
Improving jujube fruit yield estimation by
assimilating a remotely sensed leaf area index
into the WOFOST model

Tiecheng Bai

2020



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

COMMUNAUTÉ FRANÇAISE DE BELGIQUE 

UNIVERSITÉ DE LIÈGE – GEMBLOUX AGRO-BIO TECH 

 

 

 

 

 

Improving jujube fruit yield estimation by assimilating a remotely sensed leaf 

area index into the WOFOST model 

 

 

Tiecheng Bai 

 

 

 

Dissertation originale présentée en vue de l’obtention du grade de docteur en 

sciences agronomiques et ingénierie biologique 

 

Promoteurs : Prof. Benoît Mercatoris & Prof. Youqi Chen 

 

2020 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© Tiecheng Bai, le 25 septembre 2020 



 

i  

Résumé 

Tiecheng Bai (2020). Amélioration de l'estimation du rendement en fruits du 
jujube en assimilant l'indice de surface foliaire télédétecté dans le modèle 
WOFOST (thèse de doctorat). 

Gembloux Agro-Bio Tech, Liège Université, Gembloux, Belgique. 

182 pages, 49 figures, 19 tableaux 

 

Résumé: Jujube a d'importantes valeurs nutritionnelles et médicales et est l'un des 
fruits séchés les plus précieux de Chine. À mesure que la superficie plantée augmente, 
la surveillance de la croissance et du rendement du jujube sur le terrain avant la récolte 
permet aux agriculteurs d’améliorer la prise de décisions en matière de gestion des 
cultures, telles que l’irrigation, la fertilisation, la taille et la sélection de la densité de 
plantation. Les méthodes de télédétection et d'assimilation ont été largement utilisées 
pour le suivi de la croissance et l'évaluation du rendement des cultures annuelles. 
L’utilisation de méthodes d’assimilation pour estimer le rendement des cultures 
fruitières, en particulier des jujubes, a suscité jusqu’à présent peu de recherche et de 
développement. L'objectif principal de la thèse est d'exploiter pleinement les 
avantages d’un modèle de croissance de culture et de la technologie de télédétection 
afin d'améliorer la précision de l'estimation du rendement en jujubes. La première 
innovation consiste à introduire une durée phénologique dans le modèle de régression 
par télédétection afin d'améliorer la précision de l'estimation du rendement par 
télédétection. La deuxième innovation consiste à développer et à évaluer des méthodes 
d’assimilation par télédétection afin de quantifier et de réduire l’incertitude des 
principaux paramètres d’entrée dans les simulations de croissance de jujubes, en 
mettant l’accent sur la réduction de l’incertitude liée à l’âge des arbres et à la densité 
de plantation, améliorant ainsi l’estimation du rendement à l’échelle du verger. 

Premièrement, les performances du modèle WOFOST (World Food STudies) dans 
la simulation de la croissance des arbres fruitiers de jujubes ont été évaluées dans des 
conditions de production potentielle (en l’absence de stress hydrique ou de nutriment). 
Le modèle a été établi et validé à l'aide de données recueillies lors d’expériences sur 
le terrain effectuées au cours de trois saisons de croissance. Pour la simulation en 
mode potentiel, la dynamique de croissance simulée des feuilles, des tiges, des fruits, 
de la biomasse totale et de l'indice de surface foliaire (LAI) correspond bien aux 
valeurs mesurées, montrant des valeurs de RMSE (erreur quadratique moyenne) de 
0,14, 0,33, 0,37, 0,62 t ha–1 et 0,19 m2 m–2 et R2 (coefficient de détermination) de 0,95, 
0,98, 0,99, 0,99 et 0,95, respectivement. Les erreurs validées de –2, –3 et –3 jours ont 
été détectées à différents stades de développement phénologique correspondant à 
l'émergence, à la floraison et à la maturité. Afin d’estimer les rendements de jujubes 
d’âge différents, le poids des nouveaux organes à chaque saison de croissance 
(bourgeons et racines initiaux) a été introduit en tant que poids sec total initial (TDWI), 
calculé en tant que valeurs moyennes des arbres de même âge. Les résultats ont montré 
que le R2 et le RMSE de l'estimation du rendement à l'échelle du champ étaient 
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respectivement de 0,22 et 1,07 (16,3%) t ha–1 pour 2016, de 0,04 et 1,33 (17,2%) t ha–

1 pour 2017. Le modèle proposé peut fournir une stratégie fondamentale pour simuler 
la croissance d'autres arbres fruitiers. Il convient de noter que la méthode de définition 
du TDWI pour les jujubes du même âge reste incertaine, ce qui se traduit par une 
précision du modèle légèrement inférieure. 

Deuxièmement, les méthodes de régression par télédétection sont encore largement 
utilisées pour l'estimation du rendement des cultures. Des recherches antérieures ont 
confirmé la corrélation entre les rendements des cultures et les informations 
phénologiques. La période de calcul fiable du rendement en jujubes sur la base de 
l'indice de végétation par télédétection a été choisie. Une approche utilisant la 
longueur des périodes phénologiques pour améliorer les estimations par télédétection 
de la variabilité interannuelle des rendements a été explorée et testée. On a constaté 
que le meilleur moment pour estimer le rendement des jujubes était pendant la période 
de remplissage des fruits, montrant un coefficient de corrélation (R2) plus élevé entre 
les indices de végétation (VI) et les rendements. Les VIs moyens pour la 14ème 
quinzaine (du 16 au 31 juillet) et la 15ème quinzaine (du 1er au 15 août) représentent la 
meilleure performance pour l'estimation du rendement, avec une valeur de R2 la plus 
élevée de 0,74 pour le NDVI (indice de végétation par différence normalisée), 0,61 
pour le SAVI (indice de végétation ajusté au sol), 0,46 pour le NDWI (indice de 
différence normalisé de l'eau) et 0,44 pour le EVI (indice de végétation amélioré). Le 
potentiel d'utilisation de Landsat-NDVI pour l'estimation du rendement en jujubes, 
combiné à la longueur phénologique, a été prouvé sur la base de 181 observations de 
vergers de jujubes individuels, montrant un R2 validé de 0,64 et une RMSE de 0,73 
(11,1%) t ha–1 pour 2016, 0,71 et 0,73 (9,5%) t ha–1 pour 2017, respectivement.  

