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Abstract 

Air quality in buildings is one of the most important factors for the occupants’ health and 

comfort. Designing heating, ventilation and air conditioning systems (HVAC) to achieve an 

acceptable air quality is one of the challenges during a building construction. In most cases 

including car parks, in addition to retain the air quality in normal condition, the existing 

ventilation system should act properly in case of fire event. As an emergency situation may 

lead to an incalculable life damage for the people inside the car park, the proposed ventilation 

system must be modeled and analyzed using computational fluid dynamics (CFD). The CFD 

will predict the airflow behavior allowing the assessment of the ventilation system 

effectiveness. 

One of the most efficient and recent ventilation systems used in car parks is based on utilizing 

impulse fans which are commercially known as jet fans. Jet fans have pumping effects which 

force the air movement from supply to the extraction points. So, the positioning of the system 

components within the car park plays a significant role in the efficiency of the impulse 

ventilation system (IVS). The best strategy is to avoid the airflow deviations by placing the 

extraction and supply points on the opposite walls. It can be conducted easily in simple and 

small geometries, but for the real cases such as a huge and complex car park, implementing the 

mentioned technique is questionable. In this study, the applied ventilation system of a 

commercial building car park was analyzed to derive the interaction between the ceiling jet 

fans. The existing design had so many defects which are mostly related to the positioning of 

the jet fans. A sensitivity analysis was carried out considering the locations of the fire source 

and the velocity of the jet fans. OpenFOAM v1806 is used to run the CFD simulations. Finally, 

by examining the velocity and visibility distribution alongside streamline patterns in different 

fan positionings, the most efficient design in terms of smoke extraction is resulted. 
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1   Introduction 

Computational Fluid Dynamics is a numerical approach to predict the fluid flow 

characteristics in terms of velocity, temperature, pressure and heat transfer. It is also possible 

to extend the previous predictions to forecast visibility which can be restricted by smoke, 

produced by the fire. Recently, it is necessary to study the large-scale underground car parks 

to determine air quality which can be altered by vehicle pollutants entering the enclosed area. 

Also, it must predict smoke and heat propagation in case of fire. The latter is so important 

because a poor design of ventilation system may lead to incalculable life damage to the 

occupants. 

The ventilation of underground car park is so important because inhalation of combustion 

products released by cars, especially CO will make health problems. Recently, a new 

mechanical ventilation system has appeared which they are based on jet fans mounted beneath 

the ceiling of car parks. These jet fans are able to confine contaminated air and restrict its 

dispersion. It should be considered that the exhaust flow-rate from car park should not be lower 

than the flow-rate induced by jet fans toward them. If the jet fan flow-rate is significantly 

smaller than the exhaust flow-rate, recirculating flows are generated and disperse pollutants. 

Before the use of jet fans for the ventilation of underground car parks ductwork system was the 

most common choice. These systems are so expensive due to the cost of necessary equipment, 

the large space occupied by ductwork and the huge head losses [1].  

For an underground car park, the ventilation rate must be calculated to determine CO 

concentrations to have some pre-defined minimum levels. To do so, some requirements must 

be satisfied as: a) an average concentration of not more than 30 parts per million over an eight-

hour period b) peak concentrations such as ramps and exits, of not more than 90 parts per 

million for periods not exceeding 15 minutes. Considering mechanical ventilation for an 

underground car park, the ventilation system must be capable of air change of 6 times per hour. 

For exits and ramps which vehicles may stop with engines running the same provision must be 

considered for 10 air changes per hour [2]. 
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Impulse ventilation system (IVS) is mostly used for two purposes. Beside the capability of the 

IVS system to dilute the contaminated air caused by cars exhausts in normal condition it must 

be also capable of smoke dilution by providing the necessary ventilation in case of fire. Fire 

events are so hazardous as the smoke can disperse almost without any restrictions. Also, the 

smoke-free lower layer is diminished because of the low height at such car parks. As a result, 

the fire is hard to be located and extinguished by fire-fighters [3].  

Unlike other buildings, car parks need some more parameters to be considered to confine the 

fire spread in the building. Two most important factors are: a) fire load definition b) if the story 

is well ventilated, the probability of the fire spread to the other floors is so low. The mechanical 

ventilation system designed for fire control must be independent of other ventilation systems 

which has to be capable to change the air in whole car park area 10 times per hour in case of 

fire. Also, the system must be designed in two independent parts which each should be able to 

conduct 50% of total air change and also each part can work simultaneously or individually 

[4].  

The analysis conducted by CFD shows that the positioning of the impulse ventilation system 

components plays an important role in the efficiency of the ventilation system. Settling the 

exhaust and supply shafts in the opposite boundaries increases the efficiency of the system 

which leads to the flow of massive fresh air through the whole car park [5].  

The efficiency of impulse ventilation system relies on the number of jet fans; too low jet fan 

components reduces the ability of the system to move the air toward the desired locations. Also, 

too high quantity of jet fans causes severe smoke recirculation which decreases the efficiency 

[6]. The IVS system function is similar to positive pressure ventilation (PPV) and is developed 

from longitudinal ventilation system implemented in tunnels [7].  

In most cases, the impulse ventilation system is used together with the sprinkler system. 

According to the researches, using only the sprinkler system makes the smoke back layer too 

long which activates so many sprinklers. It makes problems for the firefighters to fight with 

the fire. Also, due to the pressure drop, the sprinkler system may not work properly. Utilizing 

two systems together has better results [8]. 
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Some important factors must be taken into account when using both IVS and sprinkler systems 

alongside. The fire detectors which is responsible to activate the jet fans must have some delays 

in comparison to the detectors activating the sprinklers. If both detectors operate 

simultaneously, the IVS system delays the activation of the sprinkler system by moving plume 

of heat downstream and replacing it with cool air [9]. 

Comparing different types of ventilation system shows that the impulse ventilation system has 

better efficiency. It mostly relies on the architecture and geometry of the car park. In some 

cases, like an underground car park with many partition walls, it may not be logical to use IVS. 

In this case, almost half of the air inside the enclosed area has not sufficient extraction velocity 

[10]. 

As Computational fluid dynamics contains complex equations which have to be solved, it is 

necessary to use some tools to see the flow fields. Otherwise, it is difficult to obtain results and 

visualize them [11].  

CFD simulations are used to predict the airflow behavior inside a car park. Then all the 

modifications and improvements are done regarding the jet fan positioning and choice. As 

dimensions are high in a common car park, this procedure may become time-consuming. 

Finally, it has to be determined if an IVS system suitable for the existing plan or the traditional 

ductwork system. In this thesis work an existing jet fan system designed for a commercial 

building located in Tabriz, Iran was studied for optimization and improvements by suggesting 

the jet fan positioning. Different designs with corresponding analysis were carried out in order 

to obtain the best choice.  
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2   Background and Governing Equations 

2.1 What is Computational Fluid Dynamics (CFD) 

Computational fluid dynamics is a numerical simulation tool which plays a significant role in 

technology enablers nowadays. Initially, it was used in the aeronautics and aerospace industry 

which has developed to become an essential tool in wide range of other design-intensive 

industries. Recently other industries also became the heavy users of CFD. For example, in 

electronics, it is used to simulate and optimize the energy systems and heat transfer for the 

cooling of electronic devices. Also, in the building industry CFD is used in HVAC (heating, 

ventilating, and air conditioning), in fire and air quality simulations [12]. 

Computational fluid dynamics is a recent computer aid tool used in engineering. It is because 

of the complex equations which have to be solved. The principle of equations are Navier-Stokes 

equations, It is sufficient to simulate and model with enough accuracy the whole types of flows 

from turbulent to laminar, incompressible to compressible and also the multiphase flows [12].  

Fluids are gases or liquids which do not maintain any particular shape. Unlike solids, these 

states of material cannot resist shear stress and imposing large stress do not change their shape 

permanently. Motion is caused by shear stress in the fluids. In studying fluid flow, it is most 

important that what happens in the macroscopic scale rather than microscopic. The fluids can 

be considered as continuum which means that it is possible to achieve their behavior at any 

point in the flow field. Fluids can be categorized under Newtonian and non-Newtonian. The 

first case has a linear relationship between shear stress and shear rate. The slope between shear 

stress and the corresponding shear rate shows molecular viscosity. The molecular viscosity 

shows the resistance of the fluid toward the deformation. In non-Newtonian fluids, the same 

relationship is non-linear [12]. 

Fluids can be characterized by Navier-Stokes equations. These equations are non-linear 

second order partial differential equations governed by independent variables [12].   
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2.2 Eulerian and Lagrangian Description of Conservation Laws 

Conservation laws define that a certain physical measurable quantity remains the same in a 

region for an isolated system. Conservation laws cannot be proven mathematically but can be 

expressed using mathematical equations.  

There are two approaches to deal with the fluid flow and relating transfer phenomena which 

are Lagrangian (Material Volume, MV) or Eulerian (control volume). In the Lagrangian 

approach (Fig. 2.1a) the fluid splits into packs and each pack is monitored as it moves through 

space and time. These packs are marked according to their initial center of mass position x0 at 

some initial time t0, and the flow is defined by a function 𝑥(𝑡, 𝑥0).   

Differently, in the Eulerian approach (Fig. 2.1b) a particular location in the flow field must be 

marked and monitored as time goes on. In such a way, the flow parameters are functions of 

time 𝑡 and position 𝑥. The fluid flow velocity in the field can be expressed by 𝑣(𝑡, 𝑥). The two 

specifications are related to each other as the derivative of the position of a pack 𝑥0 dependent 

on time results in velocity, 

                                                 𝑣(𝑡, 𝑥(𝑥0, 𝑡)) =  
𝜕

𝜕𝑡
𝑥(𝑡, 𝑥0)                                          (2.1) 

According to the above description, the properties of a fluid in a field can be measured either 

on a fixed point which particles are crossing it (Eulerian) or by monitoring a pack of particles 

within the field (Lagrangian). The following study utilizes a Eulerian approach to measure the 

fluid particles crossing a specific point in the flow field [12]. 

 

Figure 2.1 (a) Lagrangian and (b) Eulerian specification of the flow field [12] 
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Computational fluid dynamics (CFD) is based on three basic physical principles: conservation 

of mass, of momentum and of energy. The governing equations in CFD are based on these 

conservation principles. 

 2.2.1     Reynolds transport theorem 

 The conservation laws are applicable to the material volumes rather than fixed points or 

control volumes. In order to extend these laws according to the Eulerian approach, Eulerian 

equivalent of an integral taken over a moving material volume of fluid should be considered 

which is known as Reynolds transport theorem.  

