycle, the amplitude of vibration is obtained by combining the first and second
equations in (25). They give

A0Ry sinψ =
1
8
R3
q −

1
2
Rq =

A0M0

ξ0
Rq sin2 ψ (33)

from which it is readily seen that Rq and Ry satisfy

Rq = 2
√
1 + 2ξ0D sin2 ψ ; Ry = 2

M0

ξ0
|sinψ |

√
1 + 2ξ0D sin2 ψ. (34)

In these expressions, the maximum responses Rq and Ry are obtained in perfect lock-in conditions (sinψ = 1). NB: we
have omitted the subscript LC in ψ , Rq and Ry in order to lighten the notation. The minimum response of the fluid oscillator
is 2, consistently with well-established theories about the van der Pol oscillator (Nayfeh and Mook, 2008). The magnitude
of the structural response on the limit cycle Ry scales with 1/ξ0 and M0. It is also maximum when sinψ

√
1 + 2ξ0D sin2 ψ

s maximum, i.e. ψ = ±π/2. The mistuning δ affects the magnitude of the response through the value of the phase shift
on the limit cycle. These expressions show that the maximum responses on the limit cycle, Rq and Ry/M0, only depend

n ξ0 = ξ/ε, D and δ (through ψ). Fig. 2 shows the amplitude of the response for three values of ξ/ε (0.75, 0.50 and
.25), for various values of D ∈ [4; 16], and as a function of parameter δ. The black lines correspond to D = 8, the largest
alue of D for which there is only one solution. For D > 8 (red lines), the existence of several roots translates into a
‘mushroom’’ shape, as opposed to a ‘‘bell’’ shape for D < 8. The vertical dashed lines in the plots of Ry/M0 represent
he extent of the lock-in domain, as defined by (32). The good agreement with the mushroom or bell shapes indicates
hat this proposition qualitatively does a good job for all possible values of ξ0 and D. We also notice that an approximate
olution in the bulk on the lock-in region can be obtained by replacing ψ in (34) by the small-root asymptote (30). This
ields the curved dashed lines represented on the top of the response.
Together with the simple expression of the extent of the lock-in domain, this simple expression for the magnitude of

he response provides a fair estimate of the amplitude of the response that could be useful for engineering applications.
The case of perfect lock-in, when δ = 0, ψ =

π
2 , is of paramount importance since it corresponds to the maximum

tructural response, Ry = 2M0
ξ0

√
1 + 2ξ0D. With the original parameters of the problem, we obtain

ymax

D
= ε Ry = 2

M0

ξ0
ε
√
1 + 2ξ0D =

C0
L

2SG⋆

√
1 +

A0

ε

C0
L

2SG⋆
. (35)

his result is similar to the expression obtained by Facchinetti et al. (2004) with a (single timescale) delayed harmonic
nsatz. What the current multiple scale analysis has provided in addition is a complete analysis of the phase on the limit
ycle and the extent of the lock-in region. Also, we emphasize that the simple expression given here is expressed as a
unction of the SG⋆ parameter defined with ξ = ξs +ξa. We chose to do it so because it is the actual quantity that governs
the amplitude of the response. The maximum amplitude is unbounded as SG⋆ → 0 because both the structural and the
aerodynamic dampings vanish. If only the structural damping vanishes, SG → 0, the aerodynamic damping remains and
he Griffin plot features a saturation at low structural damping. The maximum amplitude is thus obtained by replacing SG⋆

y 2π3St2ξa/µ in (35). The other asymptotic case, SG⋆ → +∞ shows that ymax/D scales as
(
SG⋆

)−3/2, which is consistent
with experimental data, see e.g. Skop and Balasubramanian (1997), where the slope -3/2 is visible in the log–log plot.

Eqs. (32) and (35) prove very useful in identifying the parameters of the Fdlb model from experimental data. Once ξ
is known, the measured extent of the lock-in domain yields D through (32); then (35) consists in an additional equation
to determine ε and M0 once ymax/D is known.

3.4. Period of the limit cycle

The period of the limit cycle is obtained by returning to the leading order solution given in (24), i.e. Y0 =

[ ] [ ]
Please cite this article as: V. Denoël, Derivation of a slow phase model of vortex-induced vibrations for smooth and turbulent oncoming flows. Journal of
Fluids and Structures (2020) 103145, https://doi.org/10.1016/j.jfluidstructs.2020.103145.

Ry(T ) cos τ + ϕ(T ) and Q0 = Rq(T ) cos τ + ϕ(T ) + ψ(T ) . On the limit cycle, Rq, Ry and ψ have converged to steady state
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Fig. 2. Maximum responses Rq and Ry/M0 on the limit cycle, represented for three values of ξ0 = ξ/ε and for D = 4, 6 (in blue), D = 8 (in black),
= 10, 12, 14, 16 (in red). Dashed line represent the extent and height of the lock-in region, given by (32) and (34) where cotψ = −δ/(1 + D).

For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

alues (they become constants with respect to T ); on the contrary the additional phase ϕ(T ) might still be (slow-)time
ependent. It actually satisfies

ϕ′
= −M0

Rq

Ry
cosψ, (36)

see last set of equations in Appendix A.1. In fact, among the four state variables ϕ is the only one that has an uncoupled
slow dynamics. This is precisely an indication that the period of the limit cycle is not exactly equal to 2π . Once Rq, Ry and
ψ have converged to the limit cycle values, satisfying (26) in particular, the previous equation provides

ϕ (T ) = ϕ0 −

(
M0

Rq

Ry
T cosψ

)
LC

= ϕ0 − ξ0T cotψLC = ϕ0 − εξ0τ cotψLC = ϕ0 − ξτ cotψLC. (37)

ubstitution into Y0 and Q0 provides an argument for the cosine function different from τ , which indicates that the period
or a complete revolution on the limit cycle is

TLC =
2π

1 − ξ cotψLC
≃ 2π (1 + ξ cotψLC) . (38)

t is obviously the same for both Y0 and Q0 since the coupled system evolves along a unique limit cycle.
When |δ| ≪ 1 (perfect tuning conditions), ψ ≃

π
2 , the period is almost equal to 2π , it is slightly shorter for δ > 0

(cotψLC < 0), slightly longer for δ < 0 (cotψLC > 0). Furthermore, returning to the original variable of the problem it is
observed that the period elongation/shortening due to difference between the natural frequency of the structure and the
vortex shedding frequency is just governed by the damping of the structural system and the phase shift ψLC on the limit
cycle. This, again, shows how central the phase shift is.

3.5. Illustrations

In order to validate the averaged equations and the slow dynamics version of the problem, the original problem (8)–(9)
Please cite this article as: V. Denoël, Derivation of a slow phase model of vortex-induced vibrations for smooth and turbulent oncoming flows. Journal of
Fluids and Structures (2020) 103145, https://doi.org/10.1016/j.jfluidstructs.2020.103145.

s simulated with two sets of parameters that are specifically chosen in order to provide a lock-in response that has a bell 19
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Fig. 3. Validation of the averaging of governing equations. Solution of original set of equations (colored lines) and solution of the averaged equations
(black dashed lines). Numerical values correspond to Data set 1, see Table 2. Please refer to online version for colors.

Fig. 4. Validation of the averaging of governing equations. Solution of original set of equations (colored lines) and solution of the averaged equations
(black dashed lines). Numerical values correspond to Data set 2, see Table 2. Please refer to online version for colors.

shape in one case (Data Set 1) and a mushroom shape in the other (Data Set 2). The numerical values of the parameters
are reported in Table 2 for the two considered cases. In the original problem, the fast dynamics is resolved and the time
step ∆τ needs to be substantially smaller that the period of the response (approx. 2π ) in order to provide accurate
esults. In this illustration, they have been obtained with the default settings of the ODE45 solver that is implemented in
atlab (2012). They resulted in Q (τ ) and Y (τ ) represented by the colored lines in Figs. 3 and 4. A closeup view shows the
stablished steady state solution in the time window τ ∈ [280, 300]. The maximum responses for each degree-of-freedom
Please cite this article as: V. Denoël, Derivation of a slow phase model of vortex-induced vibrations for smooth and turbulent oncoming flows. Journal of
Fluids and Structures (2020) 103145, https://doi.org/10.1016/j.jfluidstructs.2020.103145.
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Fig. 5. Period of the limit cycle. Comparison of the period obtained from simulation of the original 4-dimensional system (time between two
successive maxima) and the solution obtained after averaging (38).

are also reported as circles on the left, where they are superimposed with the analytical solution (35) of the problem (black
continuous line). The time series of Q (τ ) and Y (τ ) are also Hilbert-transformed (on mirrored signals in order to limit
the undesired end effects) in order to determine the instantaneous phase of the signals. The relative phase between Q (τ )
and Y (τ ) is therefore computed. It is reported with the colored lines in the bottom of Figs. 3 and 4.