Troisièmement, cette étude présente l’assimilation d’une seule valeur de LAI, 
dérivée des observations satellitaires Landsat à un stade proche du développement 
végétatif maximum, dans un modèle WOFOST calibré afin d’améliorer l’estimation 
du rendement des arbres fruitiers à jujubes à l’échelle du verger. L'assimilation après 
forçage a amélioré la précision de l'estimation du rendement par rapport à la 
simulation sans assimilation, affichant un R2 de 0,62 et un RMSE de 0,74 (11,3%) t 
ha–1 pour 2016, et un R2 de 0,59 et un RMSE de 0,87 (11,3%) t ha–1 pour 2017.  

Finalement, la principale contribution de cette étude consista au développement 
d’un algorithme SUBPLEX permettant d’assimiler, dans un modèle WOFOST calibré, 
une série temporelle de valeurs de LAI détectées à distance  pour quatre stades de 
croissance clés. La précision de l’estimation de cet algorithme a  été comparée à celle 
d’une assimilation basée sur un filtre de Kalman (EnKF) largement utilisé en 
assimilation de données. Les résultats ont montré que les assimilations SUBPLEX et 
EnKF amélioraient considérablement les performances d'estimation du rendement par 
rapport à une simulation sans assimilation. Le SUBPLEX (R2 = 0,78, RMSE = 0,64 
(8,3%) t ha–1 et RPD = 2,13) a également montré une précision d'estimation du 
rendement légèrement supérieure à celle de l'assimilation EnKF (R2 = 0,66, RMSE = 
0,79 (10,2%) t ha–1 et RPD = 1,73). L'étude a fourni un nouveau schéma d'assimilation 
basé sur l'algorithme SUBPLEX pour utiliser des données de télédétection et un 
modèle de croissance des cultures pour améliorer les estimations de rendement des 
cultures fruitières à l'échelle du champ. 
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En résumé, les méthodes de régression par télédétection et de simulation de la 
croissance des cultures peuvent être améliorées et plusieurs méthodes d’estimation du 
rendement proposées dans la thèse ont donné de bons résultats. Les méthodes de 
forçage sont un choix approprié lorsque seules les images de télédétection du plus 
grand stade de développement sont disponibles. Les méthodes de régression par 
télédétection peuvent être recommandées lorsque deux images satellites des 
principaux stades de développement sont disponibles et appliquées uniquement à des 
zones spécifiques. Les méthodes EnKF et SUBPLEX sont fortement recommandées 
lorsque plusieurs images de télédétection, de l’émergence à la maturité, sont 
disponibles. La méthode SUBPLEX présente généralement de meilleures 
performances et une meilleure stabilité, car la précision de la méthode EnKF dépend 
de la précision du temps phénologique. On pense que la méthode d'assimilation sera 
également la méthode d'estimation du rendement des cultures la plus prometteuse à 
l'avenir en raison d'un bon mécanisme. 

 

Mots-clés: Télédétection, Modèle de croissance des cultures, Assimilation, 
Longueur phénologique, Estimation du rendement 
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Abstract: Jujube fruit has important nutritional and medicinal qualities and is one of 
the most economically valuable fruits in China. Field-scale jujube fruit yield 
estimation using site-specific techniques can provide indicators of the reasons for 
yield gaps, which could be promising to better understand spatial yield variation in 
jujube orchards, thereby analysing the possible causes to improve fruit orchard 
management decision-making. Both remote sensing and assimilation methods have 
been widely used for yield assessments of annual crops. There are few reports 
focusing on the use of assimilation methods to estimate yields for fruit crops, 
especially jujube trees. The main goal of this thesis is to make full use of the 
advantages of crop growth models and remote sensing technology to improve the 
accuracy of jujube fruit yield estimation. The first aim is to introduce phenological 
length into the yield regression model, based on a remotely sensed vegetation index, 
to enhance the accuracy of yield estimation. The second aim is to develop and evaluate 
remote sensing assimilation methods to reduce the uncertainty of key input parameters 
or state variables in the jujube growth simulation process, thereby improving yield 
estimation at the field scale for local jujube orchards. 

Firstly, the performance of the calibrated WOFOST (World Food Studies) model 
was evaluated by simulating jujube fruit tree growth in potential mode. The model 
was calibrated and validated using data collected in field experiments performed in 
three growth seasons. The validated errors of –2, –3, and –3 days were detected in 
different phenological development stages corresponding to emergence, flowering, 
and maturity. Simulated growth dynamics of leaves, stems, fruits, total biomass, and 
leaf area index (LAI) agreed well with measured values, showing R2 (coefficient of 
determination) values of 0.95, 0.98, 0.99, 0.99, and 0.95, and RMSE (root mean 
square error) values of 0.14, 0.33, 0.37, 0.62 t ha–1 and 0.19 m2 m–2, respectively. In 
order to estimate the yields of jujube orchards of different ages, the weight of initial 
new organs in each growing season (new buds and roots) was introduced as the initial 
total crop dry weight (TDWI), which was set as an average value for orchards of the 
same age. The R2 and RMSE of the field-scale yield estimation for 181 orchards were 
0.22 and 1.07 t ha–1 (16.3%) for 2016, 0.04 and 1.33 t ha–1 (17.2%) for 2017, 
respectively. Although the calibrated WOFOST model can provide a fundamental 
strategy for simulating the growth of jujube fruit trees, there may still be some 
uncertainty in the method of setting the fixed TDWI for the same aged jujube orchards, 
resulting in a slightly low estimation accuracy. 