Consider B as any characteristics of the fluid like mass, momentum or internal energy. So, the 

𝑏 =  𝑑𝐵/𝑑𝑚 shows the value of B in any small element of the flow field. The rapid total 

change of B in the material volume (MV) equals to the rapid total change of the B inside the 

control volume (V) adding the net flux of B in or out of the same control volume over its surface 

(S). The Reynolds transport theorem results in, 

                             (
𝑑𝐵

𝑑𝑡
) =  

𝑑

𝑑𝑡
(∫ 𝑏𝜌𝑑𝑉
𝑉(𝑡)

) + ∫ 𝑏𝜌 𝒗𝒓 . 𝒏 𝑑𝑆𝑆(𝑡)
                      (2.2) 

𝜌 = the density of the fluid 

𝑛 = the outward normal to the control volume surface  

𝒗 (𝑡, 𝑥) = the velocity of the fluid 

𝑣𝑠 (𝑡, 𝑥) = the velocity of deforming control volume 

𝑣𝑟 (𝑡, 𝑥) = the relative velocity which the fluid enters/leaves the control volume 𝑣𝑟  =
 𝑣(𝑡, 𝑥)  −  𝑣𝑠(𝑡, 𝑥)  

 

If the control volume considered to be fixed without any deformation, 𝑣𝑠  =  0 so the right-

hand side of (Eq. 2.2) can be resulted using Leibniz rule as, 

                                              
𝑑

𝑑𝑡
∫ 𝑏𝜌𝑑𝑉
𝑉

= ∫
𝜕 

𝜕𝑡𝑉
 (𝑏𝜌)𝑑𝑉                                            (2.3) 

Simplifying and applying divergence theorem to convert surface integral to a volume integral, 

(Eq. 2.2) becomes, 

                                    (
𝑑𝐵

𝑑𝑡
)𝑀𝑉 = ∫ [

𝜕

𝜕𝑡𝑉
(𝑏𝜌)𝑑𝑉 + ∫ 𝑏𝜌𝒗 . 𝒏 𝑑𝑆

𝑆
                             (2.4) 
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Using substantial derivative and expanding the second term in the bracket an alternative 

equation can be derived, 

 

                                       (
𝑑𝐵

𝑑𝑡
)𝑀𝑉 = ∫ [

𝐷

𝐷𝑡
(𝜌𝑏) +  𝜌𝑏 ▽ . 𝒗]  𝑑𝑉

𝑉
                             (2.5) 

The (Eq. 2.5) can be used to obtain the Eulerian form of the conservation laws in a settled 

location [12]. 

2.3 Conservation of Mass  

Conservation of mass also known as continuity equation shows, in the lack of any source or 

sink in the region, the corresponding mass remains constant. Let’s consider a material volume 

(Fig. 2.2) of mass m, density ρ, and velocity 𝒗, considering Lagrangian coordinate system the 

conservation of mass can be formulated as, 

                                                            (
𝑑𝑚

𝑑𝑡
)𝑀𝑉 = 0                                                           (2.6) 

 

Figure 32.2 conservation of mass for a material volume of a fluid of mass m [12] 

For B = m the value of b =1, and with respect to (Eq. 2.5) the mass conservation can be 

expressed in the Eulerian coordinate system as, 

                                          ∫ [
𝐷𝜌

𝐷𝑡
+ 𝜌 ▽.𝒗] 𝑑𝑉 = 0

𝑉
                                         (2.7) 

In order to validate the above equation for any control volume V, the integrand should be equal 

to zero, the resulting differential form of mass conservation is as, 

                                                   
𝐷𝜌

𝐷𝑡
+ 𝜌 ▽. 𝒗 = 0                                            (2.8) 
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If we do not have an extreme temperature or absolute pressure change, considering the fluid 

incompressible is adequate, which means that the pressure changes do not affect the density 

significantly. If the velocity is so lower than the velocity of sound, it is valid to assume the 

gases incompressible. It is important to know that the mass conservation equation is not 

appropriate to derive the density anymore. Taking incompressibility into account, the (Eq. 2.8) 

can be written as,  

                                                         ▽.𝒗 = 0                                                  (2.9) 

The above equation can be rewritten in the integral form as, 

                                                     ∫ (𝒗. 𝑛)𝑑𝑆 = 0
𝑆

                                          (2.10)   

The results show that by considering incompressible flow, the net flow in a control volume 

remains zero. It indicates that the fluid flow inside the control volume is the same as the fluid 

flowing out the same control volume. It should be noted that the density is not equal at any 

point in the field, but in an streamline, it remains constant as fluid moves. The density change 

in water is caused by the salt concentration variations and in the air by the temperature 

variations which results in buoyant effects [12]. 

2.4 Conservation of Momentum 

 The factor in Navier-Stokes equations which shows the conservation of momentum for each 

direction can be written as,  

x-direction:       
𝜕(𝜌𝑢)

𝜕𝑡
 + ▽ . (𝜌𝑢𝑈⃗⃗ ) =  −

𝜕𝑝

𝜕𝑥
+ 

𝜕𝜏𝑥𝑥

𝜕𝑥
+ 

𝜕𝜏𝑦𝑥

𝜕𝑦
+ 

𝜕𝜏𝑧𝑥

𝜕𝑧
+  𝜌𝑓𝑥         (2.11)   

y-direction:       
𝜕(𝜌𝑣)

𝜕𝑡
 + ▽ . (𝜌𝑣𝑈⃗⃗ ) =  −

𝜕𝑝

𝜕𝑦
+ 

𝜕𝜏𝑥𝑦

𝜕𝑥
+ 

𝜕𝜏𝑦𝑦

𝜕𝑦
+ 

𝜕𝜏𝑧𝑦

𝜕𝑧
+  𝜌𝑓𝑦        (2.12)   

z-direction:      
𝜕(𝜌𝑤)

𝜕𝑡
 + ▽ . (𝜌𝑤𝑈⃗⃗ ) =  −

𝜕𝑝

𝜕𝑧
+ 

𝜕𝜏𝑥𝑧

𝜕𝑥
+ 

𝜕𝜏𝑦𝑧

𝜕𝑦
+ 

𝜕𝜏𝑧𝑧

𝜕𝑧
+  𝜌𝑓𝑧        (2.13) 

Where 𝜏 is the shear stress tensor shown in (Eq. 2.14), 𝑈⃗⃗  is the vector of velocity (𝑢𝑖 + 𝑣𝑗 +

𝑤𝑘), 𝑓 =  𝑓𝑥𝑖 +  𝑓𝑦𝑗 + 𝑓𝑧𝑘  is a body force vector, and 𝑝 is pressure. 

                                              𝜏 = (

𝜏𝑥𝑥 𝜏𝑥𝑦 𝜏𝑥𝑧
𝜏𝑦𝑥 𝜏𝑦𝑦 𝜏𝑦𝑧
𝜏𝑧𝑥 𝜏𝑧𝑦 𝜏𝑧𝑧

)                                                  (2.14) 



10 

 

Considering Newtonian fluid and ignoring the effect of volumetric viscosity, the shear stress 

shown in (Eq. 2.14) becomes, 

                                    𝜏𝑖𝑗 =  𝜇 (
𝜕𝑢𝑖

𝜕𝑥𝑗
+ 

𝜕𝑢𝑗

𝜕𝑥𝑖
− 𝛿𝑖𝑗 (

2

3
)
𝛿𝑢𝑘

𝛿𝑥𝑘
)                                  (2.15)     

Where 𝜇 is the dynamic viscosity, 𝛿𝑖𝑗 is Kronecker delta, and the subscripts I, j and k refer to 

the linear dimensions of the x, y and z [13]. An example of forces acting on a control volume 

in 𝑥 direction is shown in (Fig. 2.3). 

 

 

Figure 0.3 forces acting on a control volume, only x-direction illustrated [14] 
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2.5 Conservation of Energy 

The equation which implies the total energy conservation is shown as, 

𝜕

𝜕𝑡
[𝜌 (𝑒 +

𝑈2

2
) + ▽ . [ 𝜌 (𝑒 +

𝑈2

2
) 𝑈⃗⃗ ] =  𝜌𝑞̇ + 

𝜕

𝜕𝑥
(𝑘

𝜕𝑇

𝜕𝑥
) + 

𝜕

𝜕𝑦
(𝑘

𝜕𝑇

𝜕𝑦
) +

𝜕

𝜕𝑧
(𝑘

𝜕𝑇

𝜕𝑧
) − 

𝜕(𝑢𝑝)

𝜕𝑥
− 

𝜕(𝑣𝑝)

𝜕𝑦
− 

𝜕(𝑤𝑝)

𝜕𝑧
+
𝜕(𝑢𝜏𝑥𝑥)

𝜕𝑥
+
𝜕(𝑢𝜏𝑦𝑥)

𝜕𝑦
+

𝜕(𝑢𝜏𝑧𝑥)

𝜕𝑧
+
𝜕(𝑣𝜏𝑥𝑦)

𝜕𝑥
+

𝜕(𝑣𝜏𝑦𝑦)

𝜕𝑦
+
𝜕(𝑣𝜏𝑧𝑦)

𝜕𝑧
+
𝜕(𝑤𝜏𝑥𝑧)

𝜕𝑥
+
𝜕(𝑤𝜏𝑦𝑧)

𝜕𝑦
+
𝜕(𝑤𝜏𝑧𝑧)

𝜕𝑧
+ 𝜌𝑓 . 𝑈⃗⃗                               (2.16)       

Where 𝑈2 = 𝑢2 + 𝑣2 + 𝑤2  is the magnitude of the velocity vector, 𝑒 = 𝑐𝑣𝑇 is internal 

energy, 𝑞̇ is the energy source, 𝑘 is the thermal diffusion coefficient and 𝑇 is temperature. 

