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OUTLINE OF THE THESIS  

This PhD project was part of the European Union’s Horizon 2020 research and 

innovation programme under the Marie Skłodowska-Curie grant agreement No 

675071 and was conducted in collaboration with UCB Biopharma and with the PhD 

Laura Trump. The main objective of this work consisted on the development of a new 

methodology for the late-stage addition of the 18F-difluoromethyl groups in N-

containing heteroarenes typically found in medicinal chemistry, under continuous-

flow conditions. This protocol relies on the use of a non-ionic 18F-difluoromethylating 

reagent ([18F]difluoromethyl benzothiazolyl-sulfone) with the ability of producing 

CHF2 radicals, under blue light irradiation. Inspired by the efficiency of 

[18F]difluoromethyl benzothiazolyl-sulfone, we further studied the reactivity of 

structurally-related heteroaryl-sulfones toward the 18F-difluoromethylation of N-

containing heteroarenes.   

The present thesis was divided into five chapters (I, II, III, IV, V).  

 

CHAPTER I: PROGRESS IN DIFLUOROALKYLATION OF ORGANIC 

SUBSTRATES BY VISIBLE LIGHT PHOTOREDOX CATALYSIS 

In this Chapter, we provide a thorough review concerning the synthetic methods 

for the visible light difluoroalkylation of organic substrates reported in the literature 

since 2014. To date, we have witnessed to an increasing progress in the development 

of transition metal-photocatalyzed methods for the introduction of difluoroalkyl 

motifs (CHF2 and CF2FG, FG = a functional group) into various building blocks using 

a myriad of difluoroalkylating reagents. Herein, we underlined the importance of 

CHF2 and CF2FG motifs in medicinal chemistry due to their potential to improve the 

biological activity of molecules. In addition, we emphasized the relevance of visible 

light photoredox catalysis as a sustainable approach for obtention of CF2-containing 

derivatives from the viewpoint of safety, cost, availability, and “green” chemistry. 

 

CHAPTER II: PROGRESS IN THE SYNTHESIS OF 18F-

DIFLUOROMETHYLATED MOLECULES 

Besides the pharmaceutical relevance of CHF2 groups, the 18F-labeling of these 

groups has been recently studied in radiopharmaceutical chemistry owing to the 

favorable nuclear and physical characteristics of fluorine-18 (18F) for positron 

emission tomography (PET). This Chapter describes the available synthetic strategies 

to access 18F-difluoromethylated compounds either by a stepwise (indirect) 18F-

difluoromethylation or by direct transfer of 18F-difluoromethyl groups to adequate 

labeling precursors. Herein, we also describe the basic principles of PET and the 

applications of PET radiotracers labeled with 18F in (pre)clinical research.  
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CHAPTER III: FULLY AUTOMATED RADIOSYNTHESIS OF 

[18F]DIFLUOROMETHYL BENZOTHIAZOLYL-SULFONE ON A GE FASTLABTM 

SYNTHESIZER  

The aim of this thesis consisted in the development of novel reagents for the C-

H 18F-difluoromethylation of N-containing heteroarenes. Based on the reactivity of the 

difluoromethyl benzothiazolyl-sulfone in the photoinduced difluoromethylation of 

substrates bearing C=C, C≡C, and C≡N bonds, we intended to perform the 

radiosynthesis of the [18F]difluoromethyl benzothiazolyl-sulfone as a novel labeled 

compound for late-stage introduction of 18F-difluoromethyl groups. The present 

Chapter furnishes a detailed description of the most suitable conditions for the 

radiosynthesis of the [18F]difluoromethyl benzothiazolyl-sulfone and the 

development of a fully automated process on a GE FASTlabTM synthesizer. The 18F-

labeled reagent was further utilized in the late-stage C-H 18F-difluoromethylation of 

a wide range of N-containing heteroarenes, under irradiation with blue light-emitting 

diode (LED).  

 

CHAPTER IV: RADICAL C-H 18F-DIFLUOROMETHYLATION OF 

HETEROARENES WITH [18F]DIFLUOROMETHYL HETEROARYL-SULFONES 

BY VISIBLE LIGHT PHOTOREDOX CATALYSIS 

Taking advantage of the reactivity of the [18F]difluoromethyl benzothiazolyl-

sulfone as 18F-difluoromethylating reagent, we investigated the influence of 

structurally-related [18F]difluoromethyl heteroaryl-sulfones in the reactivity toward 

the photoredox C–H 18F-difluoromethylation of N-containing heteroarenes under 

continuous-flow conditions. This Chapter is subdivided into three parts: (i) 

radiosynthesis of [18F]difluoromethyl heteroaryl-sulfones; (ii) investigation of their 

potential for C-H 18F-difluoromethylation of N-containing heteroarenes; (iii) radical-

scavenging experiments.  

 

CHAPTER V: GENERAL DISCUSSION AND PERSPECTIVES 

This Chapter provides a general discussion of the distinct chapters and future 

perspectives in this research field.  
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Progress in Difluoroalkylation of Organic Substrates by Visible 

Light Photoredox Catalysis 
 

Abstract: The selective incorporation of fluorinated motifs, in particular CF2FG (FG = 

a functional group) and CHF2 groups, into organic compounds has attracted 

increasing attention since organofluorine molecules are of the utmost importance in 

the areas of nuclear imaging, pharmaceutical, agrochemical, and material sciences. A 

variety of synthetic approaches has been employed in late-stage difluoroalkylation 

reactions. Visible light photoredox catalysis for the production of CF2FG and CHF2 

radicals has provided a more sustainable alternative to other conventional radical-

triggered reactions from the viewpoint of safety, cost, availability, and “green” 

chemistry. A wide range of difluoroalkylating reagents has been successfully 

implemented in these organic transformations in the presence of transition metal 

complexes or organic photocatalysts. In most cases, upon excitation via visible light 

irradiation with fluorescent light bulbs or blue light-emitting diode (LED) lamps, 

these photocatalysts can act as both reductive and oxidative quenchers, thus enabling 

the application of electron-donor or electron-acceptor difluoroalkylating reagents for 

the generation of CF2FG and CHF2 radicals. Subsequent radical addition to substrates 

and additional organic transformations afford the corresponding difluoroalkylated 

derivatives. The present review describes the distinct strategies for the transition 

metal- and organic-photocatalyzed difluoroalkylation of a broad range of organic 

substrates by visible light irradiation reported in the literature since 2014. 

 

Keywords: C-H functionalization, difluoroalkylation, late-stage fluorination, 

organophotocatalysis, transition metal photocatalysis, visible light 

 

1. General Introduction 
 

Organic compounds containing fluorine substituents or fluoroalkyl moieties are 

abundant and have attracted considerable attention because of their wide 

applications in agrochemical [1], pharmaceutical [2,3], and material science [4] 

industries, and nuclear imaging [5,6]. In pharmaceutical research and drug 

development, the incorporation of fluoroalkyl motifs, in particular the difluoromethyl 

(CHF2) group, has gained great interest for use in isostere-based drug design. As a 

lipophilic hydrogen-bond donor [7], the CHF2 substitution offers a viable alternative 

to conventional hydrogen-bond donors [e.g., hydroxy (OH), amino (NH2), thiol (SH), 

carbinol (CH2OH), amide (CONH2), and hydroxamic acid (CONHOH) groups] in 

terms of lipophilicity, cell membrane permeability, and metabolic stability, thus 

improving the biological activity [8,9]. Given the relevance of difluoroalkyl 

substituents in life sciences, the implementation of efficient approaches for the 

preparation of CF2-containing organic molecules has become a major research area in 

the field of organofluorine chemistry. Apart from the huge progress in the 

development of strategies for C-H functionalization involving fluorination and 
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trifluoromethylaton reactions [10-18], significant research efforts have been directed 

toward the late-stage introduction of CF2FG (FG = a functional group) and CHF2 

moieties in organic skeletons via nucleophilic, electrophilic, and radical approaches 

[19-22]. Among the mentioned approaches for the difluoroalkylation process, the 

radical-triggered reactions via visible light photoredox catalysis have been the subject 

of intensive research by the chemistry community, owing to their unique advantages 

such as the use of "green" and environmentally benign reaction conditions, excellent 

functional group versatility, and high reactivity [23-30]. In fact, the use of photoredox 

catalysis has provided a powerful and versatile tool to afford a large variety of 

fluorinated radicals under very mild conditions, compared with conventional radical 

reactions that usually demand the use of high-energy ultraviolet (UV) light 

equipment or the employment of highly toxic radical initiators. In general, these 

visible light-induced chemical transformations rely on the ability of photocatalysts, 

such as transition metal complexes [31-33], organic dyes [34,35], or heterogeneous 

semiconductors [36,37] to promote single-electron transfer (SET) processes with 

organic molecules upon excitation with visible light. Remarkably, the lack of visible 

light absorbance of many organic molecules enables the application of these 

photocatalysts in these reactions, minimizing the occurrence of unwanted side 

reactions resulting from the photoexcitation and the decomposition of reaction 

products. Visible light irradiation is often carried out using inexpensive light sources 

such as blue light-emitting diode (LED) lamps and fluorescent light bulbs. A variety 

of transition metal photocatalysts, such as iridium ([Ir(dtbbpy)(ppy)2]PF6 (1), fac-

IrIII(ppy)3 (2), and [Ir(dF(CF3)ppy)2(dtbbpy)]PF6 (3)), copper ([Cu(dap)2]Cl (4)), 

platinum  (PtII[R(C^N^P^P)] (R = 4-CH3OC6H4) (5)), ruthenium ([Ru(bpy)3]Cl2 (6)), 

and gold ([Au2(µ-dppm)2]Cl2 (7)) complexes, and organic photocatalysts, including N-

methyl-9-mesityl acridinium perchlorate ([Mes-Acr]ClO4) (8), eosin Y (9), fluorescein 

(10), rose Bengal (RB) (11), rhodamine 6G (R6G) (12), 1,2,3,5-tetrakis-(carbazol-yl)-4,6-

dicyanobenzene (4CzIPN) (13), perylene (14), and peri-xanthenoxanthene (PXX) (15) 

have been implemented in photochemistry for the difluoroalkylation of organic 

substrates (Figure 1). These photocatalysts are capable of absorbing light at a certain 

wavelength in the visible region, resulting in the generation of photoexcited species 

that possess the unique property of being both more oxidizing and more reducing 

than the species in the ground state.  

The standard reduction potentials are used to quantify the redox properties of a 

photocatalyst in the excited state under specific standard conditions (Table 1), and 

describe the electrochemical potential associated with a half-reaction (E1/2) of 

reduction. The reduction potential determines the propensity of a chemical species to 

be reduced. In fact, the more positive the potential values, the greater is the tendency 

of a molecule to be reduced. For example, fac-IrIII(ppy)3* is a much more potent 

electron donor [E1/2 (PC+/PC*) = -1.73 V vs. SCE] than the fac-IrIII(ppy)3 in the ground 

state [E1/2 (PC+/PC) = +0.77 V vs. SCE]. Reduction potentials of difluoroalkylating 

reagents (16-47, Figure 2) are also highlighted in this review.  
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Figure 1. Transition metal (1-7) and organic photocatalysts (8-15) employed in 

difluoroalkylation reactions. 1 – [Ir(dtbbpy)(ppy)2]PF6; 2 – fac-IrIII(ppy)3; 3 - 

[Ir(dF(CF3)ppy)2(dtbbpy)]PF6; 4 – [Cu(dap)2]Cl; 5 - PtII[R(C^N^P^P)] (R = 4-CH3OC6H4); 6 - 

[Ru(bpy)3]Cl2; 7 – [Au2(µ-dppm)2]Cl2; 8 - N-methyl-9-mesityl acridinium perchlorate ([Mes-

Acr]ClO4); 9 - eosin Y; 10 – fluorescein; 11 – rose Bengal (RB); 12 – rhodamine 6G (R6G); 13 - 

1,2,3,5-tetrakis-(carbazol-yl)-4,6-dicyanobenzene (4CzIPN); 14 – perylene; 15 - peri-

xanthenoxanthene (PXX).  

 
Table 1. Redox potentials and photophysical properties of transition metal (1-7) and organic 

photocatalysts (8-15) utilized in difluoroalkylation reactions a) (PC = a photocatalyst)  

PC E1/2 

(PC+/PC*) 

E1/2 

(PC*/PC-) 

E1/2 

(PC+/PC) 

E1/2 

(PC/PC-) 

Excited-

state 

lifetime 

τ (ns) 

Excitation 

λmax (nm) 

Emission 

λmax (nm) 

Refs. 

1 -0.96 +0.66 +1.21 -1.51 557 410 581 [55,56] 

2 -1.73 +0.31 +0.77 -2.19 1900 375 494 b) [50] 

3 -0.89 +1.21 +1.69 -1.37 2300 380 470 [56] 

4 -1.43  +0.62  270 400-600 670 c) [72] 

5 -1.90 d) +0.82 d) +0.61 d) -1.69 d) 93 d) 350 d) 543 d) [99] 

6 -0.81 +0.77 +1.29 -1.33 1100 452 615 [97,98] 

7 -1.63   -1.70 850 380 477 [90,91] 

8  +2.06  -0.57 6.4 430 570 [167-170] 

9 -1.11 e) +0.83 e) +0.78 e) -1.06 e) 24000 e) 539 e)  [158] 

10  +0.78  -1.27 4.1 528  [164,165] 

11 -1.33 +1.18 +0.81 -0.96 0.5 549  [173,174] 

12 -1.09 +1.18 +0.95 -0.86 4.1 530 548 [181] 

13 -1.04 +1.35 +1.52 -1.21 5100 435 535 [177-179] 

14 -2.23 +0.72 +0.61 -2.12 8.2 407,434 670 [176] 

15 -2.00 +0.61   5.0 415 480 [184] 
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a)All potentials are given in volts versus the saturated calomel electrode (SCE). Measurements were 

performed in MeCN at room temperature unless otherwise noted. b) Determined in 1:1 EtOH/MeOH at 77 

K. c) Determined in DCM. d) Potentials are given in volts versus the ferrocene (Cp2Fe). e) Determined in 1:1 

MeCN/H2O. 
 

The redox potentials of both difluoroalkylating reagents and photocatalysts 

must be taken into consideration in order to select the most appropriate partners for 

the design of a photocatalytic difluoroalkylation reaction [38,39]. Subsequent addition 

of CF2FG and CHF2 radicals in sp2-hybridized (C=C, C=N) and sp-hybridized (C≡C, 

C≡N) carbon atoms of organic substrates and further chemical transformations would 

afford the corresponding CF2FG- and CHF2-containing products. Alternatively, the 

CF2FG moiety of difluoroalkylated derivatives can be converted into other CF2-

containing functional groups, including CHF2, under certain reaction conditions. 

Interestingly, the radical difluoroalkylation of key organic molecules can provide 

useful intermediates for the formation of structurally complex and functionalized 

heterocycles of pharmaceutical and medical interest.  
 

 
Figure 2. List of CF2FG (16-31) and CHF2 reagents (32-47) employed in visible light-mediated 

difluoroalkylation reactions and their potentials given in volts versus the saturated calomel 

electrode (SCE) or ferrocene (Cp2Fe). a) Potential of 18 in combination with pyridine N-oxide. b) 

Potential of the intermediate BrCF2CO2Cs.    
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Pioneering works in fluoroalkylation chemistry via visible light photoredox 

catalysis have been reported by MacMillan, Cho, and Sanford. In 2009, MacMillan’s 

group achieved the enantioselective α-trifluoromethylation and α-

perfluoromethylation of aldehydes with trifluoroiodomethane (CF3I) using the 

readily available [Ir(dtbbpy)(ppy)2]PF6 and an imidazolinone catalyst [40]. Later, in 

2011, the same group developed photoredox-based protocols for the α-

trifluoromethylation of enol silanes, silylketene acetals and N,O-acetals derived from 

ketones, esters, and amides using CF3I [41] and for the trifluoromethylation of arenes 

as well as five-, and six-membered heteroarenes with trifluoromethanesulfonyl 

chloride (CF3SO2Cl), in the presence of [Ru(bpy)3]Cl2 and [Ru(phen)3]Cl2, respectively 

[42]. In 2012, Cho and collaborators described a procedure for the 

trifluoromethylation of electron-rich heterocycles via [Ru(bpy)3]Cl2 photocatalysis 

[43]. In the same year, Sanford’s group reported the trifluoromethylation and 

perfluoroalkylation of arylboronic acids by merging photoredox and copper catalysis 

[44]. Since then, photoinduced fluoroalkylation reactions have mostly relied on the 

incorporation of trifluoromethyl (CF3) groups in organic substrates. Seminal works in 

visible light-induced difluoroalkylation chemistry were reported in 2014 and, to date, 

a myriad of difluoroalkylating reagents (16-47, Figure 2) has been successfully 

implemented for structurally diverse organic molecules. Remarkably, one of the most 

critical challenges of late-stage difluoroalkylation compared to trifluoromethylation 

is that the replacement of one electronegative fluorine atom in CF3-containing 

reagents by a hydrogen atom or by other functional groups may induce a significant 

diminution of the reduction potentials. For instance, the generation of CHF2 radicals 

from electrophilic CHF2 precursors requires the use of more strongly reducing 

catalysts when compared with the case of CF3 radicals.  

Numerous reviews in fluoroalkylation chemistry have emphasized the various 

synthetic approaches for visible light-mediated trifluoromethylation and other 

perfluoroalkylation reactions [38,39,45-47]. Although some of these reviews have 

covered the area of difluoroalkylation chemistry in part [46,47], a review focusing 

exclusively on the incorporation of CHF2 and CF2FG groups under visible light 

photoredox conditions will be convenient due to the increasing interest in the formed 

difluoroalkylated products in life sciences. In addition, major breakthroughs have 

been accomplished in this research field since the first reported works in 2014. Herein, 

the present review highlights the distinct synthetic strategies for transition metal- and 

organic-photocatalyzed difluoroalkylation of a broad range of organic substrates by 

visible light irradiation that have been reported in the literature since 2014. Owing to 

the attractive characteristics of visible light photoredox catalysis and the late-stage 

introduction of difluoroalkyl groups, we expect that the present review will inspire 

organic chemists to explore additional synthetic routes for installation of these 

moieties. 
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2. Transition Metal Photocatalyzed Difluoroalkylation Reactions 
 

The importance of transition metal complexes as effective SET reductants and 

oxidants, upon excitation via irradiation with visible light, has been demonstrated by 

the considerable numbers of research works that were reported recently, involving 

the incorporation of CF2FG and CHF2 moieties in a variety of substrates bearing 

unsaturated bonds, including C=C and C=N, and the concomitant formation of new 

C-C bonds. In most cases, iridium transition metal complexes have proven to be 

privileged photocatalysts in the difluoroalkylation of unactivated alkenes, styrenes, 

enol derivatives, allylic alcohols, and α,β-unsaturated carboxylic acids, arenes, and 

heteroarenes. 

 

2.1. Difluoroalkylation of sp2 Carbon Atoms in Unactivated Alkenes and Styrenes 
 

The commercially available and easy-to-handle methyl 2,2-difluoro-2-

(fluorosulfonyl)acetate (FSO2CF2CO2Me, Chen’s reagent, CAS number: 680-15-9) has 

been exclusively employed for the preparation of trifluoromethylated derivatives 

[48,49]. Qing and collaborators disclosed the application of FSO2CF2CO2Me for the 

installation of CF2CO2Me substituents in alkenes (49, Scheme 1A: 19 examples, 34-95% 

yields), styrenes (51, Scheme 1B: 2 examples, 62-65% yields), and heteroarenes (53, 

Scheme 1C: 5 examples, 41-71% yields) under visible light photoredox conditions, in 

the presence of fac-IrIII(ppy)3 [50]. A plausible reaction mechanism involved the 

formation of CF2CO2Me radicals from the reduction of FO2SCF2CO2Me via oxidative 

quenching of fac-IrIII(ppy)3* and the loss of SO2 and Fˉ. The entrapment of these 

radicals by alkenes (48), styrenes (50), and heteroarenes (52) afforded the 

corresponding difluoroalkylated intermediates. The resulting radical intermediates 

can undergo two distinct pathways depending on the substrates. For alkenes (48), 

hydrogen abstraction of the radical intermediate from NMP gave the hydro-

difluoroalkylated alkanes (49). For styrenes (50) and heteroarenes (52), the oxidation 

of the radical intermediate and subsequent deprotonation provided the 

methoxycarbonyldifluoromethylated products (51 and 53) [51]. 
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Scheme 1. Methoxycarbonyldifluoromethylation of alkenes (48), styrenes (50), and 

heteroarenes (52) by visible light photoredox catalysis and the suggested mechanism. 

 

Chen’s reagent was also utilized in the keto-difluoroalkylation of styrenes (54) 

using the DMSO as oxidant, under visible light photoredox conditions [52]. The 

authors hypothesized that the combination of photoredox-catalyzed 

difluoroalkylation and DMSO oxidation would allow the development of a facile and 

new approach to the direct synthesis of α-difluoroalkylated ketones without the 

presence of a base. A variety of α-difluoroalkylated aromatic ketones bearing 

electron-donating and electron-withdrawing functional groups was obtained using 

fac-IrIII(ppy)3 as a photocatalyst under blue LED irradiation (55, Scheme 2: 21 

examples, 20-85% yields).   

 
Scheme 2. Photoinduced keto-difluoroalkylation of alkenes (54) combining the reagent 

FSO2CF2CO2Me with the oxidant DMSO.  
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The difluoroalkylating reagent ethyl 2-bromo-2,2-difluoroacetate (BrCF2CO2Et, 

CAS number: 565-53-7) was also implemented by Cho’s group for the 

difluoroalkylation of unactivated alkenes (56) [53]. Interestingly, the authors found 

that the selection of the bases and solvents was critical for guiding the chemoselective 

synthesis of difluoroalkylated alkanes and alkenes. In fact, difluoroalkylated alkanes 

were preferentially obtained using a mixture of bases DBU/TMEDA in DCM (57, 

Scheme 3: 9 examples, 65-90% yields). On the other hand, the formation of 

difluoroalkyl-containing alkenes with high levels of regio- and E/Z stereoselectivity 

(90-97%) was achieved by complete conversion of the aliphatic alkenes and styrenes 

to the bromodifluoroalkylated products using the base K2CO3 and subsequent 

dehydrobromination with DBU in DMF (58, Scheme 3: 12 examples, 80-93% yields). 
 

 
Scheme 3. Hydro-difluoroalkylation and alkenyl-difluoroalkylation of unactivated alkenes (56) 

under visible light photoredox conditions in the presence of fac-IrIII(ppy)3. 

 

Partially hydrogenated naphthalenes and quinolines containing difluoroalkyl 

moieties (60) were efficiently prepared via radical difluoroalkylation of α-

cyclopropylstyrenes and α-cyclopropylpyridines (59) with BrCF2CO2Et, respectively, 

opening of cyclopropyl ring, and consecutive annulation reaction [54]. In the presence 

of [Ir(dtbbpy)(ppy)2]PF6 [55,56], a wide range of α-cyclopropyl olefins bearing 

electron-donating and electron-withdrawing groups regioselectively afforded the 

corresponding products with moderate yields (60, Scheme 4: 15 examples, 47-68% 

yields). The developed methodology can be extended to other brominated 

compounds including bromodifluoroacetamides, ethyl 2-bromo-2-fluoroacetate 

(BrCHFCO2Et), 2-bromoacetonitrile, and diethyl 2-bromomalonate. 
 

 
Scheme 4. Photoinduced difluoroalkylation of α-cyclopropylstyrenes and α-

cyclopropylpyridines (59).  

 

Xu and collaborators reported a new approach to access difluoroalkylated 

diarylmethanes (62) from para-quinone methides (61) and BrCF2CO2Et via radical-
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radical cross-coupling, under irradiation with blue LEDs [57]. In the presence of fac-

IrIII(ppy)3, the inclusion of H2O and the reductant (i-Pr)2NEt in the reaction system 

was beneficial for the difluoroalkylation process. para-Quinone methides bearing 

electron-withdrawing and electron-donating groups on the aromatic ring provided 

the corresponding products with moderate to excellent yields. Disubstitution with 

chloro and methoxy groups was also well tolerated (62, Scheme 5: 16 examples, 45-

85% yields). Remarkably, the developed strategy can be implemented using other 

difluoroalkylating reagents with acylamino, carbonyl, esteryl, and heteroaryl 

substituents. Stern-Volmer fluorescence quenching studies and radical-trapping 

experiments suggested the formation of diarylmethyl radicals via oxidative 

quenching of fac-IrIII(ppy)3* species and the CF2CO2Et radicals via oxidation of the (i-

Pr)2NEt radical intermediate. Cross-coupling between diarylmethyl and CF2CO2Et 

radicals afforded the difluoroalkylated diarylmethanes (62). 
 

 
Scheme 5. Visible light-induced radical-radical cross-coupling difluoroalkylation of para-

quinone methides (61). 

 

Recently, Zhu and co-workers described a novel tactic for intermolecular 

alkynyl-difluoroalkylation of unactivated alkenes (63) via a three-component 

condensation with BrCF2CO2Et and alkynyl sulfones (64), under visible light 

photoredox conditions [58]. The combined use of fac-IrIII(ppy)3 with the DMF and the 

base NEt3 was critical for the selective formation of β-difluoroalkylated alkynes (65), 

minimizing the unwanted bromine addition and direct difluoroalkylation of alkynyl 

sulfones (64). Terminal and internal alkenes with a variety of functional groups (63), 

and alkynyl sulfones bearing aryl and heteroaryl substituents (64) were all suitable 

substrates for the alkynyl-difluoroalkylation process (65, Scheme 6: 26 examples, 15-

78% yields). Bromodifluoroacetamides can also provide the corresponding β-

fluoroalkylated alkynes under the developed methodology.  
 



24 

 

 
Scheme 6. Visible light-induced three-component alkynyl-difluoroalkylation of unactivated 

alkenes (63), BrCF2CO2Et, and alkynyl sulfones (64). 

 

In 2019, Cai disclosed for the first time a three-component difluoroalkylation of 

alkenes (66, 69) with BrCF2CO2Et and subsequent thiolation with thiophenols and 

heteroaryl thiols (67, 70) by merging photoredox and iron catalysis (68, Scheme 7A: 

14 examples, 16-92% yields; 71, Scheme 7B: 8 examples, 85-93% yields) [59]. 

 
Scheme 7. Three-component difluoroalkylation-thiolation of alkenes with BrCF2CO2Et and 

thiols by merging photoredox and iron catalysis.  

 

Difluoroalkylated chroman-4-ones (73) were successfully attained by Zhou and 

co-workers through visible light-induced difluoroalkylation of o-(allyloxy)aryl-

aldehydes (72) and consecutive radical cyclization [60]. The photocatalyst fac-

IrIII(ppy)3, the base K2CO3, and the solvent MeCN were determined to be the best 

choice for the desired organic transformation. Electron-donating and electron-

withdrawing groups attached to the phenyl ring of the substrates were well tolerated 

with the difluoroalkylation process, affording the difluoroalkylated chroman-4-ones 

in good yields (73, Scheme 8: 15 examples, 45-75% yields). 

 
Scheme 8. Synthesis of difluoroalkylated chroman-4-ones under photoredox conditions.  

 

By taking advantage of the oxidative properties of DMSO, Tang [61] and Ye [62] 

reported the keto-difluoromethylation of styrenes (74, 76) with BrCF2CO2Et for C(sp3) 
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- CF2CO2Et and C(sp2) = O formation. This difunctionalization reaction was performed 

in DMSO with fac-IrIII(ppy)3 as the photocatalyst and afforded the respective keto-

difluoroalkylated products in moderate to good yields (75, Scheme 9A: 16 examples: 

56-79% yields; 77, Scheme 9B: 18 examples: 43-76% yields).  

 
Scheme 9. Photoinduced keto-difluoroalkylation of alkenes (74, 76) combining the reagent 

BrCF2CO2Et with the oxidant DMSO reported by Tang (A) and Ye (B).  

 

Recently, Jiang reported the preparation of difluoroalkylated benzo[a]fluoren-5-

ones via fac-IrIII(ppy)3-catalyzed difluoroalkylation of 1,7-enynes (78) with 

BrCF2CO2Et, under irradiation with 12 W blue LEDs, and subsequent bicyclization 

(79, Scheme 10: 25 examples, 52-90% yields) [63].  

 
Scheme 10. Synthesis of difluoroalkylated benzo[a]fluoren-5-ones under visible light 

photoredox conditions. 

 

Diethyl (bromodifluoromethyl)phosphonate (BrCF2PO(OEt)2, CAS number: 

65094-22-6) was implemented by Li and co-workers in the hydro-

phosphonodifluoromethylation of alkenes (80) using the Hantzsch ester Et-HE as a 

hydrogen source and the thiyl radical precursor HSAcOMe, under irradiation with 

blue LEDs [64]. The authors found that combining the thiyl radical-catalyzed 

hydrogen atom transfer ability of a HE with RQC may avoid the use of strongly basic 

conditions and block the undesirable halogen atom transfer addition pathway via 

OQC. In the presence of fac-IrIII(ppy)3, a diverse range of mono- and disubstituted 

alkenes bearing electron-rich and electron-deficient aromatic groups, heterocyclic, 

and aliphatic groups (80) were compatible substrates with the hydro-

difluoroalkylation process (81, Scheme 11: 28 examples, 25-100% yields). This 

procedure was applied to the single step synthesis of the intermediate of a purine 

nucleoside phosphorylase (PNP) inhibitor. Mechanistic studies with radical 
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scavengers and alternative reductants suggested a reductive quenching of fac-

IrIII(ppy)3*, and consecutive generation of CF2PO(OEt)2 radicals via reduction of 

BrCF2PO(OEt)2. Radical difluoroalkylation of the alkenes (80) followed by hydrogen 

atom transfer between HSAcOMe and the difluoroalkylated radical intermediate 

afforded the corresponding products (81). 
 

 
Scheme 11. Hydro-phosphonodifluoromethylation of alkenes (80) via a thiyl 

radical/photoredox catalysis. 

 

The synthesis of α,α-difluoro-γ-aminophosphonates (84) was described by 

Qiang and collaborators through intramolecular amino-

phosphonodifluoromethylation of diarylalkenes (82) with diisopropyl 

(bromodifluoromethyl)phosphonate (BrCF2PO(Oi-Pr)2, CAS number: 65094-24-8) 

under irradiation with 5 W blue LEDs [65]. A scope of electron-rich and electron-

deficient diarylalkenes (82), and aryl amines (83) can be effectively converted into the 

difluoroalkylated products (84, Scheme 12: 22 examples, 45-95% yields). Interestingly, 

this procedure was applied to the synthesis of phosphonodifluoromethylated chiral 

binaphthylamines using (R)-(+)-1,1′-binaphthyl-2,2′-diamine ((R)-BINAM) and (R)-

(+)-2′-amino-1,1′-binaphthalen-2-ol ((R)-NOBIN) as the substrates, and of the α,α-

difluoro-γ-aminophosphoric acid. Radical-trapping and light on/off experiments 

suggested the intermediacy of CF2PO(Oi-Pr)2 radicals via oxidative quenching of fac-

IrIII(ppy)3*.  
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Scheme 12. Photocatalyzed intermolecular amino-phosphonodifluoromethylation of alkenes 

(82). 
 

The bromodifluorophosphonate derivatives BrCF2PO(OEt)2 and BrCF2PO(Oi-

Pr)2 have recently gained a great interest by Yang and collaborators owing to their 

applicability to the visible light-mediated phosphonodifluoromethylation of 

branched (85) and linear unsaturated carboxylic acids (87), unsaturated alcohol, and 

unsaturated sulfonamides (89) [66]. The described protocol was employed in the 

synthesis of a palette of difluoroalkylated lactones (86, Scheme 13A: 16 examples, 36-

95% yields), phthalides (88, Scheme 13B: 3 examples, 32-81% yields), 

tetrahydrofurans, and pyrrolidines (90, Scheme 13C: 4 examples, 47-75% yields).   
 

 
Scheme 13. Visible light-induced phosphonodifluoromethylation of branched (85) and linear 

unsaturated carboxylic acids (87), unsaturated alcohol, and unsaturated sulfonamides (89) with 

the bromodifluorophosphonates BrCF2PO(OEt)2 and BrCF2PO(Oi-Pr)2.    
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The reagent [(difluoroiodomethyl)sulfonyl]benzene (ICF2SO2Ph, CAS number: 

802919-90-0) was implemented in the iodo-phenylsulfonyldifluoromethylation of 

unsaturated C(sp2)-C(sp2) bonds of alkenes (91, 93, 95), in the presence of the 

photocatalyst [Ru(bpy)3]Cl2 [67]. A variety of electron-rich and electron-poor styrenes 

(91) and aliphatic alkenes (93) was converted into the iodo-

phenylsulfonyldifluoromethylated derivatives (92, Scheme 14A: 18 examples, 63-90% 

yields; 94, Scheme 14B: 6 examples, 72-89% yields). The presence of the inorganic base 

NaOAc and K2CO3 was beneficial for the efficiency of difunctionalization reaction in 

styrenes (91) and aliphatic alkenes (93), respectively, minimizing the formation of the 

phenylsulfonyldifluoromethylated alkenes as by-products. On the other hand, the 

use of organic bases, such as DABCO, preferentially favors the synthesis of 

phenylsulfonyldifluoromethylated alkenes by following deprotonation instead of 

iodine atom transfer reaction (96, Scheme 14C: 18 examples, 70-97% yields).  

 
Scheme 14. A) Photoinduced iodo-phenylsulfonyldifluoromethylation of styrenes (91). B) 

Photoinduced iodo-phenylsulfonyldifluoromethylation of aliphatic alkenes (93). C) 

Photoinduced phenylsulfonyldifluoromethylation of styrenes (95).  

 

Alternatively, α,α-difluoroarylacetic acids have been used as building blocks for 

the construction of difluoroalkylated compounds by visible light photoredox 

catalysis. In 2016, Qing and collaborators developed a procedure allowing the 

decarboxylative functionalization of α,α-difluoroarylacetic acids with alkenes (97) in 

the presence of Ir[dF(CF3)ppy]2(dtbpy)BF4 [68]. The hypervalent iodine reagent 

methoxybenziodoxole (BIOMe) revealed to be the most effective oxidant for 

decarboxylative functionalization of α,α-difluoroarylacetic acids. A wide range of 

alkenes underwent hydro-aryldifluoromethylation reaction to afford the 

corresponding products in moderate to good yields (98, Scheme 15A: 29 examples, 

47-82% yields).  

Later, Zhu and co-workers utilized α,α-difluoroarylacetic acids as building 

blocks for the difluoroalkylation of alkenes 99 and 101, furnishing a range of gem-
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difluoroalkylated chroman-4-ones, indanones, 3,4-dihydronaphthalen-1(2H)-ones, 

2,3-dihydroquinolin-4(1H)-ones, and cyclopent-2-enones, using the photocatalyst 

Ir[dF(CF3)ppy]2(dtbpy)PF6 and the decarboxylating reagent PhI(OAc)2 (100, Scheme 

15B: 17 examples, 41-90% yields; 102, Scheme 15C: 16 examples, 62-86% yields) [69].  

 
Scheme 15. Visible light-mediated hydro-aryldifluoromethylation of alkenes 97, 99, and 101 

with α,α-difluoroarylacetic acids.  

 

Dolbier group developed a novel strategy for hydro-difluoromethylation of 

alkenes (103) bearing a broad range of electron-withdrawing groups with the reagent 

difluoromethanesulfonyl chloride (HCF2SO2Cl, CAS number: 1512-30-7) as a source 

of CHF2 radicals, under irradiation with 26 W compact fluorescent lamp (CFL) (104, 

Scheme 16: 20 examples, 22-99% yields) [70]. In addition to the photocatalyst fac-

IrIII(ppy)3, the introduction of tris(trimethylsilyl)silane ((TMS)3SiH) with hydrogen 

atom donor properties was pivotal for the direct hydro-difluoromethylation of 

alkenes, circumventing the formation of chloro-difluoromethylated products. Other 

difluoroalkylating compounds, including (bromodifluoromethyl)benzene (PhCF2Br), 

1,1-difluoroethane-1-sulfonyl chloride (CH3CF2SO2Cl), and 2-azido-1,1-
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difluoroethane-1-sulfonyl chloride (N3CH2CF2SO2Cl) can be implemented in the 

hydro-difluoroalkylation of the substrates, under the described reaction conditions. 

 

 
Scheme 16. Visible light-catalyzed hydro-difluoromethylation of electron-deficient alkenes 

(103) with HCF2SO2Cl. 

 

The reagent HCF2SO2Cl was also efficiently employed in the preparation of 

difluoromethylated pyrrolidines and lactones through installation of difluoromethyl 

groups in sulfonamides and esters (105), respectively, and subsequent radical 

cyclization by visible light photoredox catalysis (106, Scheme 17: 15 examples, 20-95% 

yields) [71]. The implementation of [Cu(dap)2]Cl [72] as photocatalyst and the base 

Ag2CO3 was crucial for suppression of the chloro-difluoromethylation process.  
 

 
Scheme 17. Visible light-induced difluoromethylation of sulfonamides and esters (105) and 

subsequent radical cyclization in the presence of [Cu(dap)2]Cl.  

 

Alkenes containing gem-dialkoxycarbonyl substituents (107) were employed as 

substrates for photoinduced intramolecular difluoromethylation using the reagent 

HCF2SO2Cl, in the presence of fac-IrIII(ppy)3 [73]. A spectrum of difluoromethylated 

tetralin derivatives possessing electron-donating and electron-withdrawing groups 

in the aromatic ring and alkyl substituents at the β-position was efficiently obtained 

in moderate to good yields (108, Scheme 18: 13 examples, 49-87% yields). Alternative 

difluoroalkyl RfX radical precursors [Rf=CF2CH3, CF2CO2Et, CF2CONHPh, 

CF2CON(CH2CH2)2O; X=SO2Cl, Br] were also compatible with the developed 

synthetic methodology. 
 

 
Scheme 18. Visible light-catalyzed difluoromethylation/6-exo cyclization of unactivated 

alkenes (107) with HCF2SO2Cl. 
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Qing and co-workers developed a methodology for visible light-driven hydro-

difluoromethylation of alkenes (109) with the easy-to-handle 

(bromodifluoromethyl)triphenylphosphonium bromide [(Ph3PCF2Br)+Brˉ, CAS 

number: 58201-66-4] for the insertion of CHF2 groups, in the presence of H2O and THF 

[74]. The reagent (Ph3PCF2Br)+Brˉ was recognized exclusively as a difluorocarbene 

precursor [75-79]. Nevertheless, the authors found that (Ph3PCF2Br)+Brˉ can be 

implemented as a CF2Br donor, under visible light irradiation. The additional 

formation of hydro-difluoromethylated derivatives was solely observed in the 

presence of the photocatalyst fac-IrIII(ppy)3. The authors suggested the formation of 

(difluoromethyl)triphenylphosphonium bromide [(Ph3PCHF2)+Brˉ] resulting from the 

reaction between (Ph3PCF2Br)+Brˉ and H2O to explain the unexpected hydro-

difluoromethylation. Interestingly, the presence of H2O, PPh3, NaI, and KHCO3 in the 

reaction medium was critical for selective synthesis of hydro-difluoromethylated 

alkanes (110). Terminal and internal alkenes bearing various functional groups (109) 

were compatible with the desired organic transformation, affording the hydro-

difluoromethylated products in moderate to high yields (110, Scheme 19: 28 

examples, 36-87% yields).  
 

 
Scheme 19. Hydro-difluoromethylation of unactivated alkenes (109) with [Ph3PCF2Br]+Brˉ 
under visible light photoredox conditions. 

 

In addition, this synthetic approach can be extended to more structurally 

complex substrates such as analogues of 4-methyl-umbelliferone (111), phthalimide 

(112), L-phenylalanine (113), and estrone (114), as well as to biologically active 

compounds, including the fungicide vinclozolin (115) and the two insecticides 

allethrin (116) and rotenone (117) (Figure 3). Isotopic mechanistic experiments 
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involving D2O and THF-d8 demonstrated that both H2O and THF were the sources of 

hydrogen atoms for the hydro-difluoromethylation process. The authors proposed a 

mechanism of oxidative quenching of fac-IrIII(ppy)3* and concomitant reduction of 

(Ph3PCHF2)+Brˉ to CHF2 radicals. Electrophilic addition of CHF2 radicals to the alkenes 

(109) and subsequent abstraction of a hydrogen atom from THF afforded the 

respective hydro-difluoromethylated derivatives (110). 

 

 
Figure 3. Chemical structures of hydro-difluoromethylated analogues of 4-

methylumbelliferone (111), phthalimide (112), L-phenylalanine (113), and estrone (114), 

vinclozolin (115), allethrin (116), and rotenone (117). 
 

Later, the same group described the application of [Ph3PCHF2]+Brˉ in the bromo-

difluoromethylation of alkenes (118) under visible light photoredox conditions [80]. 

The use of catalytic amounts of fac-IrIII(ppy)3 and CuBr2 allowed the selective 

preparation of bromo-difluoromethylated alkanes, suppressing the unwanted hydro-

difluoromethylation of the substrates (119, Scheme 20: 21 examples, 71-94% yields). 

The protocol was also applied to the direct bromo-difluoromethylation of more 

complex and biologically active molecules, including the fungicide vinclozolin (121) 

and the insecticides allethrin (122) and rotenone (123) (Figure 4). Difluoromethylated 

alkenes were achieved via a one-pot bromo-difluoromethylation/dehydro-

bromination process (120, Scheme 20: 4 examples, 75-83% yields). 
 

 
Scheme 20. Visible light-induced photocatalytic bromo-difluoromethylation and direct 

difluoromethylation of alkenes (118) with [Ph3PCHF2]+Brˉ. 
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Figure 4. Chemical structures of bromo-difluoromethylated vinclozolin (121), allethrin (122), 

and rotenone (123). 

 

Difluoromethylated ethers and alcohols were efficiently obtained via visible 

light-mediated oxy-difluoromethylation of styrenes (124, 126) with the 

difluoromethylating reagent [Ph3PCHF2]+Brˉ using alcohol derivatives and water, 

respectively, as nucleophiles (125, Scheme 21A: 21 examples, 48-96% yields; 127, 

Scheme 21B: 6 examples, 81-91% yields) [81]. The protocol was applicable to the late-

stage oxy-difluoromethylation of vinyl-N-benzoyl-L-tyrosine ethyl ester (128) and 

vinylestrine (129) (Figure 5). 
 

 
Scheme 21. Visible light-induced oxy-difluoromethylation of styrenes with [Ph3PCHF2]+Brˉ 
using alcohol derivatives (A) and water (B).  

 
Figure 5. Chemical structures of the products of oxy-difluoromethylation of vinyl-N-benzoyl-

L-tyrosine ethyl ester (128) and vinylestrine (129). 

The shelf-stable and easy-to-handle N-tosyl-S-difluoromethyl-S-

phenylsulfoximine (CAS number: 1097192-99-8, so-called Hu’s reagent), with the 

electron-withdrawing sulfoximine group was initially conceived as a difluorocarbene 
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source for the introduction of CHF2 groups to C-, N-, and S-nucleophiles [82]. 

Recently, it has been found that this reagent can also be implemented as a precursor 

of CHF2 radicals under photoredox conditions. In fact, Akita and co-workers reported 

an efficient protocol to achieve the oxy-difluoromethylation of alkenes and styrenes 

(130) using N-tosyl-S-difluoromethyl-S-phenylsulfoximine and the nucleophile H2O 

under irradiation with blue LEDs [83]. In the presence of fac-IrIII(ppy)3, a broad range 

of difluoromethylated alcohols containing electron-donating and electron-

withdrawing groups was successfully synthesized (131, Scheme 22: 20 examples, 32-

88% yields). Moreover, structurally complex alkenes, such as vinylestrone (132) and 

vinyl-N-benzoyl-L-tyrosine ethyl ester (133), as well as other oxygen nucleophiles, 

such as alcohols and carboxylic acids, were also compatible with the described oxy-

difluoromethylation strategy (Figure 6). Mechanistic experiments with the radical 

scavenger 2,2,6,6-tetramethylpiperidine N-oxide (TEMPO) suggested the 

intermediacy of CHF2 radicals via oxidative quenching of fac-IrIII(ppy)3*. 
 

 
Scheme 22. Oxy-difluoromethylation of alkenes (130) using N-tosyl-S-difluoromethyl-S-

phenylsulfoximine and H2O in the presence of fac-IrIII(ppy)3.  

 

 
Figure 6. Chemical structures of the products of oxy-difluoromethylation of vinylestrone (132) 

and vinyl-N-benzoyl-L-tyrosine ethyl ester (133). 

 

Later, Koike and Akita reported for the first time the synthesis of α-

difluoromethyl-substituted ketones via photoredox keto-difluoromethylation of 

alkenes with N-tosyl-S-difluoromethyl-S-phenylsulfoximine and subsequent DMSO 

oxidation (Kornblum oxidation) in an one-pot operation [84]. Electrochemical 

analysis, laser flash photolysis (LFP), and density functional theory (DFT) calculations 

suggested that the N-tosyl-S-difluoromethyl-S-phenylsulfoximine is the most 

efficient difluoromethyl radical source compared to other sulfone-based reagents. 

Small scale experiments have shown that the absence of base for some substrates was 

beneficial for the efficiency the reaction, avoiding the deprotonation of carbocation 

intermediate and the formation of the difluoromethylated alkenes as by-products. For 

other substrates, the addition of sodium benzoate in the reaction medium minimized 

the generation of by-products and afforded the keto-difluoromethylated products in 
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better yields. The photoredox difluoromethylation of alkenes was performed under 

continuous-flow conditions and gave the α-difluoromethylated ketones in the 

absence (135, Scheme 23: 12 examples, 15-67% yields) or in the presence of sodium 

benzoate (136, Scheme 23: 4 examples, 49-69% yields). The use of a flow system can 

shorten the residence time resulting in the prevention of dehydrofluorination 

reactions of α-difluoromethylated ketones, under basic conditions. Mechanistic 

investigations proposed that the photoredox process is mediated by the formation of 

a α-difluoromethyl-substituted carbocationic intermediate, which undergoes 

nucleophilic attack of DMSO to afford an alkoxysulfonium intermediate. The 

presence of a base can have a pivotal role in the deprotonation of that intermediate to 

generate the keto-difluoromethylated products. On the other hand, the deprotonation 

of the carbocation intermediate can give the difluoromethylated alkenes as by-

products.     
 

 
Scheme 23. Visible light-mediated keto-difluoromethylation of alkenes (134) by merging the 

reagent N-tosyl-S-difluoromethyl-S-phenylsulfoximine and the oxidant DMSO.  

 

Zhu and collaborators developed a methodology enabling the use of 

difluoromethyl benzothiazolyl-sulfone (2-BTSO2CHF2, CAS number: 186204‐66‐0) for 
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the synthesis of difluoromethylated isoxazolines (138) via iridium-mediated 

difluoromethylation of β,γ-unsaturated oximes (137) and concomitant cyclization in 

MeCN at room temperature with NaHCO3 as base (138, Scheme 24: 16 examples, up 

to 84% yields) [85].  
 

 
Scheme 24. Iridium-catalyzed difluoromethylation of β,γ-unsaturated oximes (137).  
 

In 2019, Xiao and co-workers described the cyano-difluoromethylation of 

alkenes 139 and 140 with difluoromethylene phosphobetaine (Ph3P+CF2CO2ˉ, CAS 

number: 1449521-05-4) and NaNH2 in DMA (or NH3 in DMF) by combining iridium 

[fac-IrIII(ppy)3] and copper (CuI) catalysis [86]. The authors envisioned that the 

Ph3P+CF2CO2ˉ could be trapped by a suitable nitrogen source to generate the cyanide 

anion (CNˉ) in situ. This procedure would avoid the use of toxic cyanation reagents 

for introduction of nitrile groups (CN). Under the described reaction conditions, a 

broad range of styrenes and aliphatic alkenes were smoothly converted into the 

cyano-difluoromethylated products (141, Scheme 25: 29 examples, 30-79% yields). 

Experiments with sodium picrate, an indicator of the detection of CN, demonstrated 

that Ph3P+CF2CO2ˉ and NaNH2 (or NH3) are both carbon and nitrogen sources, 

respectively, for the in situ generated CNˉ anion. Mechanistic investigations with 

radical scavengers suggested that, besides the formation of the CNˉ, the Ph3P+CF2CO2ˉ 

acted as CHF2 source by oxidative quenching of fac-IrIII(ppy)3*. 
 

 
Scheme 25. Photoredox-catalyzed cyano-difluoromethylation of alkenes 139 and 140.  
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Recently, Dilman and co-workers developed a visible light-promoted 

difluoromethylation-thiolation of alkenes 142 using the 4-((difluoromethyl)thio)-

2,3,5,6-tetrafluoropyridine (PyfSCHF2) [87]. The authors hypothesized that the single-

electron reduction of the photocatalyst triggered the cleavage of C-S bond of 

PyfSCHF2 and subsequent formation of CHF2 radicals. The resulting radical 

intermediate would abstract the 4-tetrafluoropyridinylthio fragment from the 

PyfSCHF2. Under irradiation with 60 W blue LED, this difunctionalization reaction 

was carried out in DMSO at room temperature with fac-IrIII(ppy)3 as photocatalyst and 

was applied to a wide range of alkenes bearing distinct functional groups (143, 

Scheme 26: 22 examples, 36-80% yields).  
 

 
Scheme 26. Visible light-induced difluoroalkylation-thiolation of alkenes (142) with PyfSCHF2.  

 

2.2. Difluoroalkylation of sp2 Carbon Atoms in Enol Derivatives, α,β-Unsaturated 

Carboxylic Acids, and Allylic Alcohols 
 

Dolbier and collaborators described a methodology for the visible light-

mediated insertion of methoxycarbonyldifluoromethyl groups in enol acetates (144) 

with methyl 2,2-difluoro-2-(chlorosulfonyl)acetate (ClSO2CF2CO2Me, CAS number: 

18225-68-8) [88]. A wide array of 2,2-difluoro-γ-keto esters was efficiently prepared 

in moderate to very good yields (145, Scheme 27: 7 examples, 50-83% yields) using 

the catalyst Ir{[dF(CF3)ppy]2(dtbbpy)}PF6 [56] and the additive LiBF4 to enable 

removal of the acetyl groups. 
 

 
Scheme 27. Methoxycarbonyldifluoromethylation of enol acetates (144) by visible light 

photoredox catalysis.  

 

Qing and co-workers reported the methoxycarbonyldifluoromethylation of 

trimethylsilyl enol ethers (146) and allyltrimethylsilanes (148) with FSO2CF2CO2Me 

under visible light photoredox conditions [89]. The difluoroalkylation protocol was 

applied to silyl enol ethers and allyltrimethylsilanes with electron-donating and 

electron-withdrawing groups on the phenyl rings (147, Scheme 28A: 18 examples, 43-

88% yields; 149, Scheme 28B: 6 examples, 37-67% yields).  
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Scheme 28. Visible light-mediated methoxycarbonyldifluoromethylation of trimethylsilyl enol 

ethers (146) and allyltrimethylsilanes (148) with FSO2CF2CO2Me.  

 

Recently, the gold photocatalyst [Au2(µ-dppm)2]Cl2 [90,91] was implemented in 

the silyldifluoromethylation of trimethylsilyl enol ethers (150) with 

(bromodifluoromethyl)trimethylsilane (BrCF2TMS, CAS number: 115262-01-6) and 

this method was followed by a reduction of the primary difluoroalkylated products 

with sodium borohydride (NaBH4) (151, Scheme 29: 15 examples, 25-69% yields [92].  
 

 
Scheme 29. Silyldifluoromethylation of trimethylsilyl enol ethers (150) with BrCF2TMS by gold 

photoredox catalysis.   

 

Difluoroalkylated polycyclic lactones (153) were synthesized by radical 

difluoroalkylation of 2-oxo-2,3-dihydrofuran derivatives (152) with α-bromo-α,α-

difluoroacetophenones and a consecutive annulation reaction, under irradiation with 

33 W fluorescent light bulbs [93]. The strategy of cascade 

difluoroalkylation/annulation was efficiently performed in the presence of fac-

IrIII(ppy)3, the base 2,6-lutidine, and using a solvent mixture of DMA and DCE in a 

ratio of 1:1 (Scheme 30). Alkyl-substituted enol lactones (152), and α-bromo-α,α-

difluoroacetophenones bearing electron-rich and electron-withdrawing groups on 

the aromatic ring provided a wide range of annulated difluoroalkyl-containing 

products with an excellent diastereoselectivity (only cis products were generated) in 

moderate to excellent yields (153, 17 examples, 31-94% yields). 
 

https://www.sigmaaldrich.com/catalog/search?term=115262-01-6&interface=CAS%20No.&N=0&mode=partialmax&lang=pt&region=PT&focus=product
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Scheme 30. Visible light-mediated photocatalytic difluoroalkylation of 2-oxo-2,3-dihydrofuran 

derivatives (152) with α-bromo-α,α-difluoroacetophenones. CFL – compact fluorescent lamp. 

 

α,β-Unsaturated carboxylic acids have been used as substrates for 

decarboxylative difluoroalkylation under transition metal catalysis [94,95]. Visible 

light-driven methodologies using these substrates have been described by several 

groups. In 2016, Liu and co-workers have developed a methodology for the 

decarboxylative functionalization of α,β-unsaturated carboxylic acids (154) with the 

difluoroalkylating reagent ethyl 2,2-difluoro-2-iodoacetate (ICF2CO2Et, CAS number: 

7648-30-8) by using a dual-catalytic system merging photocatalysis and copper 

catalysis [96]. The photocatalyst [Ru(bpy)3]Cl2 [97,98], the copper catalyst 

[Cu(MeCN)4]PF6, and the solvent DCM constituted the selected conditions for the 

difluoroalkylation reaction (Scheme 31). A wide array of α,β-unsaturated carboxylic 

acids possessing electron-rich and electron-deficient (hetero)aromatic groups gave 

the corresponding difluoroalkylated styrenes with high E/Z selectivity in moderate to 

excellent yields (155, 32 examples, 15-90% yields). The authors hypothesized a 

mechanism involving a reductive quenching of *[Ru(bpy)3]2+ via [Cu(MeCN)4]+. 

Subsequent reduction of ICF2CO2Et to CF2CO2Et radicals led to the regeneration of 

the photocatalyst in its ground state. Electrophilic radical addition to the α-position 

of the double bond in the substrates followed by elimination of CO2 and 

[Cu(MeCN)4]+ afforded the difluoroalkylated styrenes (155). 