Secondly, this thesis evaluated the yield estimation performance of regression 
methods based on remotely sensed vegetation indices that are widely used for crop 
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yield estimation. An approach that used the phenological length to improve remotely 
sensed estimates of inter-annual variability for yields was explored and tested. The 
optimal time for determining jujube yield estimation was during the fruit filling period, 
which showed higher R2 between vegetation indices (VIs) and fruit yields. The 
average VIs from 16 July to 15 August represented the best performance for yield 
estimation, with an average R2 value of 0.75 for NDVI (Normalized Difference 
Vegetation Index), 0.61 for SAVI (Soil-adjusted Vegetation Index), 0.47 for NDWI 
(Normalized Difference Water Index), and 0.44 for EVI (Enhanced Vegetation Index), 
respectively. The potential of using Landsat-NDVI for jujube yield estimation, 
combined with the phenological length, was proved based on observed fruit yields of 
181 jujube orchards, showing a validated R2 of 0.64 and RMSE of 0.73 t ha–1 (11.1%) 
for 2016, 0.71 and 0.73 t ha–1 (9.5%) for 2017, respectively.  

Thirdly, this study presented an attempt to assimilate a single LAI at near to 
maximum vegetative development stage, derived from Landsat satellite data, into a 
calibrated WOFOST model to improve fruit yield estimation at the field scale. The 
assimilation after forcing LAI improved the yield estimation performance compared 
with the unassimilated simulation, showing a R2 of 0.62 and RMSE of 0.74 t ha–1 
(11.3%) for 2016, and R2 of 0.59 and RMSE of 0.87 t ha–1 (11.3%) for 2017, 
respectively.  

Finally, the main contribution of this study was to develop a SUBPLEX algorithm 
to assimilate a time series of remotely sensed LAI during the main growth stages into 
the calibrated WOFOST model, and compared the yield estimation accuracy of the 
SUBPLEX algorithm with a widely used Ensemble Kalman Filter (EnKF) 
assimilation. The results showed that both SUBPLEX and EnKF assimilations 
significantly improved yield estimation performance compared with the un-
assimilated simulation. The SUBPLEX (R2 = 0.78, RMSE = 0.64 t ha−1 (8.3%) and 
RPD (Standard Deviation (SD)/RMSE) = 2.13) also showed slightly better yield 
estimation accuracy compared with EnKF assimilation (R2 = 0.66, RMSE = 0.79 t ha−1 
(10.2%) and RPD = 1.73). The study provides a new assimilation scheme based on a 
SUBPLEX algorithm to employ remotely sensed data and a crop growth model to 
improve field-scale jujube fruit yield estimates. 

In summary, this thesis highlighted that the proposed forcing method is a suitable 
choice when only one remote sensing image is available at near to the maximum 
vegetative developmental stage. Remote sensing regression methods can be 
recommended when two satellite images of the fruit filling stage are available and 
applied only to specific areas. The EnKF and SUBPLEX methods are highly 
recommended when multiple remote sensing images from emergence to maturity are 
available. The SUBPLEX method usually exhibited better performance and stability 
because the accuracy of the EnKF method depended on whether the phenological time 
was clear. The assimilation methods may be the most promising fruit crop yield 
estimation methods to use in the future due to their good mechanism. 

Keywords: Jujube, remote sensing, crop growth model, assimilation, phenology 
length, yield estimation  
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1. Context and motivation 
Jujube, Zizyphus jujuba Miller, is a small deciduous tree of the Rhamnaceae family 

from China. The jujube tree is mainly planted in orchards in the subtropical and 
tropical regions of Asia, with a history of more than 4000 years. Its fruit, commonly 
called jujube, red date, or Chinese date, is popular in China due to its high nutritional 
value. The jujube fruit is rich in components such as carbohydrates, reducing sugars, 
vitamin C, soluble and insoluble fibre, protein, mineral and phenolic compounds, 
which can be used as food, food additives, and flavourings. Jujube fruit is also well 
known in China for its significant medicinal value. It has been used in traditional 
medicines as an analeptic, palliative, and antibechic compound for thousands of years 
(Li et al., 2007). In addition, it is considered as a medical supplement that is used in 
tonic medicine and health supplements for blood nourishment and sedation (Gao et 
al., 2013). In 2017, the global amount of jujube fruit produced in the world was about 
8.52 million tons, representing a market of 9.68 billion U.S. dollars (Zhiyan 
Consulting Group., 2018). China is the main country producing jujube fruit, 
accounting for 97% of the world’s production (Zhiyan Consulting Group, 2018). In 
China, jujube trees are mainly cultivated and produced in Shandong, Hebei, Shanxi, 
Shaanxi, Henan provinces and Xinjiang Uygur Autonomous Region (Figure 1–1). 
Xinjiang accounted for almost 49% of the Chinese jujube production in 2018 
(Figure 1–2), and significantly contributes to jujube fruit supply in terms of quantity 
and quality. Xinjiang has become the largest jujube planting base in China because of 
its abundant light and thermal resources, such as long periods of sunshine, strong 
radiation, high accumulated temperatures, and large temperature difference (Li., 
2016).  

 

Figure 1–1: Major jujube planting regions in China.  
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Figure 1–2: Statistics of jujube production in China's major provinces from 2007 to 2018 
(data from National Bureau of Statistics of China).  