 To derive the equation for the conservation of internal energy it is possible to subtract the 

results of momentum equations with their corresponding velocity vector from the total energy 

equation. So, the equation for the conservation of internal energy becomes,  

𝜕(𝜌𝑒)

𝜕𝑡
+ ▽ . (𝜌𝑒𝑈⃗⃗ ) =  𝜌𝑞̇ + 

𝜕

𝜕𝑥
(𝑘

𝜕𝑇

𝜕𝑥
) + 

𝜕

𝜕𝑦
(𝑘

𝜕𝑇

𝜕𝑦
) +

𝜕

𝜕𝑧
(𝑘

𝜕𝑇

𝜕𝑧
) − 𝑝 (

𝜕𝑢

𝜕𝑥
− 

𝜕𝑣

𝜕𝑦
−

 
𝜕𝑤

𝜕𝑧
) + 𝜆(

𝜕𝑢

𝜕𝑥
− 

𝜕𝑣

𝜕𝑦
− 

𝜕𝑤

𝜕𝑧
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𝜕𝑥
)
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+

                                        (
𝜕𝑢

𝜕𝑧
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𝜕𝑤

𝜕𝑥
)
2
+ (

𝜕𝑣

𝜕𝑧
+ 

𝜕𝑤

𝜕𝑦
)
2
]                                         (2.17) 

Where 𝜆 =  −
2

3
𝜇 and 𝜇 shows dynamic viscosity [13].  

(Eq. 2.9) to (Eq. 2.17) is applicable to a closed volume in a system. As the mentioned equations 

are non-linear partial differential equations it is extremely hard to be solved. By discretizing n 

time and space (closed volume) it is possible to find a numerical solution. To achieve a logical 

and accurate solution, it is necessary to use some iterative numerical methods like Semi-

Implicit-Method for Pressure-Linked Equations (SIMPLE) [13]. 
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2.6 The Discretization Procedure 

Distribution of values of a dependent variable such as 𝜑 in a domain needs a numerical 

solution of the partial differential equations as mentioned earlier. It needs settling some points 

called grid points in their corresponding discrete elements which are not overlapping. This 

procedure is called meshing. The points usually constructed in the centroids or at the vertices 

of the elements. It mostly depends on the method used for discretization. The aim is to find 

discrete values of 𝜑 instead of the continuous solution of the partial differential equations. The 

procedure to convert the governing equation to a group of algebraic equations with discrete 

values of 𝜑 is known as discretization process and there are particular methods to derive these 

kinds of conversions denoted as discretization processes. The algebraic equations are solved 

according to their neighboring elements to calculate the discrete values of 𝜑. These algebraic 

equations are achieved by conservation equations governing 𝜑. As the values for 𝜑 is 

calculated, the data should be processed to get any required information. [12]. An example of 

the process which is applied to the study of the heat transfer case is illustrated in (Fig. 2.4). 
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Figure 2.4 an example of discretization process [12] 
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The discretization process consists of different steps as, 

I. Geometry and Physical Modeling 

II. Domain Discretization 

III. Equation Discretization 

IV. The solution of Discretized Equations 

The necessary discretization method used for a given differential equation can be chosen by 

the designer. Here are some most common methods that are used for discretization, 

• Formulation for Taylor-Series 

• Variational Formulation 

• Weighted Residuals 

• Control-Volume Formulation 

Here, the Control-Volume discretization method is a unique version for the Weighted 

Residuals method. In this method, the domain is divided into several control volumes that are 

not overlapping. Every grid point is surrounded by a single element. Each sections profile 

representing the 𝜑 are utilized to derive the necessary integrals. Finally, for a set of grid points, 

the discretized values for 𝜑 are achieved [15]. 

The crucial characteristic of the Control-Volume method is that the final solution shows that 

the integral conservation of fluid properties is validated precisely for any group of the control 

volumes. This feature is independent of the element size. It does not imply that the coarse 

elements will not result in precise integral conservation [15]. Discretization method has 

different steps which are shown in (Fig. 2.5) [12]. 

 

 



15 

 

 

Figure 2.5 The Discretization Procedure [12] 
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2.7 Solving the System of Algebraic Equations 

The methods for solving linear systems of equations are categorized in direct and iterative 

techniques. As the fluid flow equations are extremely non-linear, by linearizing them the 

coefficients are derived which are commonly dependent on the solution. As an accurate 

solution at each iteration is not our goal, so the direct methods for solving them mostly are not 

used. The iterative methods have lower computational cost and lower memory, so are most 

desirable for applications. After discretization of a set of linear equations 𝐴𝜑 = 𝑏 which 𝜑 is 

the unknown property settled in the centroids of the elements, are desired values. In this 

equation, the matrix 𝐴 is produced by the linearization process which gives some coefficients 

of unknown mesh geometry. On the other hand, 𝑏 is constructed from all boundary conditions, 

constants, non-linearizable components and sources.  

2.7.1     Linear solvers  

The linear solver specifies the solver used for each discretized equation. It is different from 

applications solver like simpleFoam exists in OpenFOAM which defines the whole set of 

equations and algorithms used to solve the problem.  

The first step to set solver in OpenFOAM is to define the linear solver for the simulation. 

OpenFOAM has different solver for which can be used for calculating the flow field 

properties[16]. Here are the types of linear solvers in OpenFOAM: 

• PCG/PBiCGStab: Stabilized preconditioned (bi-)conjugate gradient, for both 

symmetric      and asymmetric matrices 

• PCG/PBiCG: preconditioned (bi-)conjugate gradient, with PCG for symmetric 

matrices, PBiCG for asymmetric matrices 

• smoothSolver: solver that uses a smoother 

• GAMG: generalized geometric-algebraic multi-grid 

• diagonal: a diagonal solver for explicit systems 

These linear solvers separate between symmetric and asymmetric matrices. 
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2.7.2     Iterative methods 

When the high amount of the matrix elements are zero, it is not appropriate to use direct 

methods. It happens when the equations remain non-linear after linearization or when the 

problems are dependent on time. The latter is exactly what happens in fluid problems. 

The iterative methods are more desirable because a part of the iterative solution process 

consists of the solution of the linearized system. Two most important iterative methods are 

• Jacobi Method 

• Gauss-Seidel Method 

 For all methods, the coefficient matrix can be written as, 

                                                                𝐀 = 𝐃 + 𝐋 + 𝐔                                               (2.18) 

Where 𝐷, 𝐿 𝑎𝑛𝑑 𝑈 are diagonal, strictly lower and strictly upper matrices. The iterative 

methods to solve a linear system like 𝐀𝛗 = 𝐛 continues to find solutions of 𝜑(𝑛) till some 

predefined conditions are satisfied, then it converges to the exact solution of the 𝜑. For this 

method an initial condition 𝜑(0)must be defined as initial point and the iterative method 

computes 𝜑(𝑛) from already computed 𝜑(𝑛−1) [12]. 

2.7.2.1   Jacobi method  

This method is known as the easiest iterative method to solve a set of linear equations, which 

is illustrated in (Fig. 2.6) 

 

Figure 2.6 Jacobi Method illustration 

A system of equations considered as 𝐀𝛗 = 𝐁, if the elements located in diagonal are not zero, 

so the first equation for 𝜑1 can be solved, then the second equation for 𝜑2 comes after and so 

on. The procedure starts by guessing a vector value for 𝛗. These guesses are used to derive 𝜑𝑖 
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and will continue till a new value 𝜑𝑁 is calculated. It shows just one iteration. Each iteration 

result is considered as a new guess for the next iteration and the process is repeated. It will 

continue until the results from two consecutive iterations fall below some value known as 

convergence criterion. The solution is reached when it happens. In the Jacobi method, some 

estimate is given by 𝜑(𝑛−1) and an update is calculated by the equation below, 

                              𝜑𝑗
(𝑛)

=
1

𝑎𝑖𝑖
(𝑏𝑖 − ∑ 𝑎𝑖𝑗𝜑𝑗

(𝑛−1)
)          𝑖 = 1,2,3,… , 𝑁𝑁

𝑗=1
𝑗≠𝑖

        (2.19) 

(Eq. 2.19) shows that the value derived is not used in the next calculations of the same 

iteration, but it remains to be used in the subsequent iteration. The matrix form of the Jacobi 

method can be written as, 

                                               𝜑(𝑛) = −𝐃−1(𝐋 + 𝐔)𝜑(𝑛−1) +𝐃−1𝐛                             (2.20) 

The Jacobi method converges when, 

                                                 𝜌(−𝐃−1(𝐋 + 𝐔)𝜑(𝑛−1) +𝐃−1𝐛 < 1                     (2.21) 

Where 𝜌() is the spectral radius of containing matrix [12]. 

 2.7.2.2   Gauss-Seidel method 

This method is more popular and has better convergence attitude. It is also less expensive 

regarding the memory to be used because it uses the latest available 𝜑 in the calculations, and 

it does not need new estimates. The matrix form of this method is as following, 

                                    𝜑(𝑛) = −(𝐃 + 𝐋)−1𝐔𝜑(𝑛−1) + (𝐃 + 𝐋)−1𝐛                      (2.22) 

In the Gauss-Seidel method, the newer value is always overwriting the last one leading to the 

save of memory. This method of iteration converges when,  

                                                      𝜌(−(𝐃 + 𝐋)−1𝐔) < 1                                            (2.23) 

 

Here the Gauss-Seidel method can be described schematically as from the matrix for formula 

in (Fig. 2.7). 
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Figure 2.7  Gauss-Seidel graphical representation [12] 

 

2.7.3     Multigrid approach 

If the amount of algebraic equations increases the rate of convergence in iterative methods 

decreases significantly. It happens in any size of the system which confines the iterative 

solvers. A solution to this problem is proposed which is resulted from the combination of the 

iterative and multigrid approaches [12]. 

The iterative methods are able to eliminate high-frequency errors. On the other hand, these 

methods cannot cancel low-frequency components. So, these methods are named smoothers in 

the multigrid approaches [17]. As shown in Fig. (2.8) high-frequency errors are sensed by the 

element easily while as the frequency decreases the error becomes soother and just an small 

portion of it lies within a cell. Refining the grid makes these problem worse resulting in 

decrease of the rate of the convergence [12]. 
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Figure 2.8 different error modes in 1D grid 

2.7.4     Preconditioning 

The preconditioner matrices make the eigenvalues of the 𝐵 matrix clustered allowing to 

achieve the solution faster than the main system. The new system has better spectral properties 

and is equivalent to the previous system. The preconditioners are used because the coefficients 

of the 𝐵 matrix are unforeseen which affect the convergence of the iteration method. The 

preconditioner is a matrix which gives us the defined transformation which is called 𝐏. It can 

be described in the system as,  

                                                                 𝐏−1𝐀𝛗 = 𝐏−1𝐛                                            (2.24) 

The new system has the same solution of the original with much better spectral properties of 

𝐏−1𝐀.  