The thin dashed lines represent the numerical solution of the averaged Eqs. (25). Because they just need to capture
the slow dynamics of the problem, they can be computed with a much larger time step (of the order of magnitude of ε−1

times larger), which constitutes a substantial computational saving.
In both cases the response envelopes are very well captured by the averaging procedure. The quality of the multiple

timescale approach is a little worse in the second case. This is a consequence of a larger value of the ‘‘small’’ parameter,
ε = 0.2. In particular, it is seen that the phase is not accurately modeled for Data Set 2 and Ω = 0.85. In that case, the
nonlinearity is higher (than for Data Set 1), and the response exhibits a strong beating which is difficulty captured by the
averaging procedure. Apart from this case of lesser interest since it corresponds to small vibration amplitudes, the global
response, including the transient regimes, is reasonably well estimated.

Fig. 5 shows a comparison of the period of the limit cycle obtained by simulation of the original problem (8)–(9)
and with the simple analytical expression (38). In the former case, results are represented by circles and obtained from
the time series of Q (τ ) and Y (τ ) by evaluating the time lapse between successive maxima in the steady state regime.
The comparison is provided for many values of the mistuning Ω , in the range [0.8; 1.2], including the four particular
values {0.85, 0.9, 0.95, 1} that have been used in Figs. 3 and 4 . The agreement between the results provided by the two
approaches validates the statement that the period of the limit cycle is governed by ξ and cotψLC the cotangent of the
phase on the limit cycle.

3.6. Deterministic VIV: A synchronization phenomenon or not ?

Synchronization is a phenomenon where either (i) an oscillator with a limit cycle is externally forced by a periodic
loading and phase entrainment can take place (Pikovsky et al., 2003), (ii) either several oscillators with limit cycles of
similar periods of revolution might lock depending on the magnitude of the coupling terms between them (Pikovsky
et al., 2003). A phenomenon is not related to synchronization as long as one is interested in the coupled system without
external (time varying) forcing.

Based on this definition, it is seen that the forced response of a cylinder, as described in Appendix A.2, corresponds
to frequency locking (therefore synchronization) while the free response of a cylinder in a smooth flow is not a
synchronization problem. The constant wind velocity does not count as an external forcing term; it is just a (bifurcation)
parameter of the problem. It becomes a synchronization problem as soon as some additional external forcing is considered.

In short, in the study of VIV, when a forced motion is imposed to the cylinder, the dynamics in the neighborhood of
the limit cycle is studied and, as soon as frequency locking conditions are satisfied, the system evolves along a (slightly,
as long as ε ≪ 1) perturbed limit cycle. On the contrary, when the free vibration problem is considered, as in the analysis
reported here, the topology of a limit cycle in a high-dimensional space is studied. Out of the lock-in region (this is not
synchronization!), the limit cycle only concerns the fluid oscillator, in the Van der Pol equation, and the amplitude of
the structural motion is very small. In the so-called lock-in region, the limit cycle occupies a large space in the state
space and the magnitude of the structural motion on the limit cycle is much larger. This just corresponds to the analysis
of the shape/topology of a limit cycle, as a function of a bifurcation parameter (δ). This is significantly different from a
synchronization problem (see Appendix A.2), in the forced case, where a stability analysis is to be performed.

In the following Section, the randomized version of the problem is considered. A random external forcing in the form
of a stochastic turbulent loading is added and the free vibration problem becomes therefore a synchronization problem.
Please cite this article as: V. Denoël, Derivation of a slow phase model of vortex-induced vibrations for smooth and turbulent oncoming flows. Journal of
Fluids and Structures (2020) 103145, https://doi.org/10.1016/j.jfluidstructs.2020.103145.
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. Stochastic wake-oscillator model

.1. The averaged model

In the randomized version of the governing Eqs. (11), it is observed that the turbulence plays several roles. It enters (i)
s a parametric excitation in the aerodynamic damping, (ii) as a forcing term in the righthand side of the first equation,
iii) in the nonlinear term of the wake equation and (iv) in the stiffness of the wake equation, which is responsible for
change of shedding frequency. It is readily seen that the first three occurrences of the turbulence are of second order,
ince the corresponding terms are multiplied by ξa and ε, which are assumed to be small numbers. Consequently, for
small turbulence intensity, the turbulence only affects the shedding frequency and, at first order, the governing equations
read

Y ′′
+ 2ξY ′

+ Y = 2εM0Ω
2Q

Q′′
+ εΩ

(
Q2

− 1
)
Q′

+Ω2 (1 + 2IuU)Q = 2εA0Y ′′.
(39)

Assuming again that ε, ξ and Iu are small parameters, these two equations are just seen as a small perturbation of the
linear undamped oscillator so that using a technique of averaging is expected to provide an accurate solution of this
problem. The same multiple timescale approach as that derived for the deterministic case shows that the leading order
solution is indeed the same as (24), while the secularity conditions become (the derivation follows the same flow as in
the deterministic case, detailed in Appendix A.1)

R′

q = A0Ry sinψ −
1
8
R3
q +

1
2
Rq

R′

y = M0Rq sinψ − ξ0Ry

ψ ′
=

(
A0

Ry

Rq
+ M0

Rq

Ry

)
cosψ + ξ0δ + I0U (40)

here the smallness of Iu has been made explicit by introducing Iu = εI0 where I0 ∼ 1. This set of equations forms the
veraged model. It is the same as in the deterministic case (25), apart from the external loading I0U which has appeared
n the slow phase equation. It is important to notice that, at leading order, the external forcing only affects the phase
ynamics and not the envelope dynamics. Since U is a stochastic process, the phase ψ (T ) and the envelopes Rq (T ) and
y (T ) are also stochastic processes. Solving this set of governing equations requires therefore the determination of the
robability density function (PDF) of these variables as well as their higher rank properties such as the power spectral
ensity (PSD). There are several options to do so.
As a first option, a Monte Carlo Simulation of the set of governing equations is always possible. It provides an accurate

esult with a reasonable amount of computational power, given the low dimensionality of this problem. This approach
ill be used to illustrate the concepts that are developed in this Section and serve as a reference solution.
In passing, a second option would consist in writing and solving the Fokker–Planck–Kolmogorov equation associated

ith this problem (Risken, 1996). This equation rules the advection–diffusion of the joint PDF between ψ (T ), Rq (T )
nd Ry (T ). It is less general than the Monte Carlo Simulation approach, since it requires the input process U (T ) to be
arkovian. It is not a limitation when U [T (τ )] is an Ornstein–Uhlenbeck process as assumed in this work; but it is

or instance very difficult to generalize to more realistic turbulence models such as that described by the PSD given in
13), since many augmentation states are required to approximate such a process with a Markov model. Simulations
ave revealed that the joint PDF between ψ (T ), Rq (T ) and Ry (T ) can take various very complicated forms, which
ints that an analytical solution of the Fokker–Planck–Kolmogorov equation seems vain and that the only practical
pproach to solve that equation is a numerical approach. There are numerous available numerical techniques based
n finite differences (Chang and Cooper, 1970), finite elements (Spencer and Bergman, 1993) or smoothed particle
ydrodynamics (Canor and Denoël, 2013), to solve this equation efficiently. They are not further discussed in this paper.
Instead and as a third option, an approximate solution will be derived in the following Section. Its accuracy will be

ssessed by comparison with Monte Carlo Simulations of the original Eqs. (11) and of the averaged Eqs. (40).