The price of jujube has fluctuated significantly in recent years. From 2000 to 2018, 
the purchase price of Chinese jujube showed first a rising trend and then fell 
(Figure 1−3). From 2000 to 2005, the purchase price of jujube was relatively stable. 
From 2006 to 2011, the purchase price showed rapid growth, from 6,448 CNY ton−1 
in 2006 to 35,251 CNY ton−1 in 2011. The main reason for the increase in the jujube 
fruit price is that production could not meet the demand, which was driven by the 
government's encouragement and support (Li, 2016). From 2011 to 2018, the price 
showed a large downward trend. The main reason for the sharp fall after 2011 is that 
the production was much greater than the demand. Due to the skyrocketing price of 
jujube in the early period, farmers planted more jujube trees to increase the planting 
area. At the same time, the jujube trees planted in Xinjiang in the early stage of 2011 
gradually entered the fruiting period, so the production of jujube increased rapidly; 
the state of oversupply became more and more intense, resulting in the decline in 
jujube prices. The rapid decline in the purchase price will inevitably affect the income 
of fruit farmers, and even the sustainable development of the jujube industry. The 
contribution of jujube production amounts to the calculated market price is large, 
reaching almost 20% (Li, 2016). Therefore, assessing jujube yield before harvest 
could also benefit government agencies who formulate strategies to regulate the price 
of jujube fruit and promote the stable development of the jujube industry. 
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Figure 1−3: Purchase price of jujube fruit from 2000 to 2018. (Zhiyan Consulting Group, 
2018) 

In addition, the variability of planting area and yield distribution in different areas 
is large in Xinjiang. This is particularly the case in Xinjiang Region which showed a 
large spatial variability of yield across its agro-ecological zones from 2015 to 2017, 
as depicted in Figure 1–4, ranging from 1.06 to 6.76 t ha–1 (Data from Xinjiang 
Statistical Yearbook). This is due to several factors such as soil properties, climate, 
pruning, irrigation, and fertilization management.  

 

Figure 1−4: Average jujube yield of the main agro-ecological zones in Xinjiang.  
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The spatial distribution of yield is beneficial for exploring the reasons of yield gaps 
(Oliver, 2010). Crop yield estimation at the field scale could be promising to better 
understand spatial yield variation at a local (country) scale, thereby analysing the 
possible causes, such as climatic conditions, soil properties, irrigation, and 
fertilization management, to improve yield management decision-making (Schulthess 
et al., 2013). Therefore, field-scale jujube fruit yield estimation could help managers 
to make orchard management decisions and policies. Field or local-scale yield 
estimations are also the basis of regional-scale assessments, which could contribute to 
the analysis and forecast of jujube prices and policy decisions, to some extent. 

Very few reports exist on the estimation of jujube fruit yield at field, local (country), 
regional, or national scales. Most research efforts on jujube orchards have been 
performed on the effects of irrigation, fertilization, pruning, and photosynthesis on the 
growth process and the annual yield based on field experiments. Existing research 
confirms that Regulated Deficit Irrigation (RDI) technique promotes the growth of 
jujube trees and improves fruit quality and water use efficiency (Cui et al., 2008; Cui 
et al., 2009b; Qiang et al., 2015). The maturity period is considered to be the best 
phenological period to achieve water deficit irrigation of jujube trees (Galindo et al., 
2016). Pruning affects transpiration (Wei et al., 2014), water consumption (Zhang et 
al., 2013), water use efficiency (Chen et al., 2016a), and yield of jujube trees (Jin et 
al., 2018a). In addition, some studies have also reported the effects of soil 
management on soil water content and available nutrients (Wang et al., 2015, 2016), 
coupling effects of water and fertilizer management on yield, water, and nitrogen use 
efficiency (Dai et al., 2019; Wang et al., 2018), spatial variability of soil chemical 
properties (Bai and Wang, 2011), the relationship between stable carbon isotope 
discrimination and water use efficiency (Cui et al., 2009a), influences of 
environmental factors on leaf morphology (Li et al., 2015), and the effect of root 
pruning on competitive ability. It is worth noting that there is a high correlation 
between leaf area index (LAI) and yield. Yield first increases with the increase of LAI, 
but when it exceeds a certain critical value, the yield shows a downward trend (Yang 
et al., 2012). Because a higher leaf area index can intercept and utilize more light 
energy, the photosynthetic products and yield are usually higher. However, an 
excessively high leaf area index will reduce the light energy entering the canopy. The 
leaves in the canopy cannot photosynthesize to produce organic matter, but consume 
nutrients, resulting in a decrease in yield. 

For yield estimation of other fruit tree crops, most research has focused on field and 
sub-field scales. The data used includes visible light cameras, ground spectrometers, 
drone and Landsat satellite images. However, most methods still depend on 
conventional techniques based, for instance, on agro-meteorological models and 
empirical statistical regressions between spectral vegetation indices and in-field 
measured yields (Anastasiou et al., 2018; Bonilla et al., 2015; Sepulcre-Cantó et al., 
2007; Sun et al., 2017; Ye et al., 2008a, 2008b). Some studies have also used image 
processing (Aggelopoulou et al., 2011; Zhou et al., 2012b), and machine learning 
algorithms (Rahman et al., 2018; Ye et al., 2006). One of the main drawbacks of such 
empirical approaches is that they are validated for specific cultivars, growth stages, or 
certain geographical regions. Such an approach suffers from a lack of mechanistic 
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descriptions (Huang et al., 2015a). In contrast, cropping system modelling based on 
mathematical descriptions of key physical and physiological processes is considered 
to be a mature technology (Holzworth et al., 2014) which is widely applied in yield 
estimation, precision farming, and improves understanding of crop responses in field 
trials (Asseng et al., 2013; de Wit et al., 2019a; Ewert et al., 2015). Such modelling 
better considers the complex interactions between plant, weather, soil, and agricultural 
practices (de Wit et al., 2019a). However, factors affecting yield, such as soil 
characteristics, canopy state variables, and the spatial distribution of meteorological 
data, often lead to uncertainty in key input parameters or simulation process, which 
can lead to large errors in crop yield estimation when using crop models (Jin et al., 
2018b). There are obvious advantages and disadvantages to remote sensing-based and 
crop modelling methods. Data assimilation (DA) technology provides a formal and 
easy-to-understand method that combines crop model simulation with remote sensing 
observations in order to reduce the uncertainty of model input parameters and 
simulation processes, thereby improving yield estimation accuracy (Huang et al., 
2015b; Huang et al., 2019).  