The application of the platinum photocatalyst Pt(II)[R(C^N^P^P)] (R=4-

CH3OC6H4) was described as an alternative approach for the construction of E-

difluoroalkylstyrenes from reaction between α,β-unsaturated carboxylic acids (156) 

and ICF2CO2Et, under irradiation with blue LEDs (157, Scheme 32A: 27 examples, 30-

92% yields) [99]. A mechanism for the difluoroalkylation mediated by oxidation of 

the Pt(II) complex and formation of CF2CO2Et radicals was proposed along with an 

initial deprotonation of the α,β-unsaturated carboxylic acids (156) by NaHCO3. The 

developed methodology for the difluoroalkylation of α,β-unsaturated carboxylic 

acids (158) can also be performed using the reagent BrCF2CO2Et (159, Scheme 32B: 6 

examples, 35-60% yields). In the presence of N,N-diisopropylethylamine (DIPEA), the 

reagent ICF2CO2Et can also be used for the synthesis of difluoroalkyl-containing 

alkenyl iodides and Z-difluoroalkylstyrenes via photoinduced difluoroalkylation of 

terminal arylalkynes. 
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Scheme 31. Photoredox- and copper-catalyzed decarboxylative difluoroalkylation of α,β-

unsaturated carboxylic acids (154) with ICF2CO2Et and the proposed mechanism. 

 

 
Scheme 32. Platinum-catalyzed difluoroalkylation of α,β-unsaturated carboxylic acids (156, 

158) with the reagents ICF2CO2Et (A) and BrCF2CO2Et (B).  

 

As an alternative to ICF2CO2Et, Noël and co-workers employed the reagent 

BrCF2CO2Et for the decarboxylative difluoroalkylation of α,β-unsaturated carboxylic 

acids (160) in the presence of fac-IrIII(ppy)3 [100]. The developed strategy required no 

higher temperatures, no metal co-catalysts, or hypervalent iodine reagents to facilitate 

the decarboxylation process. A spectrum of meta- and para-substituted α,β-
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unsaturated carboxylic acids bearing electron-neutral, electron-donating, and 

electron-withdrawing substituents on the aromatic ring and heterocyclic substituents 

(pyridine and thiophene) (160) afforded the respective difluoroalkylated styrenes 

with a good to excellent E-stereoselectivity (161, Scheme 33: 18 examples, 33-81% 

yields). In contrast, the decarboxylative difluoroalkylation of ortho-substituted α,β-

unsaturated carboxylic acids (162) provided the corresponding Z-products (163) 

under batch conditions. A switch in the stereoselectivity was observed when the 

decarboxylative functionalization of the substrates was performed under continuous-

flow conditions (163, Scheme 34: 12 examples, batch: 55-87% yields, continuous flow: 

39-67% yields). Interestingly, this methodology can be successfully applied to ortho-, 

meta-, para-substituted arylpropiolic acids (164) for the synthesis of difluoroalkylated 

phenylacetylenes (165, Scheme 35: 12 examples, 17-62% yields). 
 

 
Scheme 33. Visible light-promoted photocatalytic decarboxylative difluoroalkylation of meta- 

and para-substituted α,β-unsaturated carboxylic acids (160). 

 

 
Scheme 34. Visible light-promoted photocatalytic decarboxylative difluoroalkylation of ortho-

substituted α,β-unsaturated carboxylic acids (162) under batch and continuous flow conditions. 

 

 
Scheme 35. Visible light-promoted photocatalytic decarboxylative difluoroalkylation of aryl 

propiolic acids (164). 
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The synthesis of carbodifluoroalkylated ketones by visible light-promoted 

difunctionalization of allylic alcohols through a sequential difluoroalkylation and 

functional group migration process has been reported in the literature. Zhu and co-

workers disclosed an efficient methodology for the carbodifluoroalkylation of α,α-

diarylallylic alcohols with electron-donating and electron-withdrawing substituents 

(166) attached to the aromatic rings and a subsequent 1,2-aryl migration process, in 

the presence of fac-IrIII(ppy)3, the base KOAc, and BrCF2CO2Et (167, Scheme 36: 20 

examples, 33-83% yields) [101]. The difluoroalkylation/functional group migration 

process was also achievable using bromodifluoroacetamides. 
 

 
Scheme 36. Photoinduced carbodifluoroalkylation of α,α-diaryl allylic alcohols (166).   

 

Recently, Noël’s group reported a similar synthetic strategy for the 

difluoroalkylation of heteroaryl-containing allylic alcohols (169) and concomitant 1,2-

heteroaryl migration with BrCF2CO2Et [102]. Heteroaryl-containing allylic alcohols 

were synthesized via reactions between heteroaryl ketones (168) and vinylmagnesium 

bromide, under continuous-flow conditions (169, Scheme 37A: 15 examples, 33-92% 

yields). A higher efficiency for the difluoroalkylation/1,2-heteroaryl migration 

process was achieved when fac-IrIII(ppy)3 and imidazole were chosen as photocatalyst 

and base, respectively. Under the optimized photochemical conditions, the 4-pyridyl, 

3-pyridyl, 2-pyridyl, pyrazyl, and benzothiophenyl groups exhibited a migratory 

aptitude induced by incorporation of CF2CO2Et groups, affording the final products 

in good yields under batch conditions (170, Scheme 37B: 12 examples, batch: 45-89% 

yields). A switch to continuous-flow conditions enabled a reduction of the reaction 

time with a concomitant increase of the reaction yields (batch: 45-89% yields vs. 

continuous-flow: 61-98% yields). The radical addition of two CF2CO2Et groups was 

observed with benzofuranyl- and thiophenyl-containing substrates, yielding the 

respective bis-functionalized derivatives. Other difluoroalkyl precursors including 

BrCF2PO(OEt)2 and bromodifluoroacetamide derivatives efficiently promoted the 

heteroaryl migration. Mechanistic experiments with the radical scavenger 2,6-di-tert-

butyl-4-methylphenol (BHT) corroborated the involvement of a radical-mediated 

difluoroalkylation. 

Alkynyl-substituted difluoroalkyl ketones were achieved by photoinduced 

difluoroalkylation of unactivated alkenes (171) with BrCF2CO2Et and subsequent 

migration of the alkynyl groups (172, Scheme 38: 17 examples, 20-78% yields) [103]. 

A series of aromatic alkynyl motifs bearing electron-donating and electron-

withdrawing groups exhibited this migratory aptitude. The developed methodology 
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can be extended to different difluoroalkyl reagents such as bromodifluoroacetamides 

and 2-bromo-2,2-difluoro-1-morpholinoethan-1-one. 
 

 
Scheme 37. Photocatalytic difluoroalkylation-induced 1,2-heteroaryl migration of allylic 

alcohols (169). 
 

 
Scheme 38. Photoinduced difluoroalkylation of unactivated alkenes (171) in the presence of fac-

IrIII(ppy)3. 

 

The strategy of distal functional group migration was also implemented by Zhu 

and collaborators for the carbodifluoroalkylation of unactivated alkenes (173, 175, 

177, 179) in combination with visible light photocatalysis [104]. For the 

carbodifluoroalkylation process, intramolecular migration was observed for products 

bearing a series of functional groups including heteroaryl (174, Scheme 39A: 18 

examples, 53-95% yields), imino (176, Scheme 39B: 3 examples, 74-91% yields), formyl 

(178, Scheme 39C: 12 examples, 60-83% yields), and alkynyl groups (180, Scheme 39D: 

18 examples, 41-70% yields), in the presence of fac-IrIII(ppy)3 and BrCF2CO2Et. The 
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authors suggested a mechanism involving electrophilic addition of CF2CO2Et radicals 

to the alkene moiety and subsequent cyclization with the radical acceptor groups 

(heteroaryl, imino, formyl, and alkynyl groups). Ring-opening homolysis followed by 

oxidation via fac-IrIV(ppy)3 and base-mediated deprotonation gave the respective 

difluoroalkylated ketones (174, 176, 178, 180). 
 

 
Scheme 39. Visible light-induced heteroaryl- (173), imino- (175), formyl- (177), and alkynyl-

difluoroalkylation of unactivated alkenes (179) based on distal functional group migration and 

the proposed mechanism. 
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Visible light-mediated difluoroalkylation of 1-(1-arylvinyl)cyclobutanol 

derivatives (181, 183) and ring expansion via 1,2 carbon migration was described by 

Kim and collaborators using the difluoroalkyl precursors BrCF2CO2Et [105] and 

[Ph3PCHF2]+Brˉ [106]. A wide range of 1-(1-arylvinyl)cyclobutanols bearing electron-

donating, electron-neutral, and electron-withdrawing groups furnished the 

difluoroalkyl-substituted cyclic ketones with moderate to good yields (182, Scheme 

40A: 8 examples, 29-73% yields; 184, Scheme 40B: 9 examples, 45-89% yields). 
 

 
Scheme 40. Visible light-induced photocatalytic difluoroalkylation/1,2-carbon migration of 1-

(1-arylvinyl)cyclobutanol derivatives (181, 183) with BrCF2CO2Et (A) and [Ph3PCHF2]+Brˉ (B). 

 

The difluoromethyl precursor N-tosyl-S-difluoromethyl-S-phenylsulfoximine 

was effectively implemented in the diastereoselective synthesis of anti-

difluoromethyl-substituted spiroethers through visible light-mediated oxy-

difluoromethylation of aryl-fused cycloalkenyl alcohol derivatives (185) in the 

presence of fac-IrIII(ppy)3 (186, Scheme 41: 3 examples, 38-56% yields) [107]. 
 

 
Scheme 41. Oxy-difluoromethylation of aryl-fused cycloalkenylalkanols (185) with N-tosyl-S-

difluoromethyl-S-phenylsulfoximine under visible light photoredox conditions. 

 

2.3. Difluoroalkylation of sp2 Carbon Atoms in Unsaturated Amides, Hydrazones, 

and Allylamines 
 

The radical difluoroalkylation of a series of unsaturated amides has been 

employed as an efficient strategy of producing synthetic precursors to access more 

complex and functionalized heterocyclic derivatives. In 2014, Dolbier and 

collaborators disclosed a methodology for tandem difluoromethylation of N-
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arylacrylamides (187) with CHF2SO2Cl and consecutive cyclization, under irradiation 

with visible light [108]. The authors found that the fac-IrIII(ppy)3 was the most effective 

catalyst for the reduction of CHF2SO2Cl and generation of CHF2 radicals under mild 

conditions. The introduction of electron-donating and electron-withdrawing groups 

in the aromatic ring of N-arylacrylamides (187) was well tolerated with the desired 

organic transformation affording the respective difluoromethylated 3,3-disubstituted 

2-oxindoles in moderate to good yields (188, Scheme 42: 7 examples, 54-82% yields). 
 

 
Scheme 42. Visible light-mediated tandem difluoromethylation/cyclization of N-

arylacrylamides (187) with CHF2SO2Cl. 

 

The reagents 2-BTSO2CHF2 and difluoromethyl pyridyl-sulfone (2-PySO2CHF2, 

CAS number: 1219454-89-3) were also implemented in the photocatalytic 

difluoromethylation of N-arylacrylamides (189, 191, 193) in the presence of fac-

IrIII(ppy)3 and a base (either Na2CO3 or NaHCO3) [109,110]. This procedure allowed 

the access to a wide range of difluoromethylated oxindoles (190, Scheme 43A: 19 

examples, 45-88% yields; 192, Scheme 43B: 16 examples, 34-80% yields) and quinoline-

2,4-diones (194, Scheme 43C: 11 examples, 43-75% yields) in moderate to good yields.  
 

 
Scheme 43. Visible light-induced difluoromethylation of N-arylacrylamides (189, 191, 193) with 

the reagents 2-BTSO2CHF2 (A) and 2-PySO2CHF2 (B, C).  
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An alternative methodology for the synthesis of difluoromethylated oxindoles 

was developed by Qing and co-workers through the photoinduced hydro-

difluoromethylation of oxindole-derived alkenes (195) using the difluoromethylating 

reagent [Ph3PCHF2]+Brˉ [111]. In the presence of fac-IrIII(ppy)3, a wide range of 

oxindole-derived alkenes bearing electron-donating and electron-withdrawing 

substituents on their aromatic ring and polysubstituted oxindole derived-alkenes 

afforded the hydro-difluoromethylated derivatives in moderate to high yields (196, 

Scheme 44: 15 examples, 40-91% yields). 

 
Scheme 44. Photoinduced difluoromethylation of oxindole-derived alkenes (195). 

 

Other difluoroalkylating reagents, including BrCF2CO2Et and BrCF2PO(OEt)2, 

have been implemented in the preparation of difluoroalkylated oxindoles from N-

arylacrylamides (197, 199), in the presence of fac-IrIII(ppy)3 and the base Na2HPO4 (198, 

Scheme 45A: 18 examples, 68-91% yields; 200, Scheme 45B: 17 examples, 65-92% 

yields) [112,113]. In 2017, Sun and co-workers developed a methodology for the 

photoinduced difluoroalkylation with BrCF2CO2Et and BrCF2PO(OEt)2 of N-

arylacrylamides (201) and consecutive intramolecular radical addition to the cyano 

groups and homolytic aromatic substitution [114]. A variety of N-arylacrylamides 

bearing electron-donating and electron-withdrawing groups on the aromatic ring 

furnished the difluoroalkylated phenanthridines (202, Scheme 45C: 16 examples, 63-

82% yields). Alternative approaches for the synthesis of functionalized 

phenanthridines from biphenyl isocyanides will be discussed in Section 2.5. 

Difluoromethylated 2-azaspiro[4.5]deca-6,9-diene-3,8-diones (204) were 

prepared by Dolbier and collaborators via the photoinduced difluoromethylation of 

N-benzylacrylamides (203) with HCF2SO2Cl and subsequent 5-exo-cyclization [115]. 

Apart from the relevance of fac-IrIII(ppy)3 and the base K2HPO4 in the 

difluoromethylation/5-exo-cyclization process, the addition of water to the reaction 

system influenced significantly its efficiency. A wide scope of N-benzylacrylamides 

containing N-substituents such as cyclohexyl, isopropyl, n-butyl, and tert-butyl, and 

electron-rich and electron-deficient aromatic substituents furnished the desired 

products (204, Scheme 46: 16 examples, 20-93% yields). The authors found that the 

steric properties of the N-substituents may influence the efficiency of the 

spirocyclization process. This synthetic approach can be extended to other fluoroalkyl 

radical sources, in particular BrCF2CO2Et. 
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Scheme 45. Visible light-driven difluoroalkylation of N-arylacrylamides (197, 199, 201) with 

BrCF2CO2Et (A), BrCF2PO(OEt)2 (B) and both reagents (C).  

 

 
Scheme 46. Photoinduced difluoromethylation/5-exo radical cyclization of N-

benzylacrylamides (203).  

 

Later, Wang’s group used 2-BTSO2CHF2 for the radical difluoromethylation of 

N-methacryloylbenzamides (205) and consecutive intramolecular cyclization, under 

visible light photoredox conditions [116]. A palette of difluoromethylated 

isoquinoline-1,3(2H,4H)-diones bearing N-alkyl substituents, electron-rich, and 

electron-deficient aromatic substituents on the benzamide moiety was successfully 

obtained in moderate to good yields (206, Scheme 47: 11 examples, 52-79% yields). 

The authors suggested a mechanism involving oxidative quenching of fac-IrIII(ppy)3* 

and reduction of 2-BTSO2CHF2 to CHF2 radicals for the preparation of the 

difluoromethylated products (206). 

Under irradiation of 15 W blue LEDs, the reagent [Ph3PCHF2]+Brˉ was 

implemented in the difluoromethylation of enamides (207) using fac-IrIII(ppy)3 as a 

photocatalyst and DMF as a solvent [117]. A broad range of β-difluoromethylated 

enamides bearing electron-donating and electron-withdrawing substituents attached 

to the phenyl rings was synthesized in a stereoselective manner (E configuration) 

(208, Scheme 48: 26 examples, 35-91% yields).  
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Scheme 47. Visible light-driven difluoromethylation of N-methacryloyl benzamides (205) with 

2-BTSO2CHF2. 
 

 
Scheme 48. Photoinduced difluoromethylation of enamides (207) with [Ph3PCHF2]+Brˉ. 

 

N-Phenylcinnamamides were applied as substrates for the visible light-catalyzed 

difluoroalkylation using the reagent BrCF2CO2Et [118]. In the presence of fac-

IrIII(ppy)3, a broad scope of N-phenylcinnamamides possessing bulky groups at the 

N-position and electron-withdrawing groups attached to the aromatic rings (209) 

proved to be compatible substrates for the synthesis of difluoroalkylated quinoline-

2-ones after intramolecular 6-endo cyclization (210, Scheme 49A: 14 examples, 43-79% 

yields). A different pattern of cyclization was found when methoxy or hydroxy 

groups were attached to the aromatic amide moiety in the para position of the 

aromatic rings (211). The unexpected 5-exo cyclization/dearomatization process 

afforded the respective difluoroalkylated spiro[4.5]decanes under the defined 

reaction conditions (212, Scheme 49B: 5 examples, 36-69%). 

Difluoroalkylated tetracycles embedded with indole and dihydroisoquinolinone 

scaffolds (214) were effectively constructed by the photoinduced 

difluoroalkylation/cyclization of 1,8-enynes (213) with the reagent BrCF2CO2Et, in the 

presence of [Ir(dF(CF3)ppy)2(dtbbpy)]PF6 [119]. Under irradiation with 3 W blue 

LEDs, the combination of the selected photocatalyst with the base Na2HPO4 provided 

the best reaction conditions for the respective difluoroalkylation process (214, Scheme 

50: 22 examples, 51-92% yields). The difluoroalkyl group of the corresponding 

products can undergo postfunctionalization steps and be converted into 

difluoroalkylated alcohol, amide or carboxylic acid derivatives. 
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Scheme 49. Photoinduced difluoroalkylation of N-phenylcinnamamides (209, 211) for the 

regioselective synthesis of difluoroalkylated quinoline-2-ones (6-endo cyclization) (210) and 1-

azaspiro[4.5]decanes (5-exo cyclization/dearomatization) (212). 
 

 
Scheme 50. Visible light-mediated radical difluoroalkylation/cyclization of 1,8-enynes (213). 

 

Recently, Li and co-workers applied the difluoroalkylating reagent BrCF2CO2Et 

for the preparation of difluoroalkylated pyrrolo[1,2-a]indoles (216) from N-(but-2-

enoyl)indoles (215), under irradiation with 3 W blue LEDs [120]. The introduction of 

electron-donating and electron-withdrawing groups on the aromatic ring and of 

structurally distinct functional groups on the heteroarene ring of the indole moiety 

(e.g., cyano, ester, formyl, phenyl, and methyl substituents) was compatible with the 

desired organic transformation (216, Scheme 51: 29 examples, 7-90% yields). 

Remarkably, difluoroalkylation with alternative reagents derived from difluoroalkyl 

bromides, including bromoacetates, bromodifluoromethyl ketones, 

bromodifluoroacetamides, and BrCF2PO(OEt)2 proceeded smoothly with the 

described methodology. 

An efficient methodology involving the visible light-induced incorporation of 

CHF2 groups in benzamides (217) with 2-BTSO2CHF2 and concomitant cyclization to 

a benzoxazine ring has been reported [121]. A variety of benzamides possessing 

electron-neutral, electron-donating, and electron-withdrawing groups onto the 
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aromatic rings, heterocyclic, and aliphatic groups (217) was efficiently converted into 

the difluoromethylated benzoxazines (218, Scheme 52A: 19 examples, 56-93% yields). 

Mechanistic experiments with radical scavengers suggested the occurrence of radical-

mediated difluoromethylation process and reduction of 2-BTSO2CHF2 to CHF2 

radicals via oxidative quenching of fac-IrIII(ppy)3*. This protocol was expanded to the 

difluoromethylation of N-allylamides (219) in excellent yields (220, Scheme 52B: 5 

examples, 85-93% yields). 

 

 
Scheme 51. Photoinduced difluoroalkylation/cyclization reaction of N-(but-2-enoyl)indoles 

(215). 
 

 
Scheme 52. Visible light-mediated radical oxy-difluoromethylation of benzamides (217) and N-

allylamides (219) and with 2-BTSO2CHF2. 

 

Radical difluoroalkylation of the sp2-hybridized carbon atom of C=N bonds in 

aldehyde-derived hydrazones (221) with BrCF2CO2Et was reported by Zhu and co-

workers [122]. The selection of the photocatalyst fac-IrIII(ppy)3, the base Na2HPO4, and 

the use of 5 W LEDs as light source resulted in an enhanced efficiency of the 

difluoroalkylation process (Scheme 53). The introduction of an N,N-dialkyl structural 

motif was critical for the reactivity of N-substituted aldehyde-derived hydrazones. 

Interestingly, a large diversity of N,N-dialkyl aldehyde-derived hydrazones bearing 

electron-rich and electron-deficient aromatic groups, heteroaryl, and aliphatic groups 

(221) furnished the difluoroalkylated hydrazones with moderate to excellent yields 

(222, 25 examples, 50-98% yields). Other difluoroalkyl motifs, including 

bromodifluoroacetamides and phenylalanine-derived bromodifluoroamide, were 

also compatible with the developed difluoroalkylation procedure. Two possible 

reaction pathways were proposed for the formation of difluoroalkyl-containing 
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hydrazones (222): an aminyl radical/polar process and a carbon radical/polar process. 

Computational calculation of Gibbs free-energy profiles for both reaction pathways 

excluded the occurrence of a carbon radical/polar process. Therefore, the authors 

proposed a mechanism involving the addition of CF2CO2Et radicals to the C=N bond 

of the substrates (221) and generation of an aminyl radical intermediate. 

Concurrently, the aminyl radical was oxidized via fac-IrIV(ppy)3 to an aminyl cation 

(aminyl radical/polar cross-over step). Further tautomerization and deprotonation 

then furnished the corresponding difluoroalkylated products (222). 
 

 
Scheme 53. Visible light-induced difluoroalkylation of aldehyde-derived hydrazones (221) 

with BrCF2CO2Et and the proposed mechanism via an aminyl radical/polar pathway. 

 

Later, Yang and collaborators developed a visible light-induced 

difluoroalkylation of N,N’-cyclicazomethine imines (223) with BrCF2CO2Et through a 

radical-radical cross-coupling process [123]. Based on the reduction potential of the 

N,N’-cyclicazomethine imines (Ered = -1.61 V vs. SCE in MeCN), the photocatalyst fac-

IrIII(ppy)3 (Ered = -1.73 V vs. SCE in MeCN) was chosen for the difluoroalkylation 

process due to their ability to undergo the reduction of the substrates. The 

photocatalyitic difluoroalkylation of the substrates was performed in DMSO using 

ascorbic acid as reducing agent and Cs2CO3 as an additive. A variety of 

difluoroalkylated products with electron-donating and electron-withdrawing groups 

attached to phenyl rings and heterocyclic rings was synthesized in moderate to 

excellent yields (224, Scheme 54: 23 examples, 43-99% yields). The developed protocol 

was well tolerated to bromodifluoroacetamides and 2-(bromodifluoromethyl)-

benzoxazole substrates as difluoroalkylating reagents.     

Apart from unsaturated amides and hydrazones, the difluoroalkylation of 

allylamine derivatives such as ortho-hydroxyaryl enaminones has also been regarded 

as a promising approach to access more complex heterocyclic scaffolds of biological 

relevance. In 2017, two independent works reported by the Zhang [124] and Yang 

[125] groups have described the synthesis of functionalized chromones by the visible 

light-mediated difluoroalkylation of ortho-hydroxyaryl enaminones bearing electron-

donating and electron-withdrawing groups (225, 227) using the reagent BrCF2CO2Et 
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(226, Scheme 55A: 12 examples, 40-82% yields; 228, Scheme 55B: 11 examples, 32-75% 

yields). 
 

 
Scheme 54. Difluoroalkylation of N,N’-cyclicazomethine imines (223) with BrCF2CO2Et under 

visible light photoredox conditions.  
 

 
Scheme 55. Visible light-induced difluoroalkylation of ortho-hydroxyaryl enaminones (225, 

227) in the presence of [Ru(bpy)3]Cl2 (A) and fac-IrIII(ppy)3 (B). 
 

Difluoroalkylated benzoxepines were prepared by the introduction of CF2CO2Et 

groups into (E)-1-[2-(allyloxy)phenyl]-3-(substituted amino)prop-2-en-1-ones (229) 

under visible light photoredox conditions [126]. Yang’s group envisioned that the 

design of a range of substrates bearing an enaminone moiety and an olefin 

functionality could trigger an efficient installation of difluoroalkyl moieties and 

simultaneous intramolecular annulation to afford seven-membered rings. The 

combined use of the photocatalyst [Ir(dtbbpy)(ppy)2]PF6 with BrCF2CO2Et, the base 

NaOAc, and the solvent mixture DCM/H2O (10:1) proved to be the optimal conditions 

for the difluoroalkyl radical-triggered annulation process (Scheme 56). Unexpectedly, 

the authors found that N-disubstituted enaminones could be hydrolyzed to the 

corresponding benzoxepines with a 1,3-dicarbonyl moiety. Substitution at both meta- 

and para-positions of the aromatic ring of N-disubstituted enaminones gave the 

corresponding products in moderate to good yields (230, 12 examples, 33-64% yields). 

In addition, N-monosubstituted substrates bearing structurally diverse acyclic and 

cyclic groups provided the desired benzoxepine derivatives without the occurrence 

of a deamination process (231, 15 examples, 37-61% yields). 
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Scheme 56. Photoinduced difluoroalkylation of N-disubstituted and N-monosubstituted (E)-1-

(2-(allyloxy)phenyl)-3-(substituted amino)prop-2-en-1-ones (229). 
 

Yu and collaborators developed a novel approach for the utilization of CO2 and 

BrCF2CO2Et in the difluoroalkylation of allylamines (232) and subsequent 

carboxylative cyclization via visible light photoredox catalysis, under atmospheric 

conditions [127]. In the presence of [Ru(bpy)3]Cl2 and the base DABCO, a large variety 

of difluoroalkylated 2-oxazolidinones bearing electron-rich and electron-poor 

aromatic groups was obtained without detection of any amino-difluoroalkylated by-

products (233, Scheme 57: 26 examples, 30-86% yields). The developed protocol was 

applied to the oxy-difluoroalkylation of substrates using other difluoroalkyl reagents 

such as BrCF2PO(OEt)2, bromodifluoroacetamides, and 2-BTSO2CHF2. The authors 

suggested a mechanism involving the intermediacy of CF2CO2Et radicals via 

reductive quenching of *[Ru(bpy)3]2+ and oxidation of DABCO for the 

difluoroalkylation/carboxylative cyclization process. 
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Scheme 57. Radical difluoroalkylation/carboxylative cyclization of allylamines (232) with CO2 

and BrCF2CO2Et via visible light photoredox catalysis and the proposed mechanism. 

 

Recently, Sheng and co-workers reported a synthetic method allowing the visible 

light promoted three-component reaction involving the reagent 2-BTSO2CHF2, aryl 

allylamines (234), and aryl isocyanates (235) [128]. Under irradiation with 6 W blue 

LED, the difluoromethylation reaction was performed in DMF with [Ru(bpy)3]Cl2 as 

a photocatalyst and DABCO as the base at 8-10 °C. Aryl allylamines and aryl 

isocyanates containing electron-donating and electron-withdrawing groups were 

compatible with the developed procedure (236, Scheme 58: 25 examples, 25-85% 

yields). 
 

 
Scheme 58. Visible light-promoted three-component tandem reaction of aryl allylamines (234), 

aryl isocyanates (235) and the 2-BTSO2CHF2.  

 

2.4. Difluoroalkylation of sp2 Carbon Atoms in Arenes and Heteroarenes 

Transition metal photocatalysis can also be considered as a very valuable tool in 

organic synthesis for the introduction of difluoroalkyl substituents in arenes and 

heteroarenes using various difluoroalkylating reagents. 

The reagent 2-bromo-2,2-difluoro-1-morpholinoethan-1-one (CAS number: 

149229-27-6) was employed by Liu and co-workers for the visible light-induced 

incorporation of difluoroalkyl moieties in unactivated arenes (237) and heteroarenes 

(239) [129]. An investigation of the reaction conditions using benzene as the organic 

substrate showed that the corresponding difluoroalkylated derivative was obtained 

in higher reaction yield when using DCM and the base KOAc, in the presence of fac-

IrIII(ppy)3 (Scheme 59). The authors found that the difluoroalkylation procedure can 

be extended to a wide range of mono-, di-, and trisubstituted arenes bearing electron-

donating and electron-withdrawing substituents (238, Scheme 59A: 14 examples, 51-

95% yields) and heteroarenes (pyrazines, pyridazines, pyridines, pyrimidines, and 

thiophenes) (240, Scheme 59B: 14 examples, 48-95% yields). Alternative substrates 

with more complex aromatic rings such as napropamide (241) and pentoxifylline 

(242) can also be successfully difluoroalkylated (Figure 7). In addition, diverse 

bromodifluoroacetamides possessing distinct amino groups on the amide moiety, 

including aniline, cyclooctanamine, cyclopropylmethanamine, piperazine, 

piperidine, were all compatible for the desired organic transformation. A radical-
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mediated mechanism was suggested by photoluminescence quenching, electron spin 

resonance (ESR), spin-trapping, and kinetic isotope effect (KIE) experiments. 
 

 
Scheme 59. Difluoroacetamidation of unactivated arenes (237) and heteroarenes (239) with 2-

bromo-2,2-difluoro-1-morpholinoethan-1-one. 
 

 
Figure 7. Chemical structures of difluoroacetamidated napropamide (241) and pentoxyfylline 

(242). 
 

The same group implemented the reagent BrCF2PO(OEt)2 for the introduction of 

CF2PO(OEt)2 moieties in arenes and heteroarenes (243) under irradiation with 3 W 

blue LEDs [130]. Di- and trisubstituted arenes containing electron-donating and 

electron-withdrawing groups, and heteroarenes (benzofurans, benzothiophenes, 

furans, indoles, pyridines, pyrimidines, selenophenes, and thiophenes) afforded the 

phosphonodifluoromethylated derivatives in moderate to excellent yields (244, 

Scheme 60: 21 examples, 35-95% yields). 
 

 
Scheme 60. Visible light-mediated phosphonodifluoromethylation of arenes and heteroarenes 

(243) with BrCF2PO(OEt)2.  
 

An efficient photocatalytic method for the synthesis of difluoroalkylated arenes 

and heteroarenes was developed by Cho’s group [131]. The visible light-promoted 

difluoroalkylation of unactivated electron-rich arenes (245) was successfully achieved 

using BrCF2CO2Et in the presence of fac-IrIII(ppy)3 and the base t-BuOK (246, Scheme 
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61A: 10 examples, 65-91% yields). Phosphorescence quenching experiments 

suggested that the difluoroalkylation process was mediated by the oxidative 

quenching of photoexcited fac-IrIII(ppy)3 and reduction of BrCF2CO2Et to CF2CO2Et 

radicals. Compared with electron-rich arenes, the heteroarenes (247) exhibited a 

higher reactivity, requiring a lower amount of photocatalyst and BrCF2CO2Et, and the 

weak bases TEA and K3PO4. Various difluoroalkylated heteroaromatics, including 

benzofurans, benzothiophenes, furans, indoles, pyrroles, thiophenes can be obtained 

using this protocol (248, Scheme 61B: 7 examples, 70-96% yields). 
 

 
Scheme 61. Visible light-mediated difluoroalkylation of arenes (245) and heteroarenes (247) 

with BrCF2CO2Et.  
 

3,3-Difluoro-2-oxindoles (250) were successfully synthesized through ortho-

difluoroalkylation of aniline derivatives (249) with BrCF2CO2Et and consecutive 

intramolecular amidation [132]. The difluoroalkylation/intramolecular amidation 

process exhibited an extensive substrate scope and a high functional group tolerance. 

In fact, the introduction of electron-neutral, electron-withdrawing, and electron-

donating substituents on the aromatic ring of the aniline derivatives was well 

tolerated in the desired organic transformation (250, Scheme 62: 23 examples, 30-79% 

yields). Radical-trapping experiments with TEMPO suggested the intermediacy of 

CF2CO2Et radicals via oxidative quenching of fac-IrIII(ppy)3*. 

Xiong and Zhang described a methodology enabling a direct difluoroalkylation 

of 3-substituted benzo[d]isoxazoles (251) with BrCF2CO2Et in DMSO with the fac-

IrIII(ppy)3 as the photocatalyst and the K3PO4 as the base [133]. This procedure allowed 
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the regioselective synthesis of benzo[d]isoxazoles with difluoroalkyl groups at the C4 

position (252, Scheme 63: 8 examples, 73-84% yields).  
 

 
Scheme 62. Photoinduced difluoroalkylation and intramolecular amidation of anilines (249) 

with BrCF2CO2Et and the proposed mechanism. 
 

 
Scheme 63. Visible light-induced difluoroalkylation of 3-substituted benzo[d]isoxazoles (251) 

with BrCF2CO2Et.  

 

Jin and colleagues developed an alternative approach for difluoroalkylation of 

quinoxalin-2(1H)-ones (253) that merges the visible light photoredox [fac-IrIII(ppy)3] 

and organoamine (DIPEA) catalysis [134]. A variety of quinoxalin-2(1H)-ones 

containing different N-protecting groups and bearing either electron-donating and 

electron-withdrawing groups attached to the phenyl rings afforded the 

difluoroalkylated products in satisfactory yields (254, Scheme 64: 24 examples, 32-

92% yields). Apart from the BrCF2CO2Et, a series of bromofluoroacetamides 

containing aniline, dialkylamine, pyrrolidine, morpholine, thiomorpholine, and 

hexamethyleneimine groups can induce the difluoroalkylation of quinoxalin-2(1H)-

ones.  
 

 
Scheme 64. Synthesis of difluoroalkylated quinoxalin-2(1H)-ones (254) under visible light 

photoredox conditions. 
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Later, Jin disclosed an efficient regioselective difluoroalkylation of 8-

aminoquinolines (255) at C5 position with BrCF2CO2Et in DMSO with fac-IrIII(ppy)3 as 

the photocatalyst and the DMAP as the base [135]. A wide range of quinolines with 

electron-rich and electron-poor aromatic amide groups and aliphatic amide groups in 

C8 position was converted into the desired 5-difluoroalkylated derivatives (256, 

Scheme 65: 21 examples, 45-90% yields). Under the standard reaction conditions, the 

difluoroalkylation procedure can also be applied to other reagents including 

bromodifluoroacetamides, BrCF2CO2Me, and BrCF2PO(OEt)2. 
 

 
Scheme 65. Difluoroalkylation of 8-aminoquinolines (255) with BrCF2CO2Et under visible light 

photoredox conditions.  

 

Recently, Li and collaborators reported the use of BrCF2CO2Et in para-selective 

difluoroalkylation of aryl ketones (257) and (hetero)aryl aldehydes (259) to give the 

corresponding products in good reaction yields (258, Scheme 66A: 11 examples, 36-

70% yields; 260, Scheme 66B: 19 examples, 39-82% yields) [136]. Under irradiation 

with 3 W blue LEDs, the efficiency and regioselectivity of the difluoroalkylation 

reaction of the carbonyl-containing substrates were mainly influenced by the 

presence of the photocatalyst [fac-IrIII(ppy)3], the base (NaOAc), and the additive 

(phenanthroline). Bromodifluoroacetamides bearing distinct amine moieties such as 

aniline, morpholine, pyrrolidine, thiomorpholine, piperidine, and diethylamine 

groups were well tolerated in the difluoroalkylation of aryl aldehydes.  
 

 
Scheme 66. Visible light-induced para-selective difluoroalkylation of aryl ketones (A) and 

(hetero)aryl aldehydes (B). 
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In 2017, Fu and collaborators reported two related research works concerning a 

methodology for the visible light difluoroalkylation of imidazo[1,2-a]pyridines (261, 

265) using the reagents BrCF2CO2Et (Scheme 67A) [137] and ICF2SO2Ph (Scheme 67C) 

[138], in the presence of fac-IrIII(ppy)3. Electron-rich, electron-neutral, and electron-

deficient 2-arylimidazo[1,2-a]pyridines were compatible with the difluoroalkylation 

process using both reagents, and gave the corresponding products in moderate to 

excellent yields (262, Scheme 67A: 17 examples, 60-94% yields; 266, Scheme 67C: 15 

examples, 62-91% yields). The functionalization of benzo[d]-imidazo[2,1-b]thiazoles 

(263, 267) was possible under the described reaction conditions (264, Scheme 67B: 3 

examples, 89-95% yields; 268, Scheme 67D: 2 examples, 84-87% yields). 
 

 
Scheme 67. Visible light-mediated difluoroalkylation of imidazo[1,2-a]pyridines (261, 265) and 

benzo[d]-imidazo[2,1-b]thiazoles (263, 267) with BrCF2CO2Et and ICF2SO2Ph. 

 

The reagent ICF2SO2Ph was also efficiently applied in the difluoromethylation of 

N-, O-, and S-containing electron-rich heteroarenes (269) under irradiation with 26 W 

light bulbs [139]. In the presence of [Ru(bpy)3]Cl2, electron-rich and electron-deficient 

pyrroles, furans, thiophenes, indoles and other heteroarenes containing two 

heteroatoms furnished the respective CF2SO2Ph-containing heteroarenes (270, 

Scheme 68A: 39 examples, 58-96% yields). Mechanistic investigations involving 

radical scavengers suggested a radical-mediated difluoroalkylation process via 

oxidative quenching of *[Ru(bpy)3]2+. Removal of the -SO2Ph group through reductive 

desulfonylation afforded the difluoromethylated derivatives (271, Scheme 68B: 9 
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examples, 71-95% yields). Interestingly, an analogue of the natural product melatonin 

(272) can be difluoromethylated in stepwise and one-pot procedures (273, Scheme 69; 

stepwise: 56% yield; one-pot: 51% yield). 
 

 
Scheme 68. A) Visible light-driven difluoroalkylation of N-, O-, and S-containing heteroarenes 

(269) with ICF2SO2Ph; B) Reductive desulfonylation of CF2SO2Ph-containing heteroarenes. 
 

 
Scheme 69. Difluoromethylation of an analogue of melatonin (272) in stepwise and one-pot 

procedures. 
 

Difluoroalkylation of arenediazonium tetrafluoroborates (274) was achieved 

using α-aryl-β,β-difluoroenol silyl ethers as the difluoroalkyl precursors under 

irradiation of visible light [140]. The selection of the photocatalyst [Ru(bpy)3]Cl2 and 

the base Cs2CO3 was critical for preferential difluoroalkylation on the aromatic ring 

of the substrates and elimination of the unwanted difluoroalkylation of N≡N bonds 

(Scheme 70). A wide range of arenediazonium tetrafluoroborates bearing electron-

neutral and electron-withdrawing groups furnished the corresponding α-aryl-α,α-

difluoro ketones in moderate to high yields (275, 25 examples, 20-90% yields). 

Quantum mechanical density functional theory calculations suggested a preferential 

mechanism involving the in situ generation of aryl radicals from arenediazonium 

tetrafluoroborates (274) via *[Ru(bpy)3]2+ species. Radical difluoroalkylation of aryl 

radicals, SET oxidation from another substrate, and abstraction of the trimethylsilyl 

group gave the respective α-aryl-α,α-difluoro ketones (275). 
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Scheme 70. Difluoroalkylation of arene diazonium tetrafluoroborates (274) under visible light 

photoredox conditions and the proposed mechanism. 
 

Stephenson’s group achieved the radical chloro-difluoromethylation of arenes 

and heteroarenes (276) by in situ formation of a redox-active complex resulting from 

the combination of heterocyclic N-oxides (pyridine N-oxide and 4-phenylpyridine N-

oxide) with the commercially available chlorodifluoroacetic anhydride [(ClCF2CO)2O, 

CAS number: 2834-23-3], in the presence of [Ru(bpy)3]Cl2 [141]. Electron-rich 

heteroarenes and other pharmaceutically valuable agents with diverse functional 

groups were competent substrates for the desired organic transformation under both 

batch and flow conditions (277, Scheme 71: 19 examples, 25-84% yields). Interestingly, 

the chlorodifluoromethyl group-containing compounds (277) can be used as synthetic 

precursors to access electron-rich difluoromethylated arenes and heteroarenes. 
 

 
Scheme 71. Photoinduced chlorodifluoromethylation of arenes and heteroarenes (276).  

 

Recently, MacMillan’s group reported a convenient approach for the direct 

difluoromethylation of aryl (278) and heteroaryl bromides (280) by combining nickel 

catalysis (NiBr2·dtbbpy) with iridium photocatalysis {[Ir(dF(CF3)ppy)2(dtbbpy)]PF6} 
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[142]. Bromodifluoromethane (BrCHF2, CAS number: 1511-62-2) was employed as a 

direct source of CHF2 radicals via a (TMS)3Si radical-mediated halogen abstraction 

pathway. The authors suggested a mechanism of reductive quenching of 

[Ir(dF(CF3)ppy)2(dtbbpy)]PF6* and simultaneous oxidation of the bromide anion. The 

resulting bromine radical can then induce the formation of (TMS)3Si radicals that, in 

turn, can promote the bromine elimination from BrCHF2 to afford the CHF2 radicals. 

Concomitantly, an oxidative addition of the nickel catalyst to (hetero)aryl bromides 

and subsequent trapping of the CF2 radicals afforded a CHF2-Ni(II)-(hetero)aryl 

intermediate. Reductive elimination gave the respective difluoromethylated arenes 

(279) and heteroarenes (281). Under irradiation with blue LEDs, a variety of aryl 

bromides bearing electron-withdrawing, electron neutral, and electron donating 

groups were compatible with the desired organic transformation (279, Scheme 72A: 

18 examples, 55-85% yields). The developed strategy was extended to the late-stage 

difluoromethylation of heteroaryl bromides (280), including bromo-1H-

benzoimidazoles, bromo-1H-indazoles, bromopyrazines, bromopyrazoles, 

bromopyridines, bromopyrimidines, bromoquinolines, and bromoquinoxalines (281, 

Scheme 72B: 18 examples, 45-84% yields) and analogues of sulfadimethoxine (282), 

celecoxib (283), indomethacin (284), and pomalidomide (285) (Figure 8). 
 

 
Scheme 72. Metallaphotoredox difluoromethylation of aryl (278) and heteroaryl bromides (280) 

with BrCHF2. 
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Figure 8. Chemical structures of difluoromethylated analogues of sulfadimethoxine (282), 

celecoxib (283), indometacin (284), and pomalidomide (285). 

 

The reagent [Ph3PCHF2]+Brˉ was recently applied to the visible light-induced 

difluoromethylation of N-unprotected indoles (286) bearing substituents on C3 

position and on the phenyl ring of the indole skeleton (287, Scheme 73: 15 examples, 

15-52% yields) [143].  
 

 
Scheme 73. Difluoromethylation of N-unprotected indoles (286) with [Ph3PCHF2]+Brˉ by visible 

light photoredox catalysis.  

 

2.5. Difluoroalkylation of sp Carbon Atoms in Alkynes and Biphenyl Isocyanides 
 

Apart from the huge progress in visible light photocatalytic difluoroalkylation 

of sp2-hybridized carbon atoms in organic substrates, determined efforts have been 

also devoted to the exploration of efficient methodologies for the introduction of 

difluoroalkyl groups to sp-hybridized carbon atoms, including C≡C bonds of alkynes 

and C≡N bonds of biphenyl isocyanides. Direct difluoroalkylation of these substrates 

has been demonstrated to afford synthetically useful precursors for the construction 

of functionalized heterocyclic molecules, such as difluoroalkylated coumarins, 

quinolines, and phenanthridines, under visible light irradiation. 

In 2015, Ji and collaborators described a protocol for the visible light-mediated 

difluoroalkylation of aryl 3-phenylpropiolates (288) with BrCF2CO2Et and subsequent 

construction of a coumarin ring [144]. In the presence of fac-IrIII(ppy)3, the radical 

difluoroalkylation/intramolecular annulation of a broad scope of aryl 3-

phenylpropiolates bearing electron-donating and electron-withdrawing substituents 

in the aromatic rings gave the corresponding 3-difluoroalkylated coumarins (289, 

Scheme 74A: 21 examples, up to 87% yields). A mechanism of oxidative quenching of 

fac-IrIII(ppy)3* and subsequent CF2CO2Et radical-mediated difluoroalkylation of C≡C 

bonds of the substrates (288) was proposed. Difluoromethyl-containing coumarins 

were also achieved via the photoinduced installation of CHF2 groups in aryl 3-
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phenylpropiolates (290) using 2-BTSO2CHF2 (291, Scheme 74B: 24 examples, 30-80% 

yields) [145]. 
 

 
Scheme 74. Visible light-mediated radical difluoroalkylation/intramolecular annulation of aryl 

3-phenylpropiolates (288, 290) with BrCF2CO2Et (A) and 2-BTSO2CHF2 (B). 

 

Recently, Sun and co-workers described a methodology for the visible light-

induced radical difluoroalkylation of N-propargyl aromatic amines (292) with the 

reagent BrCF2CO2Et and consecutive cyclization to form a quinoline ring [146]. A 

large diversity of 3-difluoroalkylated quinolines bearing electron-withdrawing and 

electron-donating substituents on the aniline and benzene rings was effectively 

obtained in moderate to high yields (293, Scheme 75: 24 examples, 35-91% yields). 
 

 
Scheme 75. Photoinduced cascade difluoroalkylation/cyclization of N-propargyl aromatic 

amines (292). 

 

Alkynyl aldehydes (294) were also explored as substrates for the 1,1-hydro-

difluoroalkylation and concurrent intramolecular acylation [147]. Under irradiation 

with 10 W blue LEDs, a range of difluoroalkylated cyclic ketones including 

indanones, chroman-4-ones, 2,3-dihydroquinolino-4(1H)-ones, and 3,4-
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dihydronaphthalen-1(2H)-ones was synthesized in THF with the fac-IrIII(ppy)3 as the 

photocatalyst and the K3PO4 as the base at room temperature (295, Scheme 76: 19 

examples, 34-88% yields). This methodology was compatible with 

bromodifluoroacetamides and 2-(bromodifluoromethyl)benzo[d]isoxazole as 

difluoroalkylating reagents. Experiments with radical scavengers and deuterium-

labeled substrates revealed the intermediacy of CF2CO2Et and 2-tetrahydrofuranyl 

radicals, the involvement of an intramolecular hydrogen atom transfer, and the 

occurrence of an intermolecular hydrogen atom transfer with the THF.  

 
Scheme 76. 1,1-Hydrodifluoroalkylation of alkynyl aldehydes (294) with BrCF2CO2Et under 

visible light photoredox conditions and the proposed mechanism. 

 

Cho and co-workers disclosed the photocatalytic difluoroalkylation of 

prefunctionalized alkynyl iodides (296) with the difluoroalkyl bromides BrCF2CO2Et 

and BrCF2PO(OEt)2 in the presence of fac-IrIII(ppy)3 [148]. Aryl-substituted alkynyl 

iodides containing electron-donating and electron-withdrawing groups and 

heteroaryl-substituted alkynyl iodides were suitable substrates for the 

difluoroalkylation protocol under visible light photoredox conditions (297, Scheme 

77: 13 examples, 33-74% yields).   
 

 
Scheme 77. Photoinduced difluoroalkylation of prefunctionalized alkynyl iodides (296) with 

the difluoroalkyl bromides BrCF2CO2Et and BrCF2PO(OEt)2. 
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In 2014, Yu and co-workers developed a stepwise procedure for the preparation 

of difluoromethylated phenanthridine derivatives (299) involving the 

difluoroalkylation/radical cyclization of biphenyl isocyanides (298) with BrCF2CO2Et 

and subsequent decarboxylation under basic conditions [149]. The 

difluoromethylation of the substrates took place upon visible light irradiation in the 

presence of fac-IrIIIppy3, together with Na2HPO4 in DMF at room temperature. After 

the radical-induced difluoroalkylation, the ester functionality was removed via 

saponification and subsequent acid-mediated decarboxylation. The authors 

investigated the influence of a one-pot procedure on the overall efficiency of 

difluoromethylation of biphenyl isocyanides (298). They found that a one-pot 

procedure could afford a range of electron-deficient and electron-rich phenanthridine 

derivatives (299, Scheme 78A: 15 examples; one-pot: up to 94%; stepwise: up to 89%) 

with reaction yields comparable to those of the stepwise methodology, and could be 

easily scaled up. 

Later, two independent research works reported by Liu [150] and Wang [151] 

groups have shown the successful utilization of BrCF2PO(OEt)2 in the 

phosphonodifluoromethylation of biphenyl isocyanides (300, 302) under visible light 

photoredox conditions. A variety of biphenyl isocyanides bearing electron-donating 

and electron-withdrawing substituents attached to the aromatic rings were efficiently 

converted into the respective phosphonodifluoromethylated phenanthridines (301, 

Scheme 78B: 16 examples, 51-96% yields; 303, Scheme 78C: 16 examples, 51-78% 

yields). 
 

 
Scheme 78. Visible light-mediated difluoroalkylation of biphenyl isocyanides (298, 300, 302) 

reported by Yu (A), Liu (B), and Wang (C) groups.  
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Visible light-mediated installation of CHF2 groups in biphenyl isocyanides (304) 

was reported for the first time by Dolbier and collaborators using the reagent 

CHF2SO2Cl [152]. This method enabled the synthesis of difluoromethylated 

phenanthridines (305), excluding the need of a stepwise procedure involving the 

conversion of other gem-difluoroalkyl groups into a difluoromethyl group. An 

improved reactivity of the difluoromethylation of the substrates was accomplished 

using wet dioxane and K2HPO4, in the presence of fac-IrIII(ppy)3 (Scheme 79). Electron-

donating and electron-withdrawing substituents in both aromatic rings were 

efficiently converted into the respective difluoromethylated phenanthridines (305, 15 

examples, 20-98% yields). Other radical fluoroalkyl precursors, particularly to 

PhCF2Br and CH3CF2SO2Cl, were compatible with the developed methodology. The 

authors suggested a mechanism for the formation of phenanthridine scaffold 

involving the generation of CHF2 radicals via oxidative quenching of fac-IrIII(ppy)3* 

and radical addition to the C≡N bond of biphenyl isocyanides (304). Subsequent 

cyclization onto the aromatic ring, oxidation via fac-IrIV(ppy)3, and base-assisted 

deprotonation gave the final products (305). Similar mechanistic pathways have been 

proposed to the difluoroalkylation reactions described on the Scheme 78. 
 

 
Scheme 79. Photoinduced difluoromethylation of biphenyl isocyanides (304) and the suggested 

mechanism. 

 

Difluoroalkyl sulfones, including 2-BTSO2CHF2 [153] and 2-PySO2CF2SPh [154], 

have also been implemented in the synthesis of difluoromethylated (307) and 

arylthio-difluoromethylated phenanthridines (309), respectively, from biphenyl 

isocyanides (306, 308), under irradiation with 6 W blue LEDs. Optimal conditions for 

the difluoromethylation and arylthiodifluoromethylation were achieved by 

combining the photocatalyst [Ru(bpy)3]Cl2 with the base Na2CO3 and DMSO. 

Biphenyl isocyanides bearing electron-donating and electron-withdrawing 

substituents on the aromatic rings were suitable substrates for the desired 

transformation (307, Scheme 80A: 26 examples, 20-82% yields; 309, Scheme 80B: 13 

examples, 30-93% yields). The developed methodology was also extended to other 
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fluoroalkyl sulfones containing 1,1-difluoroethyl (-CF2CH3), (phenyl)difluoromethyl 

(-CF2Ph), (benzoyl)difluoromethyl (-CF2COPh), and arylthiodifluoromethyl (-

CF2SAr) moieties. Luminescence quenching experiments suggested a mechanism of 

difluoroalkylaytion mediated by reductive quenching of *[Ru(bpy)3]2+ via oxidation of 

CO32-. 
 

 
Scheme 80. Visible light-promoted difluoromethylation of biphenyl isocyanides (306, 308) with 

2-BTSO2CHF2 (A) and 2-PySO2CF2SPh (B).  

 

Photocatalytic difluoromethylation of biphenyl isocyanides (310) and 2-

isocyanoacrylates (312) was recently reported by Liu and co-workers using the bench-

stable S-(difluoromethyl)-S-phenyl-S-(2,4,6-methoxyphenyl) sulfonium 

tetrafluoroborate [155]. Under irradiation with 12 W blue LEDs, the fac-IrIII(ppy)3-

catalyzed electrophilic difluoromethylation of the substrates 310 and 312 was 

performed in aqueous solution of base KOH and DCM. In addition, the presence of 

polyethylene glycol 600 (PEG 600) found to be beneficial for the efficiency of the 

reaction by increasing the miscibility of KOH aqueous solution in DCM. A wide range 

of difluoromethylated phenanthridines with electron-rich and electron-poor aromatic 

groups, and heteroaryl groups, including indole, pyrrole, and thianaphthene was 

furnished in moderate to good reaction yields (311, Scheme 81A: 28 examples, 18-79% 

yields). The protocol was expanded to the synthesis of difluoromethylated 

isoquinolines furo[3,2-c]pyridine, and pyrido[3,4-b] (313, Scheme 81B: 6 examples, 34-

63% yields), and of difluoromethylated trispheridine derivative (314, Figure 9).  
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Scheme 81. Photocatalytic difluoromethylation of biphenyl isocyanides (310) and 2-

isocyanoacrylates (312) with S-(difluoromethyl)diarylsulfonium tetrafluoroborate.  

 

 
Figure 9. Chemical structure of the difluoromethylated trispheridine derivative (314).  

 

2.6. Difluoroalkylation of SH- and OH-Containing Substrates 
 

Transition metal-photoinduced difluoroalkylation of sp2- and sp-hybridized 

carbon atoms has been widely described under the scope of this review. On the other 

hand, the difluoroalkylation of other groups, in particular SH and OH groups, by 

visible light photoredox catalysis has been underdeveloped. The resulting -SCHF2 

and -OCHF2 substituents have emerged as important functional groups in bioactive 

molecules, including the pyriprole (315), flomoxef sodium (316), pantoprazole (317), 

and roflumilast (318) (Figure 10). Just recently in 2017, the Fu and Qing groups 

reported on the use of fluoroalkylating agents for the synthesis of difluoroalkyl 

(thio)ether derivatives under photoredox conditions. 

The commercially available bromodifluoroacetic acid (BrCF2CO2H, CAS 

number: 354-08-5) was employed in the difluoromethylation of phenols and 

thiophenols (319) under visible light with a 23 W CFL [156]. Screening of 

photocatalysts, bases, and solvents have shown that the selection of fac-IrIII(ppy)3, 

Cs2CO3, and DMF, respectively, was appropriate for the efficiency of 

difluoromethylation process (Scheme 82). A broad range of phenols and thiophenols 

possessing electron-donating and electron-withdrawing groups gave the 

corresponding difluoromethylated (thio)ethers (320, 32 examples, 48-97% yield). The 



71 

 

protocol was also applied to other substrates, such as heteroaryl alcohols and 

heteroaryl thiols. The authors hypothesized a mechanism of difluoromethylation 

involving the generation of a difluorocarbene (:CF2) intermediate via oxidation of a 

radical carbanion intermediate resulting from the reaction between BrCF2CO2H and 

Cs2CO3, and subsequent reduction. Concurrently, the reaction of phenol and 

thiophenol derivatives (319) with Cs2CO3 provided the ArXCs (X = O, S) and CsHCO3. 