.2. The slow phase model

Under a small perturbation, such as a small (deterministic or not) forcing term, the trajectory of the system in the
hase space only slightly deviates from the unperturbed limit cycle (because it is small and the cycle is stable). Thus, in
erms of magnitude, perturbations of the original system lie in the near vicinity of the stable limit cycle. Conversely, the
hase perturbation can be large. A small forcing can easily drive the phase point far away along the cycle. This qualitative
icture suggests a description of the perturbed dynamics with the phase variable only, resolving the perturbations
ransverse to the limit cycle with the help of a perturbation technique. This is done by introducing the isochrones of
he problem (Guckenheimer, 1975; Winfree, 2001) and focusing on the slow phase dynamics of the problem only. This
pproach is common in physical sciences, in particular biology (Pikovsky et al., 2003). Its formal application in the current
roblem would result in ψ ′

=
(
A0Ry/Rq + M0Rq/Ry

)
cosψ + ξ0δ + I0U where

(
A0

Ry
+ M0

Rq
)

= −ξ0δ/cosψLC,
Please cite this article as: V. Denoël, Derivation of a slow phase model of vortex-induced vibrations for smooth and turbulent oncoming flows. Journal of
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Fig. 6. Comparison of the averaged model (40) and the slow phase model (41)–(42). Left to right: normalized histograms (PDF) of ψ , Υ := cotψ ,
Rq and Ry , time series, closeup view of time series. Numerical values: Data Set 1 (see Table 2), δ = 0, α = 0.002 and Iu = 10% (i.e. α/ε = 0.04,
I0 = 3). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

ee (25). The resulting equation does indeed provide a synchronization equation which unfortunately does not accept a
imple explicit solution. Instead, a simple slow phase model is obtained by assuming that the relation (26) between the
agnitudes of the response along the limit cycle still holds in case of a small perturbation, which corresponds to assuming

hat R′
y in the lefthand side is negligible. Its substitution into the phase equation in (40) yields

ψ ′
=

A0M0

ξ0
sinψ cosψ + ξ0 cotψ + ξ0δ + I0U . (41)

We have successively reduced the original 4-dimensional problem (11) to the 3-dimensional problem (40) and the
arguments of small perturbation have allowed a further reduction to a 1-dimensional problem. Once the problem will
be solved for the phase ψ(T ), the response amplitudes will be computed by

Rq = 2
√
1 + 2ξ0D sin2 ψ ; Ry = 2

M0

ξ0
|sinψ |

√
1 + 2ξ0D sin2 ψ (42)

where Rq (T ) and Ry (T ) are now time dependent. They are just obtained as a memoryless transformation of the phase
(T ). The slow phase model (41)–(42) not only provides a simple, although approximate, picture of the problem but is
lso a good candidate to explain with simple concepts and equations the influence of turbulence on a wake-oscillator
odel.
Fig. 6 shows Monte Carlo Simulations of (40) and (41)–(42) in order to illustrate the differences between the averaged

odel and the slow phase model. The numerical values considered for this example are those of Data Set 1, and δ = 0.
oth systems have been simulated with the same realization of the turbulence, selected as an Ornstein–Uhlenbeck process
ith α = 0.002 and Iu = 10% (i.e. α/ε = 0.04 and I0 = Iu/ε = 2). The total duration of the simulation is 25000 although
he first 5000 units of time are shown in the time series; a closeup is also given on the window [4000;4500].
Please cite this article as: V. Denoël, Derivation of a slow phase model of vortex-induced vibrations for smooth and turbulent oncoming flows. Journal of
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Fig. 7. Trajectories in the state space obtained with the averaged model (40) and the slow phase model (41)–(42). Numerical values: same as those
in Fig. 6. Please refer to online version for colors.

The time series of ψ (T ) obtained with the two models look substantially different. In the averaged model (blue lines),
he phase shift experiences so-called phase slips, which manifest through sudden jumps of integer multiples of 2π in
he phase shift. The accumulation of phase slips is a well-known phenomenon (Pikovsky et al., 2003) that explains the
eduction of the synchronization abilities of a system when it is subject to random forced excitation. For small external
orcing, the probability of occurrence of phase slips is very low; then above a certain critical magnitude of the external
orcing, accumulation of phase slips occur and the rate of accumulation of phase slips further increases with the magnitude
f the external forcing. The histograms of the phase slip, shown on the left of the Figure, indicate that the phase could
each values as large as 100 over the total duration of the simulation. In fact, both models are able to capture the phase
lips; they just have a different critical external forcing. In the current example, we have selected the turbulence intensity
u so that few accumulations take place for the slow phase model (in red) while many accumulations are visible for the
veraged phase model (in blue). Despite less frequent phase slips, the slow phase model actually captures quite accurately
he cotangent of ψ , as shown in the second line of the Figure. Especially, for small values of cotψ (exactly where lock-in
akes places), both models provide very similar values. This is illustrated by the superposition of the histograms of cotψ in
he bulk of the domain, on the left, and by the similarity of the time series. This translates into very good approximations
or Rq and Ry as illustrated in the bottom of Fig. 6, both in terms of time series or histograms.

The response amplitudes Rq and Ry are solved together with the phase in the averaged model, while they are obtained
as a quasi-static post-processing of the phase in the slow phase model. In other words, the trajectories in the plane Rq−Ry
of the state space take place on the limit cycle in the 1-dimensional model (where the dynamics is resolved along the
ψ coordinate), while they can slightly scatter away from the limit cycle in the 3-dimensional model. This is illustrated
in Fig. 7 showing a stroboscopic map of the trajectories (∆T = 6). This Figure illustrates that the small perturbation
resulting from the turbulence is such that the system remains in the neighborhood of its natural (unperturbed) limit
cycle. The limited dependence on the rate of accumulation of phase slips also indicates that isolated or repeated phase
shifts do not compromise the dynamics of the system, especially as long as steady-state solutions are studied.

Eq. (41) shows that the small random perturbation acts as if the constant detuning ξ0δ was replaced by a time-varying
detuning ξ0δ + I0U . To understand its influence on the dynamics of the slow phase and also to further illustrate the
concept of phase slip, we first notice that this equation can be written

ψ ′
= −

d
dψ

V (ψ)+ I0U (43)

where the potential V (ψ) is defined as V (ψ) =
A0M0

4ξ0
cos 2ψ − ξ0 log |sinψ | − ξ0δψ . This equation corresponds to the

over-)damped dynamics of a massless particle in a nonlinear potential well and subjected to a random external forcing.
n the absence of external forcing (I0 = 0), the system finds a stable equilibrium after the transient has vanished, in a
onfiguration where −V (ψ) is minimum. Fig. 8 shows −V (ψ) for different values of the mistuning ξ0δ while keeping
or other parameters the same values as those considered in the Data Set 1 and Data Set 2 given in Table 2. In the first
ase, a single equilibrium point exists between two successive singularities. In the second case, the existence of multiple
olutions is again observed in the case ξ0δ = ±0.75, which corresponds to Ω = 0.85 or Ω = 1.15 (because ε = 0.2
or Data Set 2), which corresponds to the purple plot in Fig. 4. In the forced configuration, the external forcing generates
scillations around the stationary point. As soon as the magnitude of the load is large enough (to be understood in a
elative manner and probabilistic sense), the particle can jump to the neighboring well and drift away from its original
onfiguration. On average, when δ > 0 the tendency of the drift is to the right; when δ < 0 the tendency of the drift is
o the left.

The slow phase equation (41) can be written as a function of cotψ

ψ ′
=

(
A0M0 cotψ

2 + ξ0 cotψ
)

+ ξ0δ + I0U (44)
Please cite this article as: V. Denoël, Derivation of a slow phase model of vortex-induced vibrations for smooth and turbulent oncoming flows. Journal of
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Fig. 8. Illustration of the potential −V (ψ). Circles indicate local minima, i.e. stable equilibrium configurations in the absence of external forcing.
Numerical values correspond to the two data sets given in Table 2. Data 1: one equilibrium point per [kπ, (k + 1)π ] interval (bell-shape lock-in
response); Data 2: three equilibrium points per [kπ, (k+ 1)π ] interval (mushroom-shape lock-in response). Please refer to online version for colors.

which can be further simplified by using the change of variable Υ = cotψ ,

−Υ ′

1 + Υ 2 =

(
A0M0

ξ0

Υ

1 + Υ 2 + ξ0Υ

)
+ ξ0δ + I0U . (45)

After rearrangement, the slow phase dynamics takes the form of a stochastic differential equation with polynomial
nonlinearity and parametric excitation,

Υ ′
+ ξ0δ + ξ0 (1 + D) Υ + ξ0δΥ

2
+ ξ0Υ

3
= −I0U

(
1 + Υ 2) . (46)

Despite the apparent simplicity of this stochastic differential equation, it appears that it has no simple explicit solution.
In particular, Υ seems to be rather Gaussian for small I0 but gets heavily lemnikurtic as soon as I0 takes some
oderate values. Any approach based on stochastic linearization or closure methods seems therefore inappropriate. A
aive linearization method is applied in the following Section with the objective to derive simple explicit solutions. They
ill be compared to accurate numerical solutions obtained with the methods suggested above for the high dimensional
roblem.