The folder for preconditioners in the OpenFOAM [12]: 

• DICPreconditioner, DILUPreconditioner: diagonal incomplete Cholesky 

preconditioner for symmetric and asymmetric matrices  

• diagonalPreconditioner 

• FDICPreconditioner: fast mode of DICPreconditioner which the correlative of the 

preconditioned diagonal and upper coefficients are divided by the diagonal are 

calculated and stored. It is used for symmetric matrices 
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• noPreconditioner: without any preconditioner 

• GAMGPreconditioner: geometric agglomerated algebraic multigrid preconditioner 

which uses multigrid cycles as preconditioners  

2.8 Turbulence Modeling 

Due to high inertial terms, the laminar flows can become unstable. The turbulence is made of 

eddies with different dimensions which can break down to smaller eddies and transfer their 

energy to the nearby eddy [12]. 

There are many turbulence models for indoor environments simulations, including Reynolds 

averaged Navier-Stokes (RANS) and Large Eddy Simulation (LES). RANS turbulence 

modeling can be categorized in eddy-viscosity and Reynolds-stress models [18]. As shown in 

(Fig. 2.9), LES resolves scales with a shorter length than the RANS models resulting in better 

results. Although, they need high power computers than the methods using RANS models [19]. 

 

Figure 2.9 extension of turbulent modeling [19] 
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2.8.1     RANS  

RANS eddy-viscosity models can be categorized by the number of transport equations 

utilized: 

• Zero-Equation Eddy-Viscosity Models 

• One Equation Eddy-Viscosity Models 

• Two-Equation Eddy-Viscosity Models 

• Multiple-Equation Eddy-Viscosity Models 

Two most popular turbulence models used in enclosed environment air simulation are denoted 

as 𝑘 − 𝜀 and 𝑘 − 𝜔 which are related to the Two-Equation Eddy-viscosity Models [18]. 

𝑘 − 𝜀 is one of the most used and popular turbulence models proposed in 1993 by Launder 

and Spalding [20]. It is respectively robust and simple for indoor environment simulation. The 

model can be formulated as, 

                                                                𝑣𝑡 = 𝐶𝜇
𝑘2

𝜀
                                                        (2.25) 

Where 𝑣𝑡  is turbulent eddy viscosity, 𝑘 is turbulent kinetic energy, 𝜀 is dissipation rate of 

turbulence energy and 𝐶𝜇 = 0.09 is an empirical constant. This model mostly developed for 

flows with high Reynolds. In order to use for low Reynolds like wall functions and near-wall 

flows, it is necessary to connect the outer-wall free stream and the near-wall flow [18]. 

 

𝑘 − 𝜔  turbulence models which are reformulated and revised Wilcox [21] is applicable to 

both boundary layers and free shear flows which is not sensitive to finite free stream boundary 

conditions on the properties of turbulence. It is an accurate approach to the mildly separated 

flows and uncomplicated geometries. The 𝑘 − 𝜔 model proposed by Wilcox [22] is similar to 

𝑘 − 𝜀 models, which is based on Boussinesq approximation. To determine two large scales of 

turbulence the relating two transport equations must be solved. The specific turbulence 

dissipation 𝜔 can be written as, 

                                                                      𝜔 =
𝜀

𝐶𝜇𝑘
                                                                       (2.26) 
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This approach has some advantages over the previous one as a) it is much easier to integrate, 

so is more robust b) without requiring extra damping functions it can be integrated through 

sub-layer c) it is more appropriate for the flow which has weak pressure gradient [12]. 

2.8.2     LES  

Mostly, the common method for determining turbulence flows is to use RANS, however, in 

some cases, the designers encounter a situation which the RANS is not adequate. In these cases, 

alternative methods like Large Eddy Simulation (LES) or Direct Numerical Simulation (DNS) 

can be utilized. In LES the equations which are dependent on time are filtered to eliminate very 

small time and length scales. These methods require finer mesh with running for small time 

steps, especially for wall confined flows. Also, the time steps must be high enough in order to 

account for the correlations for the velocity components which are fluctuating. LES method 

results in more details in flow structure and fluctuations of pressure and Lighthill stresses, 

which cannot be derived using RANS method [23]. 

2.9 Standard Solvers in OpenFOAM 

OpenFOAM does not have a general solver which can be applied for all the applications. 

Instead, it contains a folder of solvers which is subdivided with respect to continuum 

mechanics. Each solver has a descriptive name. For the present study, two different solvers are 

coupled. Initially, the solver for incompressible flows are used to simulate the velocity field, 

then the basic solver is coupled to model smoke propagation. Here the existing solvers for 

incompressible flow are categorized [24]: 

• adjointShapeOptimizationFoam: steady-state solver for incompressible, turbulent 

flow of non-Newtonian fluids with optimization of duct shape by applying “blockage” 

in regions causing pressure loss as estimated using adjoint formulation 

• boundaryFoam: Steady-state solver for incompressible, 1D turbulent flow, typically 

to generate boundary layer conditions at an inlet 

• icoFoam: Transient solver for incompressible, laminar flow of Newtonian fluids 

• nonNewtonianIcoFoam: Transient solver for incompressible, laminar flow of non-

Newtonian fluids 

• pimpleFoam: Transient solver for incompressible, turbulent flow of Newtonian fluids 

on a moving mesh 
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• overPimpleDyMFoam: Transient solver for incompressible, flow of Newtonian 

fluids on a moving mesh using the PIMPLE (merged PISO-SIMPLE) algorithm 

• SRFPimpleFoam: Large time-step transient solver for incompressible, turbulent flow 

in a single rotating frame 

• pisoFoam: Transient solver for incompressible, turbulent flow, using the PISO 

algorithm 

• shallowWaterFoam: Transient solver for inviscid shallow-water equations with 

rotation 

• simpleFoam: Steady-state solver for incompressible flows with turbulence modeling 

• overSimpleFoam: Steady-state solver for incompressible flows with turbulence 

modeling 

• porousSimpleFoam: Steady-state solver for incompressible, turbulent flow with 

implicit or explicit porosity treatment and support for multiple reference frames 

(MRF) 

• SRRFSimpleFoam: Steady-state solver for incompressible, turbulent flow of non-

Newtonian fluids in a single rotating frame 

Also, openFOAM contains some basic solvers as following [24] 

• laplacianFoam: Laplace equation solver for a scalar quantity  

• overLaplacianDyMFoam: Laplace equation solver for a scalar quantity 

• potentialFoam: Potential flow solver which solves for the velocity potential, to 

calculate the flux-field, from which the velocity field is obtained by reconstructing the 

flux 

• overPotentialFoam: Potential flow solver which solves for the velocity potential, to 

calculate the flux-field, from which the velocity field is obtained by reconstructing 

flux  

• scalarTransportFoam: Passive scalar transport equation 

The chosen solvers and their definitions will be discussed in the next chapter. 
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2.10 Induction Fans 

Jet fans are also known as induction or impulse fans pull the air flow from supply to extraction 

zones. They act as a source of velocity where the airspeed is low, guaranteeing ventilation of 

all zones in daily ventilation. As the impulse fans are mounted in specific points, they occupy 

only less than 0.5% of the ceiling area. This increases the space for other technical installations 

and also visibility across the parking [25].   

Induction fans are specially designed to be utilized in underground car parks. They are used 

for dual purposes, to provide normal ventilation and smoke extraction in case of fire. These 

fans are cost-effective in comparison to traditional ductwork system. Two most important 

advantages of the jet fans are a) reduction in installation cost (reduction in the cost of complex 

grilled and ducted system) b) running cost saving because of fan features [26]. Appropriate 

quantity of the jet fans must be chosen and distributed in the parking space to ensure the desired 

air movement. The control system can vary from simple timed to full pollution sense multi-

stage system. When an emergency case initialized the main task of the jet fans is to move the 

air to the closest extraction point as shown in (Fig. 2.10 and 2.11). the smoke control system 

has to keep the escape roots clear and also makes a corridor for fire-fighters to deal with the 

fire source [27]. 

 

Figure 2.10 induction fan function graphical illustration 
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Figure 2.11 induction fan smoke extraction steps [26] 

         

 

Induction fans work on tunnel ventilation principles, making jet with a high velocity which 

thrusts toward the air ahead of fan conveying momentum to surrounding air through 

entrainment. The volume of absorbed air is relatively larger than the air passing through the 

1. Fire starts 

 

2.  Ventilation system starts to run 

 

3. The smoke is extracted 
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fan. Impulse fan performance is dependent on the thrust made by the fan which is the product 

of mass flow rate times velocity change. In other words, it is equal to volume flow times air 

density times fan outlet velocity which is measured in Newtons [28]. Impulse fans fall in two 

categories considering their shapes as shown in (Fig. 2.12). 

 

Figure 2.12 (a) Jet Thrust Fan (b) Induction Thrust Fan 
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2.11 Axial Fans  

Axial fans (Fig. 2.13) as their name implicate the direction of the flow through them is a kind 

of mechanical fan. These fans mostly are recognizable for the people as window fans or box 

fans. Both the direction and speed of the axial fan is controllable. They are used in many 

industrial, commercial and residential buildings with different sizes. Sizes of axial fans ranges 

from very small that a person can hold it in hand to very huge ones used in industrial facilities 

and huge buildings. 

Axial fans have some advantages over other kinds of fans. One of the most important 

characteristics of axial fans is that they can move a large amount of air so quietly. Long 

lifespan, low price and optimum performance make them the most popular choice in many 

ventilation systems.  

 

Figure 2.13 Axial Fan 

 

Axial fans are used in buildings specifically in underground car parks to maintain the indoor 

air quality. These fans are vital equipment for buildings where air needs to be circulated. The 
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electric motor which drives their shafts can be easily controlled, allowing higher and lower 

RPMs [29].  

The name of axial fans shows their functionality precisely. The fan blade attached to a shaft 

is rotated by an electromotor. The blade which is rotating acts similar to a propeller. It makes 

air flow by decreasing the pressure behind it forcing the air flow into the propeller in the 

direction of the shaft [29].  