The reaction of ArXCs with the :CF2 and subsequent treatment with CsHCO3 

provided the difluoromethylated (thio)ether derivatives (320). 
 

 

 
Figure 10. Chemical structures of SCHF2- (pyriprole (315) and flomoxef sodium (316)) and 

OCHF2-containing bioactive molecules (pantoprazole (317) and roflumilast (318)). 
 

 
Scheme 82. Photoinduced difluoromethylation of phenols and thiophenols (319) with 

BrCF2CO2H in the presence of fac-IrIII(ppy)3 and the proposed mechanism. 

 

In addition, the reagent (difluoromethyl)triphenylphosphonium triflate 

([Ph3PCHF2]+TfOˉ) was applied to the radical difluoromethylation of thiols (321, 323) 

under irradiation of visible light [157]. Apart from [Ph3PCHF2]+TfOˉ, the selection of 

photocatalyst fac-IrIII(ppy)3 and the base TMEDA was critical for the reactivity of 

difluoroalkylation reactions (Scheme 83). A large variety of thiophenols possessing 

electron-neutral, electron-donating, and electron-withdrawing substituents and 

heteroaryl thiols including benzo[d]thiazole-2-thiols, 2-thiopyridines, 4-
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thiopyridines, and 2-thiopyrimidines yielded the corresponding difluoromethylated 

thioethers (322, Scheme 83A: 12 examples, 71-93% yields; 324, Scheme 83B: 9 

examples, 65-94% yields). Interestingly, an excellent S/X (X = O, N) chemoselectivity 

of the difluoromethylation process was observed. Two plausible pathways were 

proposed for the radical difluoromethylation of thiols (Scheme 84). Electrophilic 

addition of CHF2 radicals to the thiolates and subsequently oxidation afforded the 

corresponding products (Path 1). Alternatively, the thiolate can be oxidized by fac-

IrIV(ppy)3 to a sulfur radical and then converted into the disulfide derivative. 

Difluoromethylated thioethers (322, 324) are obtained from the reaction between the 

CHF2 radicals and the disulfide (Path 2). The latter mechanism was considered the 

most likely reaction pathway due to the observed chemoselective S-

difluoromethylation. 
 

 
Scheme 83. Visible light-induced photocatalytic difluoromethylation of thiophenols (321) and 

heteroaryl thiols (323) using the reagent [Ph3PCHF2]+TfOˉ.  
 

 

 
Scheme 84. Proposed mechanistic pathways for photoinduced difluoromethylation of 

thiophenols (321) and heteroaryl thiols (323). 
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3. Organic Photocatalyzed Difluoroalkylation Reactions 
 

Over the last years, we have witnessed to promising advances in the application 

of transition metal photocatalysts in the late-stage difluoroalkylation of organic 

substrates. Nevertheless, metal-catalyzed processes usually present a number of 

drawbacks, including the use of expensive metal catalysts, their potential toxicity, and 

in few cases the problems related to the elimination of the metal catalyst at the end of 

a reaction [35,158,159]. The development of synthetic approaches using organic dyes 

and other metal-free organic compounds has been regarded an attractive alternative 

to transition metal complexes in photoredox catalysis. These organic photocatalysts 

are typically less expensive, less toxic, and easy to handle [160,161]. The development 

of metal-free catalyzed protocols is highly desirable to the pharmaceutical industries 

in order to restrict the maximal amount of transition metal impurities used in the 

production of pharmaceuticals. A survey of difluoroalkylation reactions that makes 

use of organic photocatalysts will be described in this section. 

Photoinduced hydro-bromodifluoromethylation of alkenes (325) was reported 

by Qing and co-workers [162] using dibromodifluoromethane (CF2Br2, CAS number: 

75-61-6) as difluoroalkylating reagent and eosin Y as photocatalyst [158]. Under 

irradiation with visible light, the combined use of THF as hydrogen atom donor with 

the additive KHCO3 was appropriate to achieve the selectivity of hydro-

bromodifluoromethylation process and minimize the competitive bromine trapping 

after the bromodifluoromethylation process (Scheme 85). A scope of mono- and 

disubstituted alkenes possessing a wide range of functional groups, including 

aldehydes, alkyl and allylic alcohols, amides, carboxylic acids, esters, ethers, halides, 

ketones, nitriles, nitro groups, phosphine oxides, sulfones, can be converted into the 

corresponding hydro-bromodifluoromethylated products (326, 25 examples, 41-90% 

yields). Remarkably, the developed protocol for hydro-bromodifluoromethylation 

can be extended to more complex alkenes, including a L-phenylalanine derivative 

(327), vinclozolin (328), and rotenone (329) (Figure 11), and alkynes 330 (331, Scheme 

86: 4 examples, 53-55% examples). Mechanistic studies suggested the involvement of 

the photoexcited eosin Y in the reduction of CF2Br2 with concomitant generation of 

bromodifluoromethyl (CF2Br) radicals. Subsequent radical addition to the alkenes 

(325) and hydrogen abstraction from THF afforded the hydro-

bromodifluoromethylated products (326). Labeling experiments with THF-d8 

corroborated the suggested mechanism of hydrogen abstraction.  
 

 
Scheme 85. Photoinduced hydro-bromodifluoromethylation of alkenes (325) with CF2Br2. 
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Figure 11. Chemical structures of hydro-bromodifluoromethylated L-phenylalanine derivative 

(327), vinclozolin (328), and rotenone (329). 

 

 
Scheme 86. Photoinduced hydro-bromodifluoromethylation of alkynes (330) with CF2Br2. 

 

Eosin Y was also effectively employed as a metal-free photocatalytic system for 

the decarboxylative difluoroalkylation of α,β-unsaturated carboxylic acids (332) with 

BrCF2CO2Et under mild conditions [163]. The use of the hypervalent iodine reagent 

1-hydroxy-3-oxobenziodoxole (BI-OH) enabled the decarboxylative 

difluoromethylation of the substrates via activation of the carboxylic acid group. 

Under irradiation with a 15 W house bulb, an improved reaction efficiency was 

accomplished using the solvent mixture DCE/H2O and the reducing agent i-Pr2NEt 

(Scheme 87). A wide range of (E)-difluoroalkylated styrenes possessing both electron-

donating and electron-withdrawing groups at meta- and para-positions on the 

aromatic ring was successfully synthesized in good yields (333, 24 examples, 46-87% 

yields). The authors suggested a reaction mechanism involving a reductive quenching 

of the photoexcited eosin Y via SET oxidation of i-Pr2NEt with concomitant formation 

of CF2CO2Et radicals. The hypervalent iodine reagent BI-OH is incorporated into the 

carboxylic acid moiety of the substrates to generate a benziodoxole vinyl carboxylic 

acid complex. Radical difluoroalkylation to the α-carbon atoms of the benziodoxole 

vinyl carboxylic acid and subsequent elimination of CO2 and benziodoxole radical 

provided the desired (E)-difluoroalkylated styrenes (333). 

The reagent BrCF2CO2Et was implemented in the difluoroalkylation of acyclic 

and cyclic alkenes (334) under visible light mediated reaction conditions in the 

presence of a suitable reducing agent and an organic photocatalyst [164,165]. 

Difluoroalkylated products were attained with improved reaction yields using 

fluorescein as a photocatalyst, the amine TMEDA as a reducing agent, and NMP as a 

solvent (335, Scheme 88A: 10 examples, 32-95% yields). Based on the redox potentials 

of fluorescein (Ered = -0.78 V vs SCE) and of BrCF2CO2Et (Ered = -0.89 V vs SCE), Itoh 

and co-workers proposed a difluoroalkylation reaction by TMEDA-mediated 

reduction of the fluorescein in the photoexcited state. The same reaction conditions 
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were applicable to the reaction with alkynes, affording a range of difluoroalkylated 

alkenes with poor E/Z selectivity (337, Scheme 88B: 10 examples, 30-93% yields).  
 

 
Scheme 87. Visible light-mediated decarboxylative difluoromethylation of α,β-unsaturated 

carboxylic acids (332) and the proposed mechanism. 
 

 
Scheme 88. Fluorescein-mediated difluoroalkylation of alkenes (334) and alkynes (336) with 

BrCF2CO2Et.  

 

Direct difluoromethylation of coumarins (338) with sodium 

difluoromethanesulfinate (NaSO2CHF2, CAS number: 275818-95-6) was 

accomplished by Zhang and Deng in the presence of the organophotocatalyst eosin Y 

and molecular oxygen (O2) [166]. This transition metal-free approach allowed the 

synthesis of difluoromethylated coumarins possessing electron-donating and 

electron-withdrawing groups without requiring the use of an additive (339, Scheme 
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89: 18 examples, 33-82% yields). Mechanistic studies with the radical scavengers 

TEMPO and 1,1-diphenylethylene and the spin trap 5,5-dimethyl-1-pyrroline-N-

oxide (DMPO) suggested the intermediacy of the CHF2 radicals in the 

difluoromethylation of the substrates and the peroxide radical anion in oxidation of 

the resulting difluoromethylated radical intermediates.   
 

 
Scheme 89. Eosin Y-mediated difluoromethylation of coumarin derivatives with NaSO2CHF2.  

 

Liu and co-workers described the successful application of the organic 

photocatalyst [Mes-Acr]ClO4 [167-170] to the visible light-mediated insertion of CHF2 

and CF2Ph radicals into biphenyl isocyanides (340) using NaSO2CHF2 (341, 6 

examples, 45-52% yields) and sodium difluoro(phenyl)methanesulfinate 

(NaSO2CF2Ph, CAS number: 268730-04-7) (342, 9 examples, 57-70% yields), in the 

presence of the oxidant K2S2O8 and the base Na2CO3 (Scheme 90A) [171]. The authors 

suggested a reductive quenching of the photoexcited [Mes-Acr]+ and the oxidation of 

NaSO2CHF2 and NaSO2CF2Ph via photoexcited [Mes-Acr] or by K2S2O8 to produce the 

CHF2 and CF2Ph radicals, respectively. Para-quinone methides (343) were also 

difluoromethylated using the reagent NaSO2CHF2 and the photocatalyst [Mes-

Acr]ClO4, in the presence of TFA (Scheme 90B) [172]. Under irradiation with 9 W 

white LEDs, a scope of difluoromethylated derivatives were afforded in moderate to 

good yields (344, 9 examples, 42-81% yields) and no competitive nucleophilic addition 

of the double bond of the substrates (343) to the sulfonate group of the reagent was 

observed. 
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Scheme 90. Visible light-induced difluoroalkylation of biphenyl isocyanides (340) and para-

quinone methides (343). 

 

Rhodamine-6G (Rh-6G) [173,174] was employed for the first time by Maestro and 

Alemán in the insertion of CHF2 groups in substrates with C=N bonds (345, 347, and 

349) using the commercially available zinc difluoromethanesulfinate [Zn(SO2CHF2)2, 

CAS number: 1355729-38-2], under irradiation with a single 380 mW LED [175]. The 

developed photocatalytic difluoromethylation was compatible with several 

substrates featuring C=N bonds, including diaryl-substituted aldimines (346, Scheme 

91A: 8 examples, 33-73% yields), quinoxalinones (348, Scheme 91B: 6 examples, 41-

74% yields), dibenzoxazepines and dibenzothiazepines (350, Scheme 91C: 10 

examples, 51-94% yields). A mechanism involving the reductive quenching of the 

photocatalyst Rh-6G and the generation of CHF2 radicals by oxidation of the Zn(SO2 

CHF2)2 was proposed for the difluoromethylation of the C=N bonds. The solvent of 

the reaction (MeCN) was used as proton source for the formation of the 

difluoromethylated products.  

In 2017, Akita and collaborators described the visible light-induced amino-

difluoromethylation of styrenes, using the shelf-stable and easy-to-handle 

difluoromethylating reagent S-difluoromethyl-S-di(para-xylyl)sulfonium 

tetrafluoroborate (CAS number: 2133476-50-1) and the photocatalyst perylene in the 

presence of MeCN and H2O [176]. The presence of two methyl groups of the para-

xylyl groups in the proximity of the sulfur atom of S-difluoromethyl-S-di(para-

xylyl)sulfonium tetrafluoroborate confer easy-handling and stability to this reagent. 

The amino-difluoromethylation process exhibited a good functional group tolerance 

(electron-donating and electron-deficient groups) and afforded a variety of amino-

difluoromethylated products in moderate to good yields (352, Scheme 92: 14 
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examples, 30-76% yields). Perylene also promoted amino- and chloro-

trifluoromethylation of styrenes using Yagupolskii-Umemoto reagent and CF3SO2Cl, 

respectively. A plausible mechanism for amino-difluoromethylation of styrenes (351) 

involved the formation of CHF2 radicals via oxidative quenching of photoexcited 

perylene and reductive cleavage of C-S bond of the reagent. Radical addition to 

styrenes, oxidation, and subsequent Ritter amination with MeCN/H2O gave the 

corresponding products (352). 
 

 
Scheme 91. Difluoromethylation of substrates featuring C=N bonds with the Zn(SO2CHF2)2. 

 

 
Scheme 92. Perylene-catalyzed amino-difluoromethylation of styrenes (351) with S-

difluoromethyl-S-di(para-xylyl)sulfonium tetrafluoroborate and the proposed mechanism. 

 

Wang and co-workers implemented the photocatalyst 4CzIPN [177-179] in the 

difluoroalkylation of aldehyde-derived hydrazones via a three-component coupling 



79 

 

of aldehydes (353), hydrazines (354) and BrCF2CO2Et, under irradiation with 8 W blue 

LEDs [180]. The investigation of the substrate scope for the difluoroalkylation process 

demonstrated that aldehydes bearing electron-donating and electron-withdrawing 

substituents at orto-, meta-, and para-positions on the aromatic ring, heterocyclic, and 

aliphatic groups were compatible substrates, providing the corresponding products 

in moderate to excellent yields (355, Scheme 93: 22 examples, 41-93% yields). This 

methodology can also be applied to different hydrazines and other reagents such as 

bromodifluoroacetamides and 2-(bromodifluoromethyl)benzoxazole. Radical 

trapping and fluorescence quenching experiments suggested a mechanism involving 

the in situ coupling between aldehydes (353) and hydrazines (354), the reductive 

quenching of the [4CzIPN]*, and the intermediacy of CF2CO2Et radicals in the 

difluoroalkylation process.  
 

 
Scheme 93. Organic dye-catalyzed three-component coupling of aldehydes (353), hydrazines 

(354) and BrCF2CO2Et, under visible light photoredox conditions. 

 

In 2019, Hajra and co-workers achieved the photocatalytic difluoroalkylation of 

imidazo[1,2-a]pyridines (356), imidazo[2,1-b]thiazoles and benzo[d]imidazo[2,1-

b]thiazoles (358), and indoles (360) with the reagent BrCF2PO(OEt)2 [181]. In the 

presence of the photocatalyst rose Bengal (RB) [182], this procedure allowed the 

preparation of phosphonodifluoromethylated derivatives in good yields (357, 

Scheme 94A: 19 examples, 62-92% yields; 359, Scheme 94B: 8 examples, 68-88% yields; 

361, Scheme 94C: 5 examples, 40-57% yields). The additive bis(pinacolato)diboron 

(B2pin2) was required for the difluoroalkylation reaction, playing a key role in the 
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stabilization of the substrates and their activation for the coupling with the 

CF2PO(OEt)2 radicals.  
 

 
Scheme 94. Organophotocatalytic difluoroalkylation of imidazo[1,2-a]pyridines (356), 

imidazo[2,1-b]thiazoles and benzo[d]imidazo[2,1-b]thiazoles (358), and indoles (360) with 

BrCF2PO(OEt)2. 

 

RB was also efficiently employed in the radical difluoromethylation of 

quinoxalin-2(1H)-ones with electron-donating and electron-withdrawing groups and 

N-substituted quinoxalin-2(1H)-ones (362) using the reagent NaSO2CHF2 in 

combination with the oxygen under irradiation with green LEDs (363, Scheme 95A: 

15 examples, 34-87% yields) [183]. Apart from the photocatalyst, the selection of the 

reaction solvent greatly influenced the efficiency of the synthesis of 

difluoromethylated quinoxalin-2(1H)-ones (363). The developed methodology was 

extended to a wide range of five- and six-membered heteroaromatics (364) including 

dimethyluracils, imidazoles, indoles, purines, pyrazines, pyridines, pyrimidines, 

pyrroles, quinolines, quinoxazolines, thiadiazoles, and thiophenes (365, Scheme 95B: 

20 examples, 34-90% yields). In addition, this protocol has an important applicability 

to the late-stage difluoromethylation of bioactive molecules such as caffeine 

derivatives [caffeine (366, Figure 12), theophylline (367, Figure 12), and pentoxifylline 

(368, Figure 12)], nucleosides [deoxyuridine (369, Figure 12), uridine (370, Figure 12), 

and 2’-fluoro-2’-deoxyuridine (371, Figure 12)], drug molecules [melatonin (372, 

Figure 12), allopurinol (373, Figure 12), voriconazole (374, Figure 12), a flavorant (375, 

Figure 12), metyrapone (376, Figure 12), uracil (377, Figure 12), and an antidiabetic 

sulfonylurea derivative (378, Figure 12)]. The authors suggested a reaction 

mechanism involving the formation of the CHF2 radicals by reductive quenching of 
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the photocatalyst RB. The oxygen is required in the difluoromethylation reaction, 

acting as an oxidant and in the completion of the photoredox cycle.  
 

 
Scheme 95. Visible light-induced difluoromethylation of quinoxalin-2(1H)-ones (A) and a 

scope of heteroaromatics (B).  
 

 
Figure 12. Chemical structure of the difluoromethylated caffeine derivatives (366-368), 

nucleosides (369-371), and drug molecules (372-378).  

 

(Difluoroiodomethyl)triphenylphosphonium salts ([Ph3PCF2I]+Xˉ) were recently 

explored by Dilman and co-workers in iodo-difluoromethylation of terminal alkenes 

(379) [184]. The authors found that [Ph3PCF2I]+Xˉ can generate the phosphonium-

substituted radical cation via cleavage of the C−I bond. After radical 

difluoromethylation of terminal alkenes and iodine atom transfer, the iodo-

difluoromethylated intermediates, which upon protodephosphorylation are 
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converted into the final products. The use of the reagent 

(difluoroiodomethyl)triphenylphosphonium triflate ([Ph3PCF2I]+TfOˉ) in 

combination with the organic photocatalyst peri-xanthenoxanthene (PXX) afforded 

the iodo-difluoromethylated derivatives with improved reaction yields, after 

protodephosphorylation reaction with 2,4,6-collidine (380, Scheme 96: 17 examples, 

40-78% yields). The efficiency of PXX was attributed to the π-π stacking interactions 

between the phenyl rings of the positively charged phosphonium fragment and the 

electron-rich aromatic system of PXX. 
 

 
Scheme 96. Visible light-induced iodo-difluoromethylation of terminal alkenes (379) with 

[Ph3PCF2I]+TfOˉ and consecutive basic protodephosphorylation. 

 

4. Concluding Remarks 
 

The present review provides a general survey of visible light photoredox 

methodologies for the late-stage installation of CF2FG and CHF2 substituents into 

diverse families of organic substrates in the presence of distinct transition metal 

complexes and organic photocatalysts. In recent years, visible light photoredox 

catalysis has been an extensively exploited tool for promoting radical-involved 

transformations, including the activation of organic substrates and further 

construction of the corresponding difluoroalkylated products. Most of the reported 

photoinduced reactions are operationally simple, are efficiently performed under 

mild conditions, and require minimal amounts of transition metal (0.05-7 mol%) and 

organic photocatalyst (0.5-10 mol%). 

Diverse difluoroalkylating reagents have been successfully employed in the 

incorporation of difluoroalkyl moieties, including CF2CO2Me, CF2CO2Et, 

CF2CON(CH2CH2)2O, CF2COPh, CF2PO(OEt)2, CF2PO(Oi-Pr)2, CF2SPh, CF2Cl, CF2Br, 

and CF2I moieties, and some of them can undergo further chemical modifications into 

other CF2-containing functional groups, including CHF2. Alternative difluoroalkyl 

precursors have enabled the direct introduction of CHF2 substituents without the 

need of a post-functionalization step. Interestingly, we have witnessed a major 

progress in the development of photoinduced difluoroalkylation reactions involving 

the use of transition metal complexes as photocatalysts, in particular fac-IrIII(ppy)3. In 

spite of the recent works regarding transition metal-free difluoroalkylation reactions 
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with organic photocatalysts, further research work in this field is still needed. In fact, 

the organophotocatalysis is a particular concern in the area of pharmaceutical 

industry, in order to minimize the utilization of transition metals. 

The mechanistic pathway for most of the photoredox-catalyzed 

difluoroalkylation reactions is initiated by visible light irradiation of the transition 

metal or organic photosensitizer at a certain wavelength and consecutive stimulation 

to an excited state. Excited photosensitizers may undergo an oxidative or reductive 

quenching, depending on the redox potential of the difluoroalkylating reagents, thus 

enabling the application of electron-donor or electron-acceptor difluoroalkylating 

reagents for the generation of CF2FG and CHF2 radicals. The majority of the 

photoinduced difluoroalkylations reported in this review involves a mechanism of 

oxidative quenching of the photocatalysts and reduction of the difluoroalkylating 

reagents. The radical addition into carbon atoms of C=C, C=N, C≡C, C≡N bonds and 

further chemical transformations (e.g., oxidation, halogen addition, cyclization) 

results in the formation the corresponding CF2-containing products. A variety of 

skeletons including alkenes, arenes, heteroarenes, α,β-unsaturated carboxylic acids, 

allylic alcohols, allylic amines, unsaturated amides, alkynes, biphenyl isocyanides, 

and thiols have proven to be suitable for the preparation of the corresponding 

difluoroalkylated compounds. Furthermore, the difluoroalkylation of structurally 

simple starting materials provides valuable intermediates for the synthesis of highly 

complex and functionalized heterocycles of potential biological interest, including 

benzoxazines, chromones, coumarins, oxindoles, phenanthridines, polycyclic 

lactones, and tetralins, in a single-step operation. Overall, the attractive characteristics 

of visible light photoredox reactions including environmentally benign conditions, 

excellent functional group versatility, and cost effectiveness will enable the 

application of these approaches by organic chemists in the exploration of novel 

methodologies for the introduction of difluoroalkyl substituents. 
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Progress in the Synthesis of 18F-Difluoromethylated Compounds 
  

Abstract: The suitability of the radionuclide 18F in positron emission tomography 

(PET) has encouraged radiochemists to invest much effort in the development of 18F-

fluorination and 18F-fluoroalkylation reactions. The difluoromethyl (CHF2) groups are 

abundant and have gained a growing interest in pharmaceutical and agrochemical 

industries. Despite the advances in the preparation of difluoromethylated 

compounds, the 18F-labeling of CHF2 groups has recently received an increasing 

attention in radiochemistry. The present chapter summarizes all synthetic methods to 

access 18F-difluoromethylated derivatives either by 18F-fluorination or by direct 

transfer of [18F]CHF2 groups in suitable precursors.  
 

Keywords: positron emission tomography; fluorine-18; radiochemistry; 

difluoromethylation 

 

1. Introduction 
 

Positron emission tomography (PET) is a leading molecular imaging technique 

that has the ability to reveal a detailed picture of pharmacological, physiological, and 

biochemical processes in living subjects [1-4]. In terms of clinical diagnosis, the PET 

technology offers information that cannot be acquired using anatomical and 

structural imaging techniques such as magnetic resonance imaging (MRI), ultrasound 

(US), or computed tomography (CT) [1-4]. As such, PET can track biochemical and 

metabolic changes that may take place before the anatomical signs of a disease are 

detected. In combination with CT, the PET scanning is broadly used in the diagnosis 

and management of tumors [5-7], heart diseases [8-10], and neurological disorders 

[11-14]. The PET technology is highly sensitive with the quantity of radiotracer 

administered to living subjects by intravenous injection. In fact, only trace amounts 

of the radiolabeled drugs (10-9-10-6 grams) are needed for the PET experiments 

without perturbing the biological system. The application of this imaging technique 

relies on the use of specific radioactive probes labeled with a usually short-lived 

positron-emitting radionuclide such as carbon-11 (11C), nitrogen-13 (13N), oxygen-15 

(15O), and fluorine-18 (18F). As some of the short-lived positron-emitting radionuclides 

are composed of low atomic mass elements found in drugs and biomolecules, it is 

possible to synthesize PET radiotracers with the identical chemical structure of the 

parent unlabeled molecules without interfering with their pharmacological activity. 

Therefore, PET radiotracers may exhibit suitable binding and physicochemical 

characteristics to interact with a plethora of therapeutic and biological targets, 

including receptors, enzymes, and ion channels [15,16]. 

The incorporation of the short-lived positron-emitter radionuclide 18F has been 

largely explored in the development of 18F-labeled radiotracers for imaging and 

quantification of biochemical and physiological processes or of specific therapeutic 

and biological targets, including receptors and enzymes. The 2-[18F]fluoro-2-deoxy-

D-glucose ([18F]FDG, [18F]1) is an example of a PET radiotracer used as clinical 
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research tool and as diagnostic imaging agent in neurology and oncology [17,18]. The 

administration of the radiotracer [18F]1 allows the measurement of in vivo glucose 

metabolism by PET imaging. Once absorbed intracellularly, the glucose analog [18F]1 

is converted into [18F]FDG-6-phosphate via a phosphorylation reaction, inhibiting the 

diffusion of [18F]1 out of the cells before radioactive decay. The absence of 2-hydroxyl 

group prevents the phosphorylated dertivative of [18F]1 to be metabolized further in 

the glycolytic pathway [17,18]. The PET tracer [18F]fluoro-3′-deoxy-3′-L-

fluorothymidine ([18F]FLT, [18F]2) is suitable for imaging and measuring cellular 

proliferation [19,20]. The pyrimidine analog [18F]2 is taken up by the cells and 

converted into [18F]FLT-monophosphate by thymidine kinase 1 (TK1). The 

phosphorylation of [18F]2 by TK1 leads to an accumulation of the imaging agent within 

the proliferating cells [19,20]. The PET radiotracer [18F]6-fluoro-L-3,4-

dihydroxyphenylalanine ([18F]DOPA, [18F]3) has provided an useful research tool for 

the diagnosis of neuropsychiatric disorders (e.g. Parkinson’s disease and 

schizophrenia) [21]. The [18F]3 is also an efficient radiotracer in the detection of brain 

tumor cells overexpressing amino acid transporters [22] and of neuroendocrine 

tumors [23]. Figure 1 provides a list of some 18F-labeled radiopharmaceuticals as 

target-based imaging agents in oncology, neurologic, and heart diseases. These 

examples include the [18F]fluoroethylflumazenil ([18F]4) [24,25], [18F]UCB-H ([18F]5) 

[26-28], [18F]flurpiridaz ([18F]6) [29,30], [18F]olaparib ([18F]7) [31], [18F]fallypride ([18F]8) 

[32,33], [18F]gefitinib ([18F]9) [34], [18F]fluciclovine ([18F]10) [35,36], and [18F]PSMA-

1007 ([18F]11) [37,38].  

The mode of decay of the radionuclide 18F is attractive for PET imaging. It has a 

clean positron profile consisting of 97% positron (β+) emission and 3% electron capture 

(EC) with both modes of decay generating the stable oxygen-18 isotope (18O) [39]. 

Furthermore, the 18F emits a positron with a relatively low energy (0.635 MeV), 

limiting the distance of the released positron to a few milimeters in tissue (maximal 

positron range of 2.4 mm in water) before its annihilation event with an electron to 

give rise to two opposed gamma (γ) rays of 511 keV (annihilation photons). The short 

positron range of radionuclide 18F is favorable for the acquisition of high resolution 

PET images [40,41]. This mode of decay of 18F and other positron emitters constitutes 

the main basis of PET imaging (Figure 2). Compared to other positron emitter 

nuclides, the half life of 18F (t1/2 = 109.8 min) is long enough to allow multistep synthetic 

labeling reactions, the transportation of the 18F-labeled radiotracers over considerable 

distances, and the extension of PET imaging procedures over a few hours, while 

assuring a limited amount of radiation doses for the living subject [42]. These 

characteristics make 18F suitable for the labeling of molecules of biological interest 

ranging from drug-like molecules to complex bioactive chemical structures such as 

proteins, oligonucleotides, and antibodies.  
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Figure 1. Chemical structures of 18F-labeled radiotracers used as PET imaging agents ([18F]1-

[18F]11).  
 

The production of the radionuclide 18F is mainly achieved by charged particle 

accelerators (cyclotrons) through several nuclear reactions. The radionuclide 18F can 

be made available to radiochemists either as gaseous [18F]fluorine ([18F]F2) or as 

[18F]fluoride ion ([18F]Fˉ). The irradiation of neon-20 (20Ne) with deuterons (d) 

[20Ne(d,α)18F] and proton bombardment of the gas target 18O2 [18O(p,n)18F] generates 

the gaseous [18F]F2. An aqueous solution of [18F]Fˉ is prepared by the efficient nuclear 

reaction 18O(p,n)18F to furnish a high amount of radioactivity (> 370 GBq per batch) 

[39]. 

An important difference between these production methods is the molar activity 

that measures the ratio of radioactivity of 18F-labeled compound relative to the molar 

amount of the respective non-radioactive compound (the molar activity is usually 

expressed in Bq·mol-1). The nuclear reaction 18O(p,n)18F leads the production of no-

carrier added (n.c.a.) [18F]Fˉ with a very high molar activity [43]. On the other hand, 

the [18F]F2 gas has much lower molar activity because the fluorine-19 ([19F]F2) gas must 

be added as a carrier to extract the [18F]F2 gas from the cyclotron target [43]. The 

production of 18F-labeled radiopharmaceuticals with high molar activity is highly 

desirable for PET imaging studies, especially for targeting low-density 

biomacromolecules. In case of [18F]F2 gas, the addition of a carrier contributes to an 

increased molar amount of the final non-radioactive PET tracer, which may result in 

a saturation of the biomacromolecules and reduction of the PET signal derived from 
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radiotracer binding [44]. A radiopharmaceutical with high molar activity can be 

administered to living subjects in trace amounts, without inducing any 

pharmacological or toxic effects.  
 

 
Figure 2. Schematic representation of the principal basis of PET. Once a radiotracer is 

administered to the subject and accumulated in the body, the radioactive isotope attached to 

the drug molecule decays by positron emission to a stable radioisotope. The positively charged 

positron interacts with surrounding tissues, progressively losing its kinetic energy and slowing 

down until its speed is low enough to combine with a negatively charged electron. This 

collision between both particles results in an annihilation event that yields two gamma (γ) rays 

of 511 keV (annihilation photons). To conserve momentum, the two γ rays are emitted from 

the site of the annihilation event in approximately opposite directions. The PET camera detects 

and records the arrival of coincident pairs of γ rays for the reconstruction of the three-

dimensional (3D) PET images. 
 

The selection of the methodology for the production of both forms of the 

radionuclide 18F is dependent on the subsequent labeling reactions. The most common 

source of 18F for electrophilic and/or radical 18F-fluorination is [18F]F2 gas. This reagent 

can be used directly or derivatized into less reactive molecules. These derivatized 

reagents include {18F]xenon difluoride ([18F]12) [45-47], O-18F-fluorinated reagents 

[e.g. [18F]perchloryl fluoride ([18F]13) [48,49], [18F]trifluoromethyl hypofluorite 

([18F]14) [50], and [18F]acetyl hypofluorite ([18F]15) [51,52]) and N-18F-fluorinated 

reagents [e.g. [18F]1-fluoro-2-pyridone ([18F]16) [53], [18F]N-fluoropyridinium triflate 

([18F]17) [54], [18F]N-fluorobenzenesulfonimide ([18F]18) [55], and [18F]Selectfluor 

bis(triflate) ([18F]19) [56]) (Figure 3).   
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Figure 3. Electrophilic 18F-fluorinating reagents employed in 18F-radiochemistry.  
 

Alternatively, the cyclotron-produced [18F]Fˉ is typically implemented in 

nucleophilic 18F-fluorination reactions. The nuclear reaction 18O(p,n)18F delivers the 

aqueous [18F]Fˉ. Although the [18F]Fˉ is a strong nucleophile, the ion forms hydrogen 

bonds with the surrounding water molecules in aqueous solution, and becomes 

poorly reactive toward nucleophilic 18F-fluorination reactions [57]. Therefore, [18F]Fˉ 

must be adequately activated before it becomes sufficiently nucleophilic. This is 

accomplished with a multistep procedure starting by the trapping of the [18F]Fˉ on an 

anion-exchange cartridge [e.g. quaternary methyl ammonium (QMA) carbonate 

cartridge] and subsequent [18F]Fˉ elution using a solution of MeCN/H2O containing 

an anion exchanger, such as carbonate (CO32ˉ) and hydrogen carbonate ions (HCO3ˉ) 

[58]. These anions are usually employed due to their non-nucleophilic nature and 

relatively low basicity, inhibiting the competitive nucleophilic substitution and 

elimination pathways. Potassium ions complexed with the aminopolyether cryptand 

Kryptofix® 222 (K2.2.2) [59] and tetraalkylammonium ions [60] have been frequently 

used as fluoride countercations. After the [18F]Fˉ elution, the solvent mixture must be 

evaporated in order to minimize the amount of H2O and to furnish a more reactive 

[18F]Fˉ for nucleophilic substitution [61]. A plethora of methods describing the 

production of highly reactive [18F]Fˉ without the use of azeotropic drying was 

reported. The majority of these methods mainly relied on the use of alternative 

eluents for [18F]Fˉ elution: the use of strong organic bases in MeCN [62], 

tetraethylammonium hydrogen carbonate dissolved in polar aprotic solvents [63], 

alcoholic solutions of quaternary anilinium, diarylsulfonium, and triarylsulfonium 

precursors [64], and combination of cryptand complexes with potassium salts 

dissolved in protic solvents [65]. Other techniques consisted in the employment of 

modified anion-exchange resins such as macroporous copolymers loaded with a long 

alkyl chain quaternary ammonium salts [66] and phosphonium 

borane [(Ph2MeP)C6H4(BMes2)]+ [67]. In 2015, Sergeev and Dam disclosed a procedure 

that utilizes titanium dioxide (TiO2) nanoparticles in as catalyst and water adsorbent 

allowing radiofluorination in aqueous mixtures with up to 25 vol% [68]. Pees and co-

workers developed a strategy of production of reactive [18F]fluoride via formation of 

gaseous [18F]triflyl fluoride, distillation into a dry aprotic solvent, and release of 

[18F]fluoride under basic conditions [69].  
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 The dry [18F]Fˉ must be subsequently solubilized in polar aprotic solvents prior 

to use for 18F-labeling. The radionuclide 18F can be incorporated by bimolecular 

nucleophilic substitution (SN2) into alkyl-LG precursors (LG = a leaving group) or by 

nucleophilic aromatic substitution (SNAr) into aryl-LG precursors (LG = a leaving 

group) [70,71]. Regardless of the precursors and reaction conditions utilized in 

nucleophilic 18F-fluorinations, the reaction time is an important parameter that should 

be taken into consideration, owing to the limited physical half-life of the radionuclide 
18F. In general, the 18F-labeling reactions are performed with trace amounts of 

radionuclides and a large stoichiometric excess of the precursors and can reach the 

completion in few minutes. Other parameters such as the solvent, the temperature, 

and the concentration should also be explored in the optimization of the nucleophilic 
18F-fluorination process.  

For clinical applications, the 18F-radiochemistry may require the use of multiple 

GBq of starting radioactivity. This implies that the radiochemical reactions are carried 

out in computer-controlled automated synthesizers placed in shielded hotcells in 

order to restrict as much as possible the radiation exposure by the workers. Moreover, 

the automation in 18F-radiochemistry may enable the preparation of 18F-labeled 

radiopharmaceuticals in reproducible yields using the same synthetic approach [72].  

The application of the 18F-radiochemistry in the labeling of PET ligands presents 

some drawbacks. The isotopic labeling of radiotracers is restricted to biologically 

active molecules that possess in their structure a fluorine atom and, this is the case of 

~20-30% of all molecules of therapeutic relevance [73,74]. Alternatively, the strategy 

of replacement of one atom of a non-fluorinated parent molecule by a fluorine atom 

could be used to access potential PET candidates [75]. However, the biological 

properties of the new fluorinated molecule need to be carefully assessed, since the 

introduction of a fluorine atom can significant influence the biological and 

physicochemical properties of the parent molecules [76-78]. Over the last years, the 

increasing number of pharmaceutically relevant molecules with fluorine atoms or 

fluoroalkyl substituents has created the opportunity to investigate their biological 

and pharmacological behaviour using PET imaging.  

The suitability of the 18F radioisotope in PET has encouraged radiochemists to 

invest much effort in the development of efficient 18F-fluorination and 18F-

fluoroalkylation strategies [39,41,79-87]. Among the existing fluorinated motifs, the 

difluoromethyl (CHF2) groups has become one of the most desired functional groups 

in the field of organic synthesis, because of their unique characteristics that are 

applicable for the development of pharmaceuticals and agrochemicals (20-27, Figure 

4) [88-95].  
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Figure 4. Chemical structure of CHF2-containing agrochemicals and pharmaceuticals (20-27).  

 

The biological relevance of the CHF2 groups resides on their demonstrated 

involvement in hydrogen-bond donor interactions with the active site of 

biomacromolecules. Hartz and co-workers studied the effect of diverse substituents 

in the N3-phenylpyrazinone scaffold toward the inhibition of corticotropin-releasing 

factor-1 receptor (CRF1R) [96]. Replacement of the trifluoromethoxy (-OCF3) moiety 

of 28 by the difluoromethoxy group (-OCHF2) of 29 led to an improvement of the 

binding affinity to CRF1R (Figure 5A). In another study [97], the difluoromethyl-

containing ketone 31 showed a greater inhibitory activity toward the G119S Anopheles 

gambiae acetylcholinesterase (G119S AgAChE) in comparison with the 

trifluoromethyl- and fluoromethyl-containing ketones 30 and 32, respectively (Figure 

5B). From a series of tripeptidic acylsulfonamides, Zheng and Scola found that a 

derivative containing a difluoromethyl cyclopropyl amino acid 35 exhibited a higher 

inhibitory potency to the hepatitis C virus nonstructural protein 3 (HCV NS3) 

protease compared to the trifluoromethylated (33) and trimethylated (34) analogues 

(Figure 5C) [98]. In these reported studies, the most favourable pharmacodynamic 

properties of the CHF2 groups were explained by their ability to form interactions 

with hydrogen-bond acceptors located on the active site of the therapeutic targets. 
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Zafrani and collaborators also demonstrated the CHF2 groups contained in 

difluoromethylated arenes, aryl/alkyl ethers, sulfides, sulfoxides, and sulfones can act 

as hydrogen-bond donors and their strength as hydrogen-bond donors strongly 

depends on the attached functional groups [99,100].     
 

 
Figure 5. Examples of the influence of the hydrogen-bond donor ability of the CHF2 groups on 

the pharmacodynamic properties of derivatives acting on the inhibition of the corticotropin-

releasing factor-1 receptor (CRF1R) (A), G119S Anopheles gambiae acetylcholinesterase (G119S 

AgAChE) (B), and hepatitis C vírus nonstructural protein 3 (HCV NS3) protease (C).  

 

Moreover, the replacement of a hydrogen atom by a fluorine atom can have a 

meaningful impact on the pKa of bioactive molecules. As exemplified on the Table 1, 

a signficant variation of the pKa of ethylamines and acetic acids was observed when 

the hydrogen atoms of the methyl group were successively substituted by other 

perfluoroalkyl moieties [pKa (CF3-R1) < pKa (CHF2-R1) < pKa (CH2F-R1) < pKa (CH3-

R1), R1 = amine or carboxyl moiety] [101]. As the pKa can be a very critical parameter 

in drug discovery, the selection of the most suitable fluoroalkyl group is a critical step. 
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Figure 6 demonstrates an example of two kinesin spindle protein (KSP) inhibitors, 

where the parent compound 36 suffered from a high efflux ratio due to high basicity 

of the NH2 group [102]. This high efflux ratio limits the efficiency of the compound 

36. The introduction of a CHF2 moiety in the α-amine position as a strategy to reduce 

the basicity of 36 (decrease the pKa) furnished a derivative (37) with a significantly 

lower efflux ratio.  
 

Table 1. Influence of the fluorine substitution on the pKa of ethylamines and acetic acids [101]  

Bases 

    
pKa 

10.7 9.0 7.3 5.7 

Acids 

    
pKa 

4.8 2.6 1.3 0.5 

 

 
Figure 6. PKa and P-gp efflux ratio of the kinesin spindle protein (KSP) inhibitors 36 and 37.  
 

The CHF2 substitution can significantly modulate the lipophilicity, i.e. the 

decrease or increase in octanol/water partition coefficients (log P), of the respective 

bioactive molecules. For instance, in a study reported by Xing and co-workers [103], 

the sequential replacement of a hydrogen atom by a fluorine atom led to an increment 

of the log P value of the anisole derivatives [log P (Ph-OCH3) < log P (Ph-OCH2F) < 

log P (Ph-OCHF2) < log P (Ph-OCF3)] (Table 2). Overall, the introduction of CHF2 

groups may offer a good compromise between the lower lipophilicity of the CH2F 

groups and the greater lipophilicity of the CF3 groups. Furthermore, the CHF2 groups 

are considered bioisosteres of the hydroxy (OH) and the thiol (SH) groups, in terms 

of hydrogen-bond donor ability, and of the methyl groups (CH3), in terms of size. 

Besides that, the CHF2 substitution can also regulate the lipophilicity of OH-, SH-, and 

CH3-containing bioactive molecules. As exemplified on the Table 2, the CHF2 moiety 

serves as a more lipophilic bioisoster of the OH group, as a similar lipophilic 

bioisoster of the SH group, and as a less lipophilic bioisoster of the CH3 group when 

all these groups are attached to benzene derivatives [100].   
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Table 2. Influence of the CHF2 substitution on the log P of anisole and benzene derivatives  

 

   
R= log P 

H 2.24 2.51 3.17 

 

    
R=  log P 

p-NO2 2.12 1.91 2.12 2.35 

H 2.40 1.46 2.50 2.52 

p-OCH3 2.61 1.34 2.64 2.67 
 

The introduction of fluorine substituents, as well as CHF2 and CF3 groups, may 

potentially increase the stability of the bioactive molecules toward the metabolism. In 

particular, the addition of CHF2 moieties in critical positions of aromatic 

azaheterocyclic drugs has been shown to successfully reduce their susceptibility 

toward the metabolism by aldehyde oxidase (AO) enzymes [104].  

Owing to the demonstrated benefits of CHF2 groups in medicinal chemistry and 

pharmaceutical research, much effort has been made in the installation of these 

moieties in organic substrates. Despite the extensive development of synthetic 

approaches to access CHF2-containing compounds [105-108], the 18F-labeling of CHF2 

moieties has recently received increasing attention in radiochemistry. The 

combination between the potential benefits of the CHF2 moieties in drug discovery 

and the positron emitter function of the radionuclide 18F would improve the 

performance of the resulting [18F]CHF2-containing radiotracers in PET imaging. Until 

the date, the radiosynthesis of these compounds would require either the 18F-

fluorination of precursors or the direct introduction of [18F]CHF2 moieties in organic 

substrates. This Chapter discusses all the methods available for the synthesis of the 

[18F]CHF2-containing radiotracers. 

 

2. Synthesis of [18F]CHF2-containing compounds via 18F-fluorination  
 

The labeling of [18F]CHF2 motifs was firstly disclosed in 2010 by Haufe and 

collaborators [109]. The desulfurization/18F-fluorination of the precursor 4-

chlorophenyl-(1-fluoro-11-N-phthalimidylundec-1-yl)thioether (38) furnished the 

cartridge-purified 1,1-[18F]difluoro-11-N-phthalimidylundecane ([18F]39) in 9.0 ± 1.4% 

RCY (decay-corrected), by combining the carrier-added [18F]pyridinium 

poly(hydrogen fluoride) ([18F]Py·9HF) with the oxidant 1,3-dibromo-5,5-

dimethylhydantoin (DBH).  
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Scheme 1. Desulfurization/18F-fluorination of the precursor 38 with the carrier-added 

[18F]Py·9HF and DBH. (a)RCY of the isolated product after cartridge purification. 

 

The synthesis of an [18F]aryl-CHF2 derivative was described for the first time by 

Gouverneur and collaborators. Treatment of the readily available 2-([1,1'-biphenyl]-

4-yl)-2-fluoroacetic acid (40) with the 18F-fluorinating reagent [18F]Selectfluor 

bis(triflate) ([18F]19) in a mixture of acetone and H2O provided the [18F]4-

(difluoromethyl)-1,1'-biphenyl ([18F]41) in 8.6 ± 2.6% RCY (Scheme 2) [110]. This 18F-

fluorodecarboxylation process was mediated by silver nitrate (AgNO3) and furnished 

the labeled compound [18F]41 with a molar activity of 2.5 ± 0.2 GBq·μmol-1 (decay-

corrected at the end of the synthesis (EOS) of the [18F]19). The reagent [18F]19 was 

made available by bubbling [18F]F2 into a vial containing a mixture of 1-chloromethyl-

4-aza-1-azoniabicyclo[2.2.2]octane triflate (42) and lithium triflate (LiOTf) in MeCN 

[56]. Until the date, the mentioned methods represent the only examples of 

electrophilic 18F-fluorination approach to access [18F]CHF2-containing compounds.  

 

 
Scheme 2. Electrophilic 18F-fluorination of the α-fluoroarylacetic acids (40) with the 

electrophilic 18F-fluorinating reagent [18F]Selectfluor bis(triflate) ([18F]19). (a)Radiochemical yield 

(RCY) determined based on radio-TLC and radio-HPLC of the crude product [18F]41. (b)Molar 

activity decay-corrected at the end of the synthesis (EOS) of [18F]19.  

 

The use of cyclotron-produced [18F]fluoride in the labeling of [18F]CHF2 groups 

by nucleophilic 18F-fluorination was described for the first time in 2015. Gouverneur 

group developed a AgOTf-mediated process that enables the preparation of a palette 

of [18F]aryl-OCHF2 ([18F]44; Scheme 3: 9 examples, 66-79% RCY) and [18F]aryl-CHF2 
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derivatives ([18F]46; Scheme 4: 8 examples, up to 39% RCCs) by halogen exchange of 

aryl-OCHFCl (43) [111] and aryl-CHFCl precursors (45) [112] with [18F]fluoride, 

respectively. The authors considered that the presence of the metal activation AgOTf 

would allow the occurrence of the 18F-labeling of the precursors 43 and 45 under mild 

reaction conditions, avoiding the need of high temperatures for the incorporation of 

fluorine-18 (18F). After semipreparative high performance liquid chromatography 

(HPLC) purification, the [18F]aryl-OCHF2 [18F]44a and [18F]44c, and the [18F]aryl-CHF2 

[18F]46a were isolated in 34 ± 1%, 31 ± 2%, and 10% RCYs (non-decay corrected) with 

molar activities of 0.04 GBq·µmol-1, 0.17 GBq·µmol-1, and 0.03 GBq·µmol-1, 

respectively. 
  

 
Scheme 3. Silver-mediated 18F-fluorination of aryl-OCHFCl precursors (43). (a)Radiochemical 

yield (RCY) determined by radio-TLC of the crude products. (b)RCY of the isolated product 

after HPLC purification. 
 

 
Scheme 4. Silver-mediated 18F-labeling of aryl-CHFCl precursors (45). (a)Radiochemical 

conversion (RCC) determined by radio-TLC of the crude products. (b)RCY of the isolated 

product after HPLC purification. 
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Ritter and co-workers disclosed an alternative multi-step methodology for the 

radiosynthesis of [18F]aryl-CHF2 derivatives ([18F]50) from aryl chlorides, bromides, 

iodides, and triflates (47) [113]. The introduction of a benzoyl group in the substrates 

47 with α-fluoroacetophenone (48) results in the production of the aryl acetophenone 

intermediates (49) as precursors for radiofluorination. The labeling protocol 

comprises the C-H bromination of the intermediates 49 with N-bromophthalimide, 

the nucleophilic 18F-fluorination in the presence of tetraethylammonium bicarbonate 

(TEAB) and [18F]fluoride, and the cleavage of benzoyl groups, under basic conditions. 

A wide range of [18F]aryl-CHF2 and [18F]heteroaryl-CHF2 derivatives, containing 2-

methylbenzo[d]thiazole, pyridine, and quinoline rings ([18F]50; Scheme 5: 23 

examples, 11-61% RCYs, determined after purification by solid-phase extraction 

(SPE)). This labeling methodology was expanded to a variety of 18F-

difluoromethylated derivatives of bioactive molecules including analepticon 

([18F]50d), N-Boc-fluoxetine ([18F]50e), claritin ([18F]50f), DAA1106 ([18F]50g), estrone 

([18F]50h), fenofibrate ([18F]50i), and SC-58125 ([18F]50j) (Figure 7). With the objective 

of enhancing the molar activity of the labeled derivative [18F]50a (Am = 0.02 GBq·µmol-

1), the authors explored the identification of another labeling approach to minimize 

the 18F/19F isotopic exchange. The replacement of TEAB by the weaker base 

tetrabutylammonium methanesulfonate (TBAOMs), the additional introduction of 

the organic base N,N-diisopropylethylamine (DIPEA), the reduction of precursor’s 

amount (from 10 μmol to 0.5 μmol) and of the labeling temperature (from 100 °C to 80 

°C) contributed to an improved molar activity without compromising the 

nucleophilicity of [18F]fluoride. Starting with 1.44 GBq of [18F]fluoride, the compound 

[18F]50a was isolated in 8% RCY, after semi-preparative HPLC purification, with a 

molar activity of 3.0 GBq·µmol-1. 
 

 
Scheme 5. Radiosynthesis of [18F]aryl-CHF2 and [18F]heteroaryl-CHF2 derivatives ([18F]50) from 

aryl chlorides, bromides, iodides, and triflates (47). (a)RCY of the isolated product after solid-

phase extraction (SPE) purification. (b)RCY of the isolated product after HPLC purification.  
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Figure 7. Chemical structures of 18F-difluoromethyl-bearing analogues of bioactive molecules 

([18F]50d-[18F]50j). (a)RCY of the isolated product after SPE purification. (b)RCY of the isolated 

product after HPLC purification. 

 

Later, Liang and co-workers reported a transition metal-free approach for the 

radiosynthesis of [18F]aryl-CHF2 derivatives ([18F]53), involving a two-step 

methodology [114]. The first step consisted in a nucleophilic 18F-fluorination of benzyl 

(pseudo)halides (51) with [18F]fluoride, in the presence of TEAB, providing a series of 

[18F]aryl-CFH2 derivatives in quantitative RCCs ([18F]52; Scheme 6: 9 examples, 70-

98% RCCs). The authors demonstrated that the selection and the amount of base 

influenced the RCC of the 18F-labeling reaction. Subsequent oxidative C-H 

fluorination using Selectfluor and sodium peroxydisulfate (Na2S2O8), through a 

radical mechanism, furnished the corresponding [18F]aryl-CHF2 derivatives ([18F]53; 

Scheme 6: 8 examples, 10-50% RCCs). Electron-neutral and electron-poor aromatic 

substrates were compatible with the developed radiofluorination procedure. Using 

the commercially available automated module GE TRACERlabTM FXFN, the 

compound [18F]52a was synthesized and isolated in 61% RCY [non-decay corrected 

(n.d.c)] with a molar activity of 51.8 GBq·µmol-1 at the end of the synthesis (EOS), 

starting from 1.7 GBq of [18F]fluoride. Subsequent formulation of the isolated [18F]52a 

on a C18 cartridge, elution with MeCN, dilution with sterile water, and oxidative C-

H fluorination process enabled the synthesis of the compound [18F]53a in 38% RCY 

(n.d.c.) after semi-preparative HPLC purification with a molar activity of 22.2 

GBq·µmol-1 at the EOS.  
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Scheme 6. Metal-free nucleophilic 18F-fluorination of aryl (pseudo)halides (51) and radical 

oxidative C-H fluorination of [18F]52. (a)RCC determined by radio-TLC. (b)RCC determined by 

radio-HPLC. (c)RCY of the isolated product after semi-preparative HPLC purification. 

 

In 2017, Gouverneur group described the radiosynthesis of [18F]α,α-difluoro-α-

(aryloxy)acetic acids ([18F]55) via a two-step procedure involving the halogen 

exchange nucleophilic radiofluorination of ethyl α-bromo-α-fluoro-α-

(aryloxy)acetates (54) with the cyclotron-produced [18F]fluoride and consecutive 

hydrolysis under basic conditions [115]. The selection of the additive potassium 

carbonate (K2CO3) and the acetone was critical for the preparation of [18F]α,α-difluoro-

α-(aryloxy)acetic acids ([18F]55) with improved RCCs. This methodology tolerated a 

wide range of functional groups (e.g. fluoro, ester, ketone, nitrile, trifluoromethyl, 

etc.) attached to the aromatic ring of the substrates (Scheme 7: 12 examples, 35-84% 

RCCs). The use of a higher amount of [18F]fluoride (-4 GBq) allowed the 

radiosynthesis of the cartridge-purified [18F]55a in 36 ± 2% RCY with a molar activity 

of 0.37 GBq·µmol-1, and of the cartridge-purified [18F]55c in 31 ± 1% RCY with a molar 

activity of 0.51 GBq·µmol-1. The [18F]55a and [18F]55c can be used as precursors for the 

preparation of the 18F-labeled transient receptor potential cation channel subfamily V 

member 1 (TRPV1) antagonist [18F]56 (18 ± 4% RCC) and TRPV1 inhibitor [18F]57 (16 

± 9% RCC), respectively, demonstrating the potential medicinal interest of the 

[18F]aryl-OCF2PG motifs (PG = a protecting group) (Scheme 8). Intringuingly, a silver-

mediated oxidative decarboxylation of the [18F]55a provided the HPLC-purified 

[18F]aryl-OCHF2 [18F]58 in 22 ± 2% RCY with a molar activity of 0.30 GBq·µmol-1 

(Scheme 9). 
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Scheme 7. 18F-Labeling of ethyl α-bromo-α-fluoro-α-(aryloxy)acetates (54) with [18F]fluoride 

and concomitant ester hydrolysis under basic conditions. (a)RCC determined by radio-TLC and 

radio-HPLC. (b)RCY of the isolated product after SPE purification.  
 

 
Scheme 8. Radiosynthesis of the 18F-labeled transient receptor potential cation channel 

subfamily V member 1 (TRPV1) antagonist [18F]56 and of the TRPV1 inhibitor [18F]57 from the 

compounds [18F]55a and [18F]55c, respectively. DMTMM: 4-(4,6-dimethoxy[1,3,5]triazin-2-yl)-

4-methylmorpholinium chloride; NMM: N-methylmorpholine. (a)RCC determined by radio-

TLC and radio-HPLC. 
 