.3. Steady-state statistics of the phase shift

An approximate solution can be obtained by expressing the cotangent of the phase Υ as a deviation from the cotangent
f the phase on the limit cycle ΥLC = cotψLC, defined by

Υ 3
LC + δΥ 2

LC + (1 + D)ΥLC + δ = 0, (47)

ee (27). Indeed, with the substitution of Υ = ΥLC +∆Υ where ∆Υ is a deviation (not necessarily small), the slow phase
quation (46) becomes

∆Υ ′
+ ξ0

(
1 + D + 2δΥLC + 3Υ 2

LC

)
∆Υ + ξ0 (δ + 3ΥLC)∆Υ

2
+ ξ0∆Υ

3
= −I0U

(
1 + (ΥLC +∆Υ )2

)
. (48)

he advantage of this formulation is that there is no independent term in the lefthand side. As a consequence, when
0 → 0, we have ∆Υ → 0, which translates into

lim
I0→0

{µ∆Υ , σ∆Υ } = {0, 0} (49)

nd the same for higher statistical moments. This governing equation for ∆Υ remains nonlinear and its solution is
ot straightforward. On the lefthand side, all terms but the first one are multiplied by ξ0; dividing through by ξ0 and
ncorporating ξ0 in a new characteristic time shows that (i) the characteristic time for the slow dynamics is in fact ξτ
and not ετ as used so far), (ii) the damping ratio enters in the problem on the righthand side only, in the coefficient
0/ξ0 = Iu/ξ . So the lower the damping ratio, the larger the righthand side, the larger the deviation from the unperturbed
imit cycle and the further away from perfect lock-in conditions (the more phase slips occur).

The small turbulence solution. The solution of (48) is tackled in three steps. First, let us examine the case where the
urbulence intensity is so small that the deviation of the phase shift from its mean value is very small, ∆Υ ≪ 1. In that
ase, the governing equation collapses to

∆Υ ′
+ ξ0B∆Υ = −

I0
2 U (50)
Please cite this article as: V. Denoël, Derivation of a slow phase model of vortex-induced vibrations for smooth and turbulent oncoming flows. Journal of
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Fig. 9. Conceptual sketch illustrating the construction of 0 ≤ V (α/ξB) ≤ 1. A lowpass filter (left) is applied to SU (ω;α), which results in a reduction
of the high frequency content; as a consequence, V (α/ξB) is a decreasing function of α/ξB; V ≃ 1 for α/ξB ≪ 1 and V ≪ 1 for α/ξB ≫ 1. Please
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here B = 1 + D + 2δΥLC + 3Υ 2
LC. This linear stochastic equation possesses a simple steady state solution. Its average

value is µ∆Υ = 0 and its power spectral density (PSD) is given by

S∆Υ (ωT ) =
I2
0

sin4 ψLC

SU(T ) (ωT )

ω2
T + ξ 20B

2
(51)

where ωT = ω̃/ε is the circular frequency associated with the slow time T , while ω̃ is the circular frequency associated
with the fast (dimensionless) time τ , as introduced in (14). Following similar arguments as in Section 1, SU(T ) (ωT ) is
related to SU (ω̃;α) where the subscript is to be understood as U ≡ U (τ ), by

SU(T ) (ωT ) = ε SU (εωT ;α) = ε ω0Su (ε ω0ωT ;αω0) . (52)

The standard deviation of ∆Υ is therefore given by (a subscript ‘‘1’’ is added to the notation to indicate that it corresponds
to the first asymptotic solution),

σ∆Υ ,1 =
I0

ξ0B
V (α/ξB)

sin2 ψLC
(53)

where 0 ≤ V (α/ξB) ≤ 1 is defined by

V2
(
α

ξB

)
= ξ 20B

2
∫

+∞

−∞

SU(T ) (ωT ;α)

ω2
T + ξ 20B

2
dωT =

∫
+∞

−∞

SU (ω̃;α)

1 +

(
ω̃
ξB

)2 dω̃. (54)

In usual turbulence models, the PSD of the turbulence velocity behaves as a power law for large frequencies, in the inertial
range; for instance power exponents are equal to −5/3 and −2 for the two PSDs given in (13). Eqs. (51)–(52) show that
he slope of S∆Υ for large frequencies is two units smaller than the slope of the PSD of the turbulence; S∆Υ decreases
herefore much faster than SU at high frequencies. This has a major influence on the variance of ∆Υ , which is central in
nderstanding the loss of lock-in. With the same importance, the definition of V involves the product of SU (ω̃;α) with the
requency response function of a 1st-order filter. Therefore, the order of magnitude of V2 (α, ξ0B) is primarily affected by
he matching of the characteristic frequency (timescale) of the turbulence denoted α in SU (ω̃;α) and the cutoff frequency
f the filter, denoted ξB. Fig. 9 illustrates the lowpass filtering effect of the PSD of the turbulence in order to obtain its
nfluence on the stochastic phase shift. No matter the shape of the PSD SU (ω̃;α), V (α/ξB) is a monotonically decreasing
function, going from 1 to 0. It transitions when α ∼ ξB.

Eq. (53) is simple and captures many of the features of the model. It is very useful once it is understood that small
values of σ∆Υ ,1 mean small deviations from the limit cycle and therefore small influence of the wind turbulence on the
VIV response of the body. On the contrary, larger values of σ∆Υ ,1 correspond to more frequent occurrences of phase slips
and loss of synchronization. With this in mind, the model shows that

• fact 1: if ψLC is close to π/2 (center of lock-in range, δ ≃ 0), then ΥLC = cotψLC is close to zero and sin2 ψLC is close
to 1. This minimizes σ∆Υ ,1 since sin2 ψLC comes in the denominator. If ψLC goes away from π/2, then sin2 ψLC drops
and σ∆Υ ,1 increases which results in a decrease of the VIV;

• fact 2: B is also typically smaller than 1+D, since δ and ΥLC have opposite signs in the center of the lock-in regime,
see (30). Because B also comes in the denominator, σ∆Υ ,1 tends to increase when B decreases, as a result for instance
of δ increasing.

• fact 3: σ∆Υ ,1 is proportional to I0; a larger turbulence intensity will therefore increase the phase shift and ultimately
possibly reduce the VIV;

• fact 4: if α ≫ ξB, V ≃ 0 and σ∆Υ ,1 remains small; this means that the lock-in range and VIV response that are
observed without turbulence remain unaffected by turbulence. In the limit case where turbulence is modeled as a
white noise (α → +∞), there is no phase slip at all and the turbulence has no influence on the VIV response;
Please cite this article as: V. Denoël, Derivation of a slow phase model of vortex-induced vibrations for smooth and turbulent oncoming flows. Journal of
Fluids and Structures (2020) 103145, https://doi.org/10.1016/j.jfluidstructs.2020.103145.

• fact 5: if α ≪ ξB, V ≃ 1 and σ∆Υ ,1 might become larger, which translates, again, as a reduction of VIV.
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Fig. 10. Influence of δ on the small intensity solution: plot of B sin2 ψLC as a function of δ, where B(δ) is defined by (47) and where ψLC and
ΥLC = cotψLC are given in Section 3. Please refer to online version for colors.

s a conclusion, the larger the turbulence intensity, the more turbulence is able to reduce VIV (fact 3) but, to do so, it is
ecessary that the slow timescale of the turbulence be slower than the slow characteristic time of the problem, α ≪ ξB

(fact 5). With dimensional variables, this condition reads

α ≲ ξB ⇔ a ≲ ξω0
(
1 + D + 2δΥLC + 3Υ 2

LC

)
(55)

where a is the characteristic frequency of turbulence (center of gravity in the PSD of U(τ ) as defined in Section 1.
urthermore, the influence of δ on both B (fact 2) and sin2 ψLC (fact 1) shows two sources of reduction of the signature of
he VIV with increasing mistuning. This is also illustrated with Fig. 10 which shows B sin2 ψLC as a function of δ, in which
and sin2 ψLC themselves are expressed as functions of δ.
This first solution has been obtained by neglecting the nonlinear terms in (48). This assumption is licit as long as

∆Υ ,1 ≪ 1, i.e.