Assimilation methods have, however, been developed mostly for annual crops such 
as winter wheat, rice, and maize. Few studies have focused on perennial fruit trees, 
and in particular on jujube fruit crops. The yield of perennial jujube crops sharply 
varies with tree age and planting densities because of the evolution of branches, 
canopy width, tree height, and leaf area index (He et al., 2010). These factors may 
cause uncertainties of input parameters when a crop model is employed to estimate 
jujube fruit yield. Figure 1–5 shows an increase in the rate of total production that was 
significantly higher than that of the planting area until 2017, which may be because 
tree age plays a decisive role in the yield of jujube trees (Xinjiang Statistical 
Yearbook). Therefore, when implementing the assimilation method to evaluate the 
yield of jujube fruits, the uncertainty of the initial input parameters caused by the tree 
age may need to be considered. 

 

Figure 1–5: Growth rates of jujube planting area and production amounts in Xinjiang 
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In summary, the three methods for evaluating yield, including crop growth models, 
remote sensing, and assimilation-based methods, all have some application limitations. 
This thesis aims to develop methods combining crop growth modelling and remotely 
sensed observations to accurately estimate the field-scale jujube fruit yield. For this 
purpose, a crop growth model is first calibrated for perennial crop systems taking into 
account the tree age and the planting density. Two approaches are then considered. 
One approach is based on the integration of simulated phenological data within a 
remote sensing-based yield regression. Another approach, known to be more 
promising, consists in assimilating remotely sensed data within the calibrated crop 
growth model. These proposed methods have been calibrated and validated over the 
sub-region (181 orchards) of Alaer City in China. 

2. Review of crop yield estimation methods 

2.1. Crop growth modelling methods  

2.1.1. Yield estimation based on crop models 

Most crop models are based on physiological and ecological principles using 
mathematical representation of processes such as crop phenology development, 
photosynthetic production, organ establishment, and yield formation (van Diepen et 
al., 1989). The mathematical descriptions of crop modelling systems quantify crop 
development processes influenced by climate, soil, and management conditions (de 
Wit et al., 2019a). Such models have been considered as mature for yield estimation 
(Holzworth et al., 2014). Over the past decades, several crop models have been 
developed such as WOFOST (World Food Studies) (van Diepen et al., 1989), DSSAT 
(Decision Support System for Agrotechnology Transfer) (Jones et al., 2003), EPIC 
(Environmental Policy Integrated Climate) (Wang et al., 2013), STICS (Simulateur 
Multidisciplinaire pour les Cultures Standard) (Brisson et al., 2003), APSIM 
(Agricultural Production Systems Simulator) (Holzworth et al., 2014), SWAP (Soil, 
Water, Atmosphere, and Plant) (Kroes et al., 2017), AquaCrop (a crop-water 
productivity model) (Hsiao et al., 2009; Raes et al., 2009; Steduto et al., 2009), and 
CropSyst (Cropping Systems Simulation Model) (Stöckle et al., 2003). These models 
have been specially developed for different crops and purposes, with their own 
characteristics. They have been widely applied for assessments of regional crop yield 
and climate change impacts on yield (Tebaldi and Knutti, 2007; Reidsma et al., 2009; 
van Bussel et al., 2011; Supit et al., 2012; Van Walsum and Supit, 2012), crop growth 
monitoring (Ma et al., 2008), production potential assessment (Chauhan, 2010), crop 
ecosystem process research (Jongschaap, 2007; Mollier et al., 2008; Ceglar et al., 
2011), production management (Guerra et al., 2007; Saseendran et al., 2007; García-
Vila and Fereres, 2012; McNider et al., 2015; Zhou et al., 2012a), and a crop model-
centred decision-making support system (Tittonell et al., 2010). 

Crop growth models are based on equations to estimate the rate of biomass 
production as a function of resources such as carbon dioxide, solar radiation, and 
water. The methods driving crop models mainly include carbon-driven (WOFOST), 
radiation-driven (EPIC and STICS), and water-driven (CropSyst and AquaCrop) 
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modules (Todorovic et al., 2009a). Among them, WOFOST is a mechanistic model 
that explains crop growth on the basis of phenological development, CO2-assimilation, 
transpiration, respiration, and how these processes are influenced by environmental 
conditions (de Wit et al., 2019a). It has been developed for the quantitative analysis 
of growth and the production of annual field crops, and has been thoroughly tested for 
25 years in several studies on the effect of climate change on yields (Alexandrov and 
Eitzinger, 2005; Kroes and Supit, 2011; Reidsma et al., 2009; Supit et al., 2010; Van 
Walsum and Supit, 2012; Kassie et al., 2015; Blanco et al., 2017; Gilardelli et al., 
2018; Pirttioja et al., 2019), regional yield forecasting (de Wit et al., 2010; Jones et 
al., 2003; Supit, 1997; de Wit et al., 2008; Bussay et al., 2015; Ogutu et al., 2018; 
Ceglar et al., 2019), crop yield analysis (Dobermann et al., 2000; Rötter and Van 
Keulen, 1997), and the inter-comparison of different irrigation and soil conditions 
(Confalonieri et al., 2009; Eitzinger et al., 2004; Rötter and Van Keulen, 1997; 
Todorovic et al., 2009b). It has also been optimized and validated by countless 
researchers all over the world and used for many new crops over a large range of 
climatic and management conditions (de Wit et al., 2019a). WOFOST can be applied 
using either potential production where crop growth is determined by irradiation, 
temperature, and plant characteristics only, or using a water-limited production where 
crop growth is limited by water use (van Diepen et al., 1989). The potential production 
represents the upper limit of absolute yield for a particular crop under specific weather 
conditions, which depends on the response of the crop to temperature and solar 
radiation during the growing season. In practice, this upper limit can only be achieved 
by high-input fertilizers, irrigation, and thorough pest and weed control (de Wit et al., 
2019b). In addition, crops should not be damaged by wind, hail, and frost. Therefore, 
potential yields depend only on crop variety, date of seeding, and weather data. The 
water-limited production considers the effect of soil moisture deficits on crop growth, 
and the corresponding yield represents the maximum yield that can be obtained under 
rain-fed conditions (de Wit et al., 2019b). Crop modelling is mainly developed in the 
literature for annual crops including spring barley, cotton, maize, millet, potato, rice, 
sorghum, soybean, sugar beet, sweet potato, and winter wheat. Few studies have 
focused on perennial fruit trees. Regarding fruit tree crop simulations, studies have 
presented a biophysical simulation of fruit growth based on a biophysical 
representation of water and dry material transport (Fishman and Génard, 1998), a 
computer-based model simulating peach growth (L-PEACH) (Lopez et al., 2010), 
simulating the effect of orchard management on fruit number and size (Lescourret et 
al., 1999), transpiration and light interception (Green et al., 2003), and simulation of 
tree development using mixed stochastic and biomechanical models (Costes et al., 
2008). However, the above fruit tree growth models are missing some mechanisms 
for fruit crop growth and development. Whether the WOFOST model has the potential 
to simulate the growth of perennial jujube tree crops is an interesting research subject 
to explore. There are some differences in physiological characteristics between 
perennial jujube trees and annual crops, such as tree age, tree shape, and planting 
density, which need to be properly considered during the simulation process.  