Axial fans may encounter some problems influencing their performance like surging and 

stalling [29]. Surge is an undesired condition which results from the pressure gradient in the 

reversed direction of air flow. In this case, the maximum pressure happens at discharge side 

while the minimum pressure is created at the opposite side. This pressure gradient pumps the 

air in the opposite direction of the fan (Fig. 2.14) and causes vibrations and noise [30]. The 

main causes of fan surge: 

1. A large amount of air is pressurized (case of plenum or grain bins) 

2. A part of ductwork has high velocities 

3. The operating point of the fan is on the left side of peak point in fan’s characteristic 

curve at low flow rates. In this section, the fan curve has a positive slope which static 

pressure increases by increasing the flow 

Conceptually, a surge of a system acts as an oscillator. The energy which is conveyed to the 

air transforms between potential energy and kinetic energy. Amplification of this oscillation 

worsens by the positive slope of the fan curve. Finally, the air flows back to the fan inlet [31].  

If two or more fans are mounted parallel to each other as the case of supply and extraction 

fans in the present study, parallel flow operation problem arises. In case of two fans, each fan 

is selected to conduct half of the design flow rate. The problem for parallel fans initiates at 

starting phase. If the sizing of the fans is done precisely, started to reach the desired speed 

simultaneously with the same rate, so there is not any problem. On the contrary, if one of the 

fans started prior to the other one, the second fan is already encountering back pressure. At 

maximum speed, a condition can be seen where one fan is performing at the right-hand side of 

the peak while the other is stuck on the left side of the peak in characteristic curve [31]. 
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Figure 2.14  Surge Condition [31] 

 

When airflow moves through a blade undergoes some deflection. By changing the blade’s 

orientation with respect to the flow direction the amount of deflected air can be changed. The 

amount of air deflection will increase by the increase of angle of attack. Changing angle of 

attack will affect the relative velocities which produces pressure gradient. If the rise of the 

angle of attack becomes severe the air flow will not obey the surface of blade uniformly. 

Generated pressure and deflection amount will pause to increase and will fall off soon [31]. 

This condition is called stall. The stall condition in fan characteristic curve is shown in (Fig. 

2.15).  

 

Figure 2.15 Curve showing the dip in the stall region [31] 
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Blades of a fan rotates at a constant velocity, so in order to change the angle of attack, the 

system which the fan is mounted should be changed. The angle of attack is proportional to the 

air flow rate through the inlet. If a fan encounters an stall condition, it is basically due to the 

low flow rate at inlet. In a system, it happens when the selected fan is too large leading to a 

reduction in air velocities. A fan running in the stall condition makes a lot of noise. In huge 

fans, it sounds like a hammer knocking on a solid surface [31]. The flow rate through the fan 

fluctuates as shown in the (Fig. 2.16).  

 

Figure 2.16  Stall condition [31] 

 

 

 

 

 

 

 

 



32 

 

3   Methodology 

According to what is defined in previous sections, the method used for the present study will 

be represented step by step as shown in (Fig. 3.1). 

 

Figure 3.1 Hierarchy of the method 

Definition of the Problem
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3.1 Definition of the Problem 

At very first step, all the required information about the location, geometry, legislation and 

the ventilation system must be collected in order to be used in the next steps.  

3.1.1     Geometry of the car park 

A case study of a mall car park located in Tabriz, Iran is studied for present thesis work. The 

total area for the car park is about 21670 m2 which is divided into 4 separated zones 

demonstrated in (Fig. 3.2). The possible locations where the extraction and supply fans can be 

mounted must be defined as shown in (Fig. 3.3). 

 

Figure 3.2 car park area division into 4 different zones 

The total height for the enclosed area is 3m. The resulting area for each subdivision is: 

• Zone 1 = 5900m2 

• Zone 2 = 5120m2 

• Zone 3 = 5030m2 

• Zone 4 = 5620m2 
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Figure 3.3 possible locations for mounting supply and extraction fans 

 

 As the geometry is large, some small details can be simplified to reduce the complexity of 

the meshing process without any effect on the final solution. The simplified geometry now is 

ready to undergo the meshing and discretization process. 

3.1.2     Legislation 

The most adopted legislation for car park ventilation system standards consists of Approved 

document F and B 2010 edition performed by the Ministry of Housing, Communities and Local 

Government of UK. Approved document F contains standards for the quality of air and 

ventilation for all kinds of buildings in normal condition. According to Approved document F 

for the enclosed areas like car parks: a) average concentration of harmful components 

especially CO should not exceed 90 parts per million for whole area b) maximum concentration 

not exceeding 90 parts per million for exits, entrances and ramps which the cars move or stop 

with running engines. As a result, it proposes 6 air changes per hour for the whole car park and 

10 air changes per hour for exits, entrances and ramps [2].  

Approved document B contains the standards for the matter of fire safety. According to the 

approved document B: a) the load of fire must be defined b) if the design is satisfactory for an 

story, the possibility of dispersion of fire to the other floors is low. In case of fire, the ventilation 
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system must be capable of 10 air changes per hour. Also, the ventilation system must be 

designed in two parts equally which each part can perform its task individually or 

simultaneously [4].  

3.1.3     Ventilation system  

First, the ductworks system was proposed by the local engineers. The chosen system has not 

been accepted by the employer due to the high operation cost of the ductwork system, also the 

employer expected an innovative system rather than a traditional. The low height of the car 

park was another drawback in choosing the traditional ductwork system. The impulse 

ventilation system finally was chosen because of cost-effectiveness and high efficiency. Also, 

the impulse fans have compact structures, it overcomes the problem relating to the low height 

of car park. The jet fans (Fig. 3.4 and 3.5) used in the present work are chosen considering the 

flow rate of extraction and supply fans.  

 

Figure 3.4 layout and dimensions of impulse fans [26]  
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Figure 3.5 technical data of impulse fans [26] 

CC-JD 402 with known technical properties is selected for the present work. 

For each zone, two extraction and two supply fans are considered which each set of 

supply/extraction can work separately or together with the other set carrying out 50% of total 

ventilation capacity of the relating zone. The total volume for the car park can be calculated as, 

                                      𝑉 = 𝑆 × ℎ = 21670 × 3 = 65010 𝑚3                     (3.1) 

Where 𝑉  is the total volume of the car park, 𝑆 is the total area of the car park and ℎ is the 

height of the car park. Assuming equal zone areas, the required air volume to carry out 10 air 

changes per hour is, 

                                    
𝑉

4
× 𝑛 =

65010

4
 × 10 = 162525 𝑚3/ℎ                        (3.2) 

Where 𝑛 is the desired number of air changes per hour. As each supply and exhaust section 

has two axial fans, so each of the fans should supply/extract 22.5 𝑚3/𝑠. The axial fan 

HTM100JM/31/4/9/28 is selected to the present study (Fig. 3.6, 3.7 and 3.8). 
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Figure 3.6 layout and dimensions of the axial fan selected for the extraction/supply [32] 
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Figure 3.7 fan characteristic curve 

 

Figure 3.8 axial fans technical data(derived from the fan characteristic curve) [32] 

Either axial or jet fans can work in 300℃ for 2 hours.  

 

3.2 Geometry Discretization 

After simplifying the real geometry and ignoring the small objects which have no effects on 

the final solution the structured mesh with Hexahedral elements for 3-dimension case is 

performed. 

The structured mesh has some advantages over the un-structured mesh which despite it is 

complexity for large and complicated geometries, is chosen for this study. The main advantages 

are [33]: 
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• High quality of control and quality 

• Better in terms of convergence 

• Extra solution algorithms  

• Solving the data locality issue 

• Definable normal  

The resulting mesh for the defined geometry can be seen in (Fig. 3.9). 

 

 

Figure 3.9 a mesh part zoomed for better resolution 

 

The inlet and outlet boundary conditions (BCs) are demonstrated by green and red arrows in 

(Fig. 3.10). Also, a free stream boundary condition is settled for the exit door of the parking 

shown in yellow arrow. 
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Figure 3.10 whole mesh domains and inlet/outlet boundary conditions 

Walls including all the walls, ceiling and the floor are set as wall boundary conditions, also 

all the inlets and outlets are set to patch-type BCs. 

3.3 Velocity Field Derivation  

3.3.1     Turbulence model 

The 𝑘 − 𝜀 is one of the most commonly used models in indoor environment simulation. It is 

robust and reduces the memory needed for the analysis while maintaining reasonable accuracy. 

In this model, the flow considered to be fully turbulent and the molecular viscosity must be 

ignored. It is appropriate for elementary monitoring and iterations, however, it results in severe 

pressure gradients, strong streamline curvature [34]. 

The equations [35][36] which are governing the turbulent kinetic energy 𝑘 (Eq. 3.3) and its 

dissipation rate 𝜀 (Eq. 3.4) is, 

       
𝜕

𝜕𝑡
(𝜌𝑘) +

𝜕

𝜕𝑥𝑖
(𝜌𝑘𝑢𝑖) =

𝜕

𝜕𝑥𝑗
[(𝜇 +

𝜇𝑡

𝜎𝑘
)
𝜕𝑘

𝜕𝑥𝑗
] + 𝐺𝑘 + 𝐺𝑏 − 𝜌𝜀 − 𝑌𝑀 + 𝑆𝑘    (3.3)                     

                                       
𝜕

 𝜕𝑡
(𝜌𝜀)+

𝜕

𝜕𝑥𝑖
(𝜌𝜀𝑢𝑖) =

𝜕

𝜕𝑥𝑗
[(𝜇 +

𝜇𝑡
𝜎𝑘
)
𝜕𝑘

𝜕𝑥𝑗
]+

                                              𝐶1𝜀
𝜀

𝑘
(𝐺𝑘+𝐶3𝜀𝐺𝑏)−𝐶2𝜀𝜌

𝜀2

𝑘
+𝑆𝜀                                 (3.4) 
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Where 𝑢𝑖𝑗 is velocity components, 𝜌 is density, 𝜇 is molecular viscosity, 𝜇𝑡 is turbulent 

viscosity, 𝜎𝑘 is 𝑘 − 𝜀 model coefficients, 𝐺𝑘, 𝐺𝑏 are source terms, 𝑌𝑚 is model source term, 𝑆𝑘, 

𝑆𝜀 are model user source term, 𝐶1𝜀, 𝐶2𝜀, 𝐶3𝜀 are model coefficients. 

The chosen turbulence model to be utilized by OpenFOAM is, 

simulationType RAS; 

RAS 

{ 

RASModel        kEpsilon; 

turbulence         on; 

printCoeffs        on; 

} 

3.3.2     Fluid transport properties 

The equations which relate the deformation to the stress are constitutive which may be valid 

for a large group of fluids. The most basic relations known as Newton’s viscosity law, consist 

of linear equations which the stress is proportional to the strain rate. The fluids which obey the 

mentioned equations are denoted as Newtonian fluids [37]. 