Iu ≪
ξ

V
B sin2 ψLC. (56)

The large turbulence solution. Second, let us examine the case where the turbulence intensity is so large, much
larger than this threshold, so that the turbulence drives the phase of the wake-oscillator model relatively far from the
unperturbed limit cycle and the nonlinear governing equation needs to be solved. In that case, the two terms with the
lowest powers in ∆Υ can be dropped from (48) and the righthand side is also simplified to yield

∆Υ ′
+ ξ0∆Υ

3
= −I0U∆Υ 2. (57)

When I0 ≫ 1, it is possible to find a balance between the different terms of this equation by pairing the orders of
magnitude of ξ0∆Υ 3 and I0U∆Υ 2, which indicates that ∆Υ ∼ I0 since both ξ0 and U are of order 1. Because U has unit
variance, this shows that

σ∆Υ ,2 =
I0

ξ0
=

Iu
ξ

(58)

for large turbulence intensity (a subscript ‘‘2’’ is added to the notation to indicate that it corresponds to the second
asymptotic solution). This second asymptotic behavior is therefore also proportional to I0. It is however much simpler
s it is now independent of B (but also D and δ) and α. This second solution is valid as soon as σ∆Υ ,2 ≫ 1, i.e. I0 ≫ ξ0
r Iu ≫ ξ . Considering the typical orders of magnitude of the turbulence intensity Iu ∼ 10% − 20% and of the damping
atio ξ ∼ 1% − 5%, we see that this second asymptotic case can be reached in practical applications. In fact, because it
orresponds to large values of σ∆Υ , it corresponds to the cases where VIV is broken by the turbulence. This simple formula
uggests that turbulence hinders VIV from occurring when the turbulence intensity Iu is one order of magnitude larger
han the damping ratio ξ .

Solution in the transition layer. Between the two asymptotic regimes, it is difficult to find explicit solutions to the
low phase equation, since more than two (or three) terms have the same order of magnitude. In order to keep a very
imple formulation, we suggest to connect the two asymptotic regimes with an equivalent linear model. It is of course
ess accurate than a numerical analysis of the problem, but at least it provides a simple analytical solution. If the objective
as to find a very accurate solution, one would have solved the original problem.
The equivalent linear problem is obtained by linearizing the nonlinear restoring force on the lefthand side in (48) and

y replacing the parametric loading on the right by an equivalent turbulence intensity. In order to follow this idea, the
overning equation (48) is rewritten

′
( 2 2)
Please cite this article as: V. Denoël, Derivation of a slow phase model of vortex-induced vibrations for smooth and turbulent oncoming flows. Journal of
Fluids and Structures (2020) 103145, https://doi.org/10.1016/j.jfluidstructs.2020.103145.

∆Υ + f (∆Υ ) = −I0U 1 + ΥLC + 2ΥLC∆Υ +∆Υ (59) 37
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Fig. 11. Conceptual sketch illustrating the linearization of the nonlinear stochastic differential equation. Conceptual sketch illustrating the influence
of the turbulence intensity on the standard deviation of the phase shift: σ∆Υ ,1 < σ∆Υ ,2 (central plot) and σ∆Υ ,1 > σ∆Υ ,2 (rightmost plot).

here f (∆Υ ) = ξ0B∆Υ + ξ0 (δ + 3ΥLC)∆Υ
2
+ ξ0∆Υ

3, and this nonlinear equation is replaced by the equivalent linear
roblem

∆Υ ′
+ ξ0β (∆Υ − µ) = −I0U

(
1 + Υ 2

LC + χ2) (60)

here β =
1

2ξ0χ
[f (χ)− f (−χ)] and µ =

−1
2ξ0β

[f (χ)+ f (−χ)] and have been chosen in such a way that the line
0β (∆Υ − µ) passes through the two points (−χ, f (−χ)) and (χ, f (χ)), see Fig. 11. This linear behavior ξ0β (∆Υ − µ)

therefore replaces the nonlinear behavior f (∆Υ ) in some equivalent way. This arbitrary choice yields

µ =
δ + 3ΥLC

1 +
B
χ2

; β = B + χ2. (61)

We also suggest to choose χ = 3σ∆Υ ,1 in order to represent the order of magnitude of the range covered by ∆Υ . The
solution of the equivalent linear stochastic differential equation (60) is µ∆Υ = µ and its power spectral density (PSD) is
given by

S∆Υ (ωT ) = I2
0

(
1 + Υ 2

LC + χ2)2 SU(T ) (ωT )

ω2
T + ξ 20β

2
, (62)

which yields

σ∆Υ =
I0

ξ0β

(
1 + Υ 2

LC + 9σ 2
∆Υ ,1

)
V

(
α

ξ β

)
. (63)

It is possible to check that limI0→0 σ∆Υ = σ∆Υ ,1 and limI0→+∞ σ∆Υ = σ∆Υ ,2, so that σ∆Υ respects the two asymptotic
cases. This approximation matches therefore the objectives of this derivation and provides a smooth transition between
the two asymptotic cases, see Fig. 11.

Summary with dimensional quantities. In short, the cotangent of the phase shift is expressed as a deviation from the
cotangent of the phase on the unperturbed limit cycle, Υ = ΥLC +∆Υ . The average of Υ is therefore given by

µΥ = ΥLC +
δ + 3ΥLC

1 +
ξ2B3 sin4 ψLC
(3IuV)2

(64)

ith B = 1 + D + 2δΥLC + 3Υ 2
LC and V ≡ V (α/ξB). The standard deviation of Υ is σΥ = σ∆Υ , as defined in (63).

4.4. Steady-state statistics of the response amplitudes

Now that the statistics of Υ (T ) are determined, at least up second order (µΥ and σΥ ), the memoryless Eqs. (42) can
be used to determine the statistics of Rq(T ) and Ry(T ). In principle Υ = cotψ is non Gaussian, see for instance illustration
in Fig. 6, so the only available information (average µΥ and standard deviation σΥ ) is not sufficient to fully characterize
the random process Υ (T ). However, a rough estimate of the statistics of the response amplitudes can be obtained by
replacing Υ by a Gaussian process with the same average and standard deviation. Focusing exclusively on the structural
response Ry and replacing sinψ in terms of cotψ = Υ , the average response amplitude reads

µRy = E
[
Ry

]
= 2

M0

ξ0
E

[√
1 + Υ 2 + 2ξ0D

1 + Υ 2

]
. (65)

Remembering that y/D = εY , the average of the envelope of y/D is therefore given as the product of 2M0ε/ξ0 = C0
L /2SG

⋆,
ee (19), and a function of ξ0D. In the absence of turbulence, the maximum response ymax/D in perfect lock-in conditions
s given by (35). In order to represent the influence of the turbulence with a single number, the average of the envelope
Please cite this article as: V. Denoël, Derivation of a slow phase model of vortex-induced vibrations for smooth and turbulent oncoming flows. Journal of
Fluids and Structures (2020) 103145, https://doi.org/10.1016/j.jfluidstructs.2020.103145.
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Fig. 12. Top lines: histograms of the reduction factors ry = Ry/Ry,w/o turb. and rq = Rq/Rq,w/o turb. obtained from simulations of the slow phase model,
hile assuming ∆Υ = N (ΥLC + µ∆Υ , σΥ ). Bottom line: average of the reduction factors ry and rq as a function of µ∆Υ and σΥ . Results are obtained

or ξ0D = 2. Additionally, dashed lines in the contour plot correspond to ξ0D = 12. Please refer to online version for colors.

of y/D is divided by ymax/D in order to define a reduction factor translating the influence of turbulence on the structural
response. It is defined by

ry =
y/D

ymax/D
=

1
1 + Υ 2

√
1 + Υ 2 + 2ξ0D

1 + 2ξ0D
. (66)

Very similar equations hold for rq. Fig. 12 shows the statistical distribution of the reduction factors ry and rq (first two
ines) for various values of µΥ and σΥ . They have been obtained with a Monte Carlo simulation, assuming that Υ is
normally distributed. These distributions confirm that when σΥ is small, the reduction factor is close to 1, i.e. the phase
hift is not affected by turbulence; neither is the envelope of the response. However, as σΥ increases, the distributions
f both ry and rq tend to shift to lower values, which translates the reduction of amplitudes of vortex-induced vibrations.
Please cite this article as: V. Denoël, Derivation of a slow phase model of vortex-induced vibrations for smooth and turbulent oncoming flows. Journal of
Fluids and Structures (2020) 103145, https://doi.org/10.1016/j.jfluidstructs.2020.103145.

or small µΥ , i.e. close to the center of lock-in, the distribution of ry is more spread than for large µΥ . See for instance the 9
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harpness of the peak in the pdf of ry for µΥ = 2. This indicates that the model predicts that a small turbulence intensity
has more influence on the response in the center of the lock-in domain.