2.1.2. Description of WOFOST model 

In order to better understand the framework and the main processes considered in 
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such a crop growth model, WOFOST is briefly described in this section. This model 
is the main pillar of the proposed research work. As aforementioned, WOFOST is a 
mechanistic model that explains crop growth on the basis of underlying processes, 
such as phenological development, leaf development, light interception, CO2-
assimilation, transpiration, respiration, partitioning of assimilates into different organs, 
and dry matter formation. It also explains how these processes are influenced by 
environmental conditions. The soil module is not strictly included within the 
WOFOST model, except for root growth by considering different water balance 
approaches (de Wit et al., 2019a). A schematic diagram of the links between model 
components in WOFOST is shown in Figure 1–6.  
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Figure 1–6: Schematic overview of the major processes implemented in WOFOST and their 
linkages (de Wit et al., 2019a). DVS: Development stages. LAI: Leaf Area Index. 

WOFOST describes the basic physiological processes of crops from emergence to 
flowering according to crop characteristics and environmental conditions. Weather 
and ASTRO modules determine the intercepted light and phenological development 
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stages. The model simulates the dry matter accumulation of the plants under the 
influence of solar radiation, temperature, precipitation, and crop characteristics in a 
day's step. The basis of dry matter production is the total assimilation rate of the 
canopy, which is calculated from the absorbed solar radiant energy and the leaf area 
of the crop canopy. A part of the assimilation product (carbohydrates) is consumed to 
maintain respiration, the rest is converted to structural dry matter, and some dry matter 
is consumed by growth respiration during the conversion process. The dry matter 
produced is distributed in roots, stems, leaves, and storage organs. The partition 
coefficient varies with developmental stage. A brief overview of the important 
processes is expressed below, and specific mathematical descriptions and details can 
be referenced to existing studies (such as Supit et al., 1994; de Wit et al., 2019a, b). 

a) Phenological development  

WOFOST uses a development stage variable (DVS) to express the physiological 
age of the crop, with DVS = 0 at emergence, DVS = 1 at flowering, and DVS = 2 at 
physiological maturity for most annual crops. The model relies on an accumulation 
method to simulate the developmental period. Hence, crop growth and development 
stages can be regarded as a function of effective accumulated temperature. The daily 
effective accumulated temperature depends on the lower limit and the upper limit of 
temperature. The crop development stops when the daily average temperature is lower 
than the lower limit. When the average temperature is higher than the upper limit 
temperature, the crop development rate is no longer accelerated. These temperature 
limits depend on the crop characteristics.  

b) CO2 assimilation 

The production and distribution of daily assimilates is the most detailed part of the 
model, obtained by integrating the instantaneous assimilation rate of the canopy in 
one day, which is calculated from the absorbed radiation and photosynthesis response. 
The WOFOST model distinguishes the following steps for daily dry matter production, 
including the total instantaneous gross CO2 assimilation, the total daily gross CO2 
assimilation rate, and the actual daily gross photosynthesis rate. The total 
instantaneous gross canopy CO2 assimilation rate is calculated by integrating across 
the canopy depth (3-point Gaussian integration method). Then, the total daily gross 
CO2 assimilation rate of the whole canopy can be obtained by integration over time. 
In addition, suboptimum temperatures, leaf stomata closure, and nutrient deficiencies 
can also cause a decrease in assimilation rates (de Wit et al., 2019b). 

c) Respiration 

Crop respiration processes can be divided into maintenance respiration that is used 
to maintain vital functions, and growth respiration when assimilates are converted into 
plant structural material. Maintenance respiration provides living organisms with the 
energy to maintain their biochemical and physiological status. The amount of protein, 
and minerals present in biomass as well as the metabolic activity of the crop can be 
used to estimate the maintenance respiration costs, depending on the ambient 
temperature. For growth respiration, WOFOST uses conversion efficiency factors 
instead of calculations. 