 
Scheme 9. Silver-mediated oxidative decarboxylation of [18F]α,α-difluoro-α-(aryloxy)acetic 

acid [18F]55a. (a)RCY of the isolated product after HPLC purification. 
 

The 1,1-[18F]difluorinated alkene moiety was explored for the first time by 

Tredwell and co-workers [116]. The authors hypothesized that the nucleophilic 18F-

fluorination of fluoroalkenyl(aryl)iodonium triflates (60) would afford the 

corresponding 1,1-[18F]difluorinated alkenes ([18F]61) in a regioselective manner, 
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minimizing the unwanted formation of [18F]fluoroarenes. The precursors 60 were 

synthesized via a two-step sequence starting from the carbonylated compounds 59. 

The 18F-fluorination of the precursors 60 was influenced by the temperature and 

solvent of the reaction, and by the addition of 2,2,6,6-tetramethyl-1-piperidinyloxy 

(TEMPO). In the presence of TEMPO, a wide range of 1,1-[18F]difluorinated alkenes 

([18F]61) were synthesized at 85 °C for 20 minutes, using MeCN as solvent for 18F-

labeling step (Scheme 10: 16 examples, 24-77% RCPs). The developed protocol was 

translated on to the commercially available synthesizer (ELIXYS FLEX/CHEM 

coupled to ELIXYS PURE/FORM), allowing the radiosynthesis of [18F]61a in 33-47% 

RCY (determined by radio-HPLC of the crude mixture). Starting with 4 GBq of 

[18F]fluoride, the labeled compound [18F]61a was isolated with a molar activity of 1 

GBq·µmol-1, after HPLC purification and reformulation. Remarkably, the 1,1-

[18F]difluorinated alkene moiety of [18F]61a can be reduced to the [18F]alkyl-CHF2 

[18F]62 in 49 ± 4% RCP, using Pd/C and ammonium formate (NH4CO2H) (Scheme 11).  
 

 
Scheme 10. Radiosynthesis of 1,1-[18F]difluorinated alkenes ([18F]61) from fluoroalkenyl(4-

methoxyphenyl)iodonium triflates (60). (a)Radiochemical purities (RCPs) determined by radio-

TLC. (b)RCY determined by radio-HPLC.   
 

 
Scheme 11. Radiosynthesis of 18F-difluoromethylated alkane [18F]62 via reduction of the 1,1-

[18F]difluorinated alkene [18F]61a. (a)RCP determined by radio-TLC. 
 

Inspired by the silver-mediated 18F-fluorodecarboxylation procedure using 

[18F]Selectfluor bis(triflate) ([18F]19) [110] and the manganese-mediated 18F-

fluorodecarboxylation reaction using [18F]fluoride reported by Groves and co-

workers [117,118], Gouverneur group disclosed a novel methodology to afford 

[18F]aryl-CHF2 derivatives ([18F]67) through 18F-fluorodecarboxylation of 2-fluoro-2-

arylacetic acids (65) with cyclotron-produced non-carrier-added (n.c.a.) [18F]fluoride 

[119]. The 2-fluoro-2-arylacetic acids (65) were efficiently accessed via a copper-
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catalyzed cross-coupling of aryl boronic acids (63) with ethyl bromofluoroacetate (64) 

followed by hydrolysis with K2CO3 (Scheme 12A). Two distinct protocols for the 

preparation of [18F]aryl-CHF2 from the respective precursors 65 were investigated. 

The strategy of prior generation of a diacetoxiodobenzene complex (66) and 

subsequent incorporation of 18F using [18F]tetraethylammonium fluoride ([18F]TEAF) 

and Mn(III) meso-tetra(2,4,6-trimethylphenyl)porphine chloride [Mn(tmp)Cl] resulted 

in the radiosynthesis of a scope of [18F]aryl-CHF2 compounds with improved RCCs 

([18F]67; Scheme 12B: 20 examples, 4-40% RCCs). Performing the 18F-

fluorodecarboxylation with 841 MBq of [18F]fluoride, the cartridge-purified [18F]67a 

was obtained in 12% RCY with a molar activity of 3.0 GBq·µmol-1, changing the 

precursor’s amount and the solvent for the 18F-labeling step (from DMF to DCE). The 

boronic acid derivatives of cyclooxygenase-2 (COX-2) inhibitor ZA140 and of 

fenofibrate were effectively converted into the 18F-difluoromethylated derivatives 

[18F]67d and [18F]67e in 15 ± 2% and 23 ± 4% RCCs, respectively (Figure 8).  
 

 
Scheme 12. (A) Copper-catalyzed cross-coupling reaction between the aryl boronic acids (63) 

and ethyl bromofluoroacetate (64) and subsequent hydrolysis under basic conditions. (B) 

Radiosynthesis of [18F]difluoromethylarenes ([18F]67) via 18F-fluorination of 2-fluoro-2-

arylacetic acids (65) with [18F]fluoride. (a)RCC determined by radio-TLC and radio-HPLC. 
(b)RCY of the isolated product after SPE purification. 
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Figure 8. Chemical structures of the 18F-difluoromethylated derivatives of ZA140 ([18F]67d) and 

fenofibrate ([18F]67e). (a)RCC determined by radio-TLC and radio-HPLC. 

 

3. Synthesis of [18F]CHF2-containing compounds via C-H 18F-

difluoromethylation  
 

All abovementioned methods for the synthesis of [18F]CHF2-containing 

compounds relied on the 18F-fluorination of substrates with electrophilic 18F-

fluorinating agents [e.g. [18F]Selectfluor bis(triflate) ([18F]19)] and with the cyclotron-

produced [18F]fluoride. Very recently, a novel approach allowing the late-stage 

introduction of [18F]CHF2 moieties in organic substrates with 18F-difluoromethylating 

reagents. The reagent [18F]difluoromethyl benzothiazolyl-sulfone ([18F]70) was 

initially implemented in the photoredox C-H 18F-difluoromethylation of non-

prefunctionalized of N-containing heteroaromatics (71), under continuous-flow 

conditions [120]. The radiosynthesis of [18F]70 was performed in a FASTlabTM 

synthesizer (GE Healthcare) through two reaction steps (18F-labeling and oxidation). 

The nucleophilic 18F-fluorination of bromofluoromethyl benzothiazolyl-sulfide (58) 

with [18F]potassium fluoride ([18F]KF) and Kryptofix® 222 (K2.2.2) gave the cartridge-

purified [18F]difluoromethyl benzothiazolyl-sulfide ([18F]69) in 15.2 ± 0.3% RCY, 

under basic conditions. Oxidation of [18F]69 provided the cartridge-purified [18F]70 in 

82.9 ± 7.9% RCY (12.6 ± 1.2% RCY over two steps) (Scheme 13A). After semi-

preparative HPLC purification, the reagent [18F]70 was isolated with a molar activity 

of 81 ± 11 GBq·µmol-1 [decay corrected at the end of bombardment (EOB)}, starting 

from 125-150 GBq of [18F]fluoride. The photoinduced C-H 18F-difluoromethylation 

methodology with the reagent [18F]70 was optimized using the antiherpetic drug 

acyclovir as a model substrate and its efficiency was influenced by the selection of 

solvent (DMSO), the temperature (35 °C), the photocatalyst fac-IrIII(ppy)3, the 

residence time (2 min), and the light source (470 nm blue LED). This method enabled 

the radiosynthesis of the HPLC-purified [18F]acyclovir-CHF2 ([18F]72c) in 42 ± 4% RCY 

and with a molar activity of 44 ± 11 GBq·µmol-1. Interestingly, the C-H 18F-

difluoromethylation was applied to a broad scope of N-heteroaromatics (71), 

including caffeine derivatives, nucleic bases, nucleosides, and pharmaceutical drugs 

([18F]72; Scheme 13B: 27 examples, 18-75% RCYs). A mixture of structural isomers was 

observed in the synthesis of [18F]72d (ratio a/b/c = 40:10:20, Scheme 13B). The 18F-

labeled synaptic vesicle glycoprotein 2A (SV2A) ligand (isomer b of [18F]72d) was 

isolated in 1.5 ± 0.1% RCY after semi-preparative HPLC purification.  
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Scheme 13. (A) Radiosynthesis of the [18F]difluoromethyl benzothiazolyl-sulfone ([18F]70). (B) 

Visible light-induced 18F-difluoromethylation of heteroarenes (71) with the reagent [18F]70, 

under continuous-flow conditions. (a)RCY of the isolated products after cartridge purification. 
(b)Molar activity decay-corrected at the end of bombardment (EOB). (c)RCY determined by 

radio-TLC and radio-UPLC of the crude product. (d)RCY of the isolated isomer b of [18F]72d 

after HPLC purification.   

 

In 2020, Lemaire, Luxen, and Genicot described a general automated protocol for 

the C-H 18F-difluoromethylation of the acyclovir (71c) on a commercially available 

AllInOne (AIO) synthesizer from Trasis [121]. The automated procedure entailed the 

radiosynthesis of the 18F-difluoromethylating reagent [18F]70 and the subsequent 

photoredox 18F-difluoromethylation reaction, each of which requiring a HPLC 

purification step. Due to the limited number of free positions of the FASTlab 

synthesizer to introduce the additional components required for the flow 18F-

difluoromethylation of 71c and the absence of an integrated purification system in the 

FASTlab module, the AIO synthesizer was selected for this multistep procedure. The 

two-step radiosynthesis of [18F]70 was successfully transposed from the FASTlab to 

the AIO module and furnished the cartridge-purified [18F]70 in 11.9 ± 1.4% RCY 

(decay-corrected at the SOS). No significant variation in the RCY was observed when 

the oxidation was performed in the AIO glass reactor [82.9% RCY (GE FASTlabTM) vs. 

86.2% RCY (AIO)]. These results suggested that the presence of MeCN, K2CO3, and 
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K2.2.2 has no meaningful impact on the oxidation of [18F]1. Starting with 165 GBq of 

[18F]fluoride, the reagent [18F]70 was isolated in 7.5 ± 1.7% RCY with a molar activity 

of 59 ± 4 GBq·µmol-1, after semi-preparative HPLC purification and reformulation on 

a SepPak® C18 short cartridge (Scheme 14A). The subsequent flow photoredox 18F-

difluoromethylation procedure was performed in a photochemistry reactor 

consisting of a three-dimensional (3D)-printed with poly(ethylene terephthalate) 

recovered with a transparent polycarbonate (Lexan) plate and the reaction mixture 

was irradiated with a 32 W blue LED lamp. The replacement of fac-IrIII(ppy)3 by the 

organic photocatalyst 1,2,3,5-tetrakis(carbazol-9-yl)-4,6-dicyanobenzene (4CzIPN) 

demonstrated to be beneficial for the efficiency of the 18F-difluoromethylation 

reaction. The purification of the crude product by semipreparative HPLC afforded 

the [18F]acyclovir-CHF2 [18F]72c in 25 ± 5% RCY. Overall, the fully automated three-

step radiosynthesis of [18F]72c was achieved in 1.4 ± 0.1% RCY (Scheme 14B). This 

automated protocol can be implemented for the 18F-difluoromethylation of a wide 

range of N-heteroaromatics typically found in medicinal chemistry.  
 

 
Scheme 14. Fully automated photoredox 18F-difluoromethylation of acyclovir (71c) in an 

AllInOne synthesizer, under continuous-flow conditions. (a)RCY of the isolated products after 

cartridge purification. (b)RCY after HPLC purification. (c)Molar activity decay-corrected at the 

end of bombardment (EOB). 

 

4. Concluding Remarks  
 

The 18F-radiochemistry has gained a pivotal role in the study of biochemical, 

physiological, and pharmacological behaviour of fluorine-containing molecules in 

living subjects by the application of non-invasive PET imaging techniques. The major 

success of PET as clinical and research tool is highly dependent on the availability of 

selective 18F-labeled probes. However, the development of 18F-labeled tracers still 

remains an important and challenging issue for radiochemists.  
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To date, the access to radiotracers has relied mostly on radiosynthetic methods 

leading to [18F]aryl-F and [18F]alkyl-F derivatives. The 18F-labeling of perfluoroalkyl 

motifs, such as CHF2, has been recently explored in radiochemistry, despite the 

potential benefits of these functional groups in medicinal chemistry. The majority of 

the reported methods has been mainly focused on the late stage 18F-fluorination of 

preactivated precursors. The preparation of these precursors bearing suitable leaving 

groups requires a multistep procedure and, in some cases, may be challenging and 

time-consuming and can limit the number of synthetic accessibility to radiotracers. 

Recently, the late-stage 18F-difluoromethylation has emerged as a novel approach to 

expand the chemical space available for radioligand discovery.   

Another critical issue in 18F-difluoromethylation chemistry resides on the fact 

that most protocols afforded the [18F]CHF2-containing compounds with low-to-

medium molar activities, owing to the great probability of 18F–19F isotopic dillution. 

This means that the synthesis of [18F]CHF2-containing compounds must require the 

use of nucleophilic [18F]Fˉ with high molar activity. The production of radiotracers 

with high molar activity is mandatory for PET imaging studies, especially for 

targeting low-density biomacromolecules.  

Overall, we expect that the combination of the positron emitter function of the 

radionuclide 18F with the CHF2 groups could inspire other radiochemists to develop 

new and efficient methods to access novel PET ligands bearing 18F-difluoromethyl 

groups.  
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Fully Automated Radiosynthesis of [18F]Difluoromethyl 

Benzothiazolyl-Sulfone on a GE FASTlabTM Synthesizer 

 
Abstract: The reagent difluoromethyl benzothiazolyl-sulfone (1) has been extensively 

used in the difluoromethylation of substrates bearing C=C, C≡C, and C≡N bonds by 

visible light photoredox catalysis. Taking advantage of the reactivity of 1 as 

difluoromethylating reagent, we intended to perform the radiosynthesis the 18F-

labeled compound [18F]1 as a novel labeled compound for late-stage introduction of 
18F-difluoromethyl groups. Low activity labeling experiments (150-200 MBq) were 

performed in order to determine the most suitable conditions for the synthesis of 

[18F]1. Our results showed that a two-step methodology consisting in the 18F-labeling 

of the precursor bromofluoromethyl benzothiazolyl-sulfide (4) and subsequent 

oxidation of the [18F]difluoromethyl benzothiazolyl-sulfide ([18F]2) afforded the 

cartridge-purified [18F]1 in higher radiochemical yield (RCY). The efficiency of the 18F-

labeling reaction was influenced by the following parameters: (i) the type and amount 

of base and phase-transfer catalyst (PTC) used in the delivery of dry [18F]fluoride 

([18F]F-); (ii) the solvent, the temperature, and the reaction time; (iii) the type and 

amount of 18F-labeling precursor. The amount of the oxidizing agent sodium 

(meta)periodate (NaIO4) and ruthenium (III) chloride hydrate (RuCl3·xH2O) had a 

significant impact on the oxidation of [18F]2. Having the optimal conditions in hand, 

the radiosynthesis of sulfone [18F]1 was fully automated on a GE FASTlabTM 

synthesizer in conjunction with a semi-preparative high performance liquid 

chromatography (HPLC) purification procedure. Starting with 120-135 GBq of 

[18F]fluoride, the sulfone [18F]1 was isolated in 4.5 ± 0.1% RCY [decay-corrected at the 

start of the synthesis (SOS)] and with a molar activity of 54 ± 7 GBq·μmol-1 at the end 

of the synthesis (EOS).  

 

Keywords: fluorine-18; difluoromethylation; difluoromethyl benzothiazolyl-sulfone; 

radiochemistry 

 

1. Introduction  
 

Fluorine-18 (18F) is one the most frequently used radioisotopes in positron 

emission tomography (PET) radiopharmaceuticals for both clinical and preclinical 

research [1-6]. The radioisotope 18F has unique advantages in PET radiochemistry in 

particular its relatively short half-life (t1/2 = 109.8 min), its favorable positron emission 

profile (97% β+ emission), and its relatively low positron energy (E = 0.635 keV), 

yielding high-resolution images [7,8]. The importance of PET for in vivo quantification 

of biochemical and physiological processes, for assessment of disease state, and for 

drug development demanded novel and efficient approaches for the introduction of 
18F-fluorinated motifs [9-14]. Until the date, the preparation of 18F-labeled compounds 

has relied mainly on radiosynthetic methods leading to the formation of [18F]aryl-F 

and [18F]alkyl-F derivatives by classical nucleophilic 18F-fluorinations. Over the last 
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years, the strategy of late-stage installation of 18F-fluoroalkyl motifs has been reported 

by several groups. In fact, the use of adequate 18F-labeled reagents has enabled the 

application of direct 18F-trifluoromethylation [15-27], 18F-trifluoromethylthiolation 

[28-30], and 18F-fluoromethylation [31] procedures in late-stage functionalization of 

organic substrates. Alternatively, the direct introduction of 18F-difluoromethyl (18F-

CHF2) motifs has never been explored despite the potential benefits of these 

functional groups in the biological and pharmacological activity of pharmaceuticals 

and agrochemicals [32-37]. Performing a 18F-difluoromethylation procedure requires 

the prior synthesis of a suitable reagent able to transfer [18F]CHF2 groups. In non-

radioactive chemistry, a plethora of reagents has been employed in the 

difluoromethylation of organic substrates. Difluoromethyl heteroaryl-sulfones have 

been implemented as difluoromethylating reagents under photoredox conditions. 

Visible light photoredox catalysis for the production of CHF2 radicals has provided a 

more sustainable alternative to other conventional radical-triggered reactions from 

the viewpoint of safety, cost, availability, and “green” chemistry [35,36]. The reagent 

difluoromethyl benzothiazolyl-sulfone (1) has deserved a special attention in 

photoredox difluoromethylation chemistry, mainly because of its ability to be 

reduced to CHF2 radicals by oxidative quenching of appropriate photocatalysts in 

their photocatalyst state (Figure 1). Seminal works reporting the use of the reagent 1 

were disclosed by Hu group in 2016 [38]. They described the application of the sulfone 

1 in the visible light-mediated difluoromethylation of biphenyl isocyanides in the 

presence of [Ru(bpy)3]Cl2. This reagent was also implemented in the synthesis of 

difluoromethylated benzoxazines [39], oxazolines [39], and isoquinoline-1,3(2H,4H)-

diones [40], under fac-IrIII(ppy)3 catalysis. Zhu et al. studied the potential of the sulfone 

1 in the photoinduced difluoromethylation of alkynoates [41], β,γ-unsaturated oximes 

[42], and N-arylacrylamides [43].  
 

 
Figure 1. Generation of difluoromethyl radicals (·CHF2) via reduction of the difluoromethyl 

benzothiazolyl-sulfone (1) in the presence of a suitable photocatalyst (PC).  

 

We hypothesized that the radiosynthesis of the [18F]difluoromethyl 

benzothiazolyl-sulfone ([18F]1) would afford a novel 18F-difluoromethylating reagent 

enabling the late-stage introduction of the 18F-difluoromethyl groups in suitable 

substrates. Apart from its expected photoredox properties, we opted to synthesize the 
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reagent [18F]1 because of its great potential for nucleophilic 18F-labeling using a 

suitable precursor. In addition, an efficient separation and isolation of non-ionic 18F-

labeled reagents, such as the compound [18F]1, by semipreparative HPLC is more 

easily achieved in comparison with other ionic reagents (e.g. Baran reagents). In the 

present work, we thorougly describe the optimization process in the radiosynthesis 

of the sulfone [18F]1. Preliminary labeling experiments with low level of radioactivity 

were carried out in order to determine the key parameters that may influence the 

effectiveness of the radiochemical process. With the optimal conditions in hand, the 

radiosynthesis of [18F]1 was then automated in a GE FASTlab synthesizer at high level 

of starting radioactivity.         

 

2. Results and Discussion 
 

2.1. Chemistry 
 

2.1.1. Synthesis of the Difluoromethyl Benzothiazolyl-Sulfone (1) 
 

The synthesis of the difluoromethyl benzothiazolyl-sulfone (1) as non-

radioactive standard was initially carried out to corroborate the identity of the 18F-

labeled compound [18F]1. In order to prepare the compound 1, we considered a two-

step procedure entailing the difluoromethylation of the benzothiazolyl-thiol (3) and 

concomitant oxidation of the difluoromethyl benzothiazolyl-sulfide (2). 

Based on the methodologies previously reported by Jubault [21] and Akita [44], 

the difluoromethylation of the thiol 3 using sodium chlorodifluoroacetate 

(ClCF2CO2Na) and potassium carbonate (K2CO3) furnished the corresponding sulfide 

2 in 54% yield (Scheme 1, Step 1). The difluoromethyl heteroaryl-sulfone 1 was 

successfully accomplished by oxidation of the sulfide 2 using the oxidizing agent 

sodium (meta)periodate (NaIO4) and ruthenium (III) chloride hydrate (RuCl3·xH2O) 

in 67% yield (Scheme 1, Step 2).  
 

 

Scheme 1. Synthesis of the difluoromethyl benzothiazolyl-sulfone (1) through 

difluoromethylation of the benzothiazolyl-thiol (3) and subsequent oxidation of the 

difluoromethyl benzothiazolyl-sulfide (2). Step 1: thiol 3 (3.0 mmol), sodium 

chlorodifluoroacetate (6.0 mmol), K2CO3 (4.5 mmol), DMF (10 mL), 95 °C, 15 min. Step 2: sulfide 

2 (1.0 mmol), sodium (meta)periodate (5.0 mmol), ruthenium (III) chloride hydrate (0.05 mmol), 

MeCN (2 mL), CHCl3 (2 mL), H2O (4 mL), rt, 1 h. All reaction yields are of isolated products. 

 

The structure elucidation of the compounds 1 and 2 was established on the basis 

of high-resolution mass spectrometry (HRMS) and nuclear magnetic resonance 

(NMR) techniques (Figures S1–S6). Figures 1 and 2 represents the ultra performance 
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liquid chromatography (UPLC) UV-chromatograms of the compounds 1 and 2, 

respectively. 

 

 
Figure 1. UPLC UV-chromatogram of the authentic reference 2 (wavelength: 254 nm). 

ACQUITY UPLC® CSH C18 column (1.7 μm, 2.1 × 100 mm); MeCN and HCO2H/H2O (0.05%, 

v/v) in gradient mode at 0.5 mL·min−1 (from 100% HCO2H/H2O (0.05%, v/v) to 75% MeCN + 

25% HCO2H/H2O (0.05%, v/v) in 6 min, and from 75% MeCN + 25% HCO2H/H2O (0.05%, v/v) 

to 100% HCO2H/H2O (0.05%, v/v) in 2 min).  

 

 
Figure 2. UPLC UV-chromatogram of the authentic reference 1 (wavelength: 254 nm). 

ACQUITY UPLC® CSH C18 column (1.7 μm, 2.1 × 100 mm); MeCN and HCO2H/H2O (0.05%, 

v/v) in gradient mode at 0.5 mL·min−1 (from 100% HCO2H/H2O (0.05%, v/v) to 75% MeCN + 

25% HCO2H/H2O (0.05%, v/v) in 6 min, and from 75% MeCN + 25% HCO2H/H2O (0.05%, v/v) 

to 100% HCO2H/H2O (0.05%, v/v) in 2 min). 

 

 

 

5.
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2.2. Radiochemistry 
 

2.2.1. Radiosynthesis of the [18F]Difluoromethyl Benzothiazolyl-Sulfone ([18F]1) 
 

Despite the recent advances in the preparation of difluoromethylated 

compounds, the available methods for the 18F-labeling of CHF2 groups still remains 

scarce. Most of these methods relied on the introduction of the 18F radioisotope either 

using electrophilic 18F-fluorinating agents [e.g. [18F]Selectfluor bis(triflate)] or via 

nucleophilic substitution of aryl-CFXH and alkyl-CFXH precursors (X = a leaving 

group) with the cyclotron-produced [18F]fluoride. Since [18F]fluoride can be produced 

with high molar activity, the strategy of 18F-incorporation through nucleophilic 

substitution was implemented in the radiosynthesis of the sulfone [18F]1. 

 

2.2.1.1. First Approach: Late stage 18F-fluorination of the Bromofluoromethyl 

Benzothiazolyl-Sulfone (5) 
 

We initially hypothesized that the late-stage 18F-fluorination of the 

bromofluoromethyl heteroaryl-sulfone (5) would furnish the labeled compound 

[18F]3. The bromofluoromethylation of the thiol 3 with dibromofluoromethane 

(Br2CFH) gave the bromofluoromethyl benzothiazolyl-sulfide (4) in 16% yield, in the 

presence of base (Scheme 2, Step 1). Subsequently, the sulfone 5 was prepared from 4 

in 68% yield, under the same reaction conditions described for the oxidation of the 

sulfide 2 (Scheme 2, Step 2).  

The structure elucidation of the compounds 4 and 5 was established on the basis 

of high-resolution mass spectrometry (HRMS) and nuclear magnetic resonance 

(NMR) techniques (Figures S7–S12). 
 

 
 

Scheme 2. Synthesis of the bromofluoromethyl benzothiazolyl-sulfone (5) through 

bromofluoromethylation of the thiol 3 and subsequent oxidation of the bromofluoromethyl 

benzothiazolyl-sulfide (4). Step 1: thiol 1 (3.0 mmol), dibromofluoromethane (4.8 mmol), KOH 

(30.0 mmol), THF (3 mL), H2O (3 mL), rt, 15-20 min. Step 2: sulfide 4 (1.0 mmol), sodium 

(meta)periodate (5.0 mmol), ruthenium (III) chloride hydrate (0.05 mmol), MeCN (2 mL), 

CHCl3 (2 mL), H2O (4 mL), rt, 1 h. All reaction yields are of isolated products. 
 

Low starting radioactivity experiments were performed in order to investigate 

the propensity of the precursor 5 to undergo the expected nucleophilic 18F-

fluorination. The 18F-labeling reactions were carried out in a commercially available 

FASTlabTM synthesizer (GE Healthcare) placed in a shielded hotcell. An aliquot of a 

solution of [18F]fluoride in [18O]water ([18O]H2O) (150-200 MBq) was passed through 

a quaternary methyl ammonium (QMA) carbonate cartridge for trapping of 

[18F]fluoride. Afterwards, the elution of [18F]fluoride with K2.2.2/K2CO3-based eluent 
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and azeotropic drying in a cyclic olefin copolymer (COC) reactor provided the dry 

[18F]fluoride readily available for the nucleophilic 18F-fluorination. Precursor 5 

solubilized in different solvents was added to the “naked” [18F]fluoride and the 18F-

labeling reactions were conducted at different temperatures for 5 min (Table 1). The 

crude reaction mixture was pre-purified using a Sep-Pak® C18 Plus Short cartridge to 

remove the unreacted [18F]fluoride and other polar impurities (e.g. K2CO3 and K2.2.2). 

The trapped crude product was manually eluted with MeCN and the solution was 

analyzed by radio-thin-layer chromatography (radio-TLC) and radio-UPLC. Our 

results showed that the late-stage 18F-fluorination of the precursor 5 afforded an 

unknown 18F-labeled compound (Figure 3) with a distinct LC retention time of the 

non-radioactive reference standard 1 (Figure 2), regardless the 18F-labeling 

temperature (85 °C or 120 °C) and the solvent (MeCN or DMF).  

  
Table 1. 18F-Labeling of the bromofluoromethyl benzothiazolyl-sulfone (5)(a) 
 

 

Entry Solvent Temperature (°C) RCY (%)(b) 

1 MeCN 85 0 (n = 2) 

2 MeCN 120 0 (n = 2) 

3 DMF 120 0 (n = 2) 
(a) Standard conditions: 5 (0.02 mmol), [18F]KF (150–200 MBq), K2CO3 (0.02 mmol), K2.2.2 (0.02 

mmol), solvent (1 mL), temperature (°C), 5 min. (b) All RCYs were determined based on the 

activity of cartridge-purified [18F]1, their radio-TLC and their radio-UPLC purities, and their 

starting radioactivity. All RCYs were decay-corrected at the start of the synthesis (SOS). 

 

We hypothesized that the unknown 18F-labeled compound was generated from 

nucleophilic 18F-fluorination in the heteroaryl moiety of the precursor 5 (pathway b, 

Scheme 3). This heteroaromatic 18F-labeling process was corroborated by the 

similarity of LC retention times between the [18F]2-fluorobenzo[d]thiazole ([18F]5a) 

and the respective non-radioactive product 5a (Figure 4). The cartridge-purified 

[18F]5a was afforded in 21.7 ± 1.5 RCY [decay corrected at the start of the synthesis 

(SOS)]. Overall, this one-step synthetic strategy revealed to be unsuccessful in the 

radiosynthesis of the compound [18F]1. 
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Figure 3. UPLC radio-chromatogram of the crude product resulting from the 18F-labeling of the 

precursor 5. ACQUITY UPLC® CSH C18 column (1.7 μm, 2.1 × 100 mm); MeCN and 

HCO2H/H2O (0.05%, v/v) in gradient mode at 0.5 mL·min−1 (from 100% HCO2H/H2O (0.05%, 

v/v) to 75% MeCN + 25% HCO2H/H2O (0.05%, v/v) in 6 min, and from 75% MeCN + 25% 

HCO2H/H2O (0.05%, v/v) to 100% HCO2H/H2O (0.05%, v/v) in 2 min). 

 

 
Scheme 3. Plausible pathways of nucleophilic 18F-fluorination of the precursor 5: aliphatic 18F-

fluorination (pathway a, not observed) and heteroaromatic 18F-labeling (pathway b).   
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Figure 4. UPLC UV-chromatogram of the 2-fluorobenzo[d]thiazole (5a) (wavelength: 254 nm). 

ACQUITY UPLC® CSH C18 column (1.7 μm, 2.1 × 100 mm); MeCN and HCO2H/H2O (0.05%, 

v/v) in gradient mode at 0.5 mL·min−1 (from 100% HCO2H/H2O (0.05%, v/v) to 75% MeCN + 

25% HCO2H/H2O (0.05%, v/v) in 6 min, and from 75% MeCN + 25% HCO2H/H2O (0.05%, v/v) 

to 100% HCO2H/H2O (0.05%, v/v) in 2 min). 

 

2.2.1.2. Second Approach: 18F-Labeling of the Bromofluoromethyl Benzothiazolyl-

Sulfide (4) and Oxidation of [18F]Difluoromethyl Benzothiazolyl-Sulfide ([18F]2) 

Next, we investigated an alternative approach for the radiosynthesis of [18F]1. 

We considered a two-step methodology involving an initial 18F-labeling of a CFHX-

containing benzothiazolyl sulfide (X = a leaving group) and consecutive oxidation of 

the [18F]difluoromethyl benzothiazolyl-sulfide ([18F]2). 

The bromofluoromethyl derivative 4 was chosen as precursor for the 18F-labeling 

reaction. Using the GE FASTlabTM module, initial experiments were conducted 

between the precursor 4 and [18F]potassium fluoride ([18F]KF), in the presence of 

K2CO3 and Kryptofix® 222 (K2.2.2), to uncover the most suitable solvent for the 18F-

fluorination process. Our results showed that the precursor 4 was unreactive toward 

the 18F-labeling reaction when either DMSO or DCM were used as solvents (Table 2, 

Entries 1-2). From a survey of polar aprotic solvents (THF, DMA, NMP, DMF, 

nitrobenzene, propylene carbonate, DCE, acetone, and MeCN), MeCN revealed to be 

most efficient solvent for the 18F-labeling of the precursor 4, furnishing the cartridge-

purified [18F]2 in 12.7 ± 0.2% RCY (decay corrected at the SOS) (Table 2, Entries 3-11). 

The UPLC retention time of the labeled compound [18F]2 (Figure 5) was in 

agreement with those of the respective non-radioactive authentic reference 2 (Figure 

1).  
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Table 2. Screening of solvents used in 18F-labeling of the bromofluoromethyl benzothiazolyl-

sulfide (4)(a) 

 
Entry Solvent RCY (%)(b) 

1 DMSO 0 (n = 2) 

2 DCM 0 (n = 2) 

3 THF 3.7 ± 1.5 (n=3) 

4 DMA 4.5 ± 0.2 (n=3) 

5 NMP 4.5 ± 0.4 (n=3) 

6 DMF 5.3 ± 0.3 (n=3) 

7 Nitrobenzene 5.6 ± 1.5 (n=3) 

8 propylene carbonate 6.3 ± 0.4 (n=3) 

9 DCE 7.2 ± 0.5 (n=3) 

10 Acetone 9.5 ± 0.3 (n=3) 

11 MeCN 12.7 ± 0.2 (n=3) 
(a) Standard conditions: 4 (0.02 mmol), [18F]KF (150–200 MBq), K2CO3 (0.02 mmol), K2.2.2 (0.02 

mmol), solvent (1 mL), 85 °C, 5 min. (b) All RCYs were determined based on the activity of 

cartridge-purified [18F]2, their radio-TLC and their radio-UPLC purities, and their starting 

radioactivity. All RCYs were decay-corrected at the SOS. 

 

Figure 5. UPLC radio-chromatogram of the crude product [18F]2. ACQUITY UPLC® CSH C18 

column (1.7 μm, 2.1 × 100 mm); MeCN and HCO2H/H2O (0.05%, v/v) in gradient mode at 0.5 

mL·min−1 (from 100% HCO2H/H2O (0.05%, v/v) to 75% MeCN + 25% HCO2H/H2O (0.05%, v/v) 

in 6 min, and from 75% MeCN + 25% HCO2H/H2O (0.05%, v/v) to 100% HCO2H/H2O (0.05%, 

v/v) in 2 min). 
 

Afterwards, a screening of additives was carried out in order to enhance the RCY 

of the radiosynthesis of [18F]2. The analysis of the Table 3 demonstrated that the 
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efficiency of the 18F-labeling is influenced by the additives used in the elution of 

[18F]fluoride. In combination with K2.2.2, the selection of base K2CO3 provided the 

cartridge-purified [18F]2 in higher RCY (Table 3, Entry 1), in comparison with other 

bases such as sodium sulfite (Na2SO3), potassium acetate (CH3CO2K), and sodium 

bicarbonate (NaHCO3) (Table 3, Entries 2-4). Other additives, such as 

tetrabutylammonium hydrogensulfate (TBAHS), tetrabutylammonium bromide 

(TBAB), tetraethylammonium bicarbonate (TEAB), and tetrabutylammonium 

cyanide (TBAC), were unable to improve the reactivity of the precursor 4 for the 

nucleophilic radiofluorination (Table 3, Entries 5-8).  

 
Table 3. Screening of additives used in 18F-labeling of the bromofluoromethyl benzothiazolyl-

sulfide (4)(a) 

 

Entry Additives (μmol) RCY (%)(b) 

1 K2CO3 (20), K2.2.2 (20) 12.7 ± 0.2 (n=3) 

2 Na2SO3 (20), K2.2.2 (20) 6.2 ± 2.2 (n=3) 

3 CH3CO2K (20), K2.2.2 (20) 4.6 ± 1.1 (n=3) 

4 NaHCO3 (20), K2.2.2 (20) 3.6 ± 1.6 (n=3) 

5 TBAHS (20) 7.3 ± 2.1 (n=3) 

6 TBAB (20) 7.0 ± 0.9 (n=3) 

7 TEAB (20) 6.7 ± 2.5 (n=3) 

8 TBAC (20) 4.8 ± 1.2 (n=3) 
(a) Standard conditions: 4 (0.02 mmol), [18F]F- (150–200 MBq), additives (mmol), MeCN (1 mL), 

85 °C, 5 min. (b) All RCYs were determined based on the activity of cartridge-purified [18F]2, 

their radio-TLC and their radio-UPLC purities, and their starting radioactivity. All RCYs were 

decay-corrected at the SOS. 

 
When the amount of K2CO3 was decreased from 0.02 mmol to 0.01 mmol, the 

cartridge-purified [18F]2 was synthesized in 13.4 ± 1.7% RCY (decay corrected at the 

SOS) (Table 4, Entries 1-2). The reduction of the amount of K2CO3 in the QMA eluent 

was not beneficial (Table 4, Entry 3). Furthermore, no 18F-labeling product formation 

was observed either the absence of K2CO3 (Table 4, Entry 4) or K2.2.2 (Table 4, Entry 5). 

The latter results emphasized the importance of the base K2CO3 and the phase-transfer 

catalyst K2.2.2 in the cartridge elution and in the reactivity of the [18F]fluoride in the 18F-

labeling of the precursor 4. 

The increase of the temperature from 85 °C to 120 °C resulting in a negligible 

improvement of the RCY of the 18F-labeling reaction (Table 5, Entries 1-2). By raising 

the amount of the precursor 4 from 0.02 mmol to 0.04 mmol, the cartridge-purified 

[18F]2 was obtained in 15.2 ± 0.3% RCY (decay corrected at the SOS) (Table 5, Entry 3). 

Lower RCYs were afforded either by enhancing the amount of precursor 4 to 0.06 
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mmol (Table 5, Entry 4) or by extending the 18F-labeling reaction time from 5 min to 

10 min (Table 5, Entry 5). Overall, the optimized conditions for the nucleophilic 18F-

fluorination with [18F]fluoride (150-200 MBq) were determined as: precursor (0.04 

mmol), in the presence of K2CO3 (0.01 mmol), K2.2.2 (0.02 mmol), with MeCN (1 mL) as 

solvent at 120 °C for 5 min.   
 

Table 4. Screening of the amount of additives used in 18F-labeling of the bromofluoromethyl 

benzothiazolyl-sulfide (4)(a) 

 

Entry Additives (μmol) RCY (%)(b) 

1 K2CO3 (20), K2.2.2 (20) 12.7 ± 0.2 (n=3) 

2 K2CO3 (10), K2.2.2 (20) 13.4 ± 1.7 (n=3) 

3 K2CO3 (5), K2.2.2 (20) 9.7 ± 2.3 (n=3) 

4 K2CO3 (0), K2.2.2 (20) 0 (n=2) 

5 K2CO3 (10), K2.2.2 (0) 0 (n=2) 
(a) Standard conditions: 4 (0.02 mmol), [18F]KF (150–200 MBq), K2CO3 (mmol), K2.2.2 (mmol), 

MeCN (1 mL), 85 °C, 5 min. (b) All RCYs were determined based on the activity of cartridge-

purified [18F]2, their radio-TLC and their radio-UPLC purities, and their starting radioactivity. 

All RCYs were decay-corrected at the SOS. 
 

Table 5. Screening of the temperature, amount of precursor, and the reaction time for 18F-

labeling of the bromofluoromethyl benzothiazolyl-sulfide (4)(a) 

 

Entry 4 (mmol) Temperature (°C) Reaction Time (min) RCY (%)(b) 

1 0.02 85 5 13.4 ± 1.7 (n=3) 

2 0.02 120 5 14.6 ± 0.8 (n=3) 

3 0.04 120 5 15.2 ± 0.3 (n=3) 

4 0.06 120 5 12.0 ± 0.7 (n=3) 

5 0.04 120 10 12.9 ± 1.3 (n=3) 
(a) Standard conditions: 4 (mmol), [18F]KF (150–200 MBq), K2CO3 (0.01 mmol), K2.2.2 (0.02 mmol), 

MeCN (1 mL), temperature (°C), reaction time (min). (b) All RCYs were determined based on 

the activity of cartridge-purified [18F]2, their radio-TLC and their radio-UPLC purities, and 

their starting radioactivity. All RCYs were decay-corrected at the SOS. 
 

Next, we intended to explore an alternative precursor for the nucleophilic 18F-

fluorination, the bromofluoromethyl benzothiazolyl-sulfoxide (6). The oxidation of 

the sulfide 4 with meta-chloroperoxybenzoic acid (mCPBA) afforded the sulfoxide 6 

in 73% reaction yield (Scheme 4).  
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Scheme 4. Synthesis of the two isomers of bromofluoromethyl benzothiazolyl-sulfoxide (6). 

Standard conditions: 4 (1.0 mmol), meta-chloroperoxybenzoic acid (1.1 mmol), DCM (4 mL), 0 

°C, 1 h. All reaction yields of the isolated products. 
 

In order to probe the tendency of 6 to undergo the expected nucleophilic 18F-

fluorination, the difluoromethyl benzothiazolyl-sulfoxide (7) was first synthesized as 

non-radioactive standard. Using the reaction conditions depicted above, the 

oxidation of the sulfide 2 afforded the sulfoxide 7 in 75% yield (Scheme 5). 

The structure elucidation of the compounds 6 and 7 was established on the basis 

of high-resolution mass spectrometry (HRMS) and nuclear magnetic resonance 

(NMR) techniques (Figures S13–S18). Figure 6 represents UPLC UV-chromatogram 

of the compound 7.  

 

 
Scheme 5. Synthesis of the difluoromethyl benzothiazolyl-sulfoxide (7). Standard conditions: 2 

(1.0 mmol), meta-chloroperoxybenzoic acid (1.1 mmol), DCM (4 mL), 0 °C, 1 h. All reaction 

yields are of isolated products. 

   

 
Figure 6. UPLC UV-chromatogram of the authentic reference 7 (wavelength: 254 nm). 

ACQUITY UPLC® CSH C18 column (1.7 μm, 2.1 × 100 mm); MeCN and HCO2H/H2O (0.05%, 

v/v) in gradient mode at 0.5 mL·min−1 (from 100% HCO2H/H2O (0.05%, v/v) to 75% MeCN + 

25% HCO2H/H2O (0.05%, v/v) in 6 min, and from 75% MeCN + 25% HCO2H/H2O (0.05%, v/v) 

to 100% HCO2H/H2O (0.05%, v/v) in 2 min).   
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The 18F-labeling of the precursor 6 in MeCN at 120 °C resulted in the formation 

of the cartridge-purified [18F]difluoromethyl benzothiazolyl-sulfide ([18F]7) in 3.3 ± 

0.3% RCY (decay corrected at the SOS) (Table 6). The UPLC analysis of the crude 

product, after cartridge purification, showed the presence of a radioactive peak 

corresponding to [18F]7 along with an additional peak of an unknown 18F-labeled 

compound (Figure 7). We presumed that the second peak corresponded to the by-

product [18F]5a owing the similarity of LC retention times between the 18F-labeled 

compound [18F]5a and the respective non-radioactive compound 5a (Figure 4). Under 

the conditions, the heteroaromatic 18F-labeling of precursor 6 furnished the cartridge-

purified [18F]5a was furnished in 12.3 ± 1.3% RCY (Scheme 6; decay corrected at the 

SOS). As the 18F-labeling of the precursor 6 generated the sulfoxide [18F]7 in lower 

RCY, the precursor 4 was selected for the radiosynthesis of the sulfone [18F]1.  

 
Table 6. 18F-Labeling of the bromofluoromethyl benzothiazolyl-sulfoxide (6) 

 

Entry Precursor (mmol) RCY (%)(b) 

1 6 (0.04) 3.3 ± 0.3 (n=2) 
(a) Standard conditions: NaIO4, RuCl3·xH2O, H2O (1 mL), rt, 5 min. (b) All RCYs were determined 

based on the activity of cartridge-purified [18F]7, their radio-TLC and their radio-UPLC purities, 

and their starting radioactivity. All RCYs were decay-corrected at the SOS. 
 

 
Figure 7. UPLC radio-chromatogram of the crude product [18F]7. ACQUITY UPLC® CSH C18 

column (1.7 μm, 2.1 × 100 mm); MeCN and HCO2H/H2O (0.05%, v/v) in gradient mode at 0.5 

mL·min−1 (from 100% HCO2H/H2O (0.05%, v/v) to 75% MeCN + 25% HCO2H/H2O (0.05%, v/v) 

in 6 min, and from 75% MeCN + 25% HCO2H/H2O (0.05%, v/v) to 100% HCO2H/H2O (0.05%, 

v/v) in 2 min). 
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Scheme 6. Plausible pathways of nucleophilic 18F-fluorination of the precursor 6: aliphatic 18F-

fluorination (pathway a) and heteroaromatic 18F-labeling (pathway b).   
 

With the optimized labeling conditions for the precursor 4 in hand, we then 

examined the reaction of oxidation of the sulfide [18F]2. Inspired by the oxidation of 

the sulfide 2 described in Scheme 1, a similar methodology was employed in the 

radiosynthesis of the sulfone [18F]1. No product formation was verified in the absence 

of RuCl3·xH2O (Table 7, Entry 1). This result demonstrated the importance of the pre-

catalyst in the oxidation process. Gratifyingly, when the reaction was conducted in 

presence of NaIO4 (0.24 mmol) and RuCl3·xH2O (0.002 mmol) at room temperature for 

5 min, the cartridge-purified [18F]1 was afforded in 48.0 ± 2.7% RCY (decay corrected 

at the SOS) (Table 7, Entry 2). However, no complete conversion of the sulfide [18F[2 

was observed. Further optimization studies were conducted to achieve the complete 

oxidation of [18F[2. By raising the amount of RuCl3·xH2O to 0.008 mmol, the sulfide 

[18F]2 was fully consumed and the labeled compound [18F]1 was isolated in 82.9 ± 7.9% 

RCY (decay-corrected at the SOS) (Table 7, Entry 3). The reduction of the amount of 

NaIO4 from 0.24 mmol to 0.06 mmol was detrimental to the oxidation efficiency (Table 

6, Entry 4). Starting from 150-200 MBq of [18F]fluoride, a two-step methodology 

entailing the 18F-labeling and the oxidation steps generated sulfone [18F]1 in 12.6 ± 

1.2% RCY (decay-corrected at the SOS) (Table 7, Entry 3), after cartridge purification.  
 

Table 7. Screening of the amount of NaIO4 and RuCl3·xH2O for oxidation of the [18F]2  

 

Entry 
NaIO4 

(mmol) 

RuCl3·xH2O 

(mmol) 

Conversion 

(%) 

RCY (%)(b) RCY (%) (2 

steps) 

1 0.24 0 0 0 (n=2) - 

2 0.24 0.002 61 48.0 ± 2.7 (n=3) - 

3 0.24 0.008 100 82.9 ± 7.9 (n=3) 12.6 ± 1.2 (n=3) 

4 0.06 0.008 48 39.5 ± 8.0 (n=3) - 
(a) Standard conditions: NaIO4 (mmol), RuCl3·xH2O (mmol), H2O (4 mL), rt, 5 min. (b) All RCYs 

were determined based on the activity of cartridge-purified [18F]1, their radio-TLC and their 

radio-UPLC purities, and their starting radioactivity. All RCYs were decay-corrected at the 

SOS. 
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The UPLC retention time of the labeled compound [18F]1 (Figure 8) was in 

agreement with those of the respective non-radioactive authentic reference 1 (Figure 

2).  
 

 
Figure 8. UPLC radio-chromatogram of the crude product [18F]1. ACQUITY UPLC® CSH C18 

column (1.7 μm, 2.1 × 100 mm); MeCN and HCO2H/H2O (0.05%, v/v) in gradient mode at 0.5 

mL·min−1 (from 100% HCO2H/H2O (0.05%, v/v) to 75% MeCN + 25% HCO2H/H2O (0.05%, v/v) 

in 6 min, and from 75% MeCN + 25% HCO2H/H2O (0.05%, v/v) to 100% HCO2H/H2O (0.05%, 

v/v) in 2 min). 

 

2.2.2. Automated radiosynthesis of the sulfone [18F]1 
 

The automated sequence for the radiosynthesis of the sulfone [18F]1 required the 

following steps: (1) machine and cassette tests (presynthesis, 7 min); (2) [18F]fluoride 

recovery, trapping, elution, and azeotropic drying (12 min); (3) transfer of the 

precursor 4 in MeCN to the reactor and 18F-labeling (9 min); (4) dilution of the crude 

product [18F]2 with water, and trapping on a tC18 Plus Short cartridge (2 min); (5) 

transfer of the NaIO4 and RuCl3·xH2O and oxidation on a tC18 cartridge at room 

temperature (6 min); (6) elution of the crude [18F]1 with MeCN to the reactor, dilution 

with water, and injection on the semi-preparative HPLC loop (4 min); (7) HPLC 

purification and collection of the purified [18F]1 (19 min); (8) dilution and trapping of 

the 18F-labeled compounds on a tC18 Plus Short cartridge followed by elution with 

anhydrous dimethyl sulfoxide (DMSO) (14 min). A more detailed description of the 

sequence of events entailing the multi-step radiosynthesis of the [18F]1 is provided in 

the Materials and Methods section. 

Figure 9 depicts the general layout of the GE FASTlabTM cassette implemented in 

the radiosynthesis of the labeled compound [18F]1. Extensive description of the 

cassette and of the materials used throughout the synthesis of [18F]1 may be consulted 

in Table 8.  
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Figure 9. Layout of the GE FASTlabTM cassette for the radiosynthesis of the labeled compound 

[18F]1. 

 

Table 8. Location of the reagents, solvents, and materials in the manifold of the GE FASTlabTM 

cassette 

Manifold 

position 

Reagents, solvents, and materials Details 

V1 Silicone tubing connected to [18O]H2O recovery 

vial 

14 cm 

V2 K2.2.2® (7.5 mg) in MeCN (600 μL) and K2CO3 (1.4 

mg) in H2O (150 μL) 

11 mm vial 

(volume = 750 

μL) 

V3 Syringe S1 (part of the manifold) Maximum 

volume = 1 mL 

V4 Sep-Pak® AccellTM Plus QMA Carbonate Plus Light 

Cartridge with silicone tubing at position V5 

46 mg (40 μm) 

(Waters) 

V5 Silicone tubing connected to the Sep-Pak® AccellTM 

Plus QMA Carbonate Plus Light Cartridge at 

position V4 

14 cm 

V6 [18O]H2O/[18F]F- inlet conical reservoir (part of the 

manifold) 

Maximum 

volume = 5 mL 

V7 Silicone tubing connected to the cyclic olefin 

copolymer (COC) reactor (left-hand side) 

14 cm 

V8 Silicone tubing connected to the COC reactor 

(central port) 

14 cm 

V9 Outlet “to HPLC loop” via silicone tubing 

connected to a Sterifix® Paed filter (B. Braun) 

30 cm 



153 

 

V10 Inlet “from HPLC loop” enabling the recovery of 

the purified labeled compound [18F]1 after semi-

preparative HPLC purification 

30 cm 

V11 Syringe S2 (part of the manifold) Maximum 

volume = 6 mL 

V12 Precursor 4 (11.1 mg, 40 µmol) solubilized in 

MeCN 

11 mm vial 

(volume = 1 mL) 

V13 MeCN 13 mm vial 

(volume = 4 mL) 

V14 NaIO4 (51.3 mg) and RuCl3·xH2O (1.7 mg) 

solubilized in H2O 

13 mm vial 

(volume = 4 mL) 

V15 Water bag spike Volume = 100 mL 

V16 MeCN 13 mm vial 

(volume = 4 mL) 

V17 Silicone tubing connected to the Sep-Pak® C18 

Plus Short Cartridge at position V18 

14 cm 

V18 Sep-Pak® C18 Plus Short Cartridge with silicone 

tubing at position V17 

400 mg (37-55 

µm) 

V19 Outlet waste bottle 21 cm 

V20 Final outlet vial for collection of the labeled 

compound [18F]1 after semi-preparative HPLC 

purification and reformulation 

50 cm 

V21 Silicone tubing connected to the Sep-Pak® C18 

Plus Short Cartridge at position V22 

14 cm 

V22 Sep-Pak® C18 Plus Short Cartridge with silicone 

tubing at position V21 

400 mg (37-55 

µm) 

V23 Anhydrous DMSO 13 mm vial 

(volume = 4 mL) 

V24 Syringe S3 (part of the manifold) Maximum 

volume = 6 mL 

V25 Silicone tubing connected to the COC reactor 

(right-hand side) and vent valve for the reactor 

42 cm 

 

A reverse-phase HPLC purification procedure was implemented after the two-

step radiosynthesis of the cartridge-purified sulfone [18F]1 on the GE FASTlabTM 

module. The selection of mobile phase of MeCN/H2O (40/60, v/v) in isocratic mode 

revealed to be appropriate for the separation between the 18F-labelled compound 

[18F]1 and the respective UV- and radio-HPLC impurities. One of the main impurities 

detected in UV-HPLC profile corresponded to the product derived from the oxidation 

of the unreacted precursor 4 (bromofluoromethyl benzothiazolyl-sulfone, 5) (Figure 

10A). The radioactive peak corresponding to the compound [18F]1 was collected after 

16 min to vial containing 30 mL of water (Figure 10B). In the reformulation step, the 

prior dilution of the purified [18F]1 in water was critical to assure an optimum 
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trapping of the labeled compound in a preconditioned Sep-Pak® Plus Short cartridge. 

The trapped [18F]1 was then eluted with anhydrous DMSO using reverse flow and 

recovered in a 4 mL-sealed vial.  

 
Figure 10. (A) Ultraviolet-high performance liquid chromatography (UV-HPLC) purification 

profile of the crude [18F]1 (wavelength: 254 nm). (B) Radio-HPLC purification profile of the 

crude [18F]1. Note: the appearance of broad flat-topped peaks in UV-HPLC chromatogram is 

derived from a saturation of the UV detector by the injecting crude product [18F]1. XBridge® 

BEH C18 OBDTM Prep column (130 Å, 5 µm, 10 mm × 250 mm; Waters, Milford, MA, USA); 

MeCN/H2O (40/60, v/v) in isocratic mode (flow rate: 5 mL·min-1). 

 

The full automation (18F-labeling, oxidation, HPLC purification, and 

formulation) enabled the radiosynthesis of [18F]1 in 66 min. Starting with 120-135 GBq 

of [18F]fluoride, the labeled compound [18F]1 was isolated in 4.5 ± 0.1% RCY (decay-

corrected at the SOS) and with a molar activity of 54 ± 7 GBq·μmol−1.  
 

3. Material and Methods 

 

3.1. Chemistry 
 

All solvents and reagents were purchased from Sigma Aldrich (Overijse, 

Belgium), TCI Europe N.V. (Zwijndrecht, Belgium), abcr GmbH (Karlsruhe, 

Germany), or VWR (Oud-Heverlee, Belgium), and no further purification process was 

implemented. Solvents were evaporated using a HEI-VAP rotary evaporator 

(Heidolph, Germany). Thin-layer chromatography (TLC) analyses were carried out 

on silica gel Polygram® SIL G/UV254 pre-coated TLC-sheets (Macherey-Nagel, Düren, 

Germany). Ultra-performance liquid chromatography (UPLC) analyses were carried 

out on a Waters system (ACQUITY UPLC® PDA UV detector (190–400 nm), Waters, 

Milford, MA, USA) controlled by the Empower software and with an ACQUITY 

UPLC® CSH C18 column (1.7 μm, 2.1 × 100 mm) (Waters, Milford, MA, USA), at 0.5 

mL·min−1 and 45 °C. 1H-, 13C-, and 19F-nuclear magnetic resonance (NMR) spectra 

were recorded at room temperature on a Bruker AVANCE III UltraShield NanoBay 

400 MHz NMR Spectrometer (400 MHz for 1H, 101 MHz for 13C, and 376 MHz for 19F, 
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Bruker Biosciences Corporation, Billerica, MA, USA). The newly synthesized 

compounds were analyzed in DMSO-d6 at a probe temperature of 300 K. For 1H- and 
13C-NMR spectra, the chemical shifts (δ) were expressed in ppm downfield from 

tetramethylsilane (TMS) as an internal standard. For 19F-NMR spectra, the chemical 

shifts (δ) were given in ppm downfield from trifluoroacetic acid (TFA, δ = −76.50 ppm) 

as internal standard. The NMR multiplicity signals were abbreviated as: s = singlet, d 

= doublet, t = triplet, dd = doublet of doublets, ddd = doublet of doublet of doublets, 

or m = multiplet. The coupling constants (J) were given in Hz and reported to the 

nearest 1 Hz. High-resolution mass spectroscopy (HRMS) spectra were measured on 

using a SYNAPT G2-SI Waters QTOF mass spectrometer (Waters, Milford, MA, USA). 