The statistical distributions of the reduction factors ry and rq might encapsulate too much information and it is
nteresting to also represent the average values E

[
ry

]
and E

[
rq

]
corresponding to the centroids of the distributions. Using

he same numerical technique, these averages have been obtained and represented in the bottom left corner of Fig. 12,
or various values of µΥ and as a function of σ∆Υ . These results correspond to ξ0D = 2, which seems to be a common
ealistic value. The same information is represented with a contour plot in the bottom right corner. Solid lines correspond
o ξ0D = 2; dashed lines correspond to ξ0D = 12. The little difference between them indicates the slight sensitivity of
he response to ξ0D, at least in the range ξ0D ∈ [2; 12]. Again, the more rapid decrease of E

[
ry

]
with σ∆Υ for smaller

alues of µΥ indicates that the center of the lock-in region is more affected by turbulence (in the sense of a reduction of
IV amplitude) than the outer zone of the lock-in domain. The slight sensitivity to ξ0D indicates that the main influence
f ξ0 and D on the VIV responses mainly takes place through the statistics of ∆Υ , and not the memoryless transformation
aving led to (66).
The series assembly of the computation of the statistics of Υ by means of (64) and (63) and the determination of the

verage of the response envelope by means of a numerical simulation of (65) or of the graphs represented in Fig. 12 closes
he loop and provide a simple efficient solution to the analysis of the Fdlb model in stochastic conditions.

. Numerical validation, discussion and illustrations

In this Section, some illustrations are given to support the derivation of the slow phase model. In order to obtain this
odel, the original model has been averaged. The averaging procedure is not related to the external stochastic loading;

t has been illustrated in Section 3. Also, the comparison of the averaged model and the slow phase model has been
llustrated in Fig. 6. This Section therefore focuses on two important aspects of the model: the evaluation of the proposed
pproached formulas for σ∆Υ and the final comparison of the response amplitudes for all models. These two aspects are
reated sequentially in this Section.

For the purpose of the illustrations, Data Set 1 is chosen and the turbulence is modeled as an Ornstein–Uhlenbeck
rocess, i.e. the PSD of the dimensionless turbulence U(τ ) is given by the second equation in (15).

.1. Evaluation of the proposed analytical formula for the statistics of ∆Υ

The derivation in Section 4.3 makes it clear that the deviation ∆Υ from the limit cycle value ΥLC plays a significant
ole in the attenuation of VIV. In order to evaluate the quality of the proposed analytical formulation for the standard
eviation σ∆Υ , the proposed formulation is compared to the reference values obtained by Monte Carlo simulations of
he slow phase model. These reference values are represented by dots (Slow phase model) in Fig. 13. They have been
btained by generating samples of the turbulence that are compatible with the PSD, then solving (46) for T ∈ [0, 25000]
ith a slow time step ∆T = 0.01. Then the standard deviation of ∆Υ is computed from the time series of ∆Υ (T ). It is
eported in Fig. 13 for four different values of the turbulence intensity Iu ∈ {5%, 10%, 15%, 20%}, for three different values
f α ∈ {0.002, 0.128, 0.512} and three different mistuning δ ∈ {0,±1,±2}. Colors are use to represent different values
f α while the three columns in the Figure correspond to the three values of δ. In order to further illustrate the drift
f the distribution of ∆Υ from Gaussian to heavily lemnikurtic, the distributions of ∆Υ (T ) are also given in the same
igure. The use of a semi-log plot eases to identify the deviation from a Gaussian distribution (which would be parabolic
n a semi-log plot). The typical shape of these distributions, i.e. a Gaussian distribution plus some rare excursions in the
ange of large phase shifts, is in agreement with the histogram of the phase that has be observed in experiments, see e.g.
einoddini et al. (2018). These results serve as a reference to assess the quality of the low intensity, large intensity and
ransition layer solutions that have been developed in Section 4.3.

For the chosen turbulence model, V =

(
1 +

α
ξB

)−1/2
, the small and large turbulence intensity solutions become

σ∆Υ ,1 =
Iu csc2 ψLC

√
ξB (α + ξB)

; σ∆Υ ,2 =
Iu
ξ

(67)

where B is defined in (50). These two solutions are represented with dashed lines in Fig. 13. It is indeed observed that they
correspond to the two asymptotic behaviors of the transition solution for each value of α. In perfect lock-in conditions
δ = 0), B = 1 + D = 3.5, so that ξB = 0.105 for the considered illustration. For α ≪ ξB, σ∆Υ ,1 is insensitive to α and
the response is roughly the same as that presented for α = 0.002. As soon as α∼ξB, α is not negligible in σ∆Υ ,1 and any
increase of α beyond ξB translates in a reduction of σ∆Υ ,1, therefore in a smaller influence of the turbulence on the VIV
response.

The transition from σ∆Υ ,1 to σ∆Υ ,2 which is expressed by (63) is represented by the solid lines in Fig. 13. It is observed
that the transition from the small turbulence solution to the large turbulence solution is well captured by (63). For δ = 0
(on the left), the agreement between the proposed formulation (solid line) and the reference solution (dots) obtained with
a Monte Carlo solution of (46) is very good. The accuracy of the proposed solution decreases as δ increases, i.e. further
Please cite this article as: V. Denoël, Derivation of a slow phase model of vortex-induced vibrations for smooth and turbulent oncoming flows. Journal of
Fluids and Structures (2020) 103145, https://doi.org/10.1016/j.jfluidstructs.2020.103145.

away from the center of the lock-in range, although the global trend of the increase of σ∆Υ with Iu is well captured.
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Fig. 13. Top line: standard deviation of ∆Υ obtained with the slow phase model (Monte Carlo simulation of (46), dots) or with the proposed
formulation (solid lines). Histograms of ∆Υ illustrate the large deviations from Gaussian distributions as soon as α ≪ 1 or δ ≳ 1. Numerical values
correspond to Data Set 1.

This drop of accuracy is relatively less important as it anyway corresponds to the limits of the lock-in range, where the
vibration amplitudes are smaller, even on the unperturbed limit cycle.

Globally, the distribution of ∆Υ is far from being Gaussian. The complexity of the distribution of ∆Υ translates the
richness of the slow phase model whose solution is in fact only Gaussian when |δ| ≪ 1 and Iu ≪ 1. It is therefore more
important that the proposed model is able to capture the main trends of the response, rather than to provide an accurate
result.

5.2. Response amplitudes computed with the different models

At last but not least, Figs. 14 and 15 show a comparison of the response amplitude computed with the three models
tudied in this paper as well as the proposed analytical formulation. These results have been generated with the same
rocedure as for Fig. 13: a sample of the turbulence that is spectrum compatible has been generated, then the governing
quations are marched in time in order to obtain the time series of the responses; finally histograms of the envelope
re determined with a standard descriptive statistics treatment (histograms are normalized in such a way that they do
epresent a density, i.e. the integral of the histograms over R is equal to 1; this makes them independent from the arbitrary
in size selection). More precisely, the original model (11) is first simulated over the time window T ∈ [0, 25000] with

a time step ∆τ = 0.02; in this formulation the fast dynamics are resolved; a short time step is required and this is
the most time consuming model (approximately 10 to 100 times more demanding than other models). The envelope of
the response for Y(T (τ )) is then obtained by Ry =

(
Y + Y ′

)1/2 and its histogram is established. It is compared to the
response envelope Ry obtained by Monte Carlo simulations of the averaged model (25) and of the slow phase model
(41)–(42). Finally, the solution based on the analytical solution (63) is also represented. Similarly to the developments
of Section 4.4, for a given set of parameters, the average and standard deviation of the phase shift are determined with
(64) and (63). Samples of Υ are then generated, assuming Gaussianity and matching these first two moments, so that
Ry = 2 (M0/ξ0)

√
1 + Υ 2 + 2ξ0D/

(
1 + Υ 2

)
can be computed and its histogram/PDF established.

The case corresponding to α = 0.002 (first line of Figs. 14 and 15) is the most accurate. The lock-in configuration when
u = 5%, where the structural response is most of the time around ymax/D = 0.3, gently drifts toward a configuration
here the envelope of the structural response ymax/D is mostly below 0.03, when Iu = 10% and then 20% (from left to right

n the first lines of Figs. 14 and 15). In that case, all three models as well as the proposed formulation show a very good
greement in predicting the distribution of the response amplitude. This is explained by the smallness of R′ (T ) which
Please cite this article as: V. Denoël, Derivation of a slow phase model of vortex-induced vibrations for smooth and turbulent oncoming flows. Journal of
Fluids and Structures (2020) 103145, https://doi.org/10.1016/j.jfluidstructs.2020.103145.
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Fig. 14. Comparison of the probability density function of the envelope of the structural response Ry , obtained with the 4 models described in this
paper: the original model (11), the averaged model (25), the slow phase model (41)–(42) and the analytical formulation corresponding to the small
intensity asymptotic solution of the slow phase model. Numerical values : Data Set 1, δ = 0 (Ω = 1), Iu variable, α variable. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)
Please cite this article as: V. Denoël, Derivation of a slow phase model of vortex-induced vibrations for smooth and turbulent oncoming flows. Journal of
Fluids and Structures (2020) 103145, https://doi.org/10.1016/j.jfluidstructs.2020.103145.