Considering [38] a shear term 𝜏𝑥𝑦 (Eq. 3.5) in tensor to implement the Newtonian assumptions 

produces an incremental angular strain 𝑑𝛾𝑥𝑦, 

                                                    𝑑𝛾𝑥𝑦 =
(
𝜕𝑢𝑥
𝜕𝑦

𝛿𝑦𝑑𝑡)

𝛿𝑦
+
(
𝜕𝑢𝑦

𝜕𝑥
𝛿𝑥𝑑𝑡)

𝜕𝑥
                                                (3.5) 

The angular rate of strain a fluid particle if the observer is sitting on it, 

                                                            
𝐷𝛾𝑥𝑦

𝐷𝑡
=

𝜕𝑢𝑥

𝜕𝑦
+
𝜕𝑢𝑦

𝜕𝑥
                                                                (3.6) 

By Newtonian assumption, 

                                                  𝜏𝑥𝑦 = 𝜇
𝐷𝛾𝑥𝑦

𝐷𝑡
= 𝜇(

𝜕𝑢𝑥

𝜕𝑦
+
𝜕𝑢𝑦

𝜕𝑥
)                                                 (3.7) 

In general, it can be rewritten as, 

                                                    𝜏𝑖𝑗 = 𝜇
𝐷𝛾𝑖𝑗

𝐷𝑡
= 𝜇(

𝜕𝑢𝑖

𝜕𝑥𝑗
+
𝜕𝑢𝑗

𝜕𝑥𝑖
)                                                  (3.8) 

As a Newtonian fluid is isotropic 𝜇 is the same in all directions. 
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Inserting normal stresses (𝜏𝑥𝑥, 𝜏𝑦𝑦, 𝜏𝑧𝑧) and simplifying the equations, we can derive the 

relationship between shear stress and velocity of the particle in general form as, 

                                      𝜏𝑖𝑗 = −(𝑝𝑚 +
2

3
𝜇∇. 𝑢̅) 𝛿𝑖𝑗 + 𝜇(

𝜕𝑢𝑖

𝜕𝑥𝑗
+
𝜕𝑢𝑗

𝜕𝑥𝑖
)                               (3.9) 

Where 𝛿𝑖𝑗 = {
𝛿𝑖𝑗 = 1 𝑖𝑓  𝑖 = 𝑗

𝛿𝑖𝑗 = 0 𝑖𝑓 𝑖 ≠ 𝑗
 is Kronecker delta. And the 𝑝𝑚 (Eq. 3.10) is mechanical 

pressure which can be calculated as, 

                                                     𝑝𝑚 = −
(𝜏𝑥𝑥+𝜏𝑦𝑦+𝜏𝑧𝑧)

2
= −

𝜏𝑖𝑖

3
                                           (3.10) 

The mechanical pressure is the negative value of the average values of three diagonal terms 

in the stress tensor which should be distinguished from thermodynamic pressure. If the stress 

is not the same at all directions it works as a measure of normal compressive stress in the fluids 

which are viscous. Mechanical pressure is an scalar physical property. 

 

3.3.3     Boundary conditions 

In this step, the initial conditions for 𝑝, 𝑈, 𝑘, 𝑒𝑝𝑠𝑖𝑙𝑜𝑛 𝑎𝑛𝑑 𝑛𝑢𝑡 must be specified. The relating 

dictionaries are set for inlet/outlet boundary conditions where the supply/extraction fans are 

mounted as, 

𝑝: 

        type                       fanPressure; 

        patchType             totalPressure; 

        file                        "./constant/fanCurve"; 

        outOfBounds        clamp; 

        direction                in/out;  (in=supply, out=extraction) 

        p0                          uniform 0; 

        value                     uniform 0;                    //  internalField   uniform 0; 

𝑈: 

type            pressureInletOutletVelocity; 

value          uniform (0 0 0);                //  internalField   uniform (0 0 0); 

𝑘:    

type            fixedValue; 

value          $internalField;                 //  internalField   uniform 0.375; 
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𝑒𝑝𝑠𝑖𝑙𝑜𝑛:    

type            fixedValue; 

value          $internalField;                  //  internalField   uniform 14.855; 

The dictionary of 𝑝 reads the fanCurve file which is implemented in the constant folder that 

contains the information about the fan characteristic curve. The fanCurve file consists of 

matrices which the first column is flux while the second column is corresponding kinematic 

static pressure of fan adopted from fan characteristic curve. As in each boundary, we have two 

same fans, considering both as one, the flux at each boundary is double times of a fan unit. The 

fanCurve file is,  

(flux 𝑝) 

(26.7 489.79) 

(30.14 408.16) 

(33.02 326.53) 

(35.56 244.89) 

(36.74 204.08) 

(37.86 163.26) 

(39 122.44) 

(40 81.63) 

(41 40.81) 

(42 0) 

For the exit/entrance of the car park which is an open door to the free air stream, it is not 

known if the air enters/exits. It will be defined according to the difference between total 

extraction and supply mass flow rate. The following configurations are set as, 

𝑝: 

type                zeroGradient; 

𝑈: 

type               pressureInletOutletVelocity; 

𝑘, 𝑒𝑝𝑠𝑖𝑙𝑜𝑛: 

type                 zeroGradient; 

For all other boundary conditions including, ceiling, floor, internal and external walls the 

below set-up is used 

𝑝: 

type                zeroGradient; 

𝑈: 

type                fixedValue; 
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value              uniform (0 0 0); 

𝑘: 

type                 kqRWallFunction; 

value               $internalField;                    //  internalField   uniform 0.375; 

𝑒𝑝𝑠𝑖𝑙𝑜𝑛: 

type                 epsilonWallFunction; 

value               $internalField; 

 

3.3.4     Applying beams as porous media 

A porous media can be defined as a solid body which contains void spaces. Fluid can flow 

only in inter-connected pore spaces of the porous media which is called as effective pore space. 

Henri Darcy constructed a law for porous media which states the rate of flow 𝑄 of any fluid 

into a filter bed or porous media is proportional to the area of the filter and the difference of 

the fluid head in inlet and outlet of the media ∆ℎ, and inversely proportional to the thickness 

of the bed 𝐿 [39]. It can be defined mathematically as, 

                                                                  𝑄 =
𝐶𝐴∆ℎ

𝐿
                                                        (3.11) 

As the quantity of the beams is huge and it makes structured meshing process very complex, 

the present study uses DarcyForchheimer model to add simply the beams as porous media 

which the pressure drops assumed to be infinite. The Darcy-Forchheimer [40] works as a sink 

in the momentum equation by 𝑆𝑚 term, 

                                                    
𝜕𝜌𝑈

𝜕𝑡
+ ∇(𝜌𝑈𝑈) = ∇𝜎 + 𝑆𝑚                                                (3.12) 

Where 𝜎 is Cauchy stress tensor and 𝑈 is velocity vector. The source term can be written as, 

                                                  𝑆𝑚 = −(𝜇𝐷 +
1

2
𝜌𝑡𝑟(𝑈 ∙ 𝐼)𝐹)𝑈                                     (3.13) 

𝑆𝑚 acts as a sink because the sign is negative. The coefficients 𝐷, 𝐹 must be specified by 

calculations requiring dependent pressure 𝑝(𝑢) which is a function of porous media, 

                                                   𝑆𝑚 = −(𝜇𝐷 +
1

2
𝑡𝑟(𝑈 ∙ 𝐼))𝑈                                          (3.14) 
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Defining 𝑆𝑚 as a pressure gradient like 𝑆𝑚 = ∇𝑝, so we can write, 

                                                   ∇𝑝 = −(𝜇𝐷 +
1

2
𝑡𝑟(𝑈 ∙ 𝐼))𝑈                                            (3.15) 

Changing the coordinate system to Cartesian, 

                                                    ∇𝑝 = −𝜇𝐷𝑖𝑢𝑖 −
1

2
𝜌𝐹𝑖|𝑢𝑘𝑘|𝑢𝑖                                           (3.16) 

If the velocity dependent pressure can be calculated using a polynomial function similar to, 

                                                             ∆𝑝 = 𝐴𝑢 + 𝐵𝑢2                                                          (3.17) 

If we compare both equations and know the velocity dependent pressure values we can derive 

𝐴 and 𝐵, thus the values for 𝐷 and 𝐹.  

To implement the beams as porous media, the elements confined by beams must be defined 

in topoSet dictionary as Beams cellZone in the system folder. All the adjustments can be done 

in the porousityProperties dictionary in the constant folder as, 

porosity1 

{ 

type            DarcyForchheimer; 

cellZone        Beams; 

 d   (100000 100000 100000); 

 f   (0 0 0); 

coordinateSystem 

    { 

type    cartesian; 

origin  (395.77 245.85 0); 

coordinateRotation 

    { 

 type    axesRotation; 

  e1      (1 0 0); 

  e2      (0 0 1); 

 }}} 

3.3.5     Setting induction fans as momentum sources  

The induction fans are defined as momentum sources. Momentum sources will add a source 

term in momentum equations as for the porous medias. Initially the relating cellZones for 

induction fans must be defined in topoSet dictionary, then all the adjustments will be done in 

fvOptions dictionary located in constant folder as, 
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type            meanVelocityForce ; 

active          yes ; 

meanVelocityForceCoeffs 

{ 

selectionMode      cellZone ; 

cellZone               JetFans(V/H) ;                    //one cellZone per each direction x,y 

     

    fields              (U) ; 

    Ubar               (0 -22.3 0)/(-22.3 0 0) ;       //each cellZone velocity vector 

    relaxation       1 ; 

 

3.3.6     Linear solver set-up 1 

In this section, all the configuration for solvers, preconditioners and smoothers are going to 

be defined.  

 

3.3.6.1   Linear solver  

These linear solvers separate between symmetric and asymmetric matrices. to calculate 𝑝 in 

this study, the GAMG method is used as the linear solver. The theory behind the multi-grid 

linear solvers is to utilize coarse grid with fast solution times to produce an initial solution for 

the fine grid and smoothen the errors with high frequency. In GAMG step by step, the mesh 

becomes coarse and the agglomeration procedure can be geometric or algebraic pair [41]. 