This spectrometer is equipped with an electrospray ionization (ESI) source and a 

Waters Acquity H-class UPLC with diode array detector (210 to 400 nm) (Waters, 

Milford, MA, USA). An Acquity UPLC HSS T3 C18 column (1.8 μm, 2.1 × 50 mm) was 

used. The melting points (m.p.) of the solid compounds were measured using a 

Büchi® melting point apparatus (model B-545, AC/DC input 230 V AC, Büchi, Flawil, 

Switzerland). 

 

3.1.1. Synthesis of 2-((Difluoromethyl)thio)benzo[d]thiazole (2) 

The difluoromethylation of benzothiazolyl-thiol (1) was achieved following the 

slightly modified protocols [21,44]. Sodium chlorodifluoroacetate (915 mg, 6.0 mmol, 

2.0 equiv.) and potassium carbonate (622 mg, 4.5 mmol, 1.5 equiv.) were added to a 

single-neck round-bottom flask with DMF (5 mL) and the resulting suspension was 

stirred at room temperature for 5 minutes. Afterwards, a solution of the heteroaryl-

thiol 3 (502 mg, 3.0 mmol, 1.0 equiv.) in DMF (5 mL) was slowly added. The reaction 

mixture was stirred at 95 °C for 15 minutes and then cooled down to room 

temperature. After dilution with H2O (10 mL), the crude product was extracted with 

DCM (3 × 20 mL). The organic layers were gathered and dried over anhydrous 

MgSO4. After filtration, the crude product solution was concentrated under reduced 

pressure and further purified by flash column chromatography (SiO2; heptane/EtOAc 

(95/5, v/v)) to obtain the sulfide 2 as yellow oil.  

 

2-((Difluoromethyl)thio)benzo[d]thiazole (2). Yellow oil (350 mg, 54% yield); 1H-NMR 

(DMSO-d6, 400 MHz): δ = 8.16 (1H, d, JHH = 8.2 Hz), 8.06 (1H, d, JHH = 8.2 Hz), 7.99 (1H, 

t, JHF = 56.3 Hz), 7.60-7.56 (1H, m), 7.54-7.50 (1H, m) ppm; 13C-NMR (DMSO-d6, 101 

MHz): δ = 155.9, 152.3, 136.0, 126.8, 125.8, 122.5, 122.1, 120.3 (t, JCF = 275 Hz) ppm; 19F-

NMR (DMSO-d6 + TFA, 376 MHz): - 94.4 (2F, d, JHF = 54 Hz) ppm; m/z [C8H5F2NS2 + 

H]+ calcd. for [C8H5F2NS2]: 217.9910; found: 217.9910. 

 

3.1.2. Synthesis of 2-((Bromofluoromethyl)thio)benzo[d]thiazole (4)  

A solution of KOH (1.68 g, 30.0 mmol, 10.0 equiv.) in H2O (4 mL) was placed in 

a single-neck round-bottom flask and stirred at 0 °C. Afterwards, a solution of the 

heteroaryl-thiol 1 (502 mg, 3.0 mmol, 1.0 equiv.) in THF (3 mL) was added and the 
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resulting mixture was allowed to stir at room temperature for 20 min. A solution of 

dibromofluoromethane (0.380 mL, 4.8 mmol, 1.6 equiv.) in THF (1 mL) was slowly 

introduced in the reaction system, and the resulting mixture was stirred at room 

temperature for 15–20 min. The suspension was subsequently quenched by addition 

of H2O (20 mL), and the crude product was extracted with DCM (3 × 30 mL). The 

combined organic layers were gathered and were dried over anhydrous MgSO4. After 

filtration, the solvent was removed under reduced pressure. The purification of the 

concentrated crude product was performed by flash chromatography (SiO2; 

heptane/EtOAc (95/5, v/v)) to furnish the bromofluoromethyl heteroaryl-sulfide 4 as 

pure compound. 
 

2-((Bromofluoromethyl)thio)benzo[d]thiazole (4). Yellow oil (130 mg, 16% yield); 1H-NMR 

(DMSO-d6, 400 MHz): δ = 8.47 (1H, d, JHF = 56 Hz), 8.15 (1H, d, JHH = 7.6 Hz), 8.06 (1H, 

d, JHH = 7.6 Hz), 7.58 (1H, t, JHH = 7.6 Hz), 7.51 (1H, t, JHH = 7.6 Hz) ppm; 13C-NMR 

(DMSO-d6, 101 MHz): δ = 199.5, 152.1, 135.8, 126.8, 125.7, 122.4, 122.1, 90.6 (d, JCF = 295 

Hz) ppm; 19F-NMR (DMSO-d6 + TFA, 376 MHz): δ = -105.5 (1F, d, JHF = 54 Hz) ppm; 

m/z [C8H5BrFNS2 + H]+ calcd. for [C8H5BrFNS2]: 277.9106; found: 277.9109. 

 

3.1.3. Synthesis of 2-((Difluoromethyl)sulfonyl)benzo[d]thiazole (1) and 2-

((Bromofluoromethyl)sulfonyl)benzo[d]thiazole (5) 

To a round-bottom flask containing the difluoromethyl heteroaryl-sulfide 2 (217 

mg, 1.0 mmol, 1.0 equiv.) or the bromofluoromethyl heteroaryl-sulfide 4 (278 mg, 1.0 

mmol, 1.0 equiv.) in MeCN (2 mL) and CHCl3 (2 mL), a solution of sodium 

(meta)periodate (NaIO4) (1.07 g, 5.0 mmol, 5 equiv.) and ruthenium (III) chloride 

hydrate (RuCl3·xH2O) (10 mg, 0.05 mmol, 0.05 equiv.) in H2O (4 mL) was added to the 

reaction system. The resulting reaction mixture was stirred at room temperature for 

1 h. After the completion of the reaction, the suspension was diluted with H2O (5 mL) 

and the crude product was extracted with DCM (3 × 25 mL). The combined organic 

layers were washed with saturated aqueous solution of NaHCO3 and subsequently 

dried over anhydrous MgSO4. After filtration, the solvent was evaporated under 

reduced pressure. The resulting crude product was then purified by flash 

chromatography (SiO2; heptane/EtOAc (90/10, v/v)) to afford the sulfones 1 and 5 as 

pure compounds. 

 

2-((Difluoromethyl)sulfonyl)benzo[d]thiazole (1). White solid (170 mg, 67% yield); m.p. 

155-156 °C; 1H-NMR (DMSO-d6, 400 MHz): δ = 8.47-8.41 (2H, m), 7.83-7.81 (2H, m), 

7.73 (1H, t, JHF = 53 Hz) ppm; 13C-NMR (DMSO-d6, 101 MHz): δ = 159.0, 152.4, 137.5, 

129.2, 128.6, 125.5, 123.7, 115.0 (t, JCF = 282 Hz) ppm; 19F-NMR (DMSO-d6 + TFA, 376 

MHz): -124.0 (2F, d, JHF = 53 Hz) ppm.  

 

2-((Bromofluoromethyl)sulfonyl)benzo[d]thiazole (5). White solid (210 mg, 68% yield); 

m.p. 129-131 °C; 1H-NMR (DMSO-d6, 400 MHz): δ = 8.31-8.26 (1H, m), 8.09-8.04 (1H, 
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m), 7.74-7.62 (2H, m), 7.37 (1H, d, JHF = 48 Hz) ppm; 13C-NMR (DMSO-d6, 101 MHz): δ 

= 158.7, 152.3, 137.3, 128.5, 127.8, 125.5, 121.9, 95.4 (d, JCF = 293 Hz) ppm; 19F-NMR 

(DMSO-d6 + TFA, 376 MHz): -140.2 ppm. 

 

3.1.4. Synthesis of 2-((Bromofluoromethyl)sulfinyl)benzo[d]thiazole (6) and 2-

((Difluoromethyl)sulfinyl)benzo[d]thiazole (7)  

Meta-chloroperoxybenzoic acid (mCPBA) (190 mg, 1.1 mmol, 1.1 equiv.) was 

slowly added at 0 °C to a stirred solution of difluoromethyl benzothiazolyl-sulfide 2 

(217 mg, 1.0 mmol, 1.0 equiv.) or bromofluoromethyl benzothiazolyl-sulfide 4 (278 

mg, 1.0 mmol, 1.0 equiv.) in DCM (2 mL). The reaction mixture was stirred at 0 °C for 

4 h. After the completion of the reaction, the crude product was extracted with a 

saturated solution of NaHCO3 (2 × 25 mL) and with DCM (3 × 25 mL). The organic 

layers were gathered and subsequently dried over anhydrous MgSO4. After filtration, 

the solution was concentrated under reduced pressure and the resulting crude 

products were further purified by flash chromatography (SiO2; heptane/EtOAc (95/5, 

v/v)) to furnish the heteroaryl-sulfoxides 6 and 7 as pure compounds. 

 

2-((Bromofluoromethyl)sulfinyl)benzo[d]thiazole (6). Light yellow solid (215 mg, 73% 

yield); m.p. 100-102 °C; 1H-NMR (DMSO-d6, 400 MHz): δ = 8.34-8.31 (1H, m), 8.21-8.18 

(1H, m), 8.13 (1H, d, JFH = 47.3 Hz), 7.70-7.61 (2H, m) ppm; 13C-NMR (DMSO-d6, 101 

MHz): δ = 171.6 (d, JCF = 8.9 Hz), 152.9, 135.6, 127.5, 127.0, 124.0, 123.3, 105.3 (d, JCF = 

290.7 Hz) ppm; 19F-NMR (DMSO-d6 + TFA, 376 MHz): -142.7 (1F, d, JFH = 47.3 Hz), -

147.2 (1F, d, JFH = 47.3 Hz) ppm. 

 

2-((Difluoromethyl)sulfinyl)benzo[d]thiazole (7). White solid (174 mg, 75% yield); m.p. 

135-137 °C; 1H-NMR (DMSO-d6, 400 MHz): δ = 8.35-8.32 (1H, m), 8.21-8.18 (1H, m), 

7.70-7.62 (2H, m), 7.37 (1H, dd, JHF = 53.4 and 53.4 Hz) ppm; 13C-NMR (DMSO-d6, 101 

MHz): δ = 170.7-170.6 (m), 153.1, 135.5, 127.5, 127.0, 124.0, 123.3, 120.2 (dd, JCF = 293.4 

and 289.5 Hz) ppm; 19F-NMR (DMSO-d6 + TFA, 376 MHz): -121.2 (1F, dd, JFH = 251.2 

and 53.4 Hz), -124.0 (1F, dd, JFH = 251.2 and 53.4 Hz) ppm. 

 

3.2. Radiochemistry 

Semi-preparative high performance liquid chromatography (HPLC) purification 

was conducted on a XBridge® BEH C18 OBDTM Prep column (130 Å, 5 µm, 10 mm × 

250 mm; Waters, Milford, MA, USA) with a mixture of MeCN/H2O (40/60, v/v) in 

isocratic mode (flow rate: 5 mL·min-1). The radio-HPLC profiles were monitored with 

a custom homemade Geiger-Muller (GM) radioactivity detector (Thermo Fisher 

Scientific, Waltham, MA, USA), connected to the semi-preparative HPLC system. 

Ultra performance liquid chromatography (UPLC) analyses were performed at 45 °C 

using an ACQUITY UPLC® CSHTM C18 column (2.1 × 100 mm, 1.7 µm; Waters, 

Milford, MA, USA) on an ACQUITY UPLC® system with a mobile phase of MeCN 

and HCO2H/H2O (0.05%, v/v) in gradient mode at 0.5 mL·min−1 (from 100% 
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HCO2H/H2O (0.05%, v/v) to 75% MeCN + 25% HCO2H/H2O (0.05%, v/v) in 6 min, and 

from 75% MeCN + 25% HCO2H/H2O (0.05%, v/v) to 100% HCO2H/H2O (0.05%, v/v) 

in 2 min). The UV signal of the newly synthesized 18F-labeled compounds was 

measured at 254 nm with a photodiode array (PDA) UV detector (190–400 nm) 

controlled by the Empower software and connected to the UPLC system. A thallium-

activated sodium iodide (NaI(Tl)) scintillation detector from Eberline (Eberline 

Instruments Corp, Miami, FL, USA) was used to monitor the radio-UPLC elution 

profile of the newly synthesized 18F-labeled compounds. TLC analyses were carried 

out on silica gel Polygram® SIL G/UV254 pre-coated TLC-sheets (TLC eluent: n-

hexane/ethyl acetate, 1:1) (Macherey-Nagel, Düren, Germany). The TLC profile of 18F-

labeled compounds was then analyzed with a BertHold TLC scanner model AR2000 

(BertHold, Bad Wildbad, Germany). 

The radiosyntheses of the 18F-labeled compounds were achieved using the 

commercially available FASTlabTM synthesizer (GE Healthcare, Chicago, IL, USA). 

The SepPak® cartridges (SepPak® AccellTM Plus QMA Carbonate Plus Light 

Cartridge (46 mg, 40 µm) and SepPak® tC18 Plus Short Cartridge (400 mg, 37–55 µm) 

were purchased from Waters (Milford, MA, USA). No-carrier-added [18F]fluoride was 

prepared from the 18O-enriched water ([18O]H2O) via the 18O(p,n)18F nuclear reaction 

with a Cyclone 18/9 from IBA (Louvain-la-Neuve, Belgium). [18O]H2O was purchased 

from Cambridge Isotope Laboratories (Tewksbury, MA, USA). At the end of 

bombardment (EOB), the activity was transferred to the hot lab cell with helium 

pressure through Teflon tubing (~ 50 m). 

 

3.2.1. Fully Automated Radiosynthesis of 2-((Difluoromethyl)sulfonyl) 

benzo[d]thiazole ([18F]1) 

The fully automated radiosynthesis of the labeled compound [18F]1 was 

conducted in a FASTlabTM synthesizer (GE Healthcare, Chicago, IL, USA). The 

reagents and solvents used in the radiosynthesis of [18F]1 was placed in 11 mm- and 

13 mm-sealed vials and positioned in the FASTlabTM manifold as depicted in Table 8 

and illustrated in Figure 9. 

The no-carrier-added (n.c.a.) [18F]fluoride in [18O]H2O was transferred from the 

cyclotron target onto the FASTlabTM synthesizer via the [18F]fluoride inlet conical 

reservoir (V6). The [18F]fluoride was trapped on an ion-exchange resin (Sep-Pak® 

AccellTM Plus QMA Carbonate Plus Light Cartridge; Waters, Milford, MA, USA; from 

V5 to V4) and the [18O]H2O was recovered in a separate vial (V1). The trapped 

[18F]fluoride was eluted into the cyclic olefin copolymer (COC) reactor through a 

central tubing (V8) with a solution of Kryptofix® 222 (K2.2.2; 7.5 mg in 600 μL of MeCN) 

and K2CO3 (1.4 mg in 150 μL of H2O). The eluent was azeotropically evaporated under 

vacuum and nitrogen flow by heating at 105 °C and 120 °C for 8 min. Subsequently, 

a solution of the precursor 4 (11.1 mg, 0.04 mmol) solubilized in MeCN (1.0 mL) was 

transferred to the dry [18F]potassium fluoride/Kryptofix® 222 ([18F]KF/K2.2.2) complex 

via the central tubing of the reactor (V8) and heated to 120 °C for 5 min. After the 18F-
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labeling of 4, the reaction mixture was diluted two times with H2O (~ 12 mL) (V15), 

and the labeled compound [18F]2 was trapped on a tC18 cartridge (Sep-Pak® C18 Plus 

Short Cartridge; Waters, Milford, MA, USA; from V17 to V18). The COC reactor was 

subsequently washed with H2O (~ 4 mL), and the crude solution was passed through 

the tC18 cartridge. A solution containing NaIO4 (51.3 mg, 0.024 mmol) and 

RuCl3·xH2O (1.7 mg, 0.008 mmol) in H2O (4.0 mL) was transferred to the tC18 cartridge 

and the oxidation of the labeled compound [18F]2 was carried out on the solid-phase 

for 5 min at room temperature. Afterwards, the crude product [18F]1 was eluted (from 

V18 to V17; reverse flow elution) with MeCN (2 mL; syringe S3, V24) and recovered 

into the reactor through its central tubing. After dilution with H2O (~ 4 mL) using the 

syringe S2 (V11), the resulting mixture was conducted to the semi-preparative HPLC 

loop (V9; 6 mL) via a Sterifix® Paed filter (B. Braun, Melsungen, Germany; 0.2 μm). 

The COC reactor was subsequently washed with H2O (~ 2 mL) and this solution was 

also transferred into the HPLC loop. The semi-preparative HPLC purification of [18F]1 

was accomplished with a mixture of MeCN/H2O (40/60, v/v) in isocratic mode at 5 

mL·min-1. The HPLC peak corresponding to the [18F]1 were collected (retention time 

of [18F]1: 16-19 min) in a sealed vial containing H2O (~ 30 mL). Subsequently, the 

purified compound [18F]1 was pumped (from V10), 6 mL by 6 mL, with the syringe 

S2 (V11) and further conducted to a preconditioned tC18 cartridge (from V21 to V22). 

Finally, [18F]1 was eluted into the outlet vial (V20) with reverse flow of DMSO (1 mL, 

syringe S3 (V24)). 

 

3.2.2. Low-Activity 18F-Labeling Experiments in the Precursor 4 

Using the GE FASTlabTM synthesizer, an aliquot of [18F]fluoride (100–150 MBq) 

was trapped on a Sep-Pak® AccellTM Plus QMA Carbonate Plus Light cartridge 

(Waters, Milford, MA, USA) and eluted with a solution of Kryptofix® 222 (K2.2.2; 7.5 

mg in 600 μL of MeCN) and K2CO3 (1.4 mg in 150 μL of H2O). Upon azeotropic drying, 

a solution of the precursor 4 (11.1 mg, 0.04 mmol) in MeCN (1 mL) was transferred to 

the dry [18F]potassium fluoride/Kryptofix® 222 ([18F]KF/K2.2.2) complex and heated to 

120 °C. After 5 min of 18F-labeling and dilution of the reaction mixture with H2O, the 

labeled compound [18F]2 was trapped on a Sep-Pak® C18 Plus Short cartridge (Waters, 

Milford, MA, USA). Subsequently, the tC18 cartridge was removed and the trapped 

crude product [18F]2 was recovered to a 4 mL-vial via manual elution with MeCN (1 

mL). The radiochemical yield (RCY) of the 18F-labeling step was determined based on 

the activity of the recovered crude product [18F]2, on their radio-TLC and radio-UPLC 

purities, and the starting radioactivity, according to the following equation:  

𝑅𝐶𝑌 (%, 𝑑. 𝑐. ) =  
𝑟𝑎𝑑𝑖𝑜𝑇𝐿𝐶 𝑝𝑢𝑟𝑖𝑡𝑦 (%) ×  𝑟𝑎𝑑𝑖𝑜𝑈𝑃𝐿𝐶 𝑝𝑢𝑟𝑖𝑡𝑦 (%) ×  𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑜𝑓 [𝟏𝟖𝐅]𝟐 (𝑑. 𝑐. )

𝑠𝑡𝑎𝑟𝑡𝑖𝑛𝑔 𝑟𝑎𝑑𝑖𝑜𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 ×  100
 

A solution containing NaIO4 (51.3 mg, 0.024 mmol) and RuCl3·xH2O (1.7 mg, 

0.008 mmol) in H2O (1 mL) was transferred to the tC18 cartridge and the oxidation of 

the trapped crude product [18F]2 (10–20 MBq) was carried out in solid-phase for 5 min 

at room temperature. Afterwards, the corresponding [18F]difluoromethyl heteroaryl-
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sulfone [18F]1 was manually eluted from the tC18 cartridge with MeCN (1 mL) to a 4 

mL-vial. The RCY of the oxidation step was determined based on the activity of the 

crude products [18F]1 and [18F]2, and on their radio-TLC and radio-UPLC purities, 

according to the following equation: 

𝑅𝐶𝑌 (%, 𝑑. 𝑐. ) =  
𝑟𝑎𝑑𝑖𝑜𝑇𝐿𝐶 𝑝𝑢𝑟𝑖𝑡𝑦 (%) ×  𝑟𝑎𝑑𝑖𝑜𝑈𝑃𝐿𝐶 𝑝𝑢𝑟𝑖𝑡𝑦 (%) ×  𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑜𝑓 [𝟏𝟖𝐅]𝟏 (𝑑. 𝑐. )

𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑜𝑓 [𝟏𝟖𝐅]𝟐 ×  100
 

The RCYs of 18F-labeling and oxidation steps were decay-corrected at the SOS. 

 

3.2.3. Isolation and Determination of the Molar Activity of [18F]1 

The fully automated radiosynthesis of the sulfone [18F]1 was accomplished on a 

commercially available FASTlabTM synthesizer (GE Healthcare, Chicago, IL, USA), 

using the optimized conditions for the labeling of the precursor 4 (11.1 mg, 0.04 

mmol), and for the oxidation of the labeled compound [18F]2. The molar activity of the 

sulfone [18F]1 was determined using an aliquot of the reformulated solution (3 µL). 

After UPLC injection, the radioactive peak of [18F]1 associated to the non-radioactive 

sulfone 1 was collected and counted in an ionization chamber. The PDA UV area 

under the peak of the non-radioactive sulfone 1 at 239 nm enabled the determination 

of the corresponding amount (in µmol) of the 1 using the calibration curves described 

in the Supplementary Information (Figure S18). The molar activity of [18F]1 was 

determined on the basis of the following equation: 

 

𝑀𝑜𝑙𝑎𝑟 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 (𝐺𝐵𝑞 · µ𝑚𝑜𝑙−1) =  
𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑒𝑑 𝑈𝑃𝐿𝐶 𝑝𝑒𝑎𝑘 𝑜𝑓 [𝟏𝟖𝐅]𝟏 

𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝟏 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑 𝑡𝑜 𝑡ℎ𝑒 𝑟𝑎𝑑𝑖𝑜𝑎𝑐𝑡𝑖𝑣𝑒 𝑝𝑒𝑎𝑘
 

 

4. Conclusions  
 

From the investigated synthetic approaches, a two-step methodology involving 

an initial 18F-labeling of the bromofluoromethyl-sulfide derivative 4 with [18F]KF/K2.2.2 

and subsequent oxidation of the 18F-difluoromethyl-containing derivative [18F]2 was 

selected for the synthesis of [18F]1. Our results showed that the efficiency of the 

nucleophilic 18F-fluorination was mainly influenced by the solvent, the temperature, 

the reaction time, the amount of precursor, and the type of base used for elution of 

[18F]fluoride from a QMA cartridge. Under optimal conditions, the cartridge-purified 

[18F]2 was afforded in 15.2 ± 0.3% RCY (decay-corrected at the SOS). Regarding the 

oxidation step, the amount of NaIO4 and RuCl3·xH2O had an impact on the conversion 

of the sulfide [18F]2 into the sulfone [18F]1. This 18F-labeled product was isolated in 82.9 

± 7.9% RCY (decay-corrected at the SOS).  

The two-step radiosynthesis of the [18F]difluoromethyl heteroaryl-sulfone [18F]1 

was fully automated in the GE FASTlabTM module. In conjunction with a semi-

preparative HPLC purification procedure and formulation in a preconditioned Sep-

Pak® C18 Plus Short Cartridge, the reagent [18F]1 was isolated in reproducible 4.5 ± 

0.1% RCY (decay-corrected at the SOS).  
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Obtaining a high molar activity still persists a challenging task in the 

radiosynthesis of [18F]CHF2–bearing compounds, due to the unwanted 18F–19F isotopic 

exchange reactions. In fact, the reported 18F-labeling methods enabled the access to 

[18F]CHF2–bearing compounds with low-to-medium molar activity (up to 22 

GBq·μmol−1) [45-49]. The production of radiotracers with high molar activity is 

mandatory for PET imaging studies, especially for targeting low-density 

biomacromolecules. Starting with 120-135 GBq of [18F]fluoride, the labeled compound 

[18F]1 was obtained with a molar activity of 54 ± 7 GBq·μmol−1 at the EOS.  

The reagent [18F]1 was further utilized in the late-stage C-H 18F-

difluoromethylation of a wide range of N-containing heteroarenes, in particular of 

drugs, nucleosides, and nucleic bases, under irradiation with blue light-emitting 

diode (LED) (470 nm, 2 W) [50]. The C-H 18F-difluoromethylation reactions performed 

in continuous-flow using an easy-to-use platform equipped with a 100 μL 

microreactor made from glass and a syringe that continuously pumps the reaction 

mixture into the microreactor at a given flow rate (FlowStart Evo, FutureChemistry, 

Nijmegen, The Netherlands). This method may enable the access to novel 18F-

difluoromethyl-containing PET ligands with improved molar activities.  

 

5. Supplementary Information 

 

5.1. NMR spectra of the compounds 1, 2, and 4-7 

 
Figure S1. 1H-NMR spectrum of 1. 
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Figure S2. 13C-NMR spectrum of 1. 

 

 

 
Figure S3. 19F-NMR spectrum of 1. 
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Figure S4. 1H-NMR spectrum of 2. 

 

 

 
Figure S5. 13C-NMR spectrum of 2. 
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Figure S6. 19F-NMR spectrum of 2. 

 

 

 

 
Figure S7. 1H-NMR spectrum of 4. 
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Figure S8. 13C-NMR spectrum of 4. 

 

 

 
Figure S9. 19F-NMR spectrum of 4. 
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Figure S10. 1H-NMR spectrum of 5. 

 

 
Figure S11. 13C-NMR spectrum of 5. 
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Figure S12. 19F-NMR spectrum of 5. 

 

 

 
Figure S13. 1H-NMR spectrum of 6. 
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Figure S14. 13C-NMR spectrum of 6. 

 

 

 
Figure S15. 19F-NMR spectrum of 6. 
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Figure S16. 1H-NMR spectrum of 7. 

 

 

 
Figure S17. 13C-NMR spectrum of 7. 
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Figure S18. 19F-NMR spectrum of 7. 

 

5.2. Radiochemistry 
 

The UPLC gradient used for the analyses of the crude products are depicted in 

Table S1.  

 
Table S1. UPLC gradient for the analysis of the crude products 
 

Time (min) HCO2H/H2O (0.05%, v/v) MeCN Flow rate (mL·min-1) 

0 100 0 0.5 

6 25 75 0.5 

8 100 0 0.5 

 

5.2.1. Synthesis of [18F]2-((Difluoromethyl)thio)benzo[d]thiazole ([18F]2) 
 

The implementation of the general procedure 3.2.2. for the 18F-labeling of 2-

((bromofluoromethyl)thio)benzo[d]thiazole (4) (11.1 mg, 0.04 mmol) provided the 

labeled compound [18F]2 in 15.2 ± 0.3% RCY (d.c. at the SOS).  

The radiochemical yield (RCY) of the 18F-labeling step was determined based on 

the activity of the recovered crude product [18F]2, on their radio-TLC and radio-UPLC 

purities, and the starting radioactivity, according to the following formula:  
 

𝑅𝐶𝑌 (%, 𝑑. 𝑐. ) =  
𝑟𝑎𝑑𝑖𝑜𝑇𝐿𝐶 𝑝𝑢𝑟𝑖𝑡𝑦 (%) ×  𝑟𝑎𝑑𝑖𝑜𝑈𝑃𝐿𝐶 𝑝𝑢𝑟𝑖𝑡𝑦 (%) ×  𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑜𝑓 [𝟏𝟖𝐅]𝟐 (𝑑. 𝑐. )

𝑠𝑡𝑎𝑟𝑡𝑖𝑛𝑔 𝑟𝑎𝑑𝑖𝑜𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 ×  100
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Figure S19. TLC radio-chromatogram of the crude product [18F]2 (eluent: n-hexane/ethyl 

acetate, 1:1). 

 

Table S2. Determination of the radio-TLC purity of the crude product [18F]2 
 

Retention factor (Rf, mm) Ratio (%) 

0.03 37 (impurity/by-product) 

0.59 63 (desired crude product) 

 

𝑅𝐶𝑌 (%, 𝑑. 𝑐. ) =  
𝑟𝑎𝑑𝑖𝑜𝑇𝐿𝐶 𝑝𝑢𝑟𝑖𝑡𝑦 (%) ×  𝑟𝑎𝑑𝑖𝑜𝑈𝑃𝐿𝐶 𝑝𝑢𝑟𝑖𝑡𝑦 (%) ×  𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑜𝑓 [𝟏𝟖𝐅]𝟏 (𝑑. 𝑐. )

𝑠𝑡𝑎𝑟𝑡𝑖𝑛𝑔 𝑟𝑎𝑑𝑖𝑜𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 ×  100
 

 

𝑅𝐶𝑌 (%, 𝑑. 𝑐. ) =  
63 ×  100 ×  35.4

144.7 ×  100
 

 
𝑅𝐶𝑌 (%, 𝑑. 𝑐. ) =  15.4 % 

 

Table S3 furnishes more details of the RCY determination. The UPLC radio-

chromatogram of the crude product [18F]2 is depicted in Figure 5. Figure 1 represents 

the UPLC UV-chromatogram of the non-radioactive reference 2. 

 
Table S3. Determination of the radiochemical yield (%) of the synthesis of [18F]2 

Reaction Starting 

activity 

(MBq) 

Activity of the 

crude product 

[18F]2 (MBq, 

d.c.) 

Radio-

TLC 

purity 

(%) 

Radio-

UPLC 

purity 

(%) 

Radiochemical 

Yield (%) 

1 126.8 30.4 63 100 15.1 

2 132.2 30.3 65 100 14.9 

3 144.7 35.4 63 100 15.4 

Radiochemical Yield (%) ± Deviation 15.2 ± 0.3 
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5.2.2. Synthesis of [18F]2-((Difluoromethyl)sulfonyl)benzo[d]thiazole ([18F]1) 
 

The implementation of the general procedure 3.2.2. for the oxidation of [18F]2-

((difluoromethyl)thio)benzo[d]thiazole ([18F]2) (10-20 MBq) provided the labeled 

compound [18F]1 in 82.9 ± 7.9% RCY (d.c. at the SOS).  

The RCY of the oxidation step was determined based on the activity of the crude 

products [18F]1 and [18F]2, and on their radio-TLC and radio-UPLC purities, according 

to the following equation: 

 

𝑅𝐶𝑌 (%, 𝑑. 𝑐. ) =  
𝑟𝑎𝑑𝑖𝑜𝑇𝐿𝐶 𝑝𝑢𝑟𝑖𝑡𝑦 (%) ×  𝑟𝑎𝑑𝑖𝑜𝑈𝑃𝐿𝐶 𝑝𝑢𝑟𝑖𝑡𝑦 (%) ×  𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑜𝑓  [𝟏𝟖𝐅]𝟏 (𝑑. 𝑐. )

𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑜𝑓 [𝟏𝟖𝐅]𝟐 ×  100
 

 

 
Figure S20. TLC radio-chromatogram of the crude product [18F]1 (eluent: n-hexane/ethyl 

acetate, 1:1). 

 
Table S4. Determination of the radio-TLC purity of the crude product [18F]1 
 

Retention factor (Rf, mm) Ratio (%) 

0.03 4 (impurity/by-product) 

0.49 96 (desired crude product) 

 

𝑅𝐶𝑌 (%, 𝑑. 𝑐. ) =  
𝑟𝑎𝑑𝑖𝑜𝑇𝐿𝐶 𝑝𝑢𝑟𝑖𝑡𝑦 (%) ×  𝑟𝑎𝑑𝑖𝑜𝑈𝑃𝐿𝐶 𝑝𝑢𝑟𝑖𝑡𝑦 (%) ×  𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑜𝑓 [𝟏𝟖𝐅]𝟏 (𝑑. 𝑐. )

𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦  𝑜𝑓 [𝟏𝟖𝐅]𝟐 (𝑑. 𝑐. )  ×  100
 

 

𝑅𝐶𝑌 (%, 𝑑. 𝑐. ) =  
100 ×  92 ×  12.0

15.6 ×  100
 

 
𝑅𝐶𝑌 (%, 𝑑. 𝑐. ) =  70.6 % 
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Table S5 furnishes more details of the RCY determination. The UPLC radio-

chromatogram of the crude product [18F]1 is depicted in Figure 8. Figure 2 represents 

the UPLC UV-chromatogram of the non-radioactive reference 1. 

 
Table S5. Determination of the radiochemical yield (%) of the synthesis of [18F]1 

Reaction Activity of 

the crude 

product 

[18F]2 (MBq) 

Activity of 

the crude 

product 

[18F]1 (MBq, 

d.c.) 

Radio-

TLC 

purity 

(%) 

Radio-

UPLC 

purity 

(%) 

Radiochemical 

Yield (%) 

1 13.8 12.1 96 100 83.9 

2 15.3 11.6 96 100 72.8 

3 15.1 14.5 96 100 92 

Radiochemical Yield (%) ± Deviation 82.9 ± 7.9 

 

5.3. Two-Step Radiosynthesis of the [18F]Difluoromethyl Heteroaryl-Sulfone [18F]1 From 

the Precursor 4 
 

The overall RCY of the 18F-labeling step of 4 and the oxidation of [18F]2 was 

determined based on the activity of the recovered crude product [18F]1, on their radio-

TLC and radio-UPLC purities, and the starting radioactivity, according to the 

following formula: 

 

𝑅𝐶𝑌 (%, 𝑑. 𝑐. ) =  
𝑟𝑎𝑑𝑖𝑜𝑇𝐿𝐶 𝑝𝑢𝑟𝑖𝑡𝑦 (%) ×  𝑟𝑎𝑑𝑖𝑜𝑈𝑃𝐿𝐶 𝑝𝑢𝑟𝑖𝑡𝑦 (%) ×  𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑜𝑓 [𝟏𝟖𝐅]𝟏 (𝑑. 𝑐. )

𝑠𝑡𝑎𝑟𝑡𝑖𝑛𝑔 𝑟𝑎𝑑𝑖𝑜𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 ×  100
 

 

Table S6 furnishes more details of the RCY determination of the radiosynthesis 

of the [18F]difluoromethyl heteroaryl-sulfone [18F]1 from the precursor 4. 
 

Table S6. Determination of the radiochemical yield (%) of the synthesis of [18F]1 from the 

precursor 4 

Reaction Starting 

activity 

(MBq) 

Activity of the 

crude product 

[18F]1 (MBq, 

d.c.) 

Radio-

TLC 

purity 

(%) 

Radio-

UPLC 

purity 

(%) 

Radiochemical 

Yield (%) 

1 158.5 22.2 93 100 13.0 

2 117.0 16.8 96 100 13.8 

3 118.4 13.7 95 100 11 

Radiochemical Yield (%) ± Deviation 12.6 ± 1.2 

 

5.4. Fully Automated Radiosynthesis of the Labeled Compound [18F]1 
 

The RCY of the fully automated radiosynthesis of the [18F]difluoromethyl 

heteroaryl-sulfone [18F]1 was determined based on the radioactivity of the [18F]1 
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present in DMSO solution and the radioactivity trapped on the QMA carbonate 

cartridge, according to the following formula: 

 

𝑅𝐶𝑌 (%, 𝑑. 𝑐. ) =  
𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑜𝑓 [𝟏𝟖𝐅]𝟏 in DMSO (𝑑. 𝑐. )

𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑡𝑟𝑎𝑝𝑝𝑒𝑑 𝑜𝑛 𝑡ℎ𝑒 𝑄𝑀𝐴 𝑐𝑎𝑟𝑏𝑜𝑛𝑎𝑡𝑒 𝑐𝑎𝑟𝑡𝑟𝑖𝑑𝑔𝑒 ×  100
 

 

Table S7 provide more details of the RCY determination of the radiosynthesis of 

the [18F]difluoromethyl heteroaryl-sulfone [18F]1 from the precursor 4. 
 

Table S7. Determination of the radiochemical yield (%) of the synthesis of [18F]1 from the 

precursor 4 

Reaction Starting activity 

(GBq) 

Activity of the isolated 

product [18F]1 (GBq, d.c.) 

Radiochemical 

Yield (%) 

1 125.3 5.8 4.6 

2 134.7 6.3 4.7 

3 126.7 5.7 4.5 

4 123.3 5.3 4.3 

Radiochemical Yield (%) ± Deviation 4.5 ± 0.1 

 

5.5. Calibration Curves of the Difluoromethyl Heteroaryl-Sulfone 1 for Determination of 

the Molar Activity of [18F]1 
 

The fully automated radiosynthesis of the sulfone [18F]1 was performed on a 

commercially available FASTlabTM synthesizer (GE Healthcare), using the optimized 

conditions for the labeling of the precursor 1 (11.1 mg, 0.04 mmol) and the oxidation 

of the labeled compound [18F]2. The molar activity of the [18F]difluoromethyl 

heteroaryl-sulfone [18F]1 was determined using an aliquot of each reformulated 

solution (3 µL). After injection of an aliquot in UPLC, the radioactive peak of [18F]1 

associated to the non-radioactive sulfone 1 was collected and counted in an ionization 

chamber. The PDA UV area under the peak of the non-radioactive sulfone 1 at 239 

nm enabled the determination of the corresponding amount (in µmol) of the 

difluoromethyl heteroaryl-sulfone using the calibration curve described in Figure 

S21. The molar activity was calculated by the ratio between the radioactivity of the 

[18F]1 and the corresponding amount of non-radioactive compound, according to the 

following formula: 

𝑀𝑜𝑙𝑎𝑟 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 (𝐺𝐵𝑞 · µ𝑚𝑜𝑙−1) =
𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑜𝑓 𝑡ℎ𝑒 𝑈𝑃𝐿𝐶 𝑝𝑒𝑎𝑘 𝑜𝑓 [𝟏𝟖𝐅]𝟏 

𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝟏 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑 𝑡𝑜 𝑡ℎ𝑒 𝑟𝑎𝑑𝑖𝑜𝑎𝑐𝑡𝑖𝑣𝑒 𝑝𝑒𝑎𝑘
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Figure S21. Calibration curve of the difluoromethyl heteroaryl-sulfone 1 (wavelength: 239 nm).  

 

Table S8. Determination of the molar activity of [18F]1 

Reaction Activity of the 

radioactive peak 

of [18F]1 (GBq) 

Area under the 

peak of 1 (UA) 

at 239 nm 

Amount of 

1 (µmol) 

Molar activity 

(GBq·µmol-1) 

1 1.781 × 10-2 537563 3.634 × 10-4 49 

2 1.146 × 10-2 360606 2.437 × 10-4 47 

3 1.152 × 10-2 309991 2.095 × 10-4 55 

4 1.713 × 10-2 396010 2.677 × 10-4 64 

Molar activity (GBq·µmol-1) ± Deviation 54 ± 7 
 

 

The sulfone [18F]1 was isolated with a molar activity of 54 ± 7 GBq·µmol-1 at the EOS.  
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Radical C-H 18F-Difluoromethylation of Heteroarenes with 

[18F]Difluoromethyl Heteroaryl-Sulfones by Visible Light 

Photoredox Catalysis  
 

Abstract: The 18F-labeling of CHF2 groups has been recently studied in 

radiopharmaceutical chemistry owing to the favorable nuclear and physical 

characteristics of the radioisotope 18F for positron emission tomography (PET). 

Following up on the reported efficiency of the [18F]difluoromethyl benzothiazolyl-

sulfone ([18F]1) as a 18F-difluoromethylating reagent, we investigated the influence of 

structurally-related [18F]difluoromethyl heteroaryl-sulfones in the reactivity toward 

the photoredox C–H 18F-difluoromethylation of heteroarenes under continuous-flow 

conditions. In the present work, six new [18F]difluoromethyl heteroaryl-sulfones 

[18F]5a–[18F]5f were prepared and, based on the overall radiochemical yields (RCYs), 

three of these reagents ([18F]5a, [18F]5c, and [18F]5f) were selected for the fully 

automated radiosynthesis on a FASTlabTM synthesizer (GE Healthcare) at high level 

of starting radioactivity. Subsequently, their efficiency as 18F-difluoromethylating 

reagents was evaluated using the antiherpetic drug acyclovir as a model substrate. 

Our results showed that the introduction of molecular modifications in the structure 

of [18F]1 influenced the amount of fac-IrIII(ppy)3 and the residence time needed to 

ensure a complete C–H 18F-difluoromethylation process. The photocatalytic C–H 18F-

difluoromethylation reaction with the reagents [18F]5a, [18F]5c, and [18F]5f was 

extended to other heteroarenes. Radical-trapping experiments demonstrated the 

likely involvement of radical species in the C–H 18F-difluoromethylation process. 
 

Keywords: fluorine-18; difluoromethylation; heteroarenes; visible light; 

photocatalysis 
 

1. Introduction  

The fluorine-18 (18F) isotope has been regarded the “radionuclide of choice” due 

to its suitable physical and nuclear features for in vivo positron emission tomography 

(PET) imaging in living subjects [1–4]. The unique sensitivity of PET makes this 

technique appropriate for the study of absorption, distribution, metabolism, and 

excretion (ADME) properties of radiopharmaceuticals and the evaluation of their 

pharmacodynamic profile. In addition, PET technology has proven highly valuable 

in the observation of biochemical and physiological changes that may take place 

before the anatomical alterations of a certain disease are detected [5–8]. The suitability 

of the 18F radioisotope in PET has encouraged radiochemists to invest much effort in 

the development of efficient 18F-fluorination and 18F-fluoroalkylation strategies [9–19]. 

Among the existing fluorinated motifs, the difluoromethyl (CHF2) group has 

recently attracted considerable attention in medicinal chemistry due to its lipophilic 

hydrogen-bond donor properties [20–24]. The CHF2 substitution may offer a viable 

alternative to conventional hydrogen-bond donors (e.g., hydroxy (OH) and thiol (SH) 

groups) in terms of lipophilicity, cell membrane permeability, and metabolic stability, 



188 

 

thus modulating the pharmacological activity of pharmaceuticals and agrochemicals 

[25–31]. Despite the recent progresses in the preparation of CHF2-containing 

derivatives in organofluorine chemistry, methodologies for the 18F-labeling of CHF2 

groups are still relatively scarce. Most labeling strategies relied on the radiosynthesis 

of [18F]aryl–CHF2 derivatives via 18F-fluorination of suitable precursors with the 

electrophilic reagent [18F]Selectfluor bis(triflate) [32] or with the cyclotron-produced 

[18F]fluoride by aliphatic nucleophilic substitution [33–36]. Furthermore, the resulting 

[18F]aryl–CHF2 derivatives are afforded in low-to-moderate molar activities (up to 22 

GBq·µmol-1). The production of radiotracers with high molar activity is mandatory 

for PET imaging studies, especially for targeting low-density biomacromolecules. 

Recently, we disclosed an innovative method reporting the photoredox late-stage C–

H 18F-difluoromethylation of N-containing heteroarenes with the [18F]difluoromethyl 

benzothiazolyl-sulfone ([18F]1) with improved molar activity [Am ([18F]1) = 54 ± 7 

GBq·µmol-1] [37,38] (Figure 1A).  
 

 
Figure 1. (A) Photoredox C–H 18F-difluoromethylation of N-containing heteroarenes with 

[18F]difluoromethyl benzothiazolyl-sulfone ([18F]1), under continuous-flow conditions [37,38]. 

(B) Application of the difluoromethyl sulfones 1 and 2 in the preparation of heterocycles of 

biological relevance, under visible light photoredox catalysis [39–45]. 
 

In non-radioactive chemistry, difluoromethyl heteroaryl-sulfones have been 

widely implemented in photoredox catalyzed C–H difluoromethylation processes 

because of the ability of these compounds to be reduced to CHF2 radicals in the 

presence of appropriate photocatalysts in their photoexcited state. In 2016, Hu and Fu 

reported the use of difluoromethyl benzothiazolyl-sulfone (1) in the radical 

difluoromethylation of biphenyl isocyanides [39] and olefinic amides [40], 
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respectively. The reagent 1 was also employed in the preparation of CHF2–substituted 

heterocycles of biological relevance, including isoquinolinediones [41], coumarins 

[42], isoxazolines [43], and oxindoles [44]. In 2019, Liu and co-workers developed a 

procedure for difluoromethylation of N-arylacrylamides with the reagent 

difluoromethyl pyridyl-sulfone (2), under visible light photoredox conditions [45] 

(Figure 1B). Based on the effectiveness of the sulfone [18F]1 as 18F-difluoromethylating 

reagent [37,38], we intended to study the influence of certain molecular modifications 

in the structure of [18F]1 on the reactivity towards the C–H 18F-difluoromethylation of 

N-heteroaromatics. The molecular modifications consisted in the introduction of a 

single electron-donating (OCH3) (Figure 2A) or electron-withdrawing (NO2) 

substituent (Figure 2B) either at position 5 or 6 of the benzothiazolyl ring and in the 

alteration of the original benzothiazolyl moiety to other heteroaryl rings (N-methyl-

benzimidazolyl and N-phenyl-tetrazolyl rings) (Figure 2C). In this work, we opted to 

perform the radiosyntheses of structurally-related [18F]difluoromethyl heteroaryl-

sulfones and subsequently evaluate their efficiency in the photoredox C–H 18F-

difluoromethylation of heteroarenes, under continuous-flow conditions as reported 

previously [37]. To the best of our knowledge, the effectiveness of the non-radioactive 

references of these novel [18F]difluoromethyl heteroaryl-sulfones in photoredox C–H 

difluoromethylation has never been described in the literature. 
 

 
Figure 2. Molecular modifications performed on [18F]1: introduction of a single electron-

donating (OCH3) (A) or electron-withdrawing (NO2) (B) substituent either at position 5 or 6 of 

the benzothiazolyl ring, and modification of the original benzothiazolyl moiety to other 

heteroaryl rings (C). 
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2. Results and Discussion 
 

2.1. Chemistry 
 

2.1.1. Synthesis of the Difluoromethyl Heteroaryl-Sulfones 5a–5f 
 

We initially performed the organic synthesis of the difluoromethyl heteroaryl-

sulfones 5a–5f as non-radioactive standards for confirmation of the identity of the 18F-

labeled compounds. In order to prepare the difluoromethyl heteroaryl-sulfones 5a–

5f, we considered a two-step procedure involving the difluoromethylation of the 

heteroaryl-thiols 3a–3f to afford the difluoromethyl heteroaryl-sulfides 4a–4f. 

Oxidation of the sulfides 4a–4f would lead to the sulfones 5a–5f (Scheme 1). 

Inspired by the methodologies formerly described by Akita [46] and Jubault [47], 

the difluoromethylation of the heteroaryl-thiols 3a–3f using sodium 

chlorodifluoroacetate (ClCF2CO2Na) and potassium carbonate (K2CO3) provided the 

corresponding sulfides 4a–4f in moderate yields (Scheme 1, 18–58% yields). The 

difluoromethyl heteroaryl-sulfones 5a–5f were successfully achieved by oxidation of 

the sulfides 4a–4f using the oxidizing agent sodium (meta)periodate (NaIO4) and 

ruthenium (III) chloride hydrate (RuCl3·xH2O) (Scheme 1, 64–87% yields).  

The structure elucidation of the compounds 4a–4f and 5a–5f was established on 

the basis of high-resolution mass spectrometry (HRMS) and nuclear magnetic 

resonance (NMR) techniques (Figures S1–S36). 
 

 

Scheme 1. Synthesis of the difluoromethyl heteroaryl-sulfides 4a–4f and the heteroaryl-

sulfones 5a–5f. Step 1: 3a–3f (3.0 mmol), sodium chlorodifluoroacetate (6.0 mmol), K2CO3 (4.5 

mmol), DMF (10 mL), 95 °C, 15 min. Step 2: 4a–4f (1.0 mmol), sodium (meta)periodate (5.0 

mmol), ruthenium (III) chloride hydrate (0.05 mmol), MeCN (2 mL), CHCl3 (2 mL), H2O (4 mL), 

rt, 1 h. All reaction yields are of isolated products. 

 



191 

 

2.2. Radiochemistry 

 

2.2.1. Radiosyntheses of the [18F]Difluoromethyl Heteroaryl-Sulfones [18F]5a–[18F]5f 
 

We planned the radiosyntheses of the sulfones [18F]5a–[18F]5f following a two-

step methodology previously described in the literature [37]. This multi-step strategy 

involved the initial nucleophilic 18F-fluorination of the bromofluoromethyl 

heteroaryl-sulfides 6a–6f and subsequent oxidation of the [18F]difluoromethyl 

heteroaryl-sulfides [18F]4a–[18F]4f. The precursors 6a–6f were prepared by a one-step 

bromofluoromethylation of the heteroaryl-thiols 3a–3f with dibromofluoromethane 

(Br2CFH), under basic conditions (see Materials and Methods section for more details). 

The structure elucidation of the compounds 6a–6f was established on the basis of 

HRMS and NMR techniques (Figures S37-S54). Low starting radioactivity 

experiments were performed in order to investigate the propensity of the newly 

synthesized precursors to undergo the expected nucleophilic 18F-fluorination, under 

the same 18F-labeling conditions used to prepare the [18F]difluoromethyl 

benzothiazolyl-sulfide ([18F]1’) [37]. To minimize the radiation exposure, the 18F-

labeling reactions were conducted in a commercially available FASTlabTM module 

(GE Healthcare) placed in a shielded hotcell. An aliquot of a solution of [18F]fluoride 

in [18O]water ([18O]H2O) (150-200 MBq) was passed through a quaternary methyl 

ammonium (QMA) carbonate cartridge for [18F]fluoride trapping. Subsequent elution 

of the [18F]fluoride using K2.2.2/K2CO3-based eluent and azeotropic drying in a cyclic 

olefin copolymer (COC) reactor furnished the “naked” [18F]fluoride readily available 

for the nucleophilic 18F-fluorination. Precursors 6c (0.02 mmol) and 6a, 6b, 6d–6f (0.04 

mmol) in acetonitrile (MeCN, 1 mL) were added to the dry [18F]fluoride and the 18F-

labeling reaction was conducted at 120 °C for 5 min. The crude reaction mixture was 

pre-purified using a Sep-Pak® C18 Plus Short cartridge to eliminate the unreacted 

[18F]fluoride and other polar impurities. Only for RCY determination, the cartridge-

purified [18F]4a–[18F]4f were then eluted with MeCN [Scheme 2: 6 examples, 8.3-14.8% 

RCY (decay-corrected at the start-of-synthesis (SOS)]. No significant differences in 

RCYs of the radiosyntheses of the cartridge-purified [18F]1’ and [18F]4a–[18F]4f were 

remarked. These results suggest that the introduction of either electron-donating or 

electron-withdrawing groups on the benzothiazolyl ring, or the alteration of the 

original benzothiazolyl moiety to other heteroaryl rings did not have a meaningful 

impact in the reactivity of the precursors towards the 18F-labeling reaction. 
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Scheme 2. Radiosyntheses of [18F]difluoromethyl heteroaryl-sulfides ([18F]4a–[18F]4f). Standard 

conditions: 6a, 6b, 6d–6f (0.04 mmol), [18F]KF (150–200 MBq), K2CO3 (0.01 mmol), K2.2.2 (0.02 

mmol), MeCN (1 mL), 120 °C, 5 min. (a) 18F-Labeling reaction of 6c was performed on a 0.02 

mmol scale. All radiochemical yields (RCYs) were determined based on the activity of 

cartridge-purified [18F]4a–[18F]4f, their radio-thin layer chromatography (radio-TLC) and their 

radio-ultra performance liquid chromatography (radio-UPLC) purities, and the starting 

radioactivity. All RCYs were decay-corrected at the start-of-synthesis (SOS). 

 

Afterward, the oxidation of the cartridge-purified [18F]4a–[18F]4f was undergone 

in the Sep-Pak® C18 Plus Short cartridge, upon the addition of an aqueous solution of 

the NaIO4 and RuCl3·xH2O, at room temperature for 5 min. Based on the previously 

reported oxidation conditions for the radiosynthesis of [18F]1 (Table 1, Entry 1) [37], 

the labeled compound [18F]5a was synthesized from the cartridge-purified [18F]4a in 

32.1% RCY (Table 1, Entry 2). However, no complete conversion of [18F]4a was 

observed. Optimization studies were then conducted to uncover the most suitable 

reaction conditions to achieve the complete oxidation of [18F]4a. A two-fold increase 

in the amount of RuCl3·xH2O resulted in a significant improvement of the oxidation 

efficiency (Table 1, Entry 3). By raising the amount of NaIO4 from 0.24 mmol to 0.72 

mmol, the [18F]4a was fully consumed and the labeled compound [18F]5a was isolated 

in 70.9 ± 6.1% RCY, after cartridge purification (Table 1, Entry 4). 

With the optimized conditions in hand, the oxidation protocol was extended to 

the other [18F]difluoromethyl heteroaryl-sulfides ([18F]4b–[18F]4f), furnishing the 

labeled compounds [18F]5b–[18F]5f in good-to-excellent RCY (70.6–91.9% RCY, Scheme 

3). The ultra performance liquid chromatography (UPLC) retention times of the 

labeled compounds [18F]4a–[18F]4f (Figures S56–S67) and [18F]5a–[18F]5f (Figures S69–

S80) were compliant with those of the respective non-radioactive authentic references. 
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Table 1. Optimization of the oxidation conditions of the [18F]4a(a) 

 

Entry Substrate 
NaIO4 

(mmol) 

RuCl3·xH2O 

(mmol) 

Conversion 

(%)(b) 
RCY (%)(c) 

1 [18F]1’ 0.24 0.008 100 82.9 ± 7.9 (n = 3) 

2 [18F]4a 0.24 0.008 35 32.1 

3 [18F]4a 0.24 0.016 64 59.6 

4 [18F]4a 0.72 0.016 100 70.9 ± 6.1 (n = 3) 
(a) Standard conditions: NaIO4, RuCl3·xH2O, H2O (1 mL), rt, 5 min. (b) UPLC conversion of the 

substrate [18F]4a. (c) All RCYs were determined based on the activity of cartridge-purified [18F]4a 

and [18F]5a, their radio-TLC and their radio-UPLC purities. All RCYs were decay-corrected at 

the SOS. 
 

 
Scheme 3. Radiosyntheses of [18F]difluoromethyl heteroaryl-sulfones ([18F]5a–[18F]5f). Standard 

conditions: [18F]4a–[18F]4f (10–20 MBq), sodium (meta)periodate (0.72 mmol), ruthenium (III) 

chloride hydrate (0.016 mmol), H2O (1 mL), rt, 5 min. All RCYs were determined based on the 

activity of cartridge-purified [18F]4a–[18F]4f and [18F]5a–[18F]5f, their radio-TLC and their radio-

UPLC purities. All RCYs were decay-corrected at the SOS. 