YJFLS: 103145

V. Denoël / Journal of Fluids and Structures xxx (xxxx) xxx 25
Fig. 15. Comparison of the probability density function of the envelope of the structural response Ry , obtained with the 4 models described in this
paper: the original model (11), the averaged model (25), the slow phase model (41)–(42) and the analytical formulation corresponding to the small
intensity asymptotic solution of the slow phase model. Numerical values : Data Set 1, δ = 2 (Ω = 1.06), Iu variable, α variable. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)
Please cite this article as: V. Denoël, Derivation of a slow phase model of vortex-induced vibrations for smooth and turbulent oncoming flows. Journal of
Fluids and Structures (2020) 103145, https://doi.org/10.1016/j.jfluidstructs.2020.103145.
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s required to support the use, in turbulent conditions, of the slow phase on the unperturbed limit cycle (26). Indeed,
hen α ≪ ξ , the driving excitation of the averaged model (25) is slow, so is the response and R′

y(T ) is negligible. This
rovides the optimal conditions for the slow phase model. As α becomes larger, the dynamics of the response envelope
′
y(T ) becomes more important and the quality of the slow phase model worsens. Nevertheless it is mostly important that
he simplified slow phase model and its approximate solution catch the right scaling, the right trends, and be accurate
here necessary, i.e. where the turbulence precisely has an influence on the structural response.
The quality of the simple analytical model is confirmed for α = 0.016; the transition from lock-in to unlock condition

s validated. For α = 0.128 and α = 0.512, the distribution of the response is less accurately predicted by the slow
hase model and the proposed analytical formulation. This limitation only concerns large turbulence intensities; for both
= 0.128 and α = 0.512 and both considered values of δ, the distribution of the response is well estimated in case of

mall turbulence intensity Iu = 5%. For higher turbulence intensities, although the probability distribution of the response
nvelope is off, the slow phase model succeeds in qualitatively predicting the smooth transition from lock-in to unlock
onditions.
The illustrations in Figs. 14 and 15 also indicate that the slow phase model predicts a dichotomic response envelope:

ither located near a perfect lock-in configuration, either located near an unlocked configuration. The transition from
ne to the other appears to be faster than in the original model. This is a consequence of the use of the memoryless
ransformation (42) of the slow phase model. As α gets larger, the dynamics of Ry, Rq and ψ become more intricate. This
xplains why the slow phase model is not able to reproduce bell shape distributions for ymax/D as α gets larger.
On a side note, we notice that the original (black) and averaged models (red) match perfectly in all parameter conditions

epresented in Figs. 14 and 15. This confirms the applicability of the well-known averaging technique and multiple scale
nalysis for this type of model.

.3. Influence of turbulence and mistuning

Figs. 14 and 15 correspond to δ = 0 and δ = 2, but show the complete histogram of ymax/D. A more detailed influence
f the mistuning δ is given in Fig. 16, which shows the average envelope responses as a function of δ. In that Figure, the
hin continuous line in each subplot shows the lock-in response in smooth flow. It is the same reference, reported in all
ubplots, to serve an eye guide for comparison with the lock-in responses in turbulent conditions. The same four models
s discussed before are compared. Again it is observed that the proposed analytical model and the whole chain of models
aving led to its establishment are fairly accurate when either the turbulence is a slow process α ≪ 1 (which is typically

the case for wind turbulence), or when Iu ≪ 1. In all circumstances, the proposed model provides a fair description of
the influence of turbulence: when there is no influence, it is predicted so and when there is a reduction of VIV due to
turbulence, the model is able to capture the main trends and orders of magnitude. It struggles a little more close to the
limits of the lock-in domain, where the equivalent linear model fails to be as accurate as in perfect lock-in conditions.

6. Conclusion

The randomized wake-oscillator model is a possible candidate to phenomenologically model the influence of turbu-
lence on vortex-induced vibrations. In the paper, we have presented an averaged version of this model. Then a slow
phase model, based on a slow dynamics stochastic equation for the phase shift and a memoryless transformation for the
response amplitude, has been derived. This model is simple enough to explain many features of the original model. In
particular

• the phase variable is seen to play a central role in wake-oscillator models, the response amplitude certainly plays a
secondary role;

• the dynamics of the two oscillators is better expressed by means of their (slow) envelope rather than (fast)
oscillations; it is therefore recommended to refer to the statistics of the envelope rather than those of the oscillatory
responses themselves, e.g. average of slow envelope response in lieu of the standard deviation of the fast dynamic
response;

• as a consequence, while in the deterministic analysis of VIV, the response is sometimes represented by means of a
root-mean-square amplitude, it is suggested to leave this concept behind and, instead, adopt a quantification which
is related to the envelope (which is in fact straightforwardly managed with a

√
2 in the deterministic case);

• the averaging procedure has highlighted the important scalings in the problem; in particular, in forced conditions,
the size of the lock-in region scales with ε while, in free vibration conditions, it scales with the total damping ratio
ξ = ξa + ξs and the parameter D (see definition in (28));

• in both smooth and turbulent flows, the slow dynamics of the phase is governed by the dimensionless parameter D
(see definition in (28));

• the analysis of the original model by means of perturbation methods has indicated that turbulence enters in the
problem, at leading order, as a parametric modification in the wake equation; after averaging, it is seen that the
turbulence just affects the phase equation and not the response envelope equations;
Please cite this article as: V. Denoël, Derivation of a slow phase model of vortex-induced vibrations for smooth and turbulent oncoming flows. Journal of
Fluids and Structures (2020) 103145, https://doi.org/10.1016/j.jfluidstructs.2020.103145.
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Fig. 16. Envelope of the structural response in the lock-in range as a function of turbulence intensity Iu and turbulence characteristic frequency
α. The thin continuous line in all subplot shows the solution in smooth flow (Iu = 0). Numerical values : Data Set 1, Iu ∈ {5%, 10%, 20%},

∈ {0.002, 0.016, 0.128, 0.512}.

• the slow phase model clearly establishes the intertwining relations between the timescales of the problem; in
particular, the reduction of the VIV response due to turbulence is interpreted as an interaction of the slow timescale
of the turbulence (related to α) and the slow timescale of the coupled system (related to ξB). This explains for
Please cite this article as: V. Denoël, Derivation of a slow phase model of vortex-induced vibrations for smooth and turbulent oncoming flows. Journal of
Fluids and Structures (2020) 103145, https://doi.org/10.1016/j.jfluidstructs.2020.103145.
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instance why a mathematical turbulence modeled as a white noise has virtually no influence on the deterministic
response;

• as a corollary, this could also explain the controversy concerning the experimental evidences about the influence of
turbulence on the structural response; indeed, not all experiments aiming at studying the influence of turbulence
on the VIV response could highlight a significant influence; a possible explanation is that the frequency content
(timescales) was not appropriately chosen to reveal such an influence (the appropriate frequency content depends
on the damping ratio through α/ξB, see (55)).

• the reduction of the VIV response due to turbulence is also interpreted through the increase of the standard deviation
of the phase shift between the fluid and structural oscillator. By placing the phase shift in the center of the model,
the influence of wind turbulence is assessed by means of the statistics of the phase.

• the well-known concept of phase slip and their accumulation (borrowed from other fields of sciences where random
synchronization is studied) has also been touched to illustrate the increase of the standard deviation of the phase
slip as the system is driven away from lock-in conditions;

n short, the ratio of the timescales of the turbulence and of the structural dynamics plays a significant role in the reduction
f vibrations in the lock-in range: the slower the turbulence, the larger the reduction for a given turbulence intensity.
hen of course the larger the turbulence intensity, the larger the reduction of VIV.
This work opens some perspectives on the topic. In particular, the use of multiple timescales in the analysis of VIV is

ncouraged since it focuses on the dynamics of the phase and of the envelope, which are central in the synchronization
henomenon. They are associated with slow dynamics only; based on similar computational resources, it is possible to
btain much more accurate results than when having to resolve the fast dynamics of the original problem. At last but
ot least, the developments presented in this paper are specific to the FDLB model but could be replicated for other
ake-oscillator models available in the literature.
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ppendix

The appendix gathers the details of the multiple scale analysis of the governing equations. They are very similar to
xisting works in the literature (see e.g. Mannini, 2020) and are recalled here to make the notations consistent with the
est of the paper.