An overview of what happens in GAMG loops: 

1) the finest level of interfaces from mesh is derived 

2) using faceWeights the agglomeration initialized 

a) the faces for each cell are found and creates groups/clusters 

i)  

ii) defines if the face belongs to the cell or the neighbor 

iii) if a match is found, all necessary data are derived to create new groups/cluster, if 

not, the best neighboring cluster is found by adding the cell to it 

b) checking if all the cells are a part of a cluster, otherwise, a single cell cluster is generated 

per each 

c) reversing the map for the possibility of improvement in the next step of agglomeration 
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3) agglomeration is continued for next steps continue from (1) till reaches to an specified mesh 

size by the user or when it violates the maximum quantity for grid levels 

In (Fig. 3.11) a basic geometry is depicted for the mentioned process starting by 6 cells. 

 

Figure 3.11 a simple example of the agglomeration process [41] 

3.3.6.2   Preconditioner 

As described in chapter 2, a system using a preconditioner reaches convergence faster than 

the original one. The convergence depends on the choice of the preconditioner matrix. A 

preconditioner-based system can be written as (Eq. 2.24). Preconditioner matrix 𝑃 should be 

easily invertible in comparison to the 𝐴 [41].  

For the calculation of 𝑝 DIC preconditioner has chosen which the reciprocal diagonal matrix 

is derived determined and saved for symmetric matrices. For other properties 

(𝑈, 𝑛𝑢𝑡, 𝑒𝑝𝑠𝑖𝑙𝑜𝑛, 𝑘) DILU preconditioner is set which is same as DIC but for asymmetric 

matrices. 
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3.3.6.3   Smoothers 

As discussed before, the preconditioners can reduce the number of iterations, but they do not 

reduce the number of iterations related to the mesh. Smoothers are used with solvers to 

overcome this problem. For all properties of the flow field, the Gauss-Seidel method is chosen 

as smoother. This method is cost-effective in terms of memory usage. As the number of 

elements for this study is huge, so Gauss-Seidel is the best choice among the others. 

Gauss-Seidel is an iterative method which solves the algebraic equations with an approximate 

solution by the desired accuracy. The manual calculation for this method is quite time 

consuming, but the OpenFOAM does it fast and precisely. An approximate value for the 

solution is considered and all further calculations are based on this assumption. The Gauss-

Seidel method can be described step by step as [42]: 

• when the algorithm initialized it asks for the values of the row-wise elements 

belonging to augmented matrix 

• then it requires the maximum number of iterations and allowable error. Maximum 

number of iterations affects the accuracy of the solution 

• in case of three variable (𝑥, 𝑦, 𝑧), it sets two of them (𝑦, 𝑧) as initial or approximate 

solutions to zero and the new value for 𝑥 is used to calculate the new values of  y, z 

using following expressions, 

                                                        

{
 
 

 
 𝑥 =

1

𝑎1
(𝑑1 − 𝑏1𝑦 − 𝑐1𝑧)

𝑦 =
1

𝑏2
(𝑑2 − 𝑎2𝑥 − 𝑐2𝑧)

𝑥 =
1

𝑐3
(𝑑3 − 𝑎3𝑥 − 𝑏3𝑦)

                                           (3.18) 

• iterations will stop when the desired value of accuracy is acquired 

All the configuration for solving the linear equations can be done in the fvSolution dictionary 

exists in the system folder, which for the present case is, 

solvers 

{ 

    p 

    { 

        solver          GAMG; 

         smoother        GaussSeidel; 

        preconditioner   DIC; 

        tolerance       1e-06; 
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        relTol          0.1; 

    } 

 

    "(U|k|epsilon|R|nuTilda)" 

    { 

        solver          smoothSolver; 

        smoother        GaussSeidel; 

        preconditioner   DILU; 

        tolerance        1e-05; 

        relTol           0.1; 

    } 

} 

SIMPLE 

{ 

    nNonOrthogonalCorrectors 0; 

 

 

    residualControl 

    { 

        p               1e-6; 

        U               1e-6; 

        "(k|epsilon|omega)" 1e-6; 

    } 

} 

 

relaxationFactors 

{ 

    fields 

    { 

        p               0.3; 

    } 

    equations 

    { 

        U               0.3; 

        k               0.3; 

        epsilon         0.3; 

        R               0.3; 

        nuTilda         0.3; 

    } 

} 

3.3.7     Application solver 1 

Previously, the procedure for discretization is defined. Now it is the time to solve the transport 

equation to find a flow property like 𝜑. For the present study, the porousSimpleFoam has 

chosen in order to consider beams as porous media with a large pressure drop. Generally, for 

incompressible flows, the pressure and velocity are strongly coupled which makes it difficult 
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to find the velocity field using Navier-Stokes equations. It is due to the fact that the pressure 

does not appear primarily as a variable in the momentum or continuity equations [12]. An 

algorithm is proposed by Prof. Brian Spalding and Suhas Patankar which is denoted as Semi-

Implicit Method for Pressure-Linked Equations (SIMPLE) [15]. In the SIMPLE algorithm, the 

velocity and pressure fields are developed to validate momentum and continuity equations to 

find the solution by iteration. The final solution is reached when both equations are satisfied at 

all the iterations. The solution is known as a segregated approach as it acts sequential instead 

of simultaneous [12], [43].  

3.4 Smoke Propagation Simulation 

After deriving velocity fields using previous steps explained in the 1st process, smoke 

propagation should be modeled. To do so, an scalar solver denoted as scalarTransportFoam is 

coupled to earlier application solver using a proper linear solver for the new scalar property of 

the field. The aim is to find the distribution of the scalar property in already calculated velocity 

field. 

3.4.1     Smoke definition as an scalar quantity 

In this study, the smoke produced by fire is defined as an scalar quantity 𝑇. Boundary 

conditions for new field property 𝑇 are defined as below, 

All inlets/Outlets 

    { 

        type            zeroGradient; 

    } 

All walls 

    { 

        type            fixedValue; 

        value           uniform 0;    } 

 For each fire scenario, a source of smoke is defined in a box-shaped manner using topoSet 

dictionary existing in the system folder. The dimensions of fire source suggested by BS-7346 

for fire area 𝐴 for an indoor car park without sprinkler system is 5 𝑚 × 5 m. The corresponding 

heat release rate should be considered as 8 𝑀𝑊 [44]. Data for fire events and incidents for 

vehicle estimates burning rate per unit area of fire as 260 𝑘𝑤/𝑚2 for an area of 6 𝑚2 which is 

equivalent to burning of 145 𝑘𝑔 wood. The equivalent fuel mass rate per unit of area is 
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estimated to be 0.02
𝑘𝑔

𝑚2
/𝑠 [45]. Converting the experimental data to the legislation values we 

can get fuel mass consumption rate 𝑚̇𝑓 𝑙𝑒𝑔 as,  

                                               𝐻𝑅𝑅𝑒𝑥𝑝 =  260 × 6 = 1530 [𝐾𝑊]                         (3.19) 

                                                  𝑚̇𝑓 𝑒𝑥𝑝 = 0.02 × 6 = 0.12  [
𝑘𝑔

𝑠
]                               (3.20) 

                                     𝑚̇𝑓 𝑙𝑒𝑔 =
𝐻𝑅𝑅𝑙𝑒𝑔

𝐻𝑅𝑅𝑒𝑥𝑝
𝑚̇𝑓 = (

8

1.530
) × 0.12 = 0.61 [

𝑘𝑔

𝑠
]          (3.21) 

Where 𝐻𝑅𝑅𝑒𝑥𝑝 is heat release rate from experimental data, 𝐻𝑅𝑅𝑙𝑒𝑔 represents the heat release 

rate recommended by standards and 𝑚̇𝑓 𝑒𝑥𝑝 fuel consumption rate from experimental data.  

The height of the smoke source resulting from the fire according to the experimental data for 

a car fire is 0.8 𝑚 [45]. The Volume of the smoke source 𝑉𝑠 is calculated by, 

                                           𝑉𝑠 = 𝐴 × ℎ = 5 𝑚 × 5 𝑚 × 0.8 𝑚 = 20 [𝑚3]            (3.22) 

Where ℎ is the height of the smoke source. It is possible to derive the mass of particulate 

produced by a fire 𝑀̇𝑝 to the mass of fuel using a constant named yield factor 𝑦𝑝 [46]. The table 

() showing the yield factor for different materials. As we converted the fire of a car to equivalent 

wood fire the adopted yield factor is 0.018 (Tab. 3.1). Calculating the mass of particulate 

produced,   

                                     𝑀̇𝑝 = 𝑦𝑝 𝑚̇𝑓 𝑙𝑒𝑔 = 0.61 × 0.018 = 0.01098 [𝑘𝑔/𝑠]      (3.23) 
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Mass concentration of the particulates produced in smoke source 𝑚̇𝑝 which is the scalar 

quantity 𝑇, 

                                   𝑚̇𝑝 = 𝑀𝑝/𝑉𝑠 =
0.01098

20
= 5.49 × 10−4  [

𝑘𝑔

𝑚3𝑠
] = 𝑇            (3.24) 

The result for mass concentration used as a quantity to define the intensity of an scalar source 

in fvOptions in the constant folder as below, 

smokeSource 

{ 

     type         scalarFixedValueConstraint; 

     active       true; 

 

 

      scalarFixedValueConstraintCoeffs 

      { 

        selectionMode   cellZone; 

Material yp 

Acrylonitrile-Butadiene-Styrene (ABS) 0.105 

Ethylenetetrafluoroethylene (ETFE; TefzelTM) 0.042 

Fiberboard 0.008 

Fluorinated Polyethylene-Polypropylene (FEP; TeflonTM) 0.003 

Nylon 0.075 

Perfluoroalkoxy (PFA; TeflonTM) 0.002 

Phenolic Foam 0.002 

Polyester 0.09 

Polyethylene (PE) 0.06 

Polyethylene Foam 0.076 

Polymethylemethacrylate (PMMA; PlexiglasTM) 0.022 

Polypropylene 0.059 

Polystyrene 0.164 

Polystyrene Foam 0.194 

Polyurethane Foam (Flexible) 0.188 

Polyurethane Foam (Rigid) 0.118 

Polyvinylchloride (PVC) 0.172 

Silicone 0.065 

Silicone Rubber 0.078 

Tetrafluoroethylene (TFE; TeflonTM) 0.003 

Wood (Douglas Fir) 0.018 

Wood (Hemlock) 0.015 

Wood (Red Oak) 0.015 

Wool 100% 0.008 

Table 3.1 yield factor for different materials [46] 
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        cellZone        Fire; 

        mode            uniform; 

        fieldValues 

      { 

        T      5.5e-04;   (Mass concentration of the particulate produced in smoke source 𝑚̇𝑝) 

        } 

       } 

} 

3.4.2     Linear solver set-up 2 

To simulate smoke distribution as an scalar quantity, due to good parallel scaling, 

preconditioned bi-conjugate gradient linear solver alongside DILU preconditioner is chosen. 