 

According to the results presented in Table 2, the best RCYs for the two-step 

radiosyntheses of the cartridge-purified [18F]5a–[18F]5f at low level of starting 

radioactivity (90–150 MBq) were attained with the electron-rich benzothiazolyl 
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derivative [18F]5a [RCY ([18F]5a) > RCY ([18F]5b), Table 2], the electron-poor derivative 

[18F]5c [RCY ([18F]5c) > RCY ([18F]5d), Table 2], and the N-phenyl-tetrazolyl derivative 

[18F]5f [RCY ([18F]5f) > RCY ([18F]5e), Table 2]. These compounds were then selected 

for the investigation of their reactivity towards the photocatalytic 18F-

difluoromethylation of N-containing heteroarenes. In order to circumvent any 

potential radioprotection issues, a fully automated process involving the two-step 

radiosyntheses of [18F]5a, [18F]5c, or [18F]5f and a high performance liquid 

chromatography (HPLC) purification was implemented on a FASTlabTM synthesizer 

(GE Healthcare) for the preparation of the purified 18F-labeled compounds. 

 
Table 2. Two-step radiosyntheses of the [18F]5a–[18F]5f from the precursors 6a–6f. 

 

Entry [18F]Difluoromethyl heteroaryl-sulfones RCY (%)(a) 

1 [18F]5a 10.1 ± 0.8 (n = 3) 

2 [18F]5b 8.3 ± 0.6 (n = 3) 

3 [18F]5c 12 ± 0.5 (n = 3) 

4 [18F]5d 11.2 ± 0.3 (n = 3) 

5 [18F]5e 7.2 ± 0.2 (n = 3) 

6 [18F]5f 13.6 ± 0.4 (n = 3) 
(a) All RCYs were determined based on the activity of cartridge-purified [18F]5a–[18F]5f, their 

radio-TLC, their radio-UPLC purities, and the starting radioactivity. All RCYs were decay-

corrected at the SOS. 

 

2.2.2. Automated Radiosyntheses of the [18F]Difluoromethyl Heteroaryl-Sulfones 

[18F]5a, [18F]5c, and [18F]5f 

The automated sequence for the radiosyntheses of [18F]5a, [18F]5c, and [18F]5f 

involved the following steps: (1) machine and cassette tests (presynthesis, 7 min); (2) 

[18F]fluoride recovery, trapping, elution, and azeotropic drying (12 min); (3) transfer 

of the precursors 6a, 6c, and 6f to the reactor and 18F-labeling (9 min); (4) dilution of 

the crude product [18F]4a, [18F]4c, and [18F]4f with water, and trapping on a tC18 Plus 

Short cartridge (2 min); (5) transfer of the NaIO4 and RuCl3·xH2O and oxidation on a 
tC18 cartridge (6 min); (6) elution of the crude [18F]5a, [18F]5c, and [18F]5f with MeCN 

to the reactor, dilution with water, and injection on the semi-preparative HPLC loop 

(4 min); (7) HPLC purification and collection of the purified [18F]5a (26 min), [18F]5c 

(23 min), and [18F]5f (18 min); (8) dilution and trapping of the 18F-labeled compounds 

on a tC18 Plus Short cartridge followed by elution with anhydrous dimethyl sulfoxide 

(DMSO) (14 min). A more detailed description of the sequence of events comprising 

the multi-step radiosyntheses of the [18F]5a, [18F]5c, and [18F]5f is provided in the 
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Materials and Methods section. The reagents and materials used throughout the 

radiochemical process were prepared and positioned in the FASTlabTM manifold as 

depicted in Table S23 and illustrated in Figure 3. 

 

 
Figure 3. Layout of the FASTlabTM cassette for the radiosyntheses of the labeled compounds 

[18F]5a, [18F]5c, and [18F]5f. 

 

A HPLC purification of the crude [18F]5a, [18F]5c, and [18F]5f was implemented 

on a reverse-phase HPLC column. The purity of these newly synthesized compounds 

revealed to be critical for the examination of their efficiency towards the following 

photocatalytic 18F-difluoromethylation reaction. In fact, during the radiosyntheses of 

the sulfones [18F]5a, [18F]5c, and [18F]5f, the oxidation of the precursors 6a, 6c, and 6f 

represented an important side reaction, leading to the formation of the corresponding 

bromofluoromethyl heteroaryl-sulfones (6a’, 6c’, and 6f’, Scheme 4).  
 

 
Scheme 4. Formation of the by-products 6a', 6c’, and 6f’ by oxidation of the precursors 6a, 6c, 

and 6f, respectively. 
 

The use of a mobile phase of MeCN/H2O (40/60, v/v) in isocratic mode enabled 

an effective separation between the radiotracers [18F]5a, [18F]5c, and [18F]5f and the 

respective UV by-products, particularly the bromofluoromethyl heteroaryl-sulfones 

6a’, 6c’, and 6f’. The radioactive peaks corresponding to the radiotracers [18F]5a, 
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[18F]5c, and [18F]5f were collected after 22 min (Figure 4), 19 min (Figure 5), and 15 min 

(Figure 6), respectively, and formulated on the same FASTlabTM cassette by using a 

preconditioned Sep-Pak® C18 Plus Short cartridge. The trapped [18F]5a, [18F]5c, and 

[18F]5f were then eluted with anhydrous DMSO using reverse flow and recovered in 

a 4 mL-sealed vial. 

 

 
Figure 4. (A) Ultraviolet-high performance liquid chromatography (UV-HPLC) purification 

profile of the crude [18F]5a. (B) Radio-HPLC purification profile of the crude [18F]5a. Note: the 

appearance of broad flat-topped peaks in UV-HPLC chromatogram is derived from a 

saturation of the UV detector by the injecting crude product [18F]5a. XBridge® BEH C18 OBDTM 

Prep column (130 Å, 5 µm, 10 mm × 250 mm; Waters, Milford, MA, USA); MeCN/H2O (40/60, 

v/v) in isocratic mode (flow rate: 5 mL·min-1). 

 

 

 
Figure 5. (A) UV-HPLC purification profile of the crude [18F]5c. (B) Radio-HPLC purification 

profile of the crude [18F]5c. Note: the appearance of broad flat-topped peaks in UV-HPLC 

chromatogram is derived from a saturation of the UV detector by the injecting crude product 

[18F]5c. XBridge® BEH C18 OBDTM Prep column (130 Å, 5 µm, 10 mm × 250 mm; Waters, Milford, 

MA, USA); MeCN/H2O (40/60, v/v) in isocratic mode (flow rate: 5 mL·min-1). 
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Figure 6. (A) UV-HPLC purification profile of the crude [18F]5f. (B) Radio-HPLC purification 

profile of the crude [18F]5f. Note: the appearance of broad flat-topped peaks in UV-HPLC 

chromatogram is derived from a saturation of the UV detector by the injecting crude product 

[18F]5f. XBridge® BEH C18 OBDTM Prep column (130 Å, 5 µm, 10 mm × 250 mm; Waters, Milford, 

MA, USA); MeCN/H2O (40/60, v/v) in isocratic mode (flow rate: 5 mL·min-1). 
 

The fully automated radiosyntheses of [18F]5a, [18F]5c, and [18F]5f (18F-labeling, 

oxidation, HPLC purification, and formulation) were performed in 73 min, 70 min, 

and 65 min, respectively. Starting from 125-150 GBq of [18F]fluoride, the labeled 

compounds [18F]5a, [18F]5c, and [18F]5f were isolated in 2.9 ± 0.1%, 5.7 ± 0.5%, and 8.0 

± 0.9% RCYs (decay-corrected at the SOS), respectively (Table 3). The RCY of each 

automated radiosynthesis was determined based on the ratio between the 

radioactivity of the [18F]5a, [18F]5c, or [18F]5f present in the DMSO solution (decay-

corrected at the SOS) and the radioactivity trapped on the QMA carbonate cartridge 

at the SOS. 

Obtaining a high molar activity still constitutes a major challenge for the 

radiosyntheses of [18F]CHF2–bearing compounds, due to the unwanted 18F–19F 

isotopic exchange reactions. This fully automated methodology allowed the 

preparation of the [18F]5a, [18F]5c, and [18F]5f with improved molar activities in 

comparison with the sulfone [18F]1 [Am ([18F]5a) = 139 ± 17 GBq·µmol−1 > Am ([18F]5f) = 

113 ± 17 GBq·µmol−1 > Am ([18F]5c) = 62 ± 12 GBq·µmol−1 > Am ([18F]1) = 54 ± 7 

GBq·µmol−1, all Am values in Table 3 were determined at the end of the synthesis 

(EOS)]. 
 

Table 3. Radiochemical yields and molar activities of the reagents [18F]5a, [18F]5c, and [18F]5f. 

Reagents [18F]5a [18F]5c [18F]5f 

Duration of the radiosynthesis (min) 73 70 65 

RCY (%)(a) 2.9 ± 0.1 5.7 ± 0.5 8.0 ± 0.9 

Molar activity (GBq·µmol-1)(b) 139 ± 17 62 ± 12 113 ± 17 
(a) All RCYs were determined based on the radioactivity of the [18F]5a, [18F]5c, or [18F]5f present 

in the dimethyl sulfoxide (DMSO) solution (decay-corrected at the SOS) and the radioactivity 

trapped on the QMA carbonate cartridge at the SOS. (b) Molar activities were determined at the 

end of the synthesis (EOS). 
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2.2.3. 18F-Difluoromethylation of Heteroarenes with Sulfones [18F]5a, [18F]5c, and 

[18F]5f 
 

Next, we evaluated the tendency of the newly synthesized [18F]difluoromethyl 

heteroaryl-sulfones [18F]5a, [18F]5c, and [18F]5f towards the C–H 18F-

difluoromethylation of N-containing heteroarenes, under irradiation with blue light-

emitting diode (LED) (470 nm, 2 W). The C–H 18F-difluoromethylation reactions were 

performed in continuous-flow using an easy-to-use platform equipped with a 100 µL 

microreactor made from glass and a syringe that continuously pumps the reaction 

mixture into the microreactor at a given flow rate (FlowStart Evo, FutureChemistry, 

Nijmegen, The Netherlands) (Figure S84). The use of a continuous-flow system 

assures an efficient irradiation of the reaction mixture during the photocatalytic 

processes and can potentially lead to an enhanced productivity in significantly 

reduced reaction times [37]. The reaction time is a relevant parameter in 18F-

radiochemistry. We initially explored the reactivity of the sulfones [18F]5a, [18F]5c, and 

[18F]5f for the C–H 18F-difluoromethylation of the antiherpetic drug acyclovir (7e) [48] 

under the reaction conditions recently reported in our laboratories (Table 4, Entry 1) 

[37]. The visible light-mediated C–H 18F-difluoromethylation of 7e with the sulfones 

[18F]5a, [18F]5c, and [18F]5f was conducted at 35 °C in DMSO, in the presence of the 

photocatalyst fac-IrIII(ppy)3 (0.05 mol %), and with a residence time of 2 min (flow rate 

= 50 μL·min−1). Under these conditions, the reagents [18F]5a, [18F]5c, and [18F]5f 

revealed to be competent substrates for the C–H 18F-difluoromethylation of 7e, 

affording the [18F]acyclovir–CHF2 ([18F]8e) in 57 ± 7% (Table 4, Entry 2), 14 ± 1% (Table 

4, Entry 3), and 48 ± 8% RCYs (Table 4, Entry 6), respectively. Regardless of the 

employed 18F-difluoromethylating reagent, the labeled compound [18F]8e was 

furnished in lower RCYs, in comparison with the sulfone [18F]1 (Table 4, Entry 1). 

Among the tested reagents, only [18F]5a was fully consumed after the present 

photocatalytic reaction. Raising the amount of fac-IrIII(ppy)3 and the residence time 

demonstrated to be beneficial for the efficiency of the sulfones [18F]5c and [18F]5f 

toward the C–H 18F-difluoromethylation of 7e. Regarding the sulfone [18F]5c, a ten-

fold increase of the amount of photocatalyst (0.5 mol%) led to the formation of the 

product [18F]8e in 26 ± 3% RCY (Table 4, Entry 4). The duplication of the residence 

time (flow rate = 25 μL·min−1) allowed a full consumption of [18F]5c in the 

photochemical process and the obtention of [18F]8e in 51 ± 7% RCY (Table 4, Entry 5). 

Changing the amount of photocatalyst from 0.05 mol% to 0.1 mol % and the residence 

time from 2 min (flow rate = 50 μL·min−1) to 2.5 min (flow rate = 40 μL·min−1) enabled 

the complete consumption of the reagent [18F]5f and resulted in the production of 

[18F]8e in 56 ± 1% RCY (Table 4, Entry 8). These results demonstrated that a single 

introduction of the –NO2 group (an electron-withdrawing substituent) at position 6 

and the alteration of the benzothiazolyl ring of [18F]1 to the N-phenyl-tetrazolyl 

moiety yielded 18F-difluoromethylating reagents with lower reactivity for the C–H 
18F-difluoromethylation of 7e in comparison with the sulfone [18F]1. Overall, the 

introduction of molecular modifications in the structure of [18F]1 can modulate the 
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reactivity of the resulting 18F-difluoromethylating reagents, influencing the amount 

of the photocatalyst fac-IrIII(ppy)3 and the residence time necessary to assure a 

complete C–H 18F-difluoromethylation reaction. 

Having identified the optimal conditions for the photoredox C–H 18F-

difluoromethylation with [18F]5a, [18F]5c, and [18F]5f, we then investigated the scope 

of the developed photochemical process (Scheme 5). Gratifyingly, the C–H 18F-

difluoromethylation of a series of structurally-diverse heteroarenes such as 4-methyl-

1H-pyrrolo[2,3-b]pyridine (7a), 6-methyl-1H-pyrazolo[3,4-b]pyridine (7b), 2-methyl-

5,8-dihydropyrido[2,3-d]pyrimidin-7(6H)-one (7c), and ethyl isonicotinate (7d) 

successfully afforded the corresponding products [18F]8a–[18F]8d in 17–57%, 13–66%, 

and 14–57% RCYs, using the reagents [18F]5a, [18F]5c, and [18F]5f, respectively. A 

mixture of structural isomers was observed after the C–H 18F-difluoromethylation of 

the heteroarenes 7a ([18F]8aa and [18F]8ab), 7b ([18F]8ba and [18F]8bb), and 7d ([18F]8da 

and [18F]8db). Regardless of the employed 18F-difluoromethylating reagent, the ratio 

between the distinct isomers was not significantly changed. Besides the antiherpetic 

drug 7e [48], the C–H 18F-difluoromethylation procedure was also extended to other 

heteroarenes of medicinal relevance, in particular to the demethylated derivative of 

the antihypertensive drug moxonidine (7f) [49] and to the xanthine derivative 

pentoxifylline (7g) [50]. The respective [18F]heteroaryl–CHF2 derivatives [18F]8f and 

[18F]8g were attained in 21–52%, 17–30%, and 35–60% RCYs from the reagents [18F]5a, 

[18F]5c, and [18F]5f, respectively. The UPLC radio-chromatogram retention times of 

the [18F]heteroaryl–CHF2 derivatives [18F]8a–[18F]8g were in agreement with those of 

the respective non-radioactive authentic references (Figures S87–S103). 

To gain insights into the mechanism, the C–H 18F-difluoromethylation of the 

substrate 7e was examined. The addition of the radical scavenger 2,2,6,6-tetramethyl-

1-piperidinyloxy (TEMPO) to the reaction system completely inhibited the C–H 18F-

difluoromethylation of the substrate 7e, in the presence of the sulfones [18F]5a, [18F]5c, 

and [18F]5f (Scheme 6, Entry 1). Furthermore, when the model reaction was performed 

without blue light irradiation (Scheme 6, Entry 2) and photocatalyst (Scheme 6, Entry 

3), no desired product [18F]8e was formed. These results suggest the involvement of 

radical intermediates in the present photocatalytic C–H 18F-difluoromethylation 

reaction. On the basis of these observations and previous research works reporting 

photoredox difluoromethylation reactions with the sulfones 1 [39–44] and 2 [45], a 

general and simplified reaction mechanism is shown in Figure 7. 

The proposed mechanism for the C–H 18F-difluoromethylation of heteroarenes 

7a–7g involved the reduction of the [18F]difluoromethyl heteroaryl sulfones ([18F]5a, 

[18F]5c, and [18F]5f), via an oxidative quenching of the photoexcited fac-IrIII(ppy)3, to 

generate the [18F]CHF2 radicals. The radical C–H 18F-difluoromethylation of the 

substrates 7a–7g in favourable reaction site(s) would result in the formation of 

[18F]heteroaryl-CHF2 radical intermediates. Subsequent oxidation by fac-IrIV(ppy)3 and 

deprotonation would afford the corresponding [18F]heteroaryl–CHF2 derivatives 

[18F]8a–[18F]8g. 
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Table 4. Optimization of the conditions for the C–H 18F-difluoromethylation of acyclovir (7e) 

with the reagents [18F]5a, [18F]5c, and [18F]5f(a). 

 
 

Entry Reagents 
fac-IrIII(ppy)3 

(mol%) 

Residence 

time (min) 

Flow rate 

(μL·min-1) 

Conversion 

(%)(b) 

RCY 

(%)(c) 

1 [18F]1 0.05 2 50 100 
70 ± 7 

(n = 4) 

2 [18F]5a 0.05 2 50 100 
57 ± 7 

(n = 3) 

3 [18F]5c 0.05 2 50 17 
14 ± 1 
(n = 3) 

4 [18F]5c 0.5 2 50 36 
26 ± 3 
(n = 3) 

5 [18F]5c 0.5 4 25 100 
51 ± 7 
(n = 4) 

6 [18F]5f 0.05 2 50 73 
48 ± 8 
(n = 3) 

7 [18F]5f 0.1 2 50 98 
55 ± 1 
(n = 3) 

8 [18F]5f 0.1 2.5 40 100 
56 ± 1 
(n = 3) 

(a) Standard reaction conditions for the photoredox C–H 18F-difluoromethylation: substrate 7e 

(0.02 mmol), [18F]5a, [18F]5c, or [18F]5f (30–40 MBq), fac-IrIII(ppy)3 (mol %), residence time (min), 

flow rate (μL·min−1), DMSO (250 µL), 35 °C, blue light-emitting diode (LED) (470 nm, 2 W). (b) 

UPLC conversion of the reagents [18F]5a, [18F]5c, or [18F]5f. (c) All RCYs were determined based 

on the radio-TLC and radio-UPLC purities of the crude product [18F]8e. 
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Scheme 5. Scope of [18F]heteroaryl-CHF2 derivatives [18F]8a–[18F]8g. Reactions were conducted 

on a 0.02 mmol scale. (a) Conditions: [18F]5a (30–40 MBq), fac-IrIII(ppy)3 (0.05 mol %), residence 

time (2 min), flow rate (50 μL·min−1), DMSO (250 µL), 35 °C, blue LED (470 nm, 2 W). (b) 

Conditions: [18F]5c (30–40 MBq), fac-IrIII(ppy)3 (0.5 mol %), residence time (4 min), flow rate (25 

μL·min−1), DMSO (250 µL), 35 °C, blue LED (470 nm, 2 W). (c) Conditions: [18F]5f (30–40 MBq), 

fac-IrIII(ppy)3 (0.1 mol %), residence time (2.5 min), flow rate (40 μL·min−1), DMSO (250 µL), 35 

°C, blue LED (470 nm, 2 W). All RCYs were determined based on the radio-TLC and radio-

UPLC purities of the crude products [18F]8a–[18F]8g. 
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Scheme 6. Control experiments with the radical scavenger 2,2,6,6-tetramethyl-1-piperidinyloxy 

(TEMPO) (Entry 1), in the absence of blue light irradiation (Entry 2), and in the absence of 

photocatalyst (Entry 3). Reactions were conducted on a 0.02 mmol scale. Standard conditions: 

(i) [18F]5a (30–40 MBq), fac-IrIII(ppy)3 (0.05 mol %), residence time (2 min), flow rate (50 μL·min−1), 

DMSO (250 µL), 35 °C, blue LED (470 nm, 2 W); (ii) [18F]5c (30–40 MBq), fac-IrIII(ppy)3 (0.5 mol 

%), residence time (4 min), flow rate (25 μL·min−1), DMSO (250 µL), 35 °C, blue LED (470 nm, 2 

W); (iii) [18F]5f (30–40 MBq), fac-IrIII(ppy)3 (0.1 mol %), residence time (2.5 min), flow rate (40 

μL·min−1), DMSO (250 µL), 35 °C, blue LED (470 nm, 2 W). 

 

 
Figure 7. A general and simplified mechanism for the C–H 18F-difluoromethylation of 7a–7g 

with the sulfones [18F]5a, [18F]5c, and [18F]5f. 

 

3. Materials and Methods  
 

3.1. Chemistry 

All solvents and reagents were purchased from Sigma Aldrich (Overijse, 

Belgium), TCI Europe N.V. (Zwijndrecht, Belgium), abcr GmbH (Karlsruhe, 

Germany), or VWR (Oud-Heverlee, Belgium), and no further purification process was 

implemented. Solvents were evaporated using a HEI-VAP rotary evaporator 

(Heidolph, Germany). Thin-layer chromatography (TLC) analyses were carried out 

on silica gel Polygram® SIL G/UV254 pre-coated TLC-sheets (Macherey-Nagel, Düren, 

Germany). Ultra-performance liquid chromatography (UPLC) analyses were carried 

out on a Waters system (ACQUITY UPLC® PDA UV detector (190–400 nm), Waters, 
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Milford, MA, USA) controlled by the Empower software and with an ACQUITY 

UPLC® CSH C18 column (1.7 μm, 2.1 × 100 mm) (Waters, Milford, MA, USA), at 0.5 

mL·min−1 and 45 °C. Purifications by flash chromatography were carried out 

automatically by a CombiFlash® system (Teledyne Isco, San Diego, CA, USA) with 

RediSep® Rf Normal Phase Silica columns (sizes: 24 g, 40 g, and 80 g). 1H-, 13C-, and 
19F-nuclear magnetic resonance (NMR) spectra were recorded at room temperature on 

a Bruker AVANCE III UltraShield NanoBay 400 MHz NMR Spectrometer (400 MHz 

for 1H, 101 MHz for 13C, and 376 MHz for 19F, Bruker Biosciences Corporation, 

Billerica, MA, USA). The newly synthesized compounds were analyzed in DMSO-d6 

and CDCl3 at a probe temperature of 300 K. For 1H- and 13C-NMR spectra, the chemical 

shifts (δ) were expressed in ppm downfield from tetramethylsilane (TMS) as an 

internal standard. For 19F-NMR spectra, the chemical shifts (δ) were given in ppm 

downfield from trifluoroacetic acid (TFA, δ = −76.50 ppm) as internal standard. The 

NMR multiplicity signals were abbreviated as: s = singlet, d = doublet, t = triplet, dd = 

doublet of doublets, ddd = doublet of doublet of doublets, or m = multiplet. The 

coupling constants (J) were given in Hz and reported to the nearest 1 Hz. High-

resolution mass spectroscopy (HRMS) spectra were measured on using a SYNAPT 

G2-SI Waters QTOF mass spectrometer (Waters, Milford, MA, USA). This 

spectrometer is equipped with an electrospray ionization (ESI) source and a Waters 

Acquity H-class UPLC with diode array detector (210 to 400 nm) (Waters, Milford, 

MA, USA). An Acquity UPLC HSS T3 C18 column (1.8 μm, 2.1 × 50 mm) was used. 

The melting points (m.p.) of the solid compounds were measured using a Büchi® 

melting point apparatus (model B-545, AC/DC input 230 V AC, Büchi, Flawil, 

Switzerland). 
 

3.1.1. General Procedure for the Synthesis of Difluoromethyl Heteroaryl-Sulfides (4a–

4f) 
 

The difluoromethylation of heteroaryl-thiols (3a–3f) was achieved following the 

slightly modified protocols [46,47]. Sodium chlorodifluoroacetate (915 mg, 6.0 mmol, 

2.0 equiv.) and potassium carbonate (622 mg, 4.5 mmol, 1.5 equiv.) were added to a 

single-neck round-bottom flask with DMF (5 mL) and the resulting suspension was 

stirred at room temperature for 5 minutes. Afterwards, a solution of the heteroaryl-

thiols 3a–3f (3.0 mmol, 1.0 equiv.) in DMF (5 mL) was slowly added. The reaction 

mixture was stirred at 95 °C for 15 minutes and then cooled down to room 

temperature. After dilution with H2O (10 mL), the crude product was extracted with 

DCM (3 × 20 mL). The organic layers were gathered and dried over anhydrous 

MgSO4. After filtration, the solution was concentrated under reduced pressure and 

the resulting crude product was purified by flash chromatography as described 

below. 

 

2-((Difluoromethyl)thio)-6-methoxybenzo[d]thiazole (4a). Purified by flash 

chromatography (SiO2; heptane/EtOAc (95/5, v/v)). Yellow oil (363 mg, 49% yield); 1H-

NMR (DMSO-d6, 400 MHz): δ = 7.95 (1H, dd, JHH = 9.0 and 0.4 Hz), 7.87 (1H, t, JHF = 54.9 
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Hz), 7.73 (1H, d, JHH = 2.6 Hz), 7.17 (1H, dd, JHH = 9.0 and 2.6 Hz), 3.84 (3H, s) ppm; 13C-

NMR (DMSO-d6, 101 MHz): δ = 157.8, 151.6 (t, JCF = 3.9 Hz), 147.0, 138.1, 123.3, 120.3 (t, 

JCF = 276.1 Hz), 116.3, 104.5, 55.8 ppm; 19F-NMR (DMSO-d6 + TFA, 376 MHz): δ = −95.8 

(2F, d, JHF = 54.9 Hz) ppm; m/z [C9H7F2NOS2 + H]+ calcd. for [C9H8F2NOS2]: 248.0015; 

found: 248.0018. 

 

2-((Difluoromethyl)thio)-5-methoxybenzo[d]thiazole (4b). Purified by flash 

chromatography (SiO2; heptane/EtOAc (95/5, v/v)). White powder (317 mg, 43% 

yield); m.p. 48-49 °C; 1H-NMR (DMSO-d6, 400 MHz): δ = 8.01 (1H, dd, JHH = 8.9 and 0.3 

Hz), 7.93 (1H, t, JHF = 54.8 Hz), 7.59 (1H, d, JHH = 2.4 Hz), 7.15 (1H, dd, JHH = 9.0 and 2.4 

Hz), 3.85 (3H, s) ppm; 13C-NMR (DMSO-d6, 101 MHz): δ = 158.9, 156.5 (t, JCF = 3.7 Hz), 

153.8, 127.8, 122.4, 120.3 (t, JCF = 275.7 Hz), 115.8, 105.2, 55.6 ppm; 19F-NMR (DMSO-d6 

+ TFA, 376 MHz): δ = −96.1 (2F, d, JHF = 54.5 Hz) ppm; m/z [C9H7F2NOS2 + H]+ calcd. for 

[C9H8F2NOS2]: 248.0015; found: 248.0025. 

 

2-((Difluoromethyl)thio)-6-nitrobenzo[d]thiazole (4c). Purified by flash chromatography 

(SiO2; heptane/DCM (60/40, v/v)). Light yellow powder (139 mg, 18% yield); m.p. 96-

97 °C; 1H-NMR (DMSO-d6, 400 MHz): δ = 9.18 (1H, d, JHH = 2.4 Hz), 8.34 (1H, dd, JHH = 

9.0 and 2.4 Hz), 8.18 (1H, d, JHH = 9.0 Hz), 8.06 (1H, t, JHF = 54.4 Hz) ppm; 13C-NMR 

(DMSO-d6, 101 MHz): δ = 164.6 (t, JCF = 3.7 Hz), 155.6, 144.5, 136.2, 122.6, 122.1, 120.2 (t, 

JCF = 276.2 Hz), 119.2 ppm; 19F-NMR (DMSO-d6 + TFA, 376 MHz): δ = -95.2 (2F, d, JHF = 

54.4 Hz) ppm; m/z [C8H4F2N2O2S2 + H]+ calcd. for [C8H5F2N2O2S2]: 262.976; found: 

262.976. 

 

2-((Difluoromethyl)thio)-5-nitrobenzo[d]thiazole (4d). Purified by flash chromatography 

(SiO2; heptane/DCM (60/40, v/v)). Light yellow powder (155 mg, 20% yield); m.p. 79–

80 °C; 1H-NMR (DMSO-d6, 400 MHz): δ = 8.77 (1H, d, JHH = 2.2 Hz), 8.42 (1H, d, JHH = 

8.9 Hz), 8.32 (1H, dd, JHH = 8.9 and 2.3 Hz), 8.03 (1H, t, JHF = 54.4 Hz) ppm; 13C-NMR 

(DMSO-d6, 101 MHz): δ = 161.7 (t, JCF = 3.6 Hz), 151.7, 146.7, 142.5, 123.5, 120.2 (t, JCF = 

276.2 Hz), 119.9, 117.2 ppm; 19F-NMR (DMSO-d6 + TFA, 376 MHz): δ = −94.8 (2F, d, JHF 

= 54.4 Hz) ppm; m/z [C8H4F2N2O2S2 + H]+ calcd. for [C8H5F2N2O2S2]: 262.976; found: 

262.976. 

 

2-((Difluoromethyl)thio)-1-methyl-1H-benzo[d]imidazole (4e). Purified by flash 

chromatography (SiO2; heptane/EtOAc (95/5, v/v)). Light yellow powder (333 mg, 

52% yield); m.p. 44–45 °C; 1H-NMR (DMSO-d6, 400 MHz): δ = 7.78 (1H, t, JHF = 55.4 

Hz), 7.69–7.67 (1H, m), 7.63–7.61 (1H, m), 7.35–7.32 (1H, m), 7.29–7.25 (1H, m), 3.83 

(3H, s) ppm; 13C-NMR (DMSO-d6, 101 MHz): δ = 142.7, 141.7 (t, JCF = 4.7 Hz), 136.3, 

123.2, 122.4, 120.9 (t, JCF = 275.1 Hz), 118.9, 110.7, 30.8 ppm; 19F-NMR (DMSO-d6 + TFA, 

376 MHz): δ = −93.6 (2F, d, JHF = 55.4 Hz) ppm; m/z [C9H8F2N2S + H]+ calcd. for 

[C9H9F2N2S]: 215.0455; found: 215.0455. 

 



205 

 

5-((Difluoromethyl)thio)-1-phenyl-1H-tetrazole (4f). Purified by flash chromatography 

(SiO2; heptane/EtOAc (95/5, v/v)). Yellow oil (395 mg, 58% yield); 1H-NMR (CDCl3, 

400 MHz): δ = 7.73 (1H, t, JHF = 55.9 Hz), 7.63–7.60 (3H, m), 7.53–7.50 (2H, m) ppm; 13C-

NMR (CDCl3, 101 MHz): δ = 148.3 (t, JCF = 5.0 Hz), 132.9, 131.1, 130.2, 124.3, 119.5 (t, JCF 

= 279.8 Hz) ppm; 19F-NMR (CDCl3 + TFA, 376 MHz): δ = −92.6 (2F, d, JHF = 55.4 Hz) 

ppm; m/z [C8H6F2N4S + H]+ calcd. for [C8H7F2N4S]: 229.0359; found: 229.0362. 

 

3.1.2. General Procedure for the Synthesis of Difluoromethyl Heteroaryl-Sulfones (5a–

5f) 
 

To a round-bottom flask containing the difluoromethyl heteroaryl-sulfides 4a–4f 

(1.0 mmol, 1.0 equiv.) in MeCN (2 mL) and CHCl3 (2 mL), a solution of sodium 

(meta)periodate (NaIO4) (1.07 g, 5.0 mmol, 5 equiv.) and ruthenium (III) chloride 

hydrate (RuCl3·xH2O) (10 mg, 0.05 mmol, 0.05 equiv.) in H2O (4 mL) was added to the 

reaction system. The resulting reaction mixture was stirred at room temperature for 

1 h. After the completion of the reaction, the suspension was diluted with H2O (5 mL) 

and the crude product was extracted with DCM (3 × 25 mL). The combined organic 

layers were washed with saturated aqueous solution of NaHCO3 and subsequently 

dried over anhydrous MgSO4. After filtration, the solvent was evaporated under 

reduced pressure. The resulting crude product was then purified by flash 

chromatography (SiO2; heptane/EtOAc (90/10, v/v)) to afford the difluoromethyl 

heteroaryl-sulfones 5a–5f as pure compounds. 

 

2-((Difluoromethyl)sulfonyl)-6-methoxybenzo[d]thiazole (5a). Light yellow powder (121 

mg, 87% yield); m.p. 129-130 °C; 1H-NMR (DMSO-d6, 400 MHz): δ = 8.27 (1H, d, JHH = 

9.2 Hz), 7.96 (1H, d, JHH = 2.6 Hz), 7.65 (1H, t, JHF = 51.6 Hz), 7.38 (1H, dd, JHH = 9.2 and 

2.6 Hz), 3.91 (3H, s) ppm; 13C-NMR (DMSO-d6, 101 MHz): δ = 160.1, 155.0, 147.1, 140.0, 

126.4, 119.4, 114.9 (t, JCF = 284.9 Hz), 104.8, 56.1 ppm; 19F-NMR (DMSO-d6 + TFA, 376 

MHz): δ = −126.0 (2F, d, JHF = 51.7 Hz) ppm; m/z [C9H7F2NO3S2 + H]+ calcd. for 

[C9H8F2NO3S2]: 279.9914; found: 279.9915. 

 

2-((Difluoromethyl)sulfonyl)-5-methoxybenzo[d]thiazole (5b). Yellow powder (89 mg, 

64% yield); m.p. 110-111 °C; 1H-NMR (DMSO-d6, 400 MHz): δ = 8.29 (1H, d, JHH = 9.1 

Hz), 7.90 (1H, d, JHH = 2.4 Hz), 7.67 (1H, t, JHF = 51.5 Hz), 7.43 (1H, dd, JHH = 9.2 and 2.5 

Hz), 3.91 (3H, s) ppm; 13C-NMR (DMSO-d6, 101 MHz): δ = 160.0, 159.2, 154.1, 129.9, 

124.1, 120.4, 115.0 (t, JCF = 285.4 Hz), 106.6, 55.9 ppm; 19F-NMR (DMSO-d6 + TFA, 376 

MHz): δ = −125.9 (2F, d, JHF = 51.7 Hz) ppm; m/z [C9H7F2NO3S2 + H]+ calcd. for 

[C9H8F2NO3S2]: 279.9914; found: 279.9917. 

 

2-((Difluoromethyl)sulfonyl)-6-nitrobenzo[d]thiazole (5c). Light yellow powder (115 mg, 

78% yield); m.p. 161–162 °C; 1H-NMR (DMSO-d6, 400 MHz): δ = 9.46 (1H, d, JHH = 2.4 

Hz), 8.62 (1H, d, JHH = 9.1 Hz), 8.54 (1H, dd, JHH = 9.2 and 2.4 Hz), 7.76 (1H, t, JHF = 51.4 

Hz) ppm; 13C-NMR (DMSO-d6, 101 MHz): δ = 165.0, 155.4, 146.6, 137.9, 126.5, 123.3, 
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121.1, 115.1 (t, JCF = 285.5 Hz) ppm; 19F-NMR (DMSO-d6 + TFA, 376 MHz): δ = −123.9 

(2F, d, JHF = 51.5 Hz) ppm; m/z [C8H4F2N2O4S2 + H]+ calcd. for [C8H5F2N2O4S2]: 294.9659; 

found: 294.9671. 

 

2-((Difluoromethyl)sulfonyl)-5-nitrobenzo[d]thiazole (5d). White powder (120 mg, 82% 

yield); m.p. 168–169 °C; 1H-NMR (DMSO-d6, 400 MHz): δ = 9.23 (1H, dd, JHH = 2.2 and 

0.4 Hz), 8.70 (1H, dd, JHH = 9.1 and 0.4 Hz), 8.57 (1H, dd, JHH = 9.1 and 2.2 Hz), 7.74 (1H, 

t, JHF = 51.3 Hz) ppm; 13C-NMR (DMSO-d6, 101 MHz): δ = 163.3, 151.8, 147.7, 143.4, 

125.5, 122.9, 121.0, 115.1 (t, JCF = 286.0 Hz) ppm; 19F-NMR (DMSO-d6 + TFA, 376 MHz): 

δ = −123.9 (2F, d, JHF = 51.4 Hz) ppm; m/z [C8H4F2N2O4S2 + H]+ calcd. for [C8H5F2N2O4S2]: 

294.9659; found: 294.966. 

 

2-((Difluoromethyl)sulfonyl)-1-methyl-1H-benzo[d]imidazole (5e). White powder (82 mg, 

67% yield); m.p. 134–135 °C; 1H-NMR (DMSO-d6, 400 MHz): δ = 7.94–7.92 (1H, m), 

7.88–7.86 (1H, m), 7.61 (1H, t, JHF = 51.9 Hz), 7.62–7.58 (1H, m), 7.50–7.46 (1H, m), 4.14 

(3H, s) ppm; 13C-NMR (DMSO-d6, 101 MHz): δ = 141.1, 140.9, 136.7, 127.0, 124.7, 121.4, 

114.8 (t, JCF = 283.9 Hz), 112.4, 32.1 (t, JCF = 0.8 Hz) ppm; 19F-NMR (DMSO-d6 + TFA, 376 

MHz): δ = −125.6 (2F, d, JHF = 51.9 Hz) ppm; m/z [C9H8F2N2O2S + H]+ calcd. for 

[C9H9F2N2O2S]: 247.0352; found: 247.0353. 

 

5-((Difluoromethyl)sulfonyl)-1-phenyl-1H-tetrazole (5f). White powder (85 mg, 65% 

yield); m.p. 68-69 °C; 1H-NMR (CDCl3, 400 MHz): δ = 7.72-7.59 (5H, m), 6.83 (1H, t, JHF 

= 52.9 Hz) ppm; 13C-NMR (CDCl3, 101 MHz): δ = 132.5, 132.2, 130.1, 125.4, 114.2 (t, JCF 

= 289.3 Hz), 104.9 ppm; 19F-NMR (CDCl3 + TFA, 376 MHz): δ = −124.1 (2F, d, JHF = 52.9 

Hz) ppm; m/z [C8H6F2N4O2S + H]+ calcd. for [C8H7F2N4O2S]: 261.0258; found: 261.0257. 

 

3.1.3. General Procedure for the Synthesis of Bromofluoromethyl Heteroaryl-Sulfides 

(6a–6f) 

The bromofluoromethylation of heteroaryl-thiols (3a–3f) was carried out on the 

basis of a previously described procedure [37] with slight modifications. A solution 

of KOH (1.68 g, 30.0 mmol, 10.0 equiv.) in H2O (4 mL) was placed in a single-neck 

round-bottom flask and stirred at 0 °C. Afterwards, a solution of the heteroaryl-thiols 

3a–3f (3.0 mmol, 1.0 equiv.) in THF (3 mL) was added and the resulting mixture was 

allowed to stir at room temperature for 20 min. A solution of dibromofluoromethane 

(0.713 mL, 9.0 mmol, 3.0 equiv.) in THF (1 mL) was slowly introduced in the reaction 

system, and the resulting mixture was stirred at room temperature for 15–20 min. The 

suspension was subsequently quenched by addition of H2O (20 mL), and the crude 

product was extracted with DCM (3 × 30 mL). The combined organic layers were 

gathered and were dried over anhydrous MgSO4. After filtration, the solvent was 

removed under reduced pressure. The purification of the concentrated crude product 

was performed by flash chromatography (SiO2; heptane/EtOAc (95/5, v/v)) to furnish 

the bromofluoromethyl heteroaryl-sulfides 6a–6f as pure compounds. 



207 

 

 

2-((Bromofluoromethyl)thio)-6-methoxybenzo[d]thiazole (6a). Yellow powder (182 mg, 

20% yield); m.p. 53-55 °C; 1H-NMR (DMSO-d6, 400 MHz): δ = 8.35 (1H, d, JHF = 53.7 

Hz), 7.94 (1H, d, JHH = 9.0 Hz), 7.73 (1H, d, JHH = 2.6 Hz), 7.16 (1H, dd, JHH = 9.0 and 2.6 

Hz), 3.84 (3H, s) ppm; 13C-NMR (DMSO-d6, 101 MHz): δ = 157.8, 155.3 (d, JCF = 2.8 Hz), 

146.8, 137.9, 123.3, 116.4, 104.6, 91.2 (d, JCF = 294.5 Hz), 55.8 ppm; 19F-NMR (DMSO-d6 

+ TFA, 376 MHz): δ = −105.0 (1F, d, JHF = 53.8 Hz) ppm; m/z [C9H7BrFNOS2 + H]+ calcd. 

for [C9H8BrFNOS2]: 307.9214; found: 307.9218. 

 

2-((Bromofluoromethyl)thio)-5-methoxybenzo[d]thiazole (6b). Yellow oil (166 mg, 18% 

yield); 1H-NMR (DMSO-d6, 400 MHz): δ = 8.39 (1H, d, JHF = 53.8 Hz), 8.01 (1H, d, JHH = 

9.0 Hz), 7.58 (1H, d, JHH = 2.5 Hz), 7.14 (1H, dd, JHH = 9.0 and 2.5 Hz), 3.85 (3H, s) ppm; 
13C-NMR (DMSO-d6, 101 MHz): δ = 160.1 (d, JCF = 2.8 Hz), 159.0, 153.6, 127.7, 122.5, 

115.8, 105.3, 90.8 (d, JCF = 293.3 Hz), 55.6 ppm; 19F-NMR (DMSO-d6 + TFA, 376 MHz): 

δ = −105.6 (1F, d, JHF = 54.1 Hz) ppm; m/z [C9H7BrFNOS2 + H]+ calcd. for 

[C9H8BrFNOS2]: 307.9214; found: 307.9223. 

 

2-((Bromofluoromethyl)thio)-6-nitrobenzo[d]thiazole (6c). Light yellow powder (105 mg, 

11% yield); m.p. 115–117 °C; 1H-NMR (DMSO-d6, 400 MHz): δ = 9.20 (1H, dd, JHH = 2.4 

and 0.4 Hz), 8.53 (1H, d, JHF = 53.8 Hz), 8.35 (1H, dd, JHH = 9.0 and 2.4 Hz), 8.17 (1H, 

dd, JHH = 9.0 and 0.4 Hz) ppm; 13C-NMR (DMSO-d6, 101 MHz): δ = 167.9 (d, JCF = 3.0 

Hz), 155.6, 144.4, 136.2, 122.6, 122.1, 119.4, 90.1 (d, JCF = 293.5 Hz) ppm; 19F-NMR 

(DMSO-d6 + TFA, 376 MHz): δ = −107.5 (1F, d, JHF = 54.1 Hz) ppm; m/z [C8H4BrFN2O2S2 

+ H]+ calcd. for [C8H5BrFN2O2S2]: 322.896; found: 322.8952. 

 

2-((Bromofluoromethyl)thio)-5-nitrobenzo[d]thiazole (6d). Orange powder (88 mg, 9% 

yield); m.p. 93–95 °C; 1H-NMR (DMSO-d6, 400 MHz): δ = 8.76 (1H, d, JHH = 2.2 Hz), 

8.50 (1H, d, JHF = 53.6 Hz), 8.43 (1H, d, JHH = 9.0 Hz), 8.31 (1H, dd, JHH = 9.0 and 2.2 Hz) 

ppm; 13C-NMR (DMSO-d6, 101 MHz): δ = 165.1 (d, JCF = 2.9 Hz), 151.6, 146.7, 142.4, 

123.6, 119.9, 117.2, 90.3 (d, JCF = 293.4 Hz) ppm; 19F-NMR (DMSO-d6 + TFA, 376 MHz): 

δ = −106.7 (1F, d, JHF = 53.6 Hz) ppm; m/z [C8H4BrFN2O2S2 + H]+ calcd. for 

[C8H5BrFN2O2S2]: 322.896; found: 322.8964. 

 

2-((Bromofluoromethyl)thio)-1-methyl-1H-benzo[d]imidazole (6e). Light yellow powder 

(214 mg, 26% yield); m.p. 79–80 °C; 1H-NMR (DMSO-d6, 400 MHz): δ = 8.19 (1H, d, JHF 

= 54.0 Hz), 7.70-7.68 (1H, m), 7.64–7.62 (1H, m), 7.36–7.32 (1H, m), 7.30–7.26 (1H, m), 

3.83 (3H, s) ppm; 13C-NMR (DMSO-d6, 101 MHz): δ = 144.7 (d, JCF = 1.8 Hz), 142.4, 

136.1, 123.4, 122.5, 118.9, 110.9, 91.5 (d, JCF = 294.9 Hz), 30.8 ppm; 19F-NMR (DMSO-d6 

+ TFA, 376 MHz): δ = -104.6 (2F, d, JHF = 53.8 Hz). HRMS (ESI+) ppm; m/z [C9H8BrFN2S 

+ H]+ calcd. for [C9H9BrFN2S]: 274.9654; found: 274.9662. 

 

5-((Bromofluoromethyl)thio)-1-phenyl-1H-tetrazole (6f). Yellow oil (171 mg, 20% yield); 
1H-NMR (DMSO-d6, 400 MHz): δ = 8.16 (1H, d, JHF = 52.8 Hz), 7.72–7.67 (5H, m) ppm; 
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13C-NMR (DMSO-d6, 101 MHz): 149.7 (d, JCF = 3.0 Hz), 132.9, 131.0, 129.9, 125.4, 89.9 

(d, JCF = 295.9 Hz) ppm; 19F-NMR (DMSO-d6 + TFA, 376 MHz): δ = −105.3 (1F, d, JHF = 

53.0 Hz) ppm; m/z [C6H5BrFN + H]+ calcd. for [C6H6BrFN]: 288.9559; found: 288.9563. 

 

3.1.4. General Procedure for the Synthesis of the Difluoromethylated Heteroarenes 

(8a–8g) 

The difluoromethylated heteroarenes 8a–8g were synthesized from the 

heteroarenes 7a–7g and characterized according to the formerly reported procedures 

[37,51]. 

 

3.2. Radiochemistry  
 

Semi-preparative high performance liquid chromatography (HPLC) purification 

was conducted on a XBridge® BEH C18 OBDTM Prep column (130 Å, 5 µm, 10 mm × 

250 mm; Waters, Milford, MA, USA) with a mixture of MeCN/H2O (40/60, v/v) in 

isocratic mode (flow rate: 5 mL·min-1). The radio-HPLC profiles were monitored with 

a custom homemade Geiger-Muller (GM) radioactivity detector (Thermo Fisher 

Scientific, Waltham, MA, USA), connected to the semi-preparative HPLC system. 

Ultra performance liquid chromatography (UPLC) analyses were performed at 45 °C 

using an ACQUITY UPLC® CSHTM C18 column (2.1 × 100 mm, 1.7 µm; Waters, 

Milford, MA, USA) on an ACQUITY UPLC® system with a mobile phase of MeCN 

and HCO2H/H2O (0.05%, v/v) in gradient mode at 0.5 mL·min−1 (gradient A: from 

100% HCO2H/H2O (0.05%, v/v) to 75% MeCN + 25% HCO2H/H2O (0.05%, v/v) in 6 

min, and from 75% MeCN + 25% HCO2H/H2O (0.05%, v/v) to 100% HCO2H/H2O 

(0.05%, v/v) in 2 min; gradient B: from 100% HCO2H/H2O (0.05%, v/v) to 100% MeCN 

in 6 min, and from 100% MeCN to 100% HCO2H/H2O (0.05%, v/v) in 2 min). The UV 

signal of the newly synthesized 18F-labeled compounds was measured at 254 nm with 

a photodiode array (PDA) UV detector (190–400 nm) controlled by the Empower 

software and connected to the UPLC system. A thallium-activated sodium iodide 

(NaI(Tl)) scintillation detector from Eberline (Eberline Instruments Corp, Miami, FL, 

USA) was used to monitor the radio-UPLC elution profile of the newly synthesized 
18F-labeled compounds. TLC analyses were carried out on silica gel Polygram® SIL 

G/UV254 pre-coated TLC-sheets (TLC eluent: methanol) (Macherey-Nagel, Düren, 

Germany). The TLC profile of 18F-labeled compounds was then analyzed with a 

BertHold TLC scanner model AR2000 (BertHold, Bad Wildbad, Germany). 

The radiosyntheses of the 18F-labeled compounds were achieved using the 

commercially available FASTlabTM synthesizer (GE Healthcare, Chicago, IL, USA). 

The SepPak® cartridges (SepPak® AccellTM Plus QMA Carbonate Plus Light 

Cartridge (46 mg, 40 µm) and SepPak® tC18 Plus Short Cartridge (400 mg, 37–55 µm) 

were purchased from Waters (Milford, MA, USA). No-carrier-added [18F]fluoride was 

prepared from the 18O-enriched water ([18O]H2O) via the 18O(p,n)18F nuclear reaction 

with a Cyclone 18/9 from IBA (Louvain-la-Neuve, Belgium). [18O]H2O was purchased 

from Cambridge Isotope Laboratories (Tewksbury, MA, USA). At the end of 
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bombardment (EOB), the activity was transferred to the hot lab cell with helium 

pressure through Teflon tubing (~ 50 m). 

 

3.2.1. Fully Automated Radiosyntheses of 2-[18F]((Difluoromethyl)Sulfonyl)-6-

Methoxybenzo[d]thiazole ([18F]5a), 2-[18F]((Difluoromethyl)sulfonyl)-6-

nitrobenzo[d]thiazole ([18F]5c), and 5-[18F]((Difluoromethyl)Sulfonyl)-1-Phenyl-1H-

Tetrazole ([18F]5f) 

The fully automated radiosyntheses of the labeled compounds [18F]5a, [18F]5c, 

and [18F]5f were conducted in a FASTlabTM synthesizer (GE Healthcare, Chicago, IL, 

USA) according to a radiochemical process previously reported in the literature 

[37,52]. The reagents and solvents used in the radiosyntheses of [18F]5a, [18F]5c, and 

[18F]5f were placed in 11 mm- and 13 mm-sealed vials and positioned in the 

FASTlabTM manifold as depicted in Table 5 and illustrated in Figure 3. 

The no-carrier-added (n.c.a.) [18F]fluoride in [18O]H2O was transferred from the 

cyclotron target onto the FASTlabTM synthesizer via the [18F]fluoride inlet conical 

reservoir (V6). The [18F]fluoride was trapped on an ion-exchange resin (Sep-Pak® 

AccellTM Plus QMA Carbonate Plus Light Cartridge; Waters, Milford, MA, USA; from 

V5 to V4) and the [18O]H2O was recovered in a separate vial (V1). The trapped 

[18F]fluoride was eluted into the cyclic olefin copolymer (COC) reactor through a 

central tubing (V8) with a solution of Kryptofix® 222 (K2.2.2; 7.5 mg in 600 μL of MeCN) 

and K2CO3 (1.4 mg in 150 μL of H2O). The eluent was azeotropically evaporated under 

vacuum and nitrogen flow by heating at 105 °C and 120 °C for 8 min. Subsequently, 

a solution of the precursors 6a (12.3 mg, 0.04 mmol), 6c (6.5 mg, 0.02 mmol), or 6f (11.6 

mg, 0.04 mmol) solubilized in MeCN (1.0 mL) was transferred to the dry 

[18F]potassium fluoride/Kryptofix® 222 ([18F]KF/K2.2.2) complex via the central tubing 

of the reactor (V8) and heated to 120 °C for 5 min. After the 18F-labeling of 6a, 6c, or 

6f, the reaction mixture containing the [18F]4a, [18F]4c, or [18F]4f, respectively, was 

diluted two times with H2O (~ 12 mL) (V15), and the labeled compounds [18F]4a, 

[18F]4c, or [18F]4f were trapped on a tC18 cartridge (Sep-Pak® C18 Plus Short Cartridge; 

Waters, Milford, MA, USA; from V17 to V18). The COC reactor was subsequently 

washed with H2O (~ 4 mL), and the crude solution was passed through the tC18 

cartridge. A solution containing NaIO4 (153.9 mg, 0.072 mmol) and RuCl3·xH2O (3.4 

mg, 0.016 mmol) in H2O (4.0 mL) was transferred to the tC18 cartridge and the 

oxidation of the labeled compounds [18F]4a, [18F]4c, or [18F]4f was carried out on the 

solid-phase for 5 min at room temperature. Afterwards, the crude products [18F]5a, 

[18F]5c, or [18F]5f were eluted (from V18 to V17; reverse flow elution) with MeCN (2 

mL; syringe S3, V24) and recovered into the reactor through its central tubing. After 

dilution with H2O (~ 4 mL) using the syringe S2 (V11), the resulting mixture was 

conducted to the semi-preparative HPLC loop (V9; 6 mL) via a Sterifix® Paed filter (B. 

Braun, Melsungen, Germany; 0.2 μm). The COC reactor was subsequently washed 

with H2O (~ 2 mL) and this solution was also transferred into the HPLC loop. The 

semi-preparative HPLC purification of [18F]5a, [18F]5c, or [18F]5f was accomplished 
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with a mixture of MeCN/H2O (40/60, v/v) in isocratic mode at 5 mL·min-1. The HPLC 

peaks corresponding to the [18F]5a, [18F]5c, or [18F]5f were collected (retention time of 

[18F]5a: 22-26 min; retention time of [18F]5c: 19–23 min; retention time of [18F]5f: 15–18 

min) in a sealed vial containing H2O (~ 30 mL). Subsequently, the purified compounds 

[18F]5a, [18F]5c, or [18F]5f were pumped (from V10), 6 mL by 6 mL, with the syringe S2 

(V11) and further conducted to a preconditioned tC18 cartridge (from V21 to V22). 

Finally, [18F]5a, [18F]5c, or [18F]5f were eluted into the outlet vial (V20) with reverse 

flow of DMSO (1 mL, syringe S3 (V24)). 