.1. Multiple scales analysis of the deterministic system: free vibration

The dimensionless formulation of the governing equations is

Y ′′
+ 2ξY ′

+ Y = 2εM0QΩ2

Q′′
+ εΩ

(
Q2

− 1
)
Q′

+Ω2Q = 2εA0Y ′′
(68)

The solution is sought in the form of the ansatz (23). The slow timescale t⋆/ε and the slow time T = t/(t⋆/ε) = ετ

are introduced. Time derivatives with respect to time τ are replaced by partial derivatives as

d
dτ

= ∂τ + ε∂T ;
d2

dτ 2
= ∂2τ + 2ε∂2τT + ε2∂2T . (69)

Introducing the ansatz (23) into the governing equation and limiting the development to second order yields(
∂2τ + 2ε∂2τT + ε2∂2T

)
(Y0 + εY1)+ 2ξ (∂τ + ε∂T ) (Y0 + εY1)+ (Y0 + εY1) = 2εM0QΩ2(

∂2τ + 2ε∂2τT + ε2∂2T
)
(Q0 + εQ1)+ εΩ

(
(Q0 + εQ1)

2
− 1

)
(∂τ + ε∂T ) (Q0 + εQ1)+Ω2 (Q0 + εQ1) = 2εA0Y ′′

(70)

which then gives, limiting again to first two leading orders

∂2τ Y0 + 2ε∂2τTY0 + ε∂2τ Y1 + 2ξ (∂τY0 + ε∂TY0 + ε∂τY1)+ Y0 + εY1 = 2εM0Q0Ω
2

2 2 2 ( 2 ) 2 2 (71)
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We further assume that the structural damping is small, ξ = ξ0ε, with ξ0 of order 1 and ε ≪ 1. We also focus on small
detuning, Ω = 1 + ξ δ = 1 + ξ0ε δ, i.e. Ω2

= 1 + 2ξ0ε δ + ord(ε2), so that the set of governing equations becomes, after
dropping second order terms,

∂2τ Y0 + 2ε∂2τTY0 + ε∂2τ Y1 + 2εξ0∂τY0 + Y0 + εY1 = 2εM0Q0 (1 + 2εξ0δ)

∂2τQ0 + 2ε∂2τTQ0 + ε∂2τQ1 + ε
(
Q2

0 − 1
)
∂τQ0 + (1 + 2εξ0δ) (Q0 + εQ1) = 2εA0∂

2
τ Y0

Collecting the likewise powers of ε, it is possible to obtain the governing equations for Y0 and Q0, then Y1 and Q1, etc.
In particular, at leading order

∂2τ Y0 + Y0 = 0

∂2τQ0 + Q0 = 0

whose solution is

Y0 = Ry(T ) cos(τ + ϕ(T )) ; Q0 = Rq(T ) cos(τ + ϕ(T ) + ψ(T )).

At the next order, we have

∂2τ Y1 + Y1 = 2M0Q0 − 2∂2τTY0 − 2ξ0∂τY0

∂2τQ1 + Q1 = 2A0∂
2
τ Y0 − 2∂2τTQ0 −

(
Q2

0 − 1
)
∂τQ0 − 2ξ0δQ0

The righthand sides can be developed in order to reveal the secular terms. Substitution of the expressions for Y0 and Q0
ields, after some development,

∂2τ Y1 + Y1 =2
(
M0Rq cosψ + Ryϕ

′
)
cos(τ + ϕ) + 2

(
−M0Rq sinψ + R′

y + ξ0Ry
)
sin(τ + ϕ)

∂2τQ1 + Q1 =2
(
−A0Ry cosψ + Rq

(
ϕ′

+ ψ ′
)
− ξ0δ Rq

)
cos τ̃+(

−2A0Ry sinψ + 2R′

q +
(
R2
q − 1

)
Rq −

3
4
R3
q

)
sin τ̃ + R3

q
sin 3τ̃

4
.

where τ̃ = τ + ϕ(T ) + ψ(T ). It then appears that the slow magnitude and phases introduced in Y0 (τ , T ) and Q0 (τ , T )
need to satisfy

R′

q = A0Ry sinψ −
1
8
R3
q +

1
2
Rq

R′

y = M0Rq sinψ − ξ0Ry

ϕ′
= −M0

Rq

Ry
cosψ

ϕ′
+ ψ ′

= A0
Ry

Rq
cosψ + ξ0δ

in order to not break the asymptoticness of the series. The last two equations can be combined in order to provide
three first order equations governing the slow time evolution of Rq (T ), Ry (T ) and ψ (T ), see (25). In particular, the slow
time evolution of ψ (T ) plays a central role in (i) the synchronization of the system in case of external forcing (phase
entrainment) or (ii) in the dispatching of the total energy between the fluid and the structure in the limit cycle, in case
of autonomous system, without external forcing.

A.2. Multiple scales analysis of the deterministic system: forced vibration

In this section, the forced response of the system is derived. The dimensionless imposed amplitude of the body is
chosen as Y0 sin τ and the bifurcation parameter of the formulation is Ω , which is directly affected by the wind speed
U∞. The dimensionless acceleration Y ′′ is equal to −Y0 sin τ and the governing equations is

Q′′
+ εΩ

(
Q2

− 1
)
Q′

+Ω2Q = −2εA0Y0 sin τ

The solution is sought in the form of the same ansatz as above and with the same two timescales. The only difference
with the former development is that the mistuning is now defined by

Ω = 1 + ε ω ⇔ ω =
Ω − 1
ε

=
fshedding − f0

ε f0
.

This change of definition arises as the damping ratio ξ does not appear in the governing equations as soon as the
kinematics of the body are imposed. Limiting the developments to second order, it is natural to obtain a very similar
expansion,

2 2 2 ( 2 )
.
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he solution at leading order yields

Q0 = Rq(T ) cos(τ + φ(T )).

t the next order, we have

∂2τQ1 + Q1 = −2A0Y0 sin τ − 2∂2τTQ0 −
(
Q2

0 − 1
)
∂τQ0 − 2ωQ0 .

orking out again the righthand side in the same manner as before, the secular terms can be identified,

∂2τQ1 + Q1 = − 2A0Y0 sin τ + 2R′

q sin(τ + φ) + 2Rqφ
′ cos(τ + φ)

+
(
R2
q − 1

)
Rq sin(τ + φ) − R3

q sin
3(τ + φ) − 2ωRq cos(τ + φ)

=

[
−2A0Y0 cosφ + 2R′

q − Rq +
1
4
R3
q

]
sin (τ + φ)

+
[
2A0Y0 sinφ + 2Rqφ

′
− 2ωRq

]
cos (τ + φ)+

R3
q

4
sin 3(τ + φ),

and the secularity conditions, used to determine the slow amplitude and the slow time shift in Q0, are

R′

q = A0Y0 cosφ −
1
8
R3
q +

1
2
Rq

φ′
= ω −

A0Y0

Rq
sinφ.

his set of equations is known to exhibit different solutions depending on the ratio A0Y0/ω (Glendinning, 1994). The
ixed points are obtained by canceling the righthand sides in the two equations above. Combining with the trigonometry
dentity, it is possible to obtain

(A0Y0)
2

=
1
4
R2
q

(
1
4
R2
q − 1

)2

+ R2
qω

2.

Following the same arguments as in Glendinning (1994) it is possible to prove that:

• if A0Y0 ≤ 2
√
3/9 ≃ 0.385, a stable fixed point exists if and only if there are 3 real roots, i.e.(

2 − 27 (A0Y0)
2
+ 72ω2)2

≥ 4
(
1 − 12ω2)3 ,

in which case the largest root is the stable fixed point. Solving this inequality for ω yields, for small A0Y0,

|ω| ≤
A0Y0

2

√
(A0Y0)

2

4
+ 1.

This means that frequency locking (synchronization) is observed as long as the mistuning is not too large.
• if 2

√
3/9 ≤ A0Y0 ≤ 2

√
6/9 ≃ 0.544, as ω increases from zero to +∞, the equation in Rq has just one root, then

three, then one again. The stable point corresponding to the largest root looses stability at the transition from 3 roots
to one root. Synchronization takes place in similar conditions as above.

• if A0Y0 ≥ 2
√
6/9, the polynomial in Rq has only one root, no matter the value of ω. This root is again stable as long

as |ω| is smaller than a stability limit. Stability is lost when the isocline associated with R′
q = 0 has a vertical tangent

in the
(
Rq cosφ, Rq sinφ

)
−plane. This condition reads

|ω| ≤
1
4

√
8 (A0Y0)

2
− 1.

hese stability limits on |ω| correspond to the frequency locking (synchronization) range. By noticing that 2A0Y0 =
2A0
ε

Y0ε =
A
ε

y
D , they can be expressed with the original parameters of the problem.
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