Improving jujube fruit yield estimation by assimilating a remotely sensed LAI into WOFOST model 

12 

d) Transpiration and evaporation  

The Penman approach is used to calculate the potential evapotranspiration from bare 
soil, water, and crop surfaces (de Wit and Wolf, 2010). The potential transpiration is 
the loss of water from a field crop that completely covers the soil and obtains the best 
water supply from the soil (de Wit et al., 2019b). For most crops, the actual 
transpiration of the crop is equal to the potential evapotranspiration multiplied by the 
correction factor for light interception and the degree of water stress. 

e) Crop growth 

The crop growth mainly includes dry matter partitioning between leaves, stems, 
roots, and storage organs. The senescence of leaves is also taken into account. The 
remaining photosynthetic products after respiration consumption are distributed to 
leaves, stems, roots, and storage organs in a certain proportion that is calculated by 
field measured data. Dry matter distribution is related to the phenological 
development stage.  

Green leaf area is a decisive factor in light absorption and canopy photosynthesis. 
Under ideal conditions, light intensity and temperature are the main environmental 
factors that affect leaf unfolding. The leaf area growth in the model is described in 
two stages. In the early stages, the leaf area increases exponentially with the 
temperature. When leaf area is extended to be affected by assimilated supply, leaf area 
growth is mainly related to leaf weight growth and leaf area under different 
development stages. The model also considers the effect of leaf physiological ageing 
on death rate.  

The calculation process of leaf ageing is more complicated. Ageing refers to the 
process by which a leaf loses its ability to complete a basic physiological and 
ecological process and loses its biomass. The calculation of leaf ageing is set after the 
leaf has completed its life process. Water stress and mutual shading may accelerate 
the rate of leaf ageing death. The model distinguishes the ageing of leaves into 
physiological ageing, ageing caused by water stress, and ageing caused by mutual 
shading. The weight of the dead leaves is subtracted from the oldest leaves set. 

The WOFOST model assumes that the death rate of the stored organ is equal to zero. 
The death rates of stems and roots are considered as a function of the development 
stage variable. 

f) Soil moisture balance  

Water shortage is very common during the actual growth of crops. When the soil 
moisture supply is insufficient, the stomatal resistance of the leaves increases, causing 
the actual transpiration rate and the photosynthesis rate to decrease, thereby affecting 
crop growth and final yield. To determine the time and intensity of water stress, the 
crop model simulates the daily soil moisture content through the soil water balance 
equation to estimate the crop water stress coefficient. 

The WOFOST model is mainly run in two modes: potential and water-limited 
production. We calibrated the WOFOST model for potential mode, considering two 
reasons. The first reason is that the water-limited production of the WOFOST model 
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expresses the maximum yield under rain-fed conditions, with no yield losses caused 
by other factors (de Wit et al., 2019b).  

2.2. Remote sensing-based methods 

Yield estimation is one of the earliest directions for agricultural remote sensing 
technology applications. Remote sensing has been used for crop yield assessment and 
mapping for over three decades (Bolton and Friedl, 2013). For this purpose, different 
programmes have been developed at regional, national and international levels, such 
as GIEWS (Global Information and Early Warning System) from the FAO (Food and 
Agriculture Organization) of the United Nations, FEWS NET (the Famine Early 
Warning Systems Network) from USAID (the United States Agency for International 
Development), MARS (Monitoring Agriculture with Remote Sensing) from the 
European Commission (EC), CropWatch from China, and USDA-FAS (United States 
Department of Agriculture-Foreign Agricultural Service) (Fritz et al., 2019). In 
addition, a Group on Earth Observations (GEO) initiative launched the GEOGLAM 
(GEO Global Agricultural Monitoring) project, which hopes that the global 
agricultural monitoring community will share information internationally for 
Agricultural Market Information System (AMIS) and Early Warning, covering 
approximately 95% of the world’s croplands. In addition, the World Food Programme 
Seasonal Monitor has been in operation since 2014 (Fritz et al., 2019). The Joint 
Research Centre (JRC) of the European Commission (EC) announced the Anomaly 
Hot Spots of Agricultural Production (ASAP) system in June 2017 (Rembold et al., 
2019). Among them, the MCYFS (MARS Crop Yield Forecasting System) project 
focuses on providing early yield forecasting for key European crops. This project 
combines remote sensing, agro-meteorological data, and biophysical models (Baruth 
et al., 2004). The University of Maryland has established a global crop growth 
monitoring operational system as part of a decision support system of the US Foreign 
Agricultural Service (Becker-Reshef et al., 2010). The US Space Agency, the Pakistan 
Space and Upper Atmosphere Research Commission (SUPARCO), and the Food and 
Agriculture Organization (FAO) have jointly developed a regional framework system 
that uses satellite data to obtain crop yields and agricultural statistics for wheat and 
other crop production with a monthly bulletins (SUPARCO Crop Situation and 
Forecast). In China, the Ministry of Agriculture have implemented a national project 
which established remote sensing crop monitoring business operation systems suitable 
for the national conditions in order to estimate production (Chen et al., 2016b). The 
first monitoring targets included wheat, corn, and cotton, and this was gradually 
expanded to rice, soybean, and other crops. Recently, Beijing Normal University and 
the National Bureau of Statistics have proposed a system for estimating the area and 
yields of food crops in the main grain-producing areas of the country (Chen et al., 
2016b). 

Remote sensing-based yield estimation relies on reflectance and SAR information 
to express the factors influencing the process of crop growth. In the last 10–15 years, 
new satellite data have become available, such as optical remote sensing data with 
medium and high spatial and temporal resolution (Sentinel-2, Landsat 8, RapidEye, 
WorldView-2, SPOT-6, GeoEye-1, Huanjing-1, Gaofen-1, etc.) and radar satellite 
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data (ENVISAT, Sentinel-1, ALOS, ALOS-2, RADARSAT-2, TERRASAR-X, 
COSMO, etc.). They provide more timely and reliable data for crop growth 
monitoring and yield estimation (Jin et al., 2018b).  