 
Table 5. Location of the reagents, solvents, and materials in the manifold of the FASTlabTM 

cassette 

Manifold 

position 

Reagents, solvents, and materials Details 

V1 Silicone tubing connected to [18O]H2O recovery 

vial 

14 cm 

V2 K2.2.2® (7.5 mg) in MeCN (600 μL) and K2CO3 (1.4 

mg) in H2O (150 μL) 

11 mm vial 

(volume = 750 

μL) 

V3 Syringe S1 (part of the manifold) Maximum 

volume = 1 mL 

V4 Sep-Pak® AccellTM Plus QMA Carbonate Plus Light 

Cartridge with silicone tubing at position V5 

46 mg (40 μm) 

(Waters) 

V5 Silicone tubing connected to the Sep-Pak® AccellTM 

Plus QMA Carbonate Plus Light Cartridge at 

position V4 

14 cm 

V6 [18O]H2O/[18F]F- inlet conical reservoir (part of the 

manifold) 

Maximum 

volume = 5 mL 

V7 Silicone tubing connected to the cyclic olefin 

copolymer (COC) reactor (left-hand side) 

14 cm 

V8 Silicone tubing connected to the COC reactor 

(central port) 

14 cm 

V9 Outlet “to HPLC loop” via silicone tubing 

connected to a Sterifix® Paed filter (B. Braun) 

30 cm 

V10 Inlet “from HPLC loop” enabling the recovery of 

the purified labeled compounds [18F]5a, [18F]5c, 

and [18F]5f after semi-preparative HPLC 

purification 

30 cm 

V11 Syringe S2 (part of the manifold) Maximum 

volume = 6 mL 

V12 Precursors 6a (12.3 mg, 40 µmol), 6c (6.5 mg, 20 

µmol), or 6f (11.6 mg, 40 µmol) solubilized in 

MeCN 

11 mm vial 

(volume = 1 mL) 
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V13 MeCN 13 mm vial 

(volume = 4 mL) 

V14 NaIO4 (153.9 mg) and RuCl3·xH2O (3.4 mg) 

solubilized in H2O 

13 mm vial 

(volume = 4 mL) 

V15 Water bag spike Volume = 100 mL 

V16 MeCN 13 mm vial 

(volume = 4 mL) 

V17 Silicone tubing connected to the Sep-Pak® C18 

Plus Short Cartridge at position V18 

14 cm 

V18 Sep-Pak® C18 Plus Short Cartridge with silicone 

tubing at position V17 

400 mg (37-55 

µm) 

V19 Outlet waste bottle 21 cm 

V20 Final outlet vial for collection of the labeled 

compounds [18F]5a, [18F]5c, and [18F]5f after semi-

preparative HPLC purification and reformulation 

50 cm 

V21 Silicone tubing connected to the Sep-Pak® C18 

Plus Short Cartridge at position V22 

14 cm 

V22 Sep-Pak® C18 Plus Short Cartridge with silicone 

tubing at position V21 

400 mg (37-55 

µm) 

V23 Anhydrous DMSO 13 mm vial 

(volume = 4 mL) 

V24 Syringe S3 (part of the manifold) Maximum 

volume = 6 mL 

V25 Silicone tubing connected to the COC reactor 

(right-hand side) and vent valve for the reactor 

42 cm 

 

3.2.2. Low-Activity 18F-Labeling Experiments in the Precursors 6a–6f 

Using the GE FASTlabTM synthesizer, an aliquot of [18F]fluoride (150–200 MBq) 

was trapped on a Sep-Pak® AccellTM Plus QMA Carbonate Plus Light cartridge 

(Waters, Milford, MA, USA) and eluted with a solution of Kryptofix® 222 (K2.2.2; 7.5 

mg in 600 μL of MeCN) and K2CO3 (1.4 mg in 150 μL of H2O). Upon azeotropic drying, 

a solution of the precursors 6a (12.3 mg, 0.04 mmol), 6b (12.3 mg, 0.04 mmol), 6c (6.5 

mg, 0.02 mmol), 6d (12.9 mg, 0.04 mmol), 6e (11.0 mg, 0.04 mmol), or 6f (11.6 mg, 0.04 

mmol) in MeCN (1 mL) was transferred to the dry [18F]potassium fluoride/Kryptofix® 

222 ([18F]KF/K2.2.2) complex and heated to 120 °C. After 5 min of 18F-labeling and 

dilution of the reaction mixture with H2O, the labeled compounds [18F]4a–[18F]4f were 

trapped on a Sep-Pak® C18 Plus Short cartridge (Waters, Milford, MA, USA). 

Subsequently, the tC18 cartridge was removed and the trapped crude products 

[18F]4a–[18F]4f were recovered to a 4 mL-vial via manual elution with MeCN (1 mL). 

The radiochemical yield (RCY) of the 18F-labeling step was determined based on the 

activity of the recovered crude products [18F]4a–[18F]4f, on their radio-TLC and radio-

UPLC purities, and the starting radioactivity, according to the following equation:  
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𝑅𝐶𝑌 (%, 𝑑. 𝑐. ) =  
𝑟𝑎𝑑𝑖𝑜𝑇𝐿𝐶 𝑝𝑢𝑟𝑖𝑡𝑦 (%) ×  𝑟𝑎𝑑𝑖𝑜𝑈𝑃𝐿𝐶 𝑝𝑢𝑟𝑖𝑡𝑦 (%) ×  𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑜𝑓 [𝟏𝟖𝐅]𝟒𝐚– [𝟏𝟖𝐅]𝟒𝐟 (𝑑. 𝑐. )

𝑠𝑡𝑎𝑟𝑡𝑖𝑛𝑔 𝑟𝑎𝑑𝑖𝑜𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 ×  100
 

 

A solution containing NaIO4 (153.9 mg, 0.072 mmol) and RuCl3·xH2O (3.4 mg, 

0.016 mmol) in H2O (1 mL) was transferred to the tC18 cartridge and the oxidation of 

the trapped crude products [18F]4a–[18F]4f (10–20 MBq) was carried out in solid-phase 

for 5 min at room temperature. Afterwards, the corresponding [18F]difluoromethyl 

heteroaryl-sulfones [18F]5a–[18F]5f were manually eluted from the tC18 cartridge with 

MeCN (1 mL) to a 4 mL-vial. The RCY of the oxidation step was determined based on 

the activity of the crude products [18F]4a–[18F]4f and [18F]5a–[18F]5f, and on their radio-

TLC and radio-UPLC purities, according to the following equation: 

 

𝑅𝐶𝑌 (%, 𝑑. 𝑐. ) =  
𝑟𝑎𝑑𝑖𝑜𝑇𝐿𝐶 𝑝𝑢𝑟𝑖𝑡𝑦 (%) ×  𝑟𝑎𝑑𝑖𝑜𝑈𝑃𝐿𝐶 𝑝𝑢𝑟𝑖𝑡𝑦 (%) ×  𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑜𝑓 [𝟏𝟖𝐅]𝟓𝐚– [𝟏𝟖𝐅]𝟓𝐟 (𝑑. 𝑐. )

𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑜𝑓 [𝟏𝟖𝐅]𝟒𝐚– [𝟏𝟖𝐅]𝟒𝐟 ×  100
 

 

The RCYs of 18F-labeling and oxidation steps were decay-corrected at the SOS. 

 

3.2.3. Isolation and Determination of the Molar Activity of [18F]5a, [18F]5c, and [18F]5f 
 

The fully automated radiosyntheses of the sulfones [18F]5a, [18F]5c, or [18F]5f were 

accomplished on a commercially available FASTlabTM synthesizer (GE Healthcare, 

Chicago, IL, USA), using the optimized conditions for the labeling of precursors 6a 

(12.3 mg, 0.04 mmol), 6c (6.5 mg, 0.02 mmol), or 6f (11.6 mg, 0.04 mmol), and for the 

oxidation of the labeled compounds [18F]4a, [18F]4c, and [18F]4f. The molar activities of 

the sulfones [18F]5a, [18F]5c, and [18F]5f were determined using an aliquot of each 

reformulated solution (3 µL). After UPLC injection, the radioactive peak of [18F]5a, 

[18F]5c, and [18F]5f associated to the non-radioactive sulfones 5a, 5c, and 5f, 

respectively, were collected and counted in an ionization chamber. The PDA UV area 

under the peak of the non-radioactive sulfones 5a, 5c, and 5f at 258 nm, 290 nm, and 

244 nm, respectively, enabled the determination of the corresponding amount (in 

µmol) of the 5a, 5c, and 5f using the calibration curves described in the 

Supplementary Information (Figures S82-S84). The molar activities of [18F]5a, [18F]5c, 

and [18F]5f were determined on the basis of the following equation: 

𝑀𝑜𝑙𝑎𝑟 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 (𝐺𝐵𝑞 · µ𝑚𝑜𝑙−1) =  
𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑒𝑑 𝑈𝑃𝐿𝐶 𝑝𝑒𝑎𝑘 𝑜𝑓 [𝟏𝟖𝐅]𝟓𝐚,  [𝟏𝟖𝐅]𝟓𝐜,   or [𝟏𝟖𝐅]𝟓𝐟 

𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝟓𝐚,   𝟓𝐜,   𝑜𝑟 𝟓𝐟 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑 𝑡𝑜 𝑡ℎ𝑒 𝑟𝑎𝑑𝑖𝑜𝑎𝑐𝑡𝑖𝑣𝑒 𝑝𝑒𝑎𝑘
 

 

3.2.4. General Procedure for the C–H 18F-Difluoromethylation of the Heteroarenes 7a–

7g with the [18F]Difluoromethyl Heteroaryl-Sulfones [18F]5a, [18F]5c, and [18F]5f 
 

A solution of the heteroarenes (0.02 mmol) and fac-IrIII(ppy)3 (0.05 mol% for 

[18F]5a; 0.5 mol % for [18F]5c; 0.1 mol % for [18F]5f) in DMSO (200 µL) was prepared in 

a 4 mL-vial. Next, a solution of [18F]5a, [18F]5c, or [18F]5f in DMSO (30–40 MBq, 50 µL) 

was added. The resulting mixture was injected in a 100 µL-microchip pumped with 
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DMSO at a flow rate of 50 µL·min−1 (residence time: 2 min for [18F]5a), 25 µL·min−1 

(residence time: 4 min for [18F]5c) or 40 µL·min−1 (residence time: 2.5 min for [18F]5f) 

and irradiated under blue LED (470 nm, 2 W), at a temperature of 35 °C. An aliquot 

of the reaction mixture containing the crude products [18F]8a–[18F]8g was then 

analyzed by radio-TLC and radio-UPLC for RCY determination, according to the 

following equation: 

𝑅𝐶𝑌 (%) =
𝑟𝑎𝑑𝑖𝑜𝑇𝐿𝐶 𝑝𝑢𝑟𝑖𝑡𝑦 (%) ×  𝑟𝑎𝑑𝑖𝑜𝑈𝑃𝐿𝐶 𝑝𝑢𝑟𝑖𝑡𝑦 (%)

100
 

 

4. Conclusions 
 

In the present work, the two-step radiosyntheses of the [18F]difluoromethyl 

heteroaryl-sulfones [18F]5a, [18F]5c, [18F]5f was fully automated in the GE FASTlabTM 

module. In conjunction with a semi-preparative HPLC purification procedure and 

formulation in a preconditioned Sep-Pak® C18 Plus Short Cartridge, the reagents 

[18F]5a, [18F]5c, [18F]5f were isolated in reproducible 2.9 ± 0.1%, 5.7 ± 0.5%, and 8.0 ± 

0.9% RCYs, respectively (decay-corrected at the SOS). The use of automated 

synthesizers in radiochemical processes involving the production of multiple GBq of 

labeled compounds is required to assure the minimization of the radiation exposure 

to workers. 

The great probability of 18F/19F isotopic exchange still constitutes a major 

limitation in the preparation of [18F]CHF2–bearing compounds with high molar 

activity. The production of radiotracers with high molar activity is mandatory for PET 

imaging studies, especially for targeting low-density biomacromolecules. Starting 

from 125–150 GBq of [18F]fluoride, this fully automated methodology enabled the 

preparation of the labeled compounds [18F]5a, [18F]5c, and [18F]5f with improved 

molar activities (139 ± 17 GBq·µmol−1 for [18F]5a, 62 ± 12 GBq·µmol−1 for [18F]5c, and 

113 ± 17 GBq·µmol−1 for [18F]5f). 

Interestingly, these newly synthesized compounds were revealed to be 

competent reagents for the C–H 18F-difluoromethylation of the antiherpetic drug 7e 

under the reaction conditions recently reported in our laboratories [37]. Still, none of 

the new reagents performed as good as the original sulfone [18F]1 in the radiosynthesis 

of the labeled compound [18F]8e. Additionally, the sulfones [18F]5c and [18F]5f 

exhibited a lower reactivity towards the C–H 18F-difluoromethylation of 7e, in 

comparison with the sulfone [18F]1. Overall, the introduction of molecular 

modifications in the structure of [18F]1 can modulate the reactivity of the resulting 18F-

difluoromethylating reagents, influencing the amount of photocatalyst and the 

residence time necessary to assure a complete C–H 18F-difluoromethylation process. 

Delightfully, the labeled compounds [18F]5a, [18F]5c, and [18F]5f were suitable for the 

developed flow photoredox C–H 18F-difluoromethylation of a scope of heteroarenes, 

demanding a low amount of fac-IrIII(ppy)3 (0.05–0.5 mol %) and short residence times 

(2–4 min). Radical-scavenging experiments suggested the participation of radical 

intermediates in the present photocatalytic C–H 18F-difluoromethylation reaction. To 
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the best of our knowledge, the effectiveness of the non-radioactive references of 

[18F]5a, [18F]5c, and [18F]5f as difluoromethylating reagents has never been described 

in visible light photoredox catalysis. This study clearly demonstrates that the great 

potential of [18F]difluoromethyl heteroaryl-sulfones toward the C-H functionalization 

of heteroarenes. Taking into consideration the reactivity of the sulfones 1 and 2 [39-

45], the newly synthesized [18F]difluoromethyl heteroaryl-sulfones can also be 

explored in the photoredox 18F-difluoromethylation of substrates bearing C=C, C≡C, 

and C≡N bonds. Alternatively, Hu and co-workers recently reported the employment 

of the sulfone 1 in the metal-free insertion of difluoromethylthio (-SCF2H) groups in 

indoles [53]. The sulfone 2 is widely described as a reagent for difluoroolefination of 

aldehydes and ketones [54-58]. Late-stage 18F-difluoromethylthiolation and 18F-

difluoroolefination of organic substrates has never been reported in the literature. 

Thus, the use of [18F]difluoromethyl heteroaryl-sulfones in these organic 

transformations would enable the direct transfer [18F]SCF2H and [18F]CF2 groups in 

adequate precursors.  

Overall, we expect that the potential versatility of newly synthesized 

[18F]difluoromethyl heteroaryl-sulfones [18F]5a, [18F]5c, and [18F]5f may contribute to 

the development of novel radioactive probes for PET imaging with improved molar 

activities. 

 

5. Supplementary Information  
 

5.1. NMR spectra of the compounds 4a-4f, 5a-5f, and 6a-6f 

 
Figure S1. 1H-NMR spectrum of 4a. 
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Figure S2. 13C-NMR spectrum of 4a. 

 

 
Figure S3. 19F-NMR spectrum of 4a. 
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Figure S4. 1H-NMR spectrum of 4b. 

 

 
Figure S5. 13C-NMR spectrum of 4b. 
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Figure S6. 19F-NMR spectrum of 4b. 

 

 
Figure S7. 1H-NMR spectrum of 4c. 
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Figure S8. 13C-NMR spectrum of 4c. 

 

 
Figure S9. 19F-NMR spectrum of 4c. 
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Figure S10. 1H-NMR spectrum of 4d. 

 

 
Figure S11. 13C-NMR spectrum of 4d. 
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Figure S12. 19F-NMR spectrum of 4d. 

 

 
Figure S13. 1H-NMR spectrum of 4e. 
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Figure S14. 13C-NMR spectrum of 4e. 

 

 

 
Figure S15. 19F-NMR spectrum of 4e. 
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Figure S16. 1H-NMR spectrum of 4f. 

 

 
Figure S17. 13C-NMR spectrum of 4f. 
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Figure S18. 19F-NMR spectrum of 4f. 

 

 

 
Figure S19. 1H-NMR spectrum of 5a. 
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Figure S20. 13C-NMR spectrum of 5a. 

 

 
Figure S21. 19F-NMR spectrum of 5a. 
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Figure S22. 1H-NMR spectrum of 5b. 

 

 
Figure S23. 13C-NMR spectrum of 5b. 
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Figure S24. 19F-NMR spectrum of 5b. 

 

 
Figure S25. 1H-NMR spectrum of 5c. 
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Figure S26. 13C-NMR spectrum of 5c. 

 

 
Figure S27. 19F-NMR spectrum of 5c. 
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Figure S28. 1H-NMR spectrum of 5d. 

 

 
Figure S29. 13C-NMR spectrum of 5d. 
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Figure S30. 19F-NMR spectrum of 5d. 

 

 
Figure S31. 1H-NMR spectrum of 5e. 
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Figure S32. 13C-NMR spectrum of 5e.  

 

 
Figure S33. 19F-NMR spectrum of 5e. 
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Figure S34. 1H-NMR spectrum of 5f. 

 

 
Figure S35. 13C-NMR spectrum of 5f. 
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Figure S36. 19F-NMR spectrum of 5f. 

 

 
Figure S37. 1H-NMR spectrum of 6a. 
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Figure S38. 13C-NMR spectrum of 6a.  

 

 
Figure S39. 19F-NMR spectrum of 6a. 
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Figure S40. 1H-NMR spectrum of 6b.  

 

 
Figure S41. 13C-NMR spectrum of 6b. 
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Figure S42. 19F-NMR spectrum of 6b. 

 

 
Figure S43. 1H-NMR spectrum of 6c. 

 

 

 



236 

 

 
Figure S44. 13C-NMR spectrum of 6c. 

 

 
Figure S45. 19F-NMR spectrum of 6c. 

 

 

 



237 

 

 
Figure S46. 1H-NMR spectrum of 6d. 

 

 
Figure S47. 13C-NMR spectrum of 6d. 
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Figure S48. 19F-NMR spectrum of 6d. 

 

 
Figure S49. 1H-NMR spectrum of 6e. 
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Figure S50. 13C-NMR spectrum of 6e. 

 

 
Figure S51. 19F-NMR spectrum of 6e. 

 

 

 



240 

 

 
Figure S52. 1H-NMR spectrum of 6f. 

 

 
Figure S53. 13C-NMR spectrum of 6f. 
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Figure S54. 19F-NMR spectrum of 6f.  

 

5.2. Radiochemistry 
 

The UPLC gradients used for the analyses of the crude products [18F]4a-[18F]4f, 

[18F]5a-[18F]5f, and [18F]8a-[18F]8g are depicted in Tables S1 and S2.  
 

Table S1. UPLC gradient for the analysis of the crude products [18F]4a-[18F]4f and [18F]5a-[18F]5f 

(gradient A) 

Time (min) HCO2H/H2O (0.05%, v/v) MeCN Flow rate (mL·min-1) 

0 100 0 0.5 

6 25 75 0.5 

8 100 0 0.5 

 

Table S2. UPLC gradient for the analysis of the crude products [18F]8a-[18F]8g (gradient B) 

Time (min) HCO2H/H2O (0.05%, v/v) MeCN Flow rate (mL·min-1) 

0 100 0 0.5 

6 0 100 0.5 

8 100 0 0.5 
 

5.2.1. Synthesis of [18F]2-((Difluoromethyl)thio)-6-methoxybenzo[d]thiazole 

([18F]4a) 
 

The implementation of the general procedure 3.2.2. for the 18F-labeling of 2-

((bromofluoromethyl)thio)-6-methoxybenzo[d]thiazole (6a) (12.3 mg, 0.04 mmol) 

provided the labeled compound [18F]4a in 14.2 ± 0.7% RCY (d.c. at the SOS).  
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The radiochemical yield (RCY) of the 18F-labeling step was determined based on 

the activity of the recovered crude product [18F]4a, on their radio-TLC and radio-

UPLC purities, and the starting radioactivity, according to the following formula:  
 

𝑅𝐶𝑌 (%, 𝑑. 𝑐. ) =  
𝑟𝑎𝑑𝑖𝑜𝑇𝐿𝐶 𝑝𝑢𝑟𝑖𝑡𝑦 (%) ×  𝑟𝑎𝑑𝑖𝑜𝑈𝑃𝐿𝐶 𝑝𝑢𝑟𝑖𝑡𝑦 (%) ×  𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑜𝑓 [𝟏𝟖𝐅]𝟒𝐚 (𝑑. 𝑐. )

𝑠𝑡𝑎𝑟𝑡𝑖𝑛𝑔 𝑟𝑎𝑑𝑖𝑜𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 ×  100
 

 

 
Figure S55. TLC radio-chromatogram of the crude product [18F]4a (eluent: methanol).  

 
Table S3. Determination of the radio-TLC purity of the crude product [18F]4a 

Retention factor (Rf, mm) Ratio (%) 

0.03 29 (impurity/by-product) 

0.67 71 (desired crude product) 
 

𝑅𝐶𝑌 (%, 𝑑. 𝑐. ) =  
𝑟𝑎𝑑𝑖𝑜𝑇𝐿𝐶 𝑝𝑢𝑟𝑖𝑡𝑦 (%) ×  𝑟𝑎𝑑𝑖𝑜𝑈𝑃𝐿𝐶 𝑝𝑢𝑟𝑖𝑡𝑦 (%) ×  𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑜𝑓 [𝟏𝟖𝐅]𝟒𝐚 (𝑑. 𝑐. )

𝑠𝑡𝑎𝑟𝑡𝑖𝑛𝑔 𝑟𝑎𝑑𝑖𝑜𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 ×  100
 

 

𝑅𝐶𝑌 (%, 𝑑. 𝑐. ) =  
71 ×  92 ×  37.0

169.4 ×  100
 

 
𝑅𝐶𝑌 (%, 𝑑. 𝑐. ) =  14.3 % 

 

Table S4 furnishes more details of the RCY determination. The UPLC radio-

chromatogram of the crude product [18F]4a is depicted in Figure S56. Figure S57 

represents the UPLC UV-chromatogram of the non-radioactive reference 4a. 
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Table S4. Determination of the radiochemical yield (%) of the synthesis of [18F]4a 

Reaction Starting 

activity 

(MBq) 

Activity of the 

crude product 

[18F]4a (MBq, 

d.c.) 

Radio-

TLC 

purity 

(%) 

Radio-

UPLC 

purity 

(%) 

Radiochemical 

Yield (%) 

1 169.4 37.0 71 92 14.3 

2 144.4 28.8 74 90 13.3 

3 187.9 50.9 55 100 14.9 

Radiochemical Yield (%) ± Deviation 14.2 ± 0.7 

 

 
Figure S56. UPLC radio-chromatogram of the crude product [18F]4a. ACQUITY UPLC® CSH 

C18 column (1.7 μm, 2.1 × 100 mm); MeCN and HCO2H/H2O (0.05%, v/v) in gradient mode at 

0.5 mL·min−1 (from 100% HCO2H/H2O (0.05%, v/v) to 75% MeCN + 25% HCO2H/H2O (0.05%, 

v/v) in 6 min, and from 75% MeCN + 25% HCO2H/H2O (0.05%, v/v) to 100% HCO2H/H2O 

(0.05%, v/v)  in 2 min). 
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Figure S57. UPLC UV-chromatogram of the authentic reference 4a (wavelength: 254 nm). 

ACQUITY UPLC® CSH C18 column (1.7 μm, 2.1 × 100 mm); MeCN and HCO2H/H2O (0.05%, 

v/v) in gradient mode at 0.5 mL·min−1 (from 100% HCO2H/H2O (0.05%, v/v) to 75% MeCN + 

25% HCO2H/H2O (0.05%, v/v) in 6 min, and from 75% MeCN + 25% HCO2H/H2O (0.05%, v/v) 

to 100% HCO2H/H2O (0.05%, v/v)  in 2 min). 

 

5.2.2. Synthesis of [18F]2-((Difluoromethyl)thio)-5-methoxybenzo[d]thiazole 

([18F]4b) 
 

The implementation of the general procedure 3.2.2. for the 18F-labeling of 2-

((bromofluoromethyl)thio)-5-methoxybenzo[d]thiazole (6b) (12.3 mg, 0.04 mmol) 

provided the labeled compound [18F]4b in 11.8 ± 1.9% RCY (d.c. at the SOS). Table S5 

furnishes more details of the RCY determination. The UPLC radio-chromatogram of 

the crude product [18F]4b is depicted in Figure S58. Figure S59 represents the UPLC 

UV-chromatogram of the non-radioactive reference 4b.  

 
Table S5. Determination of the radiochemical yield (%) of the synthesis of [18F]4b 

Reaction Starting 

activity 

(MBq) 

Activity of the 

crude product 

[18F]4b (MBq, 

d.c.) 

Radio-

TLC 

purity 

(%) 

Radio-

UPLC 

purity 

(%) 

Radiochemical 

Yield (%) 

1 187.5 41.5 42 100 9.3 

2 142.2 24.2 68 100 11.6 

3 173.4 30.5 67 100 11.8 

4 167.4 34.2 73 97 14.5 

Radiochemical Yield (%) ± Deviation 11.8 ± 1.9 

 

 
Figure S58. UPLC radio-chromatogram of the crude product [18F]4b. ACQUITY UPLC® CSH 

C18 column (1.7 μm, 2.1 × 100 mm); MeCN and HCO2H/H2O (0.05%, v/v) in gradient mode at 

0.5 mL·min−1 (from 100% HCO2H/H2O (0.05%, v/v) to 75% MeCN + 25% HCO2H/H2O (0.05%, 
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v/v) in 6 min, and from 75% MeCN + 25% HCO2H/H2O (0.05%, v/v) to 100% HCO2H/H2O 

(0.05%, v/v) in 2 min). 

 

 
Figure S59. UPLC UV-chromatogram of the authentic reference 4b (wavelength: 254 nm). 

ACQUITY UPLC® CSH C18 column (1.7 μm, 2.1 × 100 mm); MeCN and HCO2H/H2O (0.05%, 

v/v) in gradient mode at 0.5 mL·min−1 (from 100% HCO2H/H2O (0.05%, v/v) to 75% MeCN + 

25% HCO2H/H2O (0.05%, v/v) in 6 min, and from 75% MeCN + 25% HCO2H/H2O (0.05%, v/v) 

to 100% HCO2H/H2O (0.05%, v/v) in 2 min). 

 

5.2.3. Synthesis of [18F]2-((Difluoromethyl)thio)-6-nitrobenzo[d]thiazole ([18F]4c) 
 

The implementation of the general procedure 3.2.2. for the 18F-labeling of 2-

((bromofluoromethyl)thio)-6-nitrobenzo[d]thiazole (6c) (6.5 mg, 0.02 mmol) provided 

the labeled compound [18F]4c in 13.6 ± 0.6% RCY (d.c. at the SOS). Table S6 furnishes 

more details of the RCY determination. The UPLC radio-chromatogram of the crude 

product [18F]4c is depicted in Figure S60. Figure S61 represents the UPLC UV-

chromatogram of the non-radioactive reference 4c.  

 
Table S6. Determination of the radiochemical yield (%) of the synthesis of [18F]4c 

Reaction Starting 

activity 

(MBq) 

Activity of the 

crude product 

[18F]4c (MBq, 

d.c.) 

Radio-

TLC 

purity 

(%) 

Radio-

UPLC 

purity 

(%) 

Radiochemical 

Yield (%) 

1 150.9 32.6 75 82 13.3 

2 173.1 36.1 81 86 14.5 

3 196.1 37.8 70 97 13.1 

Radiochemical Yield (%) ± Deviation 13.6 ± 0.6 
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Figure S60. UPLC radio-chromatogram of the crude product [18F]4c. ACQUITY UPLC® CSH 

C18 column (1.7 μm, 2.1 × 100 mm); MeCN and HCO2H/H2O (0.05%, v/v) in gradient mode at 

0.5 mL·min−1 (from 100% HCO2H/H2O (0.05%, v/v) to 75% MeCN + 25% HCO2H/H2O (0.05%, 

v/v) in 6 min, and from 75% MeCN + 25% HCO2H/H2O (0.05%, v/v) to 100% HCO2H/H2O 

(0.05%, v/v) in 2 min). 

 

 
Figure S61. UPLC UV-chromatogram of the authentic reference 4c (wavelength: 254 nm). 

ACQUITY UPLC® CSH C18 column (1.7 μm, 2.1 × 100 mm); MeCN and HCO2H/H2O (0.05%, 

v/v) in gradient mode at 0.5 mL·min−1 (from 100% HCO2H/H2O (0.05%, v/v) to 75% MeCN + 

25% HCO2H/H2O (0.05%, v/v) in 6 min, and from 75% MeCN + 25% HCO2H/H2O (0.05%, v/v) 

to 100% HCO2H/H2O (0.05%, v/v) in 2 min). 

 

5.2.4. Synthesis of [18F]2-((Difluoromethyl)thio)-5-nitrobenzo[d]thiazole ([18F]4d) 
 

The implementation of the general procedure of the 18F-labeling of 2-

((bromofluoromethyl)thio)-5-nitrobenzo[d]thiazole (6d) (12.9 mg, 0.04 mmol) 

provided the labeled compound [18F]4d in 12.7 ± 0.2% RCY (d.c. at the SOS). Table S7 
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furnishes more details of the RCY determination. The UPLC radio-chromatogram of 

the crude product [18F]4d is depicted in Figure S62. Figure S63 represents the UPLC 

UV-chromatogram of the non-radioactive reference 4d.  

 
Table S7. Determination of the radiochemical yield (%) of the synthesis of [18F]4d 

Reaction Starting 

activity 

(MBq) 

Activity of the 

crude product 

[18F]4d (MBq, 

d.c.) 

Radio-

TLC 

purity 

(%) 

Radio-

UPLC 

purity 

(%) 

Radiochemical 

Yield (%) 

1 196.8 62.1 46 86 12.5 

2 161.4 38.7 67 79 12.7 

3 180.6 34.9 75 89 12.9 

Radiochemical Yield (%) ± Deviation 12.7 ± 0.2 

 

 

 
Figure S62. UPLC radio-chromatogram of the crude product [18F]4d. ACQUITY UPLC® CSH 

C18 column (1.7 μm, 2.1 × 100 mm); MeCN and HCO2H/H2O (0.05%, v/v) in gradient mode at 

0.5 mL·min−1 (from 100% HCO2H/H2O (0.05%, v/v) to 75% MeCN + 25% HCO2H/H2O (0.05%, 

v/v) in 6 min, and from 75% MeCN + 25% HCO2H/H2O (0.05%, v/v) to 100% HCO2H/H2O 

(0.05%, v/v) in 2 min). 
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Figure S63. UPLC UV-chromatogram of the authentic reference 4d (wavelength: 254 nm). 

ACQUITY UPLC® CSH C18 column (1.7 μm, 2.1 × 100 mm); MeCN and HCO2H/H2O (0.05%, 

v/v) in gradient mode at 0.5 mL·min−1 (from 100% HCO2H/H2O (0.05%, v/v) to 75% MeCN + 

25% HCO2H/H2O (0.05%, v/v) in 6 min, and from 75% MeCN + 25% HCO2H/H2O (0.05%, v/v) 

to 100% HCO2H/H2O (0.05%, v/v) in 2 min). 

 

5.2.5.  Synthesis of [18F]2-((Difluoromethyl)thio)-1-methyl-1H-benzo[d]imidazole 

([18F]4e) 
 

The implementation of the general procedure 3.2.2. for the 18F-labeling of 2-

((bromofluoromethyl)thio)-1-methyl-1H-benzo[d]imidazole (6e) (11.0 mg, 0.04 mmol) 

provided the labeled compound [18F]4e in 8.3 ± 1.9% RCY (d.c. at the SOS). Table S8 

furnishes more details of the RCY determination. The UPLC radio-chromatogram of 

the crude product [18F]4e is depicted in Figure S64. Figure S65 represents the UPLC 

UV-chromatogram of the non-radioactive reference 4e. 
 

Table S8. Determination of the radiochemical yield (%) of the synthesis of [18F]4e 

Reaction Starting 

activity 

(MBq) 

Activity of the 

crude product 

[18F]4e (MBq, 

d.c.) 

Radio-

TLC 

purity 

(%) 

Radio-

UPLC 

purity 

(%) 

Radiochemical 

Yield (%) 

1 182.4 33 32 100 5.8 

2 154.6 16.8 69 100 7.5 

3 169.8 25.7 58 100 8.8 

4 187.4 30.5 71 95 11.0 

Radiochemical Yield (%) ± Deviation 8.3 ± 1.9 
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Figure S64. UPLC radio-chromatogram of the crude product [18F]4e. ACQUITY UPLC® CSH 

C18 column (1.7 μm, 2.1 × 100 mm); MeCN and HCO2H/H2O (0.05%, v/v) in gradient mode at 

0.5 mL·min−1 (from 100% HCO2H/H2O (0.05%, v/v) to 75% MeCN + 25% HCO2H/H2O (0.05%, 

v/v) in 6 min, and from 75% MeCN + 25% HCO2H/H2O (0.05%, v/v) to 100% HCO2H/H2O 

(0.05%, v/v) in 2 min). 

 

 
Figure S65. UPLC UV-chromatogram of the authentic reference 4e (wavelength: 254 nm). 

ACQUITY UPLC® CSH C18 column (1.7 μm, 2.1 × 100 mm); MeCN and HCO2H/H2O (0.05%, 

v/v) in gradient mode at 0.5 mL·min−1 (from 100% HCO2H/H2O (0.05%, v/v) to 75% MeCN + 

25% HCO2H/H2O (0.05%, v/v) in 6 min, and from 75% MeCN + 25% HCO2H/H2O (0.05%, v/v) 

to 100% HCO2H/H2O (0.05%, v/v) in 2 min). 

 

5.2.6. Synthesis of [18F]5-((Difluoromethyl)thio)-1-phenyl-1H-tetrazole ([18F]4f) 

The implementation of the general procedure 3.2.2. for the 18F-labeling of 5-

((bromofluoromethyl)thio)-1-phenyl-1H-tetrazole (6f) (11.6 mg, 0.04 mmol) provided 

the labeled compound [18F]4f in 14.8 ± 0.8% RCY (d.c. at the SOS). Table S9 furnishes 
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more details of the RCY determination. The UPLC radio-chromatogram of the crude 

product [18F]4f is depicted in Figure S66. Figure S67 represents the UPLC UV-

chromatogram of the non-radioactive reference 4f. 
 

Table S9. Determination of the radiochemical yield (%) of the synthesis of [18F]4f 

Reaction Starting 

activity 

(MBq) 

Activity of the 

crude product 

[18F]4f (MBq, 

d.c.) 

Radio-

TLC 

purity 

(%) 

Radio-

UPLC 

purity 

(%) 

Radiochemical 

Yield (%) 

1 130.2 26.8 81 96 16.0 

2 190.4 38.4 74 95 14.2 

3 195.8 39.3 75 95 14.3 

Radiochemical Yield (%) ± Deviation 14.8 ± 0.8 

 

 
Figure S66. UPLC radio-chromatogram of the crude product [18F]4f. ACQUITY UPLC® CSH 

C18 column (1.7 μm, 2.1 × 100 mm); MeCN and HCO2H/H2O (0.05%, v/v) in gradient mode at 

0.5 mL·min−1 (from 100% HCO2H/H2O (0.05%, v/v) to 75% MeCN + 25% HCO2H/H2O (0.05%, 

v/v) in 6 min, and from 75% MeCN + 25% HCO2H/H2O (0.05%, v/v) to 100% HCO2H/H2O 

(0.05%, v/v) in 2 min). 

 

5.2.7. Synthesis of [18F]2-((Difluoromethyl)sulfonyl)-6-methoxybenzo[d]thiazole 

([18F]5a) 
 

The implementation of the general procedure 3.2.3. for the oxidation of [18F]2-

((difluoromethyl)thio)-6-methoxybenzo[d]thiazole ([18F]4a) (10-20 MBq) provided the 

labeled compound [18F]5a in 70.9 ± 6.1% RCY (d.c. at the SOS).  

The RCY of the oxidation step was determined based on the activity of the crude 

products [18F]4a and [18F]5a, and on their radio-TLC and radio-UPLC purities, 

according to the following equation: 
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𝑅𝐶𝑌 (%, 𝑑. 𝑐. ) =  
𝑟𝑎𝑑𝑖𝑜𝑇𝐿𝐶 𝑝𝑢𝑟𝑖𝑡𝑦 (%) ×  𝑟𝑎𝑑𝑖𝑜𝑈𝑃𝐿𝐶 𝑝𝑢𝑟𝑖𝑡𝑦 (%) ×  𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑜𝑓  [𝟏𝟖𝐅]𝟓𝐚 (𝑑. 𝑐. )

𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑜𝑓 [𝟏𝟖𝐅]𝟒𝐚 ×  100
 

 

 
Figure S67. UPLC UV-chromatogram of the authentic reference 4f (wavelength: 254 nm). 

ACQUITY UPLC® CSH C18 column (1.7 μm, 2.1 × 100 mm); MeCN and HCO2H/H2O (0.05%, 

v/v) in gradient mode at 0.5 mL·min−1 (from 100% HCO2H/H2O (0.05%, v/v) to 75% MeCN + 

25% HCO2H/H2O (0.05%, v/v) in 6 min, and from 75% MeCN + 25% HCO2H/H2O (0.05%, v/v) 

to 100% HCO2H/H2O (0.05%, v/v) in 2 min). 

 

 
Figure S68. TLC radio-chromatogram of the crude product [18F]5a (eluent: methanol).  

 

Table S10. Determination of the radio-TLC purity of the crude product [18F]5a 

Retention factor (Rf, mm) Ratio (%) 

0 0 (impurity/by-product) 

0.78 100 (desired crude product) 
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𝑅𝐶𝑌 (%, 𝑑. 𝑐. ) =  
𝑟𝑎𝑑𝑖𝑜𝑇𝐿𝐶 𝑝𝑢𝑟𝑖𝑡𝑦 (%) ×  𝑟𝑎𝑑𝑖𝑜𝑈𝑃𝐿𝐶 𝑝𝑢𝑟𝑖𝑡𝑦 (%) ×  𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑜𝑓 [𝟏𝟖𝐅]𝟓𝐚 (𝑑. 𝑐. )

𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦  𝑜𝑓 [𝟏𝟖𝐅]𝟒𝐚 (𝑑. 𝑐. )  ×  100
 

 

𝑅𝐶𝑌 (%, 𝑑. 𝑐. ) =  
100 ×  92 ×  12.0

15.6 ×  100
 

 
𝑅𝐶𝑌 (%, 𝑑. 𝑐. ) =  70.6 % 

 

Table S11 furnishes more details of the RCY determination. The UPLC radio-

chromatogram of the crude product [18F]5a is depicted in Figure S69. Figure S70 

represents the UPLC UV-chromatogram of the non-radioactive reference 5a. 
 

Table S11. Determination of the radiochemical yield (%) of the synthesis of [18F]5a 

Reaction Activity of 

the crude 

product 

[18F]4a 

(MBq) 

Activity of 

the crude 

product 

[18F]5a (MBq, 

d.c.) 

Radio-

TLC 

purity 

(%) 

Radio-

UPLC 

purity 

(%) 

Radiochemical 

Yield (%) 

1 15.6 12.0 100 92 70.6 

2 12.7 10.3 99 98 78.5 

3 13.6 11.5 100 75 63.6 

Radiochemical Yield (%) ± Deviation 70.9 ± 6.1 

 

 
Figure S69. UPLC radio-chromatogram of the crude product [18F]5a. ACQUITY UPLC® CSH 

C18 column (1.7 μm, 2.1 × 100 mm); MeCN and HCO2H/H2O (0.05%, v/v) in gradient mode at 

0.5 mL·min−1 (from 100% HCO2H/H2O (0.05%, v/v) to 75% MeCN + 25% HCO2H/H2O (0.05%, 

v/v) in 6 min, and from 75% MeCN + 25% HCO2H/H2O (0.05%, v/v) to 100% HCO2H/H2O 

(0.05%, v/v) in 2 min). 
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Figure S70. UPLC UV-chromatogram of the authentic reference 5a (wavelength: 254 nm). 

ACQUITY UPLC® CSH C18 column (1.7 μm, 2.1 × 100 mm); MeCN and HCO2H/H2O (0.05%, 

v/v) in gradient mode at 0.5 mL·min−1 (from 100% HCO2H/H2O (0.05%, v/v) to 75% MeCN + 

25% HCO2H/H2O (0.05%, v/v) in 6 min, and from 75% MeCN + 25% HCO2H/H2O (0.05%, v/v) 

to 100% HCO2H/H2O (0.05%, v/v) in 2 min). 

 

5.2.8. Synthesis of [18F]2-((Difluoromethyl)sulfonyl)-5-methoxybenzo[d]thiazole 

([18F]5b) 
 

The implementation of the general procedure 3.2.3. for the oxidation of [18F]2-

((difluoromethyl)thio)-5-methoxybenzo[d]thiazole ([18F]4b) (10-20 MBq) provided the 

labeled compound [18F]5b in 70.6 ± 5.1% RCY (d.c. at the SOS). Table S12 furnishes 

more details of the RCY determination. The UPLC radio-chromatogram of the crude 

product [18F]5b is depicted in Figure S71. Figure S72 represents the UPLC UV-

chromatogram of the non-radioactive reference 5b.  

 
Table S12. Determination of the radiochemical yield (%) of the synthesis of [18F]5b 

Reaction Activity of 

the crude 

product 

[18F]4b 

(MBq) 

Activity of 

the crude 

product 

[18F]5b 

(MBq, d.c.) 

Radio-

TLC 

purity 

(%) 

Radio-

UPLC 

purity 

(%) 

Radiochemical 

Yield (%) 

1 17.4 13.1 99 85 63.5 

2 16.2 13.7 99 87 72.9 

3 14.9 11.2 100 100 75.4 

Radiochemical Yield (%) ± Deviation 70.6 ± 5.1 
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Figure S71. UPLC radio-chromatogram of the crude product [18F]5b. ACQUITY UPLC® CSH 

C18 column (1.7 μm, 2.1 × 100 mm); MeCN and HCO2H/H2O (0.05%, v/v) in gradient mode at 

0.5 mL·min−1 (from 100% HCO2H/H2O (0.05%, v/v) to 75% MeCN + 25% HCO2H/H2O (0.05%, 

v/v) in 6 min, and from 75% MeCN + 25% HCO2H/H2O (0.05%, v/v) to 100% HCO2H/H2O 

(0.05%, v/v) in 2 min). 

 

 
Figure S72. UPLC UV-chromatogram of the authentic reference 5b (wavelength: 254 nm). 

ACQUITY UPLC® CSH C18 column (1.7 μm, 2.1 × 100 mm); MeCN and HCO2H/H2O (0.05%, 

v/v) in gradient mode at 0.5 mL·min−1 (from 100% HCO2H/H2O (0.05%, v/v) to 75% MeCN + 

25% HCO2H/H2O (0.05%, v/v) in 6 min, and from 75% MeCN + 25% HCO2H/H2O (0.05%, v/v) 

to 100% HCO2H/H2O (0.05%, v/v) in 2 min). 
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5.2.9. Synthesis of [18F]2-((Difluoromethyl)sulfonyl)-6-nitrobenzo[d]thiazole 

([18F]5c) 
 

The implementation of the general procedure 3.2.3. for the oxidation of [18F]2-

((difluoromethyl)thio)-6-nitrobenzo[d]thiazole ([18F]4c) (10-20 MBq) provided the 

labeled compound [18F]5c in 88.2 ± 0.2% RCY (d.c. at the SOS). Table S13 furnishes 

more details of the RCY determination. The UPLC radio-chromatogram of the crude 

product [18F]5c is depicted in Figure S73. Figure S74 represents the UPLC UV-

chromatogram of the non-radioactive reference 5c.  
 

Table S13. Determination of the radiochemical yield (%) of the synthesis of [18F]5c 

Reaction Activity of 

the crude 

product 

[18F]4c (MBq) 

Activity of 

the crude 

product 

[18F]5c (MBq, 

d.c.) 

Radio-

TLC 

purity 

(%) 

Radio-

UPLC 

purity 

(%) 

Radiochemical 

Yield (%) 

1 15.9 14.1 100 100 88.4 

2 14.2 12.6 100 99 88 

3 14.8 13.4 100 97 88.1 

Radiochemical Yield (%) ± Deviation 88.2 ± 0.2 

 

 
Figure S73. UPLC radio-chromatogram of the crude product [18F]5c. ACQUITY UPLC® CSH 

C18 column (1.7 μm, 2.1 × 100 mm); MeCN and HCO2H/H2O (0.05%, v/v) in gradient mode at 

0.5 mL·min−1 (from 100% HCO2H/H2O (0.05%, v/v) to 75% MeCN + 25% HCO2H/H2O (0.05%, 

v/v) in 6 min, and from 75% MeCN + 25% HCO2H/H2O (0.05%, v/v) to 100% HCO2H/H2O 

(0.05%, v/v) in 2 min). 
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Figure S74. UPLC UV-chromatogram of the authentic reference 5c (wavelength: 254 nm). 

ACQUITY UPLC® CSH C18 column (1.7 μm, 2.1 × 100 mm); MeCN and HCO2H/H2O (0.05%, 

v/v) in gradient mode at 0.5 mL·min−1 (from 100% HCO2H/H2O (0.05%, v/v) to 75% MeCN + 

25% HCO2H/H2O (0.05%, v/v) in 6 min, and from 75% MeCN + 25% HCO2H/H2O (0.05%, v/v) 

to 100% HCO2H/H2O (0.05%, v/v) in 2 min). 

 

5.2.10. Synthesis of [18F]2-((Difluoromethyl)sulfonyl)-5-nitrobenzo[d]thiazole ([18F]5d) 
 

The implementation of the general procedure 3.2.3. for the oxidation of [18F]2-

((difluoromethyl)thio)-5-nitrobenzo[d]thiazole ([18F]4d) (10-20 MBq) provided the 

labeled compound [18F]5d in 88.4 ± 2.8% RCY (d.c. at the SOS). Table S14 furnishes 

more details of the RCY determination. The UPLC radio-chromatogram of the crude 

product [18F]5d is depicted in Figure S75. Figure S76 represents the UPLC UV-

chromatogram of the non-radioactive reference 5d.   

 
Table S14. Determination of the radiochemical yield (%) of the synthesis of [18F]5d 

Reaction Activity of 

the crude 

product 

[18F]4d 

(MBq) 

Activity of 

the crude 

product 

[18F]5d 

(MBq, d.c.) 

Radio-

TLC 

purity 

(%) 

Radio-

UPLC 

purity 

(%) 

Radiochemical 

Yield (%) 

1 13.9 13.3 99 97 92.1 

2 15.0 14.6 99 89 85.6 

3 15.9 15.1 99 93 87.6 

Radiochemical Yield (%) ± Deviation 88.4 ± 2.8 
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Figure S75. UPLC radio-chromatogram of the crude product [18F]5d. ACQUITY UPLC® CSH 

C18 column (1.7 μm, 2.1 × 100 mm); MeCN and HCO2H/H2O (0.05%, v/v) in gradient mode at 

0.5 mL·min−1 (from 100% HCO2H/H2O (0.05%, v/v) to 75% MeCN + 25% HCO2H/H2O (0.05%, 

v/v) in 6 min, and from 75% MeCN + 25% HCO2H/H2O (0.05%, v/v) to 100% HCO2H/H2O 

(0.05%, v/v) in 2 min). 

 

 
Figure S76. UPLC UV-chromatogram of the authentic reference 5d (wavelength: 254 nm). 

ACQUITY UPLC® CSH C18 column (1.7 μm, 2.1 × 100 mm); MeCN and HCO2H/H2O (0.05%, 

v/v) in gradient mode at 0.5 mL·min−1 (from 100% HCO2H/H2O (0.05%, v/v) to 75% MeCN + 

25% HCO2H/H2O (0.05%, v/v) in 6 min, and from 75% MeCN + 25% HCO2H/H2O (0.05%, v/v) 

to 100% HCO2H/H2O (0.05%, v/v) in 2 min). 

 

5.2.11. Synthesis of [18F]2-((Difluoromethyl)sulfonyl)-1-methyl-1H-

benzo[d]imidazole ([18F]5e) 
 

The implementation of the general procedure 3.2.3. for the oxidation of [18F]2-

((difluoromethyl)thio)-1-methyl-1H-benzo[d]imidazole ([18F]4e) (10-20 MBq) 
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provided the labeled compound [18F]5e in 86.1 ± 3.0% RCY (d.c. at the SOS). Table S15 

furnishes more details of the RCY determination. The UPLC radio-chromatogram of 

the crude product [18F]5e is depicted in Figure S77. Figure S78 represents the UPLC 

UV-chromatogram of the non-radioactive reference 5e.  

 
Table S15. Determination of the radiochemical yield (%) of the synthesis of [18F]5e 

Reaction Activity of 

the crude 

product 

[18F]4e 

(MBq) 

Activity of 

the crude 

product 

[18F]5e (MBq, 

d.c.) 

Radio-

TLC 

purity 

(%) 

Radio-

UPLC 

purity 

(%) 

Radiochemical 

Yield (%) 

1 13.7 12.4 100 100 90.2 

2 17.4 16.0 93 97 83.1 

3 14.7 13.2 100 95 85 

Radiochemical Yield (%) ± Deviation 86.1 ± 3.0 

 

 
Figure S77. UPLC radio-chromatogram of the crude product [18F]5e. ACQUITY UPLC® CSH 

C18 column (1.7 μm, 2.1 × 100 mm); MeCN and HCO2H/H2O (0.05%, v/v) in gradient mode at 

0.5 mL·min−1 (from 100% HCO2H/H2O (0.05%, v/v) to 75% MeCN + 25% HCO2H/H2O (0.05%, 

v/v) in 6 min, and from 75% MeCN + 25% HCO2H/H2O (0.05%, v/v) to 100% HCO2H/H2O 

(0.05%, v/v) in 2 min). 
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Figure S78. UPLC UV-chromatogram of the authentic reference 5e (wavelength: 254 nm). 

ACQUITY UPLC® CSH C18 column (1.7 μm, 2.1 × 100 mm); MeCN and HCO2H/H2O (0.05%, 

v/v) in gradient mode at 0.5 mL·min−1 (from 100% HCO2H/H2O (0.05%, v/v) to 75% MeCN + 

25% HCO2H/H2O (0.05%, v/v) in 6 min, and from 75% MeCN + 25% HCO2H/H2O (0.05%, v/v) 

to 100% HCO2H/H2O (0.05%, v/v) in 2 min). 

 

5.2.12. Synthesis of [18F]5-((Difluoromethyl)sulfonyl)-1-phenyl-1H-tetrazole ([18F]5f) 
 

The implementation of the general procedure 3.2.3. for the oxidation of [18F]5-

((difluoromethyl)thio)-1-phenyl-1H-tetrazole ([18F]4f) (10-20 MBq) provided the 

labeled compound [18F]5f in 91.9 ± 2.8% RCY (d.c. at the SOS). Table S16 furnishes 

more details of the RCY determination. The UPLC radio-chromatogram of the crude 

product [18F]5f is depicted in Figure S79. Figure S80 represents the UPLC UV-

chromatogram of the non-radioactive reference 5f.  
 

Table S16. Determination of the radiochemical yield (%) of the synthesis of [18F]5f 

Reaction Activity of 

the crude 

product 

[18F]4f (MBq) 

Activity of 

the crude 

product 

[18F]5f (MBq, 

d.c.) 

Radio-

TLC 

purity 

(%) 

Radio-

UPLC 

purity 

(%) 

Radiochemical 

Yield (%) 

1 15.4 13.7 100 100 88.7 

2 16.1 14.7 100 100 91.4 

3 15.7 15.0 100 100 95.6 

Radiochemical Yield (%) ± Deviation 91.9 ± 2.8 
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Figure S79. UPLC radio-chromatogram of the crude product [18F]5f. ACQUITY UPLC® CSH 

C18 column (1.7 μm, 2.1 × 100 mm); MeCN and HCO2H/H2O (0.05%, v/v) in gradient mode at 

0.5 mL·min−1 (from 100% HCO2H/H2O (0.05%, v/v) to 75% MeCN + 25% HCO2H/H2O (0.05%, 

v/v) in 6 min, and from 75% MeCN + 25% HCO2H/H2O (0.05%, v/v) to 100% HCO2H/H2O 

(0.05%, v/v) in 2 min). 

 

 
Figure S80. UPLC UV-chromatogram of the authentic reference 5f (wavelength: 254 nm). 

ACQUITY UPLC® CSH C18 column (1.7 μm, 2.1 × 100 mm); MeCN and HCO2H/H2O (0.05%, 

v/v) in gradient mode at 0.5 mL·min−1 (from 100% HCO2H/H2O (0.05%, v/v) to 75% MeCN + 

25% HCO2H/H2O (0.05%, v/v) in 6 min, and from 75% MeCN + 25% HCO2H/H2O (0.05%, v/v) 

to 100% HCO2H/H2O (0.05%, v/v) in 2 min). 

 

5.3. Two-Step Radiosynthesis of the [18F]Difluoromethyl Heteroaryl-Sulfones [18F]5a-[18F]5f 

from the Precursors 6a-6f 
 

The overall RCY of the 18F-labeling step of 6a-6f and the oxidation of [18F]4a-

[18F]4f was determined based on the activity of the recovered crude products [18F]5a–
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[18F]5f, on their radio-TLC and radio-UPLC purities, and the starting radioactivity, 

according to the following formula: 

 

𝑅𝐶𝑌 (%, 𝑑. 𝑐. ) =  
𝑟𝑎𝑑𝑖𝑜𝑇𝐿𝐶 𝑝𝑢𝑟𝑖𝑡𝑦 (%) ×  𝑟𝑎𝑑𝑖𝑜𝑈𝑃𝐿𝐶 𝑝𝑢𝑟𝑖𝑡𝑦 (%) ×  𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑜𝑓 [𝟏𝟖𝐅]𝟓𝐚– [𝟏𝟖𝐅]𝟓𝐟 (𝑑. 𝑐. )

𝑠𝑡𝑎𝑟𝑡𝑖𝑛𝑔 𝑟𝑎𝑑𝑖𝑜𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 ×  100
 

 

Tables S17-S22 furnishes more details of the RCY determination of the 

radiosynthesis of the [18F]difluoromethyl heteroaryl-sulfones [18F]5a-[18F]5f from the 

precursors 6a-6f. 
 

Table S17. Determination of the radiochemical yield (%) of the synthesis of [18F]5a from the 

precursor 6a 

Reaction Starting 

activity 

(MBq) 

Activity of the 

crude product 

[18F]5a (MBq, 

d.c.) 

Radio-

TLC 

purity 

(%) 

Radio-

UPLC 

purity 

(%) 

Radiochemical 

Yield (%) 

1 100 11.0 98 93 10.0 

2 98.6 11.8 98 95 11.1 

3 131.8 13.6 99 89 9.1 

Radiochemical Yield (%) ± Deviation 10.1 ± 0.8 

 

Table S18. Determination of the radiochemical yield (%) of the synthesis of [18F]5b from the 

precursor 6b 

Reaction Starting 

activity 

(MBq) 

Activity of the 

crude product 

[18F]5b (MBq, 

d.c.) 

Radio-

TLC 

purity 

(%) 

Radio-

UPLC 

purity 

(%) 

Radiochemical 

Yield (%) 

1 92.2 9.3 98 87 8.6 

2 112.0 10.1 98 85 7.5 

3 110.0 11.5 99 86 8.9 

Radiochemical Yield (%) ± Deviation 8.3 ± 0.6 

 

Table S19. Determination of the radiochemical yield (%) of the synthesis of [18F]5c from the 

precursor 6c 

Reaction Starting 

activity 

(MBq) 

Activity of the 

crude product 

[18F]5c (MBq, 

d.c.) 