The linear solver configurations are defined in fvSolution as, 

solvers 

{ 

    T 

    { 

        solver          PBiCGStab; 

        preconditioner  DILU; 

        tolerance       1e-06; 

        relTol          0; 

    } 

} 

SIMPLE 

{ 

    nNonOrthogonalCorrectors 0; 

} 

 

relaxationFactors 

{ 

    equations 

    { 

        T               0.3;   

} 

} 

3.4.3     Application solver 2 

For smoke distribution analysis scalarTransportFoam is used as application solver. 

scalarTransportFoam is a basic solver existing in the OpenFOAM to solve transport equations 

for a passive scalar using pre-defined constant velocity field. It is mostly used in diffusion-

convection problems. It utilizes the diffusion-convection scalar transport equation lacking any 
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source term. The diffusion coefficient is considered to be constant. In incompressible flow, the 

diffusion-convection equation is, 

                                                    
𝜕𝑇

𝜕𝑡
+ ∇. (𝐔𝑇) − ∇2(𝐷𝑇𝑇) = 0                                 (3.25) 

Where 𝑇 is scalar quantity, 𝐔 is the velocity of fluid and 𝐷𝑇 is constant for diffusion which 

both latter ones are constant.   

3.5 Post-processing 

The results for smoke propagation can be post-processed using the calculator in paraview to 

get visibility distribution within the car park. The equation relating the mass concentration of 

particulate to visibility 𝑆 [46] is, 

                                                               𝑆 = 𝐾/𝛼𝑚𝑚̇𝑝                                                   (3.26) 

Where 𝐾 is proportionally constant for visibility shown in (Tab. 3.2) for different situations 

and 𝛼𝑚 is the specific extinction coefficient shown in (Tab. 3.3) for different modes of 

combustion. 

 

 

  

 

Table 3.2 proportionally constant for different situations [46] 

 

 

 

 

 

 

Table 3.3 extinction coefficient for different modes of combustion [46] 

Situation K 

Building Components in Reflected Light 3 

Illuminated Signs 8 

Reflecting Signs 3 

Mode of Combustion 
Specific Extinction Coefficient 

𝜶𝒎  [
𝒎𝟐

𝒌𝒈
] 

Flaming Combustion 7578.2 

Smoldering Combustion 4301.1 
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As the car park is equipped with illuminated signs for assisting evacuation process and the fire 

itself is an illuminating matter so proportionally constant 𝐾 is 8. A car fire at first stages is 

always flaming combustion so it is logical to consider 𝛼𝑚 = 7578.2. 

The equation defined in the calculator is, 

                                                      𝑆 =
8

7578.2×(𝑇+0.000004)
                                          (3.27) 

The constant added to the smoke concentration is to a) avoiding infinite values where the 

smoke concentration is nearly zero b) assigning maximum visibility with respect to a maximum 

length of the car park. 
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4   Results 

Initially, the locations of the supply/extraction and induction fans for suggested fan 

positioning are shown in (Fig. 4.1). 

 

Figure 4.1 fan positioning case 1 

 

The velocity fields (Fig. 4.2 and 4.3) for the first set-up are simulated with high and low-

velocity induction fans. Also, the streamlines (Fig. 4.4 and 4.5) are shown to visualize the 

recirculating flows through the car park. High-velocity induction fans are generating 22.3 𝑚/𝑠 

airflow at the outlet while low-velocity induction fans producing 11.2 𝑚/𝑠. It should be noted 

that all the following slices are done at 1.7 𝑚 which is considered to be normal human height.  
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Figure 4.2 velocity field case (1) V=22.3 [m/s] 

 

Figure 4.3 velocity field case (1) V=11.2 [m/s] 
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Figure 4.4 Streamlines case (1) V=22.3 [m/s] 

 

Figure 4.5 Streamlines case (1) V=11.2 [m/s] 
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The visibility is modeled for 17 different fire scenarios for 1st fan set-up with high-velocity 

induction fans. The locations for fire scenarios are illustrated in (Fig. 4.6). Fire scenarios are 

determined to start from the first location moving 30 𝑚 in each direction. Due to the high cost 

of running analysis in terms of time, excessive fire locations with similar results to nearby fire 

scenarios are neglected. Contours are set to value of 10 𝑚 in all visibility fields to show the 

capability of the ventilation system in maintaining a clear path for firefighters to reach to the 

firebase by 10 𝑚. Visibility fields for different fire scenarios are shown in (Fig. 4.7-4.23) 

 

 

Figure 4.6 Fire scenarios 
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Figure 4.7 visibility distribution 1 

 

 

Figure 4.8 visibility distribution 2 
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Figure 4.9 visibility distribution 3 

 

 

Figure 4.10 visibility distribution 4 
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Figure 4.11 visibility distribution 5 

 

 

Figure 4.12 visibility distribution 6 
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Figure 4.13 visibility distribution 7 

 

 

Figure 4.14 visibility distribution 8 
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Figure 4.15 visibility distribution 9 

 

 

Figure 4.16 visibility distribution 10 



65 

 

 

Figure 4.17 visibility distribution 11 

 

 

Figure 4.18 visibility distribution 12 
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Figure 4.19 visibility distribution 13 

 

 

Figure 4.20 visibility distribution 14 
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Figure 4.21 visibility distribution 15 

 

 

Figure 4.22 visibility distribution 16 
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Figure 4.23 visibility distribution 17 
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According to the visibility results for the first case, it is clear that the ventilation system is 

not capable to remove smoke produced by the fire in zone 4. The new induction fan positioning 

is proposed as shown in (Fig. 4.24) to improve the ventilation in zone 4, also reduce the large 

recirculating flows in zone 1 and zone 3. In new case 10 new induction fans are added. 

 

 

Figure 4.24 fan positioning case 2 

 

Velocity fields for the new case are shown in (Fig. 4.25) for high and (Fig. 4.26) for low-

velocity induction fans. Streamlines for corresponding velocity fields are shown in (Fig. 4.27 

and 4.28). New case with low-velocity induction fans is chosen for further analysis in terms of 

visibility (Fig. 4.29-4.45).  
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Figure 4.25 velocity field case (2) V=22.3 [m/s] 

 

 

Figure 4.26 velocity field case (2) V=11.2 [m/s] 
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Figure 4.27 streamlines case (2) V=22.3 [m/s] 

 

 

Figure 4.28 streamlines case (2) V=11.2 [m/s] 
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Figure 4.29 visibility distribution 1 

 

 

Figure 4.30 visibility distribution 2 
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Figure 4.31 visibility distribution 3 

 

 

Figure 4.32 visibility distribution 4 
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Figure 4.33 visibility distribution 5 

 

 

Figure 4.34 visibility distribution 6 
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Figure 4.35 visibility distribution 7 

 

 

Figure 4.36 visibility distribution 8 
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Figure 4.37 visibility distribution 9 

 

 

Figure 4.38 visibility distribution 10 
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Figure 4.39 visibility distribution 11 

 

 

Figure 4.40 visibility distribution 12 



78 

 

 

Figure 4.41 visibility distribution 13 

 

 

Figure 4.42 visibility distribution 14 
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Figure 4.43 visibility distribution 15 

 

 

Figure 4.44 visibility distribution 16 
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Figure 4.45 visibility distribution 17 

 

It is obvious that the capability of the ventilation system in removing the smoke in case of fire 

event has increased in the new fan set-up. Especially, comparing the scenarios 1-2-4-7-9-15 in 

both cases we can see the improvement of the ventilation. However, in scenarios 9-14-18-19-

24 the smoke dispersion has increased, but the objective of the study which was smoke 

clearance in a way that the visibility does not fail 10 𝑚 in 10 𝑚 from the firebase is satisfied 

which was violated in the scenarios 2-4-7-15 previously.  

Fire scenario 2 in the second fan positioning is the worst case in smoke dispersion which we 

choose to see what happens if the two first induction fans located near to the firebase does not 

work due to the heat of the fire or any other problems (Fig. 4.46). The velocity field and 

streamlines for this case is shown in (Fig. 4.47 and 4.48). (Fig. 4.49) shows the visibility which 

it is possible to see how two fans affect the visibility of the field in the corresponding fire 

scenario.  
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Figure 4.46 switched off induction fans and fire base locations 

 

 

Figure 4.47 velocity field switching off two near firebase induction fans V=11.2 [m/s] 
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Figure 4.48 streamlines for switching off two near firebase induction fans V=11.2 [m/s] 

 

 

Figure 4.49 visibility distribution for fire scenario 2 with switching off the two near firebase induction fans 
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5   Conclusion 

Simulations revealed that the jet fan system can restrict the smoke dispersion produced by a 

car fire in an enclosed area. The velocity fields, visibility conditions and the streamlines are 

derived and presented using OpenFOAM. The results showed that the positioning of the 

elements of the jet fan ventilation system affects its efficiency. Comparing the systems with 

high and low velocity jet fans in cases (1) and (2), it can be concluded that the recirculating 

flows are generated when the airflow moving toward the inlet of the exhaust shafts by the jet 

fans is higher than the corresponding extraction flowrates. The recirculating flows will disperse 

the smoke through the car park. However, in some regions, the recirculating flows with small 

areas can be beneficial, since they confine the smoke within themselves. The jet fans located 

near to the ceiling will develop a jet among themselves which more than one line of the jet fans 

may be needed to avoid backlayering. Comparing zones 1 and 3 in cases (1) and (2), the jet 

fans are able to prevent the lateral dispersion of smoke when the number of the jet fan lines is 

sufficient. The position of the exhaust shafts will affect the backlayering distance. In zone 4 of 

the case (2), the backlayering is reduced when is compared to the same zone in case (1). If the 

exhaust shafts are placed far from the fire location, the airflow through the firebase region is 

reduced, resulting in the extent of backlayering. Comparing zone 4 in both cases, it is better to 

set the supply and exhaust shafts in opposite walls. Otherwise, the design should be in a way 

that the airflow from the supply to the extraction points must encounter the minimum number 

of turnings. The ideal would be placing all the outlets on the opposite side to the inlets in the 

entire design.  

More realistic simulations must be done on impulse ventilation systems with comparisons to 

the experimental approaches to fully authorize theses conclusions.  
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