For larger scales, such as regional, crop yield is estimated by means of satellite 
imaging systems with rather low and medium spatial resolution. Recently, an 
increasing number of remote sensing-based studies have been performed for yield 
forecasting on annual crop systems, using satellite data from the Moderate Resolution 
Imaging Spectroradiometer (MODIS) (Bolton and Friedl, 2013; Dempewolf et al., 
2014; Kouadio et al., 2014; Becker-Reshef et al., 2010; Ren et al., 2008; Victoria et 
al., 2012). The advantages of this Earth-observing system are its high-frequency 
acquisitions (daily) and its superior spectral resolution (36 bands). However, the 
available spatial resolutions, namely 250 m, 500 m, or 1000 m depending on the 
spectral band, are relatively low for field-scale or local yield monitoring (Bolton and 
Friedl, 2013). At the field scale, satellite data with high and medium-high spatial 
resolution, such as Sentinel-2, Landsat 8, and WorldView-2, and aircraft or unmanned 
aerial vehicles (UAV) are more suitable for crop yield assessment (Chen et al., 2016b).  

Fruit tree crops differ from annual crops and usually grow in specific areas, which 
usually requires remote sensing data with medium or high spatial resolution for fruit 
crop yield estimation. Vegetation indices obtained from Landsat Thematic Mapper 
(TM), WorldView-3, and ASTER satellite data have shown promising yield 
predictors for grapes (Anastasiou et al., 2018; Sun et al., 2017), mangoes (Rahman et 
al., 2018), and olives (Sepulcre-Cantó et al., 2007). Airborne and UAV remote sensing 
monitoring systems have also demonstrated appreciable performance for grapes and 
citrus (Bonilla et al., 2015; Ye et al., 2006, 2008a, b). 

The empirical methods based on VIs are still widely used for crop yield estimation 
due to their operability and simplicity of use (Piekarczyk, 2015). The main vegetation 
indices used for yield assessment are the Normalized Difference Vegetation Index 
(NDVI) (Asseng et al., 2013; de la Casa et al., 2018; Dempewolf et al., 2014; Funk 
and Budde, 2009; Mkhabela et al., 2005; Panda et al., 2010; Yu and Shang, 2018),  
Enhanced Vegetation Index (EVI) (Kouadio et al., 2014; Son et al., 2014), Normalized 
Difference Water Index (NDWI) (Bolton and Friedl, 2013), Soil-adjusted Vegetation 
Index (SAVI) (Panda et al., 2010), and Green NDVI (GNDVI) (Jurečka et al., 2018). 
Among these indices, NDVI remains the most widely used index for yield estimation 
for fruit tree crops, such as table grapes (Anastasiou et al., 2018; Sun et al., 2017), 
mangoes (Rahman et al., 2018), grapes (Bonilla et al., 2015), and citrus (Ye et al., 
2008a). In addition, biophysical variables, such as LAI derived from the inversion of 
a radiative transfer model or an empirical relationship can be also related to yields. 
Note that both empirical statistical models and radiative transfer models such as 
PROSAIL (PROSPECT and SAIL radiative transfer models) can be used to obtain 
these biophysical variables. 

To enhance empirical methods, some studies have also shown that correlations 
between VIs and yields could strongly vary during a growing season (Bognár et al., 
2017; Brian et al., 2011; Dempewolf et al., 2014; Rojas, 2007; Salazar et al., 2007; 
Wall et al., 2008). The crop phenology can obviously also change from one year to 
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another. As a consequence, a fixed calendar for VI acquisition may not be optimal for 
accurate crop yield estimation (Bolton and Friedl, 2013; Dempewolf et al., 2014, 
Brian et al., 2011). To overcome this issue, several studies have taken into 
consideration phenological information, a time series of VIs, ground-based ancillary 
data, or surface parameters to adjust VIs to optimize the empirical estimation models 
(Bolton and Friedl, 2013; Funk and Budde, 2009; Holzman et al., 2014, Prasad et al., 
2006; Reynolds et al., 2000; Rojas, 2007; Sakamoto et al., 2013; Wang et al., 2014). 

However, even if they are improved by integrating phenological information, 
empirical methods based on VIs often lack the in-depth understanding of crop yield 
mechanisms, and the space and time scalability for various applications is not robust 
(Chen et al., 2016b). In order to account for the photosynthetic process, semi-
empirical methods have been developed using light use efficiency models to estimate 
the above-ground dry matter weight (DM) of crops. For yield estimation at the 
regional level, remote sensing information can be used for parameter inversion 
(Bastiaanssen and Ali, 2003; Moriondo et al., 2007). The net primary productivity of 
vegetation is then expressed by the product of the absorbed photosynthetically active 
radiation and the light energy use. This physical approach has the advantage of 
involving a limited number of input variables to achieve good estimation accuracy 
(Bastiaanssen and Ali, 2003).  

In summary, for fruit tree crops, the use of medium or high spatial resolution satellite 
data for yield estimation is a suitable choice. However, it is challenging to generate a 
time series of vegetation indices because satellites usually have a long revisit period 
and images are susceptible to meteorological factors such as clouds and rain (Huang 
et al. 2015b), such as Landsat 8 with its 30 m resolution. Of course, Sentinel-2 has a 
shorter revisit cycle with 5 days. Under the condition that the remote sensing 
observation data is limited, integrating some auxiliary information will be beneficial 
to the accuracy of the yield estimation. Usually, higher average temperature results in 
a shorter growth period and lower yield (de Wit and Wolf, 2010). The longer growth 
duration, especially the long fruit filling period (from flowering to maturity), usually 
results in higher yields in the case of good water and fertilizer management and no 
pests and diseases. Hochheim et al. (1998) also found that inter-annual differences in 
crop phenology across Census Agricultural Regions (CARs) normally varied by 2–
3 weeks and therefore required consideration when integrating data over time. Bolton 