Radio-

TLC 

purity 

(%) 

Radio-

UPLC 

purity 

(%) 

Radiochemical 

Yield (%) 

1 112.8 14.6 100 99 12.8 

2 101.3 12.1 100 98 11.7 

3 122.9 14.5 100 98 11.6 

Radiochemical Yield (%) ± Deviation 12 ± 0.5 
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Table S20. Determination of the radiochemical yield (%) of the synthesis of [18F]5d from the 

precursor 6d 

Reaction Starting 

activity 

(MBq) 

Activity of the 

crude product 

[18F]5d (MBq, 

d.c.) 

Radio-

TLC 

purity 

(%) 

Radio-

UPLC 

purity 

(%) 

Radiochemical 

Yield (%) 

1 115.1 12.9 100 97 10.9 

2 108.9 12.5 100 97 11.1 

3 98.2 11.7 100 98 11.7 

Radiochemical Yield (%) ± Deviation 11.2 ± 0.3 

 

Table S21. Determination of the radiochemical yield (%) of the synthesis of [18F]5e from the 

precursor 6e 

Reaction Starting 

activity 

(MBq) 

Activity of the 

crude product 

[18F]5e (MBq, 

d.c.) 

Radio-

TLC 

purity 

(%) 

Radio-

UPLC 

purity 

(%) 

Radiochemical 

Yield (%) 

1 106.8 8.2 100 98 7.5 

2 99.1 7.4 99 96 7.1 

3 105.3 7.6 99 96 6.9 

Radiochemical Yield (%) ± Deviation 7.2 ± 0.2 

 

Table S22. Determination of the radiochemical yield (%) of the synthesis of [18F]5f from the 

precursor 6f 

Reaction Starting 

activity 

(MBq) 

Activity of the 

crude product 

[18F]5f (MBq, 

d.c.) 

Radio-

TLC 

purity 

(%) 

Radio-

UPLC 

purity 

(%) 

Radiochemical 

Yield (%) 

1 116.8 15.8 100 100 13.5 

2 111.3 14.6 100 100 13.1 

3 110.6 15.6 100 100 14.1 

Radiochemical Yield (%) ± Deviation 13.6  ± 0.4 

 

5.4. Fully Automated Radiosynthesis of the Labeled Compounds [18F]5a, [18F]5c, and [18F]5f 
 

The RCY of the fully automated radiosynthesis of the [18F]difluoromethyl 

heteroaryl-sulfones [18F]5a, [18F]5c, and [18F]5f was determined based on the 

radioactivity of the [18F]5a, [18F]5c, or [18F]5f present in DMSO solution and the 

radioactivity trapped on the QMA carbonate cartridge, according to the following 

formula:  

 

𝑅𝐶𝑌 (%, 𝑑. 𝑐. ) =  
𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑜𝑓 [𝟏𝟖𝐅]𝟓𝐚, [𝟏𝟖𝐅]𝟓𝐜, or [𝟏𝟖𝐅]𝟓𝐟 in DMSO (𝑑. 𝑐. )

𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑡𝑟𝑎𝑝𝑝𝑒𝑑 𝑜𝑛 𝑡ℎ𝑒 𝑄𝑀𝐴 𝑐𝑎𝑟𝑏𝑜𝑛𝑎𝑡𝑒 𝑐𝑎𝑟𝑡𝑟𝑖𝑑𝑔𝑒 ×  100
 

 



263 

 

Tables S23-S25 provide more details of the RCY determination of the 

radiosynthesis of the [18F]difluoromethyl heteroaryl-sulfones [18F]5a, [18F]5c, and 

[18F]5f from the precursors 6a, 6c, and 6f, respectively. 
 

Table S23. Determination of the radiochemical yield (%) of the synthesis of [18F]5a from the 

precursor 6a 

Reaction Starting activity 

(GBq) 

Activity of the isolated 

product [18F]5a (GBq, d.c.) 

Radiochemical 

Yield (%) 

1 135.0 4.0 3.0 

2 137.3 3.7 2.7 

3 148.9 4.3 2.9 

Radiochemical Yield (%) ± Deviation 2.9 ± 0.1 
 

Table S24. Determination of the radiochemical yield (%) of the synthesis of [18F]5c from the 

precursor 6c 

Reaction Starting activity 

(GBq) 

Activity of the isolated 

product [18F]5c (GBq, d.c.) 

Radiochemical 

Yield (%) 

1 134.3 6.3 4.7 

2 146.9 8.5 5.8 

3 135.3 8.2 6.1 

4 127.6 7.5 5.9 

5 147.6 9.0 6.1 

Radiochemical Yield (%) ± Deviation 5.7 ± 0.5 
 

Table S25. Determination of the radiochemical yield (%) of the synthesis of [18F]5f from the 

precursor 6f 

Reaction Starting activity 

(GBq) 

Activity of the isolated 

product [18F]5a (GBq, d.c.) 

Radiochemical 

Yield (%) 

1 140.1 10.2 7.3 

2 130.9 9.7 7.4 

3 124.9 11.6 9.3 

Radiochemical Yield (%) ± Deviation 8.0 ± 0.9 

 

5.5. Calibration Curves of the Difluoromethyl Heteroaryl-Sulfones 5a, 5c, and 5f for 

Determination of the Molar Activity of [18F]5a, [18F]5c, and [18F]5f 
 

The fully automated radiosynthesis of the sulfones [18F]5a, [18F]5c, or [18F]5f was 

performed on a commercially available FASTlabTM synthesizer (GE Healthcare), using 

the optimized conditions for the labeling of precursors 6a (12.3 mg, 0.04 mmol), 6c 

(6.5 mg, 0.02 mmol), or 6f (11.6 mg, 0.04 mmol), and the oxidation of the labeled 

compounds [18F]4a, [18F]4c, and [18F]4f. The molar activity of the [18F]difluoromethyl 

heteroaryl-sulfones was determined using an aliquot of each reformulated solution (3 

µL). After injection of an aliquot in UPLC, the radioactive peak of [18F]5a, [18F]5c, and 

[18F]5f associated to the non-radioactive sulfones 5a, 5c, and 5f, respectively, were 
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collected and counted in an ionization chamber. The PDA UV area under the peak of 

the non-radioactive sulfones 5a, 5c, and 5f at 258 nm, 290 nm, and 244 nm, 

respectively, enabled the determination of the corresponding amount (in µmol) of the 

difluoromethyl heteroaryl-sulfones using the calibration curves described in Figures 

S81-S83. The molar activity was calculated by the ratio between the radioactivity of 

the [18F]5a, [18F]5c, and [18F]5f and the corresponding amount of non-radioactive 

compound, according to the following formula: 

𝑴𝒐𝒍𝒂𝒓 𝒂𝒄𝒕𝒊𝒗𝒊𝒕𝒚 (𝑮𝑩𝒒 · µ𝒎𝒐𝒍−𝟏) =
𝒂𝒄𝒕𝒊𝒗𝒊𝒕𝒚 𝒐𝒇 𝒕𝒉𝒆 𝑼𝑷𝑳𝑪 𝒑𝒆𝒂𝒌 𝒐𝒇 [𝟏𝟖𝐅]𝟓𝐚,  [𝟏𝟖𝐅]𝟓𝐜,   𝐨𝐫 [𝟏𝟖𝐅]𝟓𝐟 

𝒂𝒎𝒐𝒖𝒏𝒕 𝒐𝒇 𝟓𝐚,   𝟓𝐜,   𝒐𝒓 𝟓𝐟 𝒂𝒔𝒔𝒐𝒄𝒊𝒂𝒕𝒆𝒅 𝒕𝒐 𝒕𝒉𝒆 𝒓𝒂𝒅𝒊𝒐𝒂𝒄𝒕𝒊𝒗𝒆 𝒑𝒆𝒂𝒌
 

 

 
Figure S81. Calibration curve of the difluoromethyl heteroaryl-sulfone 5a (wavelength: 258 

nm). 

 

Table S26. Determination of the molar activity of [18F]5a 

Reaction Activity of the 

radioactive peak 

of [18F]5a (GBq) 

Area under the 

peak of 5a (UA) 

at 258 nm 

Amount of 

5a (µmol) 

Molar activity 

(GBq·µmol-1) 

1 4.552 × 10-3 40425 3.146 × 10-5 145 

2 4.454 × 10-3 38473 2.876 × 10-5 155 

3 5.175 × 10-3 50000 4.471 × 10-5 116 

Molar activity (GBq·µmol-1) ± Deviation 139 ± 17 
 

The sulfone [18F]5a was isolated with a molar activity of 139 ± 17 GBq·µmol-1 at the 

EOS.  

 

n = 1E-09 × area - 2E-05
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Figure S82. Calibration curve of the difluoromethyl heteroaryl-sulfone 5c (wavelength: 290 

nm). 

 
Table S27. Determination of the molar activity of [18F]5c 

Reaction Activity of the 

radioactive peak 

of [18F]5c (GBq) 

Area under the 

peak of 5c (UA) 

at 290 nm 

Amount of 

5c (µmol) 

Molar activity 

(GBq· µmol-1) 

1 4.863 × 10-3 247987 1.150 × 10-4 42 

2 2.662 × 10-3 90325 4.489 × 10-5 59 

3 8.242 × 10-3 244309 1.134 × 10-4 73 

4 2.038 × 10-3 65547 3.387 × 10-5 60 

5 2.524 × 10-3 66094 3.412 × 10-5 74 

Molar activity (GBq· µmol-1) ± Deviation 62 ± 12 

 

The sulfone [18F]5c was isolated with a molar activity of 62 ± 12 GBq·µmol-1 at the EOS.  
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Figure S83. Calibration curve of the difluoromethyl heteroaryl-sulfone 5f (wavelength: 244 

nm). 

 
Table S28. Determination of the molar activity of [18F]5f 

Reaction Activity of the 

radioactive peak 

of [18F]5f (GBq) 

Area under the 

peak of 5f (UA) 

at 244 nm 

Amount of 

5f (µmol) 

Molar activity 

(GBq· µmol-1) 

1 1.702 × 10-2 57459 1.378 × 10-4 124 

2 1.193 × 10-2 57048 1.361 × 10-4 88 

3 1.435 × 10-2  51785 1.143 × 10-4 126 

Molar activity (GBq· µmol-1) ± Deviation 113 ± 17 

 

The sulfone [18F]5f was isolated with a molar activity of 113 ± 17 GBq·µmol-1 at the 

EOS.  

 

5.6. Photocatalytic C-H 18F-Difluoromethylation of Heteroarenes with the Reagents [18F]5a, 

[18F]5c, and [18F]5f 
 

The propensity of the reagents [18F]5a, [18F]5c, and [18F]5f to undergo the desired 

photocatalytic C-H 18F-difluoromethylation reaction was carried out using 2-amino-

9-((2-hydroxyethoxy)methyl)-9H-purin-6-ol (acyclovir, 7e) as a model substrate.  The 

best conditions for the C-H 18F-difluoromethylation of the substrate 7e were:  

• Conditions A: [18F]difluoromethyl heteroaryl-sulfone [18F]5a (30-40 MBq), fac-

IrIII(ppy)3 (0.05 mol%), residence time (2 min), DMSO (250 µL), 35 °C, blue LED (470 

nm, 2 W). 
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• Conditions B: [18F]difluoromethyl heteroaryl-sulfone [18F]5c (30-40 MBq), fac-

IrIII(ppy)3 (0.5 mol%), residence time (4 min), DMSO (250 µL), 35 °C, blue LED (470 

nm, 2 W). 

• Conditions C: [18F]difluoromethyl heteroaryl-sulfone [18F]5f (30-40 MBq), fac-

IrIII(ppy)3 (0.1 mol%), residence time (2.5 min), DMSO (250 µL), 35 °C, blue LED (470 

nm, 2 W). 

 

 
Figure S84. Instrument used for the C-H 18F-difluoromethylation reaction of the heteroarenes 

(FlowStart Evo, FutureChemistry). 

 

5.6.1. Synthesis of [18F]2-Amino-8-(difluoromethyl)-9-((2-hydroxyethoxy)methyl)-9H-

purin-6-ol ([18F]8e) 
 

The implementation of the general procedure 3.2.5. for the C-H 18F-

difluoromethylation of the 2-amino-9-((2-hydroxyethoxy)methyl)-9H-purin-6-ol 

(acyclovir, 7e) (4.5 mg, 0.02 mmol) provided the labeled compound [18F]8e in 57 ± 7%, 

51 ± 7%, and 56 ± 1% RCY, using the reagents [18F]5a, [18F]5c, and [18F]5f, respectively 

(see the Tables S30-S32 for more details of the RCY determination). The UPLC radio-

chromatogram of the crude product [18F]8e is depicted in Figure S86. Figure S87 

represents the UPLC UV-chromatogram of the non-radioactive reference 8e.  

The RCY of the C-H 18F-difluoromethylation reactions were determined 

according to the following equation:  

 

𝑅𝐶𝑌 (%) =
𝑟𝑎𝑑𝑖𝑜𝑇𝐿𝐶 𝑝𝑢𝑟𝑖𝑡𝑦 (%) × 𝑟𝑎𝑑𝑖𝑜𝑈𝑃𝐿𝐶 𝑝𝑢𝑟𝑖𝑡𝑦 (%)

100
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Figure S85. TLC radio-chromatogram of the crude product [18F]8e (eluent: methanol).  

 

Table S29. Determination of the radio-TLC purity of the crude product [18F]8e 

Retention factor (Rf, mm) Ratio (%) 

0.02 46 (impurity/by-product) 

0.77 54 (desired crude product) 

 

 
Figure S86. UPLC radio-chromatogram of the crude product [18F]8e. ACQUITY UPLC® CSH 

C18 column (1.7 μm, 2.1 × 100 mm); MeCN and HCO2H/H2O (0.05%, v/v) in gradient mode at 

0.5 mL·min−1 (from 100% HCO2H/H2O (0.05%, v/v) to 100% MeCN in 6 min, and from 100% 

MeCN to 100% HCO2H/H2O (0.05%, v/v) in 2 min). 
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Figure S87. UPLC UV-chromatogram of the authentic reference 8e (wavelength: 254 nm). 

ACQUITY UPLC® CSH C18 column (1.7 μm, 2.1 × 100 mm); MeCN and HCO2H/H2O (0.05%, 

v/v) in gradient mode at 0.5 mL·min−1 (from 100% HCO2H/H2O (0.05%, v/v) to 100% MeCN in 

6 min, and from 100% MeCN to 100% HCO2H/H2O (0.05%, v/v) in 2 min). 

 

𝑅𝐶𝑌 (%) =
𝑟𝑎𝑑𝑖𝑜𝑇𝐿𝐶 𝑝𝑢𝑟𝑖𝑡𝑦 (%) × 𝑟𝑎𝑑𝑖𝑜𝑈𝑃𝐿𝐶 𝑝𝑢𝑟𝑖𝑡𝑦 (%)

100
 

 

𝑅𝐶𝑌 (%) =
54 × 100

100
 

 
𝑅𝐶𝑌 (%) = 54 % 

 

Note: In some cases, some peaks at 0.6 and 0.9 min were observed on the radio-

UPLC chromatograms. Those two peaks were collected and their radio-TLC purity 

was analyzed. Since the retention factor corresponding to these peaks is 

approximately 0, their contribution for the radio-UPLC purity was not taken into 

consideration. The contribution of these peaks were accounted for the determination 

of the radio-TLC purity. 

 
Table S30. Determination of the radiochemical yield (%) of the synthesis of [18F]8e using the 

reagent [18F]5a  

Reaction Radio-TLC purity 

(%) 

Radio-UPLC purity 

(%) 

Radiochemical Yield 

(%) 

1 54 100 54 

2 67 100 67 

3 51 100 51 

Radiochemical Yield (%) ± Deviation 57 ± 7 
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Table S31. Determination of the radiochemical yield (%) of the synthesis of [18F]8e using the 

reagent [18F]5c  

Reaction Radio-TLC purity 

(%) 

Radio-UPLC purity 

(%) 

Radiochemical Yield 

(%) 

1 74 79 58 

2 68 57 39 

3 63 84 53 

4 67 80 54 

Radiochemical Yield (%) ± Deviation 51 ± 7 

 

Table S32. Determination of the radiochemical yield (%) of the synthesis of [18F]8e using the 

reagent [18F]5f 

Reaction Radio-TLC purity 

(%) 

Radio-UPLC purity 

(%) 

Radiochemical Yield 

(%) 

1 54 100 54 

2 67 100 67 

3 51 100 51 

Radiochemical Yield (%) ± Deviation 57 ± 7 

 

5.6.2. Synthesis of [18F]2-(Difluoromethyl)-4-methyl-1H-pyrrolo[2,3-b]pyridine 

([18F]8aa) and [18F]6-(Difluoromethyl)-4-methyl-1H-pyrrolo[2,3-b]pyridine ([18F]8ab) 
 

The implementation of the general procedure 3.2.5. for the C-H 18F-

difluoromethylation of the 4-methyl-1H-pyrrolo[2,3-b]pyridine (2.6 mg, 0.02 mmol) 

provided the labeled compound [18F]8aa in 32 ± 1%, 58 ± 3%, and 46 ± 3% RCY, using 

the reagents [18F]5a, [18F]5c, and [18F]5f, respectively. The labeled compound [18F]8ab 

was afforded in 5 ± 1%, 8%, and 7% RCY, using the reagents [18F]5a, [18F]5c, and [18F]5f, 

respectively (see the Tables S33-S35 for more details of the RCY determination). The 

UPLC radio-chromatogram of the crude product [18F]8a is depicted in Figure S88. 

Figures S89 and S90 represent the UPLC UV-chromatograms of the non-radioactive 

references 8aa and 8ab, respectively.  
 

Table S33. Determination of the radiochemical yield (%) of the synthesis of [18F]8a using the 

reagent [18F]5a 

Reaction Radio-TLC 

purity (%) 

Radio-UPLC purity 

(%) 

Radiochemical Yield 

(%) 

 a + b A b a b 

1 37 90 10 33 4 

2 34 89 11 30 4 

3 38 85 15 32 6 

Radiochemical Yield (%) ± Deviation  32 ± 1 5 ± 1 
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Table S34. Determination of the radiochemical yield (%) of the synthesis of [18F]8a using the 

reagent [18F]5c  

Reaction Radio-TLC 

purity (%) 

Radio-UPLC purity 

(%) 

Radiochemical Yield 

(%) 

 a + b A b a b 

1 67 80 12 54 8 

2 76 82 12 62 9 

3 76 75 11 57 8 

Radiochemical Yield (%) ± Deviation  58 ± 3 8 

 
Table S35. Determination of the radiochemical yield (%) of the synthesis of [18F]8a using the 

reagent [18F]5f 

Reaction Radio-TLC 

purity (%) 

Radio-UPLC purity 

(%) 

Radiochemical Yield 

(%) 

 a + b A b a b 

1 64 74 11 47 7 

2 58 73 10 42 6 

3 67 72 10 48 7 

Radiochemical Yield (%) ± Deviation 46 ± 3 7 

 

 
Figure S88. UPLC radio-chromatogram of the crude product [18F]8a. ACQUITY UPLC® CSH 

C18 column (1.7 μm, 2.1 × 100 mm); MeCN and HCO2H/H2O (0.05%, v/v) in gradient mode at 

0.5 mL·min−1 (from 100% HCO2H/H2O (0.05%, v/v) to 100% MeCN in 6 min, and from 100% 

MeCN to 100% HCO2H/H2O (0.05%, v/v) in 2 min). 
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Figure S89. UPLC UV-chromatogram of the authentic reference 8aa (wavelength: 254 nm). 

ACQUITY UPLC® CSH C18 column (1.7 μm, 2.1 × 100 mm); MeCN and HCO2H/H2O (0.05%, 

v/v) in gradient mode at 0.5 mL·min−1 (from 100% HCO2H/H2O (0.05%, v/v) to 100% MeCN in 

6 min, and from 100% MeCN to 100% HCO2H/H2O (0.05%, v/v) in 2 min). 
 

 
Figure S90. UPLC UV-chromatogram of the authentic reference 8ab (wavelength: 254 nm). 

ACQUITY UPLC® CSH C18 column (1.7 μm, 2.1 × 100 mm); MeCN and HCO2H/H2O (0.05%, 

v/v) in gradient mode at 0.5 mL·min−1 (from 100% HCO2H/H2O (0.05%, v/v) to 100% MeCN in 

6 min, and from 100% MeCN to 100% HCO2H/H2O (0.05%, v/v) in 2 min). 
 

5.6.3. Synthesis of [18F]3-(Difluoromethyl)-6-methyl-1H-pyrazolo[3,4-b]pyridine 

([18F]8ba) and [18F]4-(Difluoromethyl)-6-methyl-1H-pyrazolo[3,4-b]pyridine 

([18F]8bb) 
 

The implementation of the general procedure 3.2.5. for the C-H 18F-

difluoromethylation of the 6-methyl-1H-pyrazolo[3,4-b]pyridine (2.7 mg, 0.02 mmol) 
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provided the labeled compound [18F]8aa in 41 ± 6%, 43 ± 3%, and 41 ± 5% RCY, using 

the reagents [18F]5a, [18F]5c, and [18F]5f, respectively. The labeled compound [18F]8ab 

was afforded in 16 ± 1%, 17 ± 3%, and 17 ± 1% RCY, using the reagents [18F]5a, [18F]5c, 

and [18F]5f, respectively (see the Tables S36-S38 for more details of the RCY 

determination). The UPLC radio-chromatogram of the crude product [18F]8b is 

depicted in Figure S91. Figures S92 and S93 represent the UPLC UV-chromatograms 

of the non-radioactive references 8ba and 8bb, respectively.  

 
Table S36. Determination of the radiochemical yield (%) of the synthesis of [18F]8b using the 

reagent [18F]5a  

Reaction Radio-TLC 

purity (%) 

Radio-UPLC purity 

(%) 

Radiochemical Yield 

(%) 

 a + b A b a b 

1 53 67 33 36 17 

2 67 75 25 50 17 

3 55 68 27 37 15 

Radiochemical Yield (%) ± Deviation  41 ± 6 16 ± 1 

 

Table S37. Determination of the radiochemical yield (%) of the synthesis of [18F]8b using the 

reagent [18F]5c  

Reaction Radio-TLC 

purity (%) 

Radio-UPLC purity 

(%) 

Radiochemical Yield 

(%) 

 a + b A b a b 

1 71 67 22 48 16 

2 74 57 28 42 21 

3 62 65 22 40 14 

Radiochemical Yield (%) ± Deviation  43 ± 3 17 ± 3 

 

Table S38. Determination of the radiochemical yield (%) of the synthesis of [18F]8b using the 

reagent [18F]5f  

Reaction Radio-TLC 

purity (%) 

Radio-UPLC purity 

(%) 

Radiochemical Yield 

(%) 

 a + b A b a b 

1 70 50 25 35 18 

2 65 61 24 40 16 

3 74 63 21 47 16 

Radiochemical Yield (%) ± Deviation 41 ± 5 17 ± 1 
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Figure S91. UPLC radio-chromatogram of the crude product [18F]8b. ACQUITY UPLC® CSH 

C18 column (1.7 μm, 2.1 × 100 mm); MeCN and HCO2H/H2O (0.05%, v/v) in gradient mode at 

0.5 mL·min−1 (from 100% HCO2H/H2O (0.05%, v/v) to 100% MeCN in 6 min, and from 100% 

MeCN to 100% HCO2H/H2O (0.05%, v/v) in 2 min). 

 

 
Figure S92. UPLC UV-chromatogram of the authentic reference 8ba (wavelength: 254 nm). 

ACQUITY UPLC® CSH C18 column (1.7 μm, 2.1 × 100 mm); MeCN and HCO2H/H2O (0.05%, 

v/v) in gradient mode at 0.5 mL·min−1 (from 100% HCO2H/H2O (0.05%, v/v) to 100% MeCN in 

6 min, and from 100% MeCN to 100% HCO2H/H2O (0.05%, v/v) in 2 min). 
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Figure S93. UPLC UV-chromatogram of the authentic reference 8bb (wavelength: 254 nm). 

ACQUITY UPLC® CSH C18 column (1.7 μm, 2.1 × 100 mm); MeCN and HCO2H/H2O (0.05%, 

v/v) in gradient mode at 0.5 mL·min−1 (from 100% HCO2H/H2O (0.05%, v/v) to 100% MeCN in 

6 min, and from 100% MeCN to 100% HCO2H/H2O (0.05%, v/v) in 2 min). 

 

5.6.4. Synthesis of [18F]4-(Difluoromethyl)-2-methyl-5,8-dihydropyrido[2,3-

d]pyrimidin-7(6H)-one ([18F]8c) 
 

The implementation of the general procedure 3.2.5. for the C-H 18F-

difluoromethylation of the 2-methyl-5,8-dihydropyrido[2,3-d]pyrimidin-7(6H)-one 

(3.3 mg, 0.02 mmol) provided the labeled compound [18F]8c in 17 ± 4%, 13 ± 3%, and 

14% RCY, using the reagents [18F]5a, [18F]5c, and [18F]5f, respectively (see the Tables 

S39-S41 for more details of the RCY determination). The UPLC radio-chromatogram 

of the crude product [18F]8c is depicted in Figure S94. Figure S95 represents the UPLC 

UV-chromatogram of the non-radioactive reference 8c.  
 

Table S39. Determination of the radiochemical yield (%) of the synthesis of [18F]8c using the 

reagent [18F]5a  

Reaction Radio-TLC purity 

(%) 

Radio-UPLC purity 

(%) 

Radiochemical Yield 

(%) 

1 38 30 11 

2 45 44 20 

3 51 41 21 

Radiochemical Yield (%) ± Deviation 17 ± 4 
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Table S40. Determination of the radiochemical yield (%) of the synthesis of [18F]8c using the 

reagent [18F]5c  

Reaction Radio-TLC purity 

(%) 

Radio-UPLC purity 

(%) 

Radiochemical Yield 

(%) 

1 57 30 17 

2 55 20 11 

3 19 52 10 

Radiochemical Yield (%) ± Deviation 13 ± 3 

 

Table S41. Determination of the radiochemical yield (%) of the synthesis of [18F]8c using the 

reagent [18F]5f  

Reaction Radio-TLC purity 

(%) 

Radio-UPLC purity 

(%) 

Radiochemical Yield 

(%) 

1 54 25 14 

2 43 30 13 

3 54 25 14 

Radiochemical Yield (%) ± Deviation 14 

 

 
Figure S94. UPLC radio-chromatogram of the crude product [18F]8c. ACQUITY UPLC® CSH 

C18 column (1.7 μm, 2.1 × 100 mm); MeCN and HCO2H/H2O (0.05%, v/v) in gradient mode at 

0.5 mL·min−1 (from 100% HCO2H/H2O (0.05%, v/v) to 100% MeCN in 6 min, and from 100% 

MeCN to 100% HCO2H/H2O (0.05%, v/v) in 2 min). 
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Figure S95. UPLC UV-chromatogram of the authentic reference 8c (wavelength: 254 nm). 

ACQUITY UPLC® CSH C18 column (1.7 μm, 2.1 × 100 mm); MeCN and HCO2H/H2O (0.05%, 

v/v) in gradient mode at 0.5 mL·min−1 (from 100% HCO2H/H2O (0.05%, v/v) to 100% MeCN in 

6 min, and from 100% MeCN to 100% HCO2H/H2O (0.05%, v/v) in 2 min). 

 

5.6.5. Synthesis of [18F]Ethyl 2-(difluoromethyl)isonicotinate ([18F]8da) and [18F]Ethyl 

3-(difluoromethyl)isonicotinate ([18F]8db) 
 

The implementation of the general procedure 3.2.5. for the C-H 18F-

difluoromethylation of the ethyl isonicotinate (3.0 mg, 0.02 mmol) provided the 

labeled compound [18F]8da in 19 ± 7%, 24 ± 2%, and 36 ± 4% RCY, using the reagents 

[18F]5a, [18F]5c, and [18F]5f, respectively. The labeled compound [18F]8db was afforded 

in 10 ± 3%, 13 ± 1%, and 13 ± 2% RCY, using the reagents [18F]5a, [18F]5c, and [18F]5f, 

respectively (see the Tables S42-S44 for more details of the RCY determination). The 

UPLC radio-chromatogram of the crude product [18F]8d is depicted in Figure S96. 

Figures S97 and S98 represent the UPLC UV-chromatograms of the non-radioactive 

references 8da and 8db, respectively. 

 
Table S42. Determination of the radiochemical yield (%) of the synthesis of [18F]8d using the 

reagent [18F]5a  

Reaction Radio-TLC purity 

(%) 

Radio-UPLC purity 

(%) 

Radiochemical Yield 

(%) 

 a + b a b a b 

1 29 42 21 12 6 

2 32 51 34 16 11 

3 47 61 30 29 14 

Radiochemical Yield (%) ± Deviation  19 ± 7 10 ± 3 

 



278 

 

Table S43. Determination of the radiochemical yield (%) of the synthesis of [18F]8d using the 

reagent [18F]5c 

Reaction Radio-TLC purity 

(%) 

Radio-UPLC purity 

(%) 

Radiochemical Yield 

(%) 

 a + b a b a b 

1 50 51 25 26 12 

2 50 49 24 24 12 

3 49 45 30 22 15 

Radiochemical Yield (%) ± Deviation 24 ± 2 13 ± 1 

 

Table S44. Determination of the radiochemical yield (%) of the synthesis of [18F]8d using the 

reagent [18F]5f  

Reaction Radio-TLC purity 

(%) 

Radio-UPLC purity 

(%) 

Radiochemical Yield 

(%) 

 a + b a b a b 

1 62 64 26 40 16 

2 53 69 23 37 12 

3 45 68 22 31 10 

Radiochemical Yield (%) ± Deviation 36 ± 4 13 ± 2 

 

 
Figure S96. UPLC radio-chromatogram of the crude product [18F]8d. ACQUITY UPLC® CSH 

C18 column (1.7 μm, 2.1 × 100 mm); MeCN and HCO2H/H2O (0.05%, v/v) in gradient mode at 

0.5 mL·min−1 (from 100% HCO2H/H2O (0.05%, v/v) to 100% MeCN in 6 min, and from 100% 

MeCN to 100% HCO2H/H2O (0.05%, v/v) in 2 min). 
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Figure S97. UPLC UV-chromatogram of the authentic reference 8da (wavelength: 254 nm). 

ACQUITY UPLC® CSH C18 column (1.7 μm, 2.1 × 100 mm); MeCN and HCO2H/H2O (0.05%, 

v/v) in gradient mode at 0.5 mL·min−1 (from 100% HCO2H/H2O (0.05%, v/v) to 100% MeCN in 

6 min, and from 100% MeCN to 100% HCO2H/H2O (0.05%, v/v) in 2 min). 

 

 
Figure S98. UPLC UV-chromatogram of the authentic reference 8db (wavelength: 254 nm). 

ACQUITY UPLC® CSH C18 column (1.7 μm, 2.1 × 100 mm); MeCN and HCO2H/H2O (0.05%, 

v/v) in gradient mode at 0.5 mL·min−1 (from 100% HCO2H/H2O (0.05%, v/v) to 100% MeCN in 

6 min, and from 100% MeCN to 100% HCO2H/H2O (0.05%, v/v) in 2 min). 

 

5.6.6. Synthesis of [18F]4-Chloro-2-(difluoromethyl)-N-(4,5-dihydro-1H-imidazol-2-

yl)-6-methoxypyrimidin-5-amine ([18F]8f) 
 

The implementation of the general procedure 3.2.5. for the C-H 18F-

difluoromethylation of the 4-chloro-N-(4,5-dihydro-1H-imidazol-2-yl)-6-

methoxypyrimidin-5-amine (4.6 mg, 0.02 mmol) provided the labeled compound 
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[18F]8f in 52 ± 6%, 17 ± 3%, and 60 ± 3% RCY, using the reagents [18F]5a, [18F]5c, and 

[18F]5f, respectively (see the Tables S45-S47 for more details of the RCY 

determination). The UPLC radio-chromatogram of the crude product [18F]8f is 

depicted in Figure S99. Figure S100 represents the UPLC UV-chromatogram of the 

non-radioactive reference 8f.  

 
Table S45. Determination of the radiochemical yield (%) of the synthesis of [18F]8f using the 

reagents [18F]5a 

Reaction Radio-TLC purity 

(%) 

Radio-UPLC purity 

(%) 

Radiochemical Yield 

(%) 

1 50 100 50 

2 47 100 47 

3 60 100 60 

Radiochemical Yield (%) ± Deviation  52 ± 6 

 
Table S46. Determination of the radiochemical yield (%) of the synthesis of [18F]8f using the 

reagents [18F]5c 

Reaction Radio-TLC purity 

(%) 

Radio-UPLC purity 

(%) 

Radiochemical Yield 

(%) 

1 67 35 23 

2 60 27 16 

3 53 26 14 

4 64 26 17 

5 63 24 15 

Radiochemical Yield (%) ± Deviation 17 ± 3 

 

Table S47. Determination of the radiochemical yield (%) of the synthesis of [18F]8f using the 

reagents [18F]5c 

Reaction Radio-TLC purity 

(%) 

Radio-UPLC purity 

(%) 

Radiochemical Yield 

(%) 

1 73 84 61 

2 67 83 56 

3 78 80 62 

Radiochemical Yield (%) ± Deviation 60 ± 3 
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Figure S99. UPLC radio-chromatogram of the crude product [18F]8f. ACQUITY UPLC® CSH 

C18 column (1.7 μm, 2.1 × 100 mm); MeCN and HCO2H/H2O (0.05%, v/v) in gradient mode at 

0.5 mL·min−1 (from 100% HCO2H/H2O (0.05%, v/v) to 100% MeCN in 6 min, and from 100% 

MeCN to 100% HCO2H/H2O (0.05%, v/v) in 2 min). 

 

 
Figure S100. UPLC UV-chromatogram of the authentic reference 8f (wavelength: 254 nm). 

ACQUITY UPLC® CSH C18 column (1.7 μm, 2.1 × 100 mm); MeCN and HCO2H/H2O (0.05%, 

v/v) in gradient mode at 0.5 mL·min−1 (from 100% HCO2H/H2O (0.05%, v/v) to 100% MeCN in 

6 min, and from 100% MeCN to 100% HCO2H/H2O (0.05%, v/v) in 2 min). 

 

5.6.7. Synthesis of [18F]8-(Difluoromethyl)-3,7-dimethyl-1-(5-oxohexyl)-3,7-dihydro-

1H-purine-2,6-dione ([18F]8g) 
 

The implementation of the general procedure 3.2.5. for the C-H 18F-

difluoromethylation of the 3,7-dimethyl-1-(5-oxohexyl)-3,7-dihydro-1H-purine-2,6-

dione (5.6 mg, 0.02 mmol) provided the labeled compound [18F]8g in 52 ± 6%, 17 ± 3%, 
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and 60 ± 3% RCY, using the reagents [18F]5a, [18F]5c, and [18F]5f, respectively (see the 

Tables S48-S50 for more details of the RCY determination). The UPLC radio-

chromatogram of the crude product [18F]8g is depicted in Figure S101. Figure S102 

represents the UPLC UV-chromatogram of the non-radioactive reference 8g.  

 
Table S48. Determination of the radiochemical yield (%) of the synthesis of [18F]8g using the 

reagents [18F]5a 

Reaction Radio-TLC purity 

(%) 

Radio-UPLC purity 

(%) 

Radiochemical Yield 

(%) 

1 18 100 18 

2 23 100 23 

3 22 100 22 

Radiochemical Yield (%) ± Deviation  21 ± 2 

 
Table S49. Determination of the radiochemical yield (%) of the synthesis of [18F]8g using the 

reagents [18F]5c 

Reaction Radio-TLC purity 

(%) 

Radio-UPLC purity 

(%) 

Radiochemical Yield 

(%) 

1 42 58 24 

2 56 62 35 

3 61 61 37 

4 48 53 25 

Radiochemical Yield (%) ± Deviation 30 ± 6 

 
Table S50. Determination of the radiochemical yield (%) of the synthesis of [18F]8g using the 

reagents [18F]5f 

Reaction Radio-TLC purity 

(%) 

Radio-UPLC purity 

(%) 

Radiochemical Yield 

(%) 

1 52 60 31 

2 47 82 39 

3 42 81 34 

Radiochemical Yield (%) ± Deviation 35 ± 3 
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Figure S101. UPLC radio-chromatogram of the crude product [18F]8g. ACQUITY UPLC® CSH 

C18 column (1.7 μm, 2.1 × 100 mm); MeCN and HCO2H/H2O (0.05%, v/v) in gradient mode at 

0.5 mL·min−1 (from 100% HCO2H/H2O (0.05%, v/v) to 100% MeCN in 6 min, and from 100% 

MeCN to 100% HCO2H/H2O (0.05%, v/v) in 2 min). 

 

 
Figure S102. UPLC UV-chromatogram of the authentic reference 8g (wavelength: 254 nm). 

ACQUITY UPLC® CSH C18 column (1.7 μm, 2.1 × 100 mm); MeCN and HCO2H/H2O (0.05%, 

v/v) in gradient mode at 0.5 mL·min−1 (from 100% HCO2H/H2O (0.05%, v/v) to 100% MeCN in 

6 min, and from 100% MeCN to 100% HCO2H/H2O (0.05%, v/v) in 2 min). 
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1. General Discussion and Perspectives 

 

The radionuclide fluorine-18 (18F) has been regarded the “radionuclide of choice” 

for due to its suitable physical and nuclear features for in vivo positron emission 

tomography (PET) imaging in living subjects. Inspired by the great benefits of 

difluoromethyl (CHF2) groups in medicinal chemistry and pharmaceutical research, 

the 18F-labeling of these functional groups has recently gained attention in 

radiochemistry. The preparation of [18F]CHF2-containing compounds has been 

mainly focused on the late-stage 18F-fluorination of precursors and these methods 

with the electrophilic reagents or with the cyclotron-produced [18F]fluoride by 

aliphatic nucleophilic substitution. Furthermore, the resulting 18F-labeled compounds 

are afforded in low-to-moderate molar activities (up to 22 GBq·μmol-1).  

The present thesis focused on the development of a new methodology for the 

photoredox 18F-difluoromethylation of heteroarenes typically found in medicinal 

chemistry. In this project, we opted to prepare the [18F]difluoromethyl benzothiazolyl-

sulfone ([18F]1) because of their expected photoredox properties [1] and of its potential 

for nucleophilic 18F-labeling using an adequate precursor. In addition, an efficient 

separation and isolation of non-ionic 18F-labeled reagents, such as the compound 

[18F]1, by semipreparative HPLC is more easily achieved in comparison with other 

ionic reagents (e.g. Baran reagents). From the investigated synthetic approaches, the 

two-step methodology involving an initial 18F-labeling of the bromofluoromethyl 

benzothiazolyl-sulfide (3) with [18F]KF/K2.2.2 and concomitant oxidation of the 

[18F]difluoromethyl benzothiazolyl-sulfone ([18F]2) provided the [18F]1 with the best 

radiochemical yield (RCY). Under optimal conditions, the cartridge-purified [18F]1 

was afforded in 12.6 ± 1.2% RCY (decay-corrected at the SOS). The radiosynthesis of 

[18F]1 was fully automated on a GE FASTlabTM synthesizer. After semipreparative 

HPLC purification and formulation in a preconditioned Sep-Pak® C18 Plus Short 

Cartridge, the [18F]1 was isolated in 4.5 ± 0.1% RCY (decay-corrected at the SOS) and 

with a molar activity of 54 ± 7 GBq·µmol-1 at the EOS (Scheme 1). The employment of 

this two-step methodology led to an improved molar activity compared to those 

reported in literature. In 2019, Trump et al. demonstrated the effectiveness of the 

newly synthesized reagent [18F]1 in photoredox C-H 18F-difluoromethylation of a 

broad scope of N-containing heteroarenes, including caffeine derivatives, nucleic 

bases, nucleosides, and pharmaceutical drugs [2]. This reaction was conducted in 

continuous-flow using an easy-to-use platform equipped with a 100 μL microreactor 

made from glass and a syringe that continuously pumps the reaction mixture into the 

microreactor at a given flow rate (FlowStart Evo, FutureChemistry, Nijmegen, The 

Netherlands).  
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Scheme 1. (A) Radiosynthesis of the [18F]difluoromethyl benzothiazolyl-sulfone ([18F]1). (B) 

Visible light-induced 18F-difluoromethylation of heteroarenes (4) with the reagent [18F]1, under 

continuous-flow conditions. (a)RCY of the isolated products after cartridge purification. (b)RCY 

of the isolated product after HPLC purification. (c)Molar activity at the end of the synthesis 

(EOS). (d)RCY determined by radio-TLC and radio-UPLC of the crude product.  
 

Despite the elegance of the photoredox 18F-difluoromethylation reaction, the 

described protocol is not compatible with the use of a very high amount of 

radioactivity. The development of a fully automated 18F-difluoromethylation 

methodology in a dedicated module would allow the manipulation of multiple GBq 

of starting radioactivity while avoiding potential radioprotection issues resulting 

from the radiation exposure. Radiosynthesis of 18F-difluoromethyl-bearing 

radiopharmaceuticals with high level of radioactivity is critical for future human PET 

applications. This fully automated process would include the two-step radiosynthesis 

of [18F]1 and concomitant flow photoredox 18F-difluoromethylation of the substrates. 

In the previous work, the synthesis of [18F]1 at high level of radioactivity was fully 

automated on a commercial FASTlabTM module from GE Healthcare. The restricted 

number of free positions on the FASTlabTM cassette (25 valves) and the absence of an 

integrated HPLC purification system constitute important limitations for the 

complete automation of the two-step radiosynthesis of [18F]1 and consecutive 18F-

difluoromethylation methodology. Recently, we developed a general method 

enabling the fully automated 18F-difluoromethylation of a N-containing heteroarene, 

the antiherpetic drug acyclovir, on a commercially available AllInOne (AIO) 

synthesizer from Trasis [3]. The higher number of positions available for the 

introduction of components for both radiochemical reactions and the existence of an 
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integrated HPLC purification system led to the selection of this module for the three-

step radiosynthesis of 18F-difluoromethyl-containing compounds. The two-step 

radiosynthesis of [18F]1 was successfully transposed from the GE FASTlabTM to the 

AIO module and furnished the cartridge-purified [18F]1 in 11.9 ± 1.4% RCY (decay-

corrected at the SOS). No significant variation in the RCY was observed when the 

oxidation was performed in the AIO glass reactor [82.9% RCY (GE FASTlabTM) vs. 

86.2% RCY (AIO)]. These results suggest that the presence of MeCN, K2CO3, and K2.2.2 

has no meaningful impact on the oxidation of [18F]1. Starting with 165 GBq of 

[18F]fluoride, the reagent [18F]1 was isolated in 7.5 ± 1.7% RCY (decay-corrected at the 

SOS) with a molar activity of 59 ± 4 GBq·µmol-1 [decay-corrected at the end of the 

bombardment (EOB)], after semi-preparative HPLC purification and reformulation 

on a SepPak® C18 short cartridge (Scheme 2A). The subsequent flow photoredox 18F-

difluoromethylation procedure was performed in a photochemistry reactor 

consisting of a three-dimensional (3D)-printed with poly(ethylene terephthalate) 

recovered with a transparent polycarbonate (Lexan) plate and the reaction mixture 

was irradiated with a 32 W blue LED lamp. The replacement of fac-IrIII(ppy)3 by the 

organic photocatalyst 1,2,3,5-tetrakis(carbazol-9-yl)-4,6-dicyanobenzene (4CzIPN) 

demonstrated to be beneficial for the efficiency of the 18F-difluoromethylation 

reaction. The purification of the crude product by semipreparative HPLC afforded 

the [18F]acyclovir-CHF2 [18F]5c in 25 ± 5% RCY. Overall, the fully automated three-step 

radiosynthesis of [18F]5c was achieved in 1.4 ± 0.1% RCY (Scheme 2B). This automated 

protocol can be implemented for the 18F-difluoromethylation of a wide range of N-

heteroaromatics typically found in medicinal chemistry. 
 

 
Scheme 2. Fully automated photoredox 18F-difluoromethylation of acyclovir (4c) in an 

AllInOne synthesizer, under continuous-flow conditions. (a)RCY of the isolated products after 

cartridge purification. (b)RCY after HPLC purification. (c)Molar activity decay-corrected at the 

end of bombardment (EOB). 
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This fully automated 18F-difluoromethylation protocol was further applied to the 

radiosynthesis of a synaptic vesicle glycoprotein 2A (SV2A) PET tracer. SV2A is the 

molecular target of the antiepileptic drugs levetiracetam (6, Figure 1) [4] and 

brivaracetam (7, Figure 1) [5]. SV2A is widely expressed in the brain and the potential 

of the potential of SV2A PET tracers such as the [11C]UCB-J as biomarkers of synaptic 

density has been studied in various neurotransmission-related diseases. Despite the 

favorable pharmacodynamic and pharmacokinetic profiles of UCB-J [6] and the great 

potential of [11C]UCB-J to image the SV2A protein [7-9], the short half-life of carbon-

11 (11C, t1/2 = 20.3 min) may restrict the transportation of the radiotracer over 

considerable distances and limit its broad applicability as an imaging biomarker. The 

University of Liège in collaboration with UCB reported the synthesis and evaluation 

of the first SV2A radiotracer labeled with 18F ([18F]UCB-H, Figure 1) [10-13]. The half-

life of the radionuclide 18F ensures that the radiopharmaceutical can be used in 

nuclear imaging facilities located apart from its production site. However, the 

replacement of the 11C-methyl ([11C]CH3) group by the 18F substituent on the pyridine 

ring slightly reduced the affinity for SV2A.  
 

 
Figure 1. Chemical structures of the levetiracetam (6), the brivaracetam (7), and the SV2A PET 

tracers [11C]UCB-J, [18F]UCB-H, and [18F]8. 

 

Considering the 18F-difluoromethylation methodology automated on AllInOne 

module, we intended to prepare a new SV2A PET tracer labelled with a [18F]CHF2 

group ([18F]8, Figure 1) and to study its potential as a imaging biomarker of SV2A 

protein. We hypothesized that the introduction of a [18F]CHF2 moiety in the pyridine 

ring would offer a suitable balance between the half-life of 18F and the binding affinity 

for SV2A. The SV2A PET tracer [18F]8 was synthesized by late-stage insertion of 

[18F]CHF2 moieties in the precursor 9 (Scheme 3). In vitro and in vivo experiments with 

SV2A tracer [18F]8 are currently ongoing on University of Liège. 
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Scheme 3. Photoredox 18F-difluoromethylation of the precursor 9 with the reagent [18F]1, under 

continuous-flow conditions. 
 

The principal limitation of the reported 18F-difluoromethylation methodologies 

resided mainly on the low RCY of two-step radiosynthesis of the reagent [18F]1. This 

can be explained by the low reactivity of the brominated precursor 3 toward the 18F-

fluorination. The replacement of the bromine substituent to better leaving groups, 

such as iodine (-I), tosyl (-OTs), or triflyl (-OTf) groups, would afford a set of 

precursors unsuitable for 18F-labeling, owing to their chemical instability. To address 

this issue, we synthesized a series of structurally-related [18F]difluoromethyl 

heteroaryl-sulfones as potential 18F-difluoromethylating reagents in order to 

understand the effect of certain molecular modifications in the reactivity of the 

brominated precursors toward 18F-labeling [14]. We found that the introduction of 

electron-donating groups (EDG) or electron-withdrawing groups (EWG) on the 

benzothiazolyl ring of the precursors, or the alteration of the original benzothiazolyl 

ring to other heteroaryl rings did not induce a significant effect on the reactivity of 

the bromine atom as a leaving group. Employing the same two-step methodology, 

the HPLC-purified difluoromethyl heteroaryl-sulfones [18F]10, [18F]11, and [18F]12 

were obtained in 2.9 ± 0.1%, 5.7 ± 0.5%, and 8.0 ± 0.9% RCYs, respectively. Starting 

from 125–150 GBq of [18F]fluoride, the fully automated radiosynthesis on a FASTlabTM 

synthesizer (GE Healthcare) allowed the isolated of the [18F]10, [18F]11, and [18F]12 

with molar activities ranging from 62 to 139 GBq·μmol−1 (Figure 2). Taking advantage 

of the reactivity of [18F]1 as 18F-difluoromethylating reagent, we intended to study of 

the influence of these structural modifications toward the 18F-difluoromethylation of 

heteroarenes using the antiherpetic drug acyclovir as a model substrate. Our results 

showed that the introduction of molecular modifications in the structure of [18F]1 

influenced the amount of photocatalyst and the residence time needed to ensure a 

complete C–H 18F-difluoromethylation process. The photocatalytic C–H 18F-

difluoromethylation reaction with the reagents [18F]10, [18F]11, and [18F]12 was 

extended to other heteroarenes of biological relevance.  

The great probability of 18F/19F isotopic exchange still constitutes a major 

limitation in the preparation of [18F]CHF2–bearing compounds with high molar 

activity. In this work, the radiosynthesis of [18F]difluoromethyl heteroaryl-sulfones 

with improved molar activity (54 to 139 GBq·μmol−1) constitutes a great advantage as 

it may allow the preparation of [18F]CHF2-containing heteroarenes as novel PET 

ligands with enhanced molar activities. However, the low RCYs of the syntheses of 

[18F]difluoromethyl heteroaryl-sulfones still restricts the use of these reagents in the 

GMP production of clinically-relevant radiopharmaceuticals. Furthermore, the 
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plausible existence of multiple sites for the introduction of [18F]CHF2 groups in the 

(hetero)aryl rings of non-prefunctionalized substrates, as exemplified in the 

preparation of the SV2A PET tracer [18F]8, results in a significant decrease of the RCY 

of the isolated radiopharmaceutical. Alternatively, the employment of 

prefunctionalized heteroarenes amenable to the 18F-difluoromethylation reaction 

would minimize the formation of undesired [18F]CHF2-containing structural isomers 

and potentially contribute to the preparation of the PET radiopharmaceutical with an 

enhanced RCY.  
 

 
Figure 2. Radiochemical yields and molar activities of the reagents [18F]10, [18F]11, and [18F]12. 
(a)RCY of the isolated products after HPLC purification. (b)Molar activities at the EOS. 
 

In non-radioactive chemistry, the reagent difluoromethyl benzothiazolyl-sulfone 

(2-BTSO2CHF2) has been extensively implemented in the difluoromethylation of 

substrates bearing C=C, C≡C, and C≡N bonds by visible light photoredox catalysis. 

The versatility of this reagent in organofluorine chemistry along with the 

demonstrated synthetic accessibility of [18F]1 may allow the future applicability of this 
18F-difluoromethylating reagent in the radiosynthesis of [18F]CHF2-containing 

heterocycles of pharmaceutical relevance, including phenanthridines [15], 

benzoxazines [16], oxazolines [16], isoquinolinediones [17], coumarins [18], 

isoxazolines [19], and oxindoles [20]. Besides its efficiency in photoredox 18F-

difluoromethylation, Hu and co-workers reported for the first time the employment 

of the 2-BTSO2CHF2 in the metal-free insertion of difluoromethylthio (-SCF2H) groups 

in indole derivatives [21]. Thus, the reagent [18F]1 can also be used as 18F-

difluoromethylthiolating reagent. Alternatively, the 18F-labeling of the 

difluoromethyl pyridyl-sulfone (2-PySO2CHF2) should be explored in the future 

owing to its involvement in numerous reactions in organofluorine chemistry, 

including the radical difluoromethylation of arylzincs [22] and N-arylacrylamides 

[23], and the Julia-Kocienski difluoroolefination of aldehydes and ketones [24-28].  

Overall, we expect that the potential versatility of newly synthesized 

[18F]difluoromethyl heteroaryl-sulfones may contribute to the development of novel 

radioactive probes for PET imaging with improved molar activities. 
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LIST OF ABBREVIATIONS 

[18F]Py·9HF [18F]Pyridinium poly(hydrogen fluoride)  

3D Three-dimensional 

ADME Absorption, distribution, metabolism, and excretion 

Ag AchE Anopheles gambiae acetylcholinesterase 

AIO AllInOne 

BHT 2,6-Di-tert-butyl-4-methylphenol 

CFL Compact fluorescent lamp 

COC Cyclic olefin copolymer 

COX-2 Cyclooxygenase-2 

Cp2Fe Ferrocene 

CRF1R Corticotropin-releasing factor-1 receptor 

DABCO 1,4-Diazabicyclo[2.2.2]octane 

DBH 1,3-Dibromo-5,5-dimethylhydantoin 

DBU 1,8-Diazabicyclo[5.4.0]undec-7-ene 

d.c. Decay corrected 

DCE 1,2-Dichloroethane 

DCM Dichloromethane 

DFT Density functional theory 

DIPEA N,N-Diisopropylethylamine 

DMA Dimethylacetamide 

DMF Dimethylformamide 

DMPO 5,5-Dimethyl-1-pyrroline-N-oxide 

DMSO Dimethyl sulfoxide 

EOB End of the bombardment 

EOS End of the synthesis 

ESI Electrospray ionization 

ESR Electron spin resonance 

EtOAc Ethyl acetate 

FDA Food and Drug Administration 

GM Geiger-Muller 

HCV NS3 Hepatitis C vírus nonstructural protein 3 

HPLC High performance liquid chromatography 

HRMS High resolution mass spectrometry 

KIE Kinetic isotope effect 

KSP Kinesin spindle protein 

LED Light-emitting diode 

LFP Laser flash photolysis 

mCPBA meta-Chloroperoxybenzoic acid 

MeCN Acetonitrile 

m.p. Melting point 

n.c.a. No carrier added 
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NMP N-Methyl-2-pyrrolidone 

NMR Nuclear magnetic resonance 

OQC Oxidative quenching cycle 

QMA Quaternary methyl ammonium 

PC Photocatalyst 

PDA Photodiode array 

PEG 600 Polyethylene glycol 600 

PET Positron emission tomography 

PXX Peri-xanthenoxanthene 

RB Rose Bengal 

RCC Radiochemical conversion 

RCP Radiochemical purity 

RCY Radiochemical yield 

Rh-6G Rhodamine-6G 

RQC Reductive quenching cycle 

SCE Saturated calomel electrode 

SET Single-electron transfer 

SOS Start of the synthesis 

SPE Solid-phase extraction 

SV2A Synaptic vesicle glycoprotein 2A 

TEA Triethylamine 

TEAB Tetraethylammonium bicarbonate 

TEAF Tetraethylammonium fluoride 

TEMPO 2,2,6,6-Tetramethyl-1-piperidinyloxy 

TFA Trifluoroacetic acid 

THF Tetrahydrofuran 

TLC Thin layer chromatography 

TMEDA Tetramethylethylenediamine 

TMS Trimethylsilane 

(TMS)3SiH Tris(trimethylsilyl)silane 

TRPV1 Transient receptor potential cation channel subfamily V member 1 

UPLC Ultra performance liquid chromatography 

UV Ultraviolet 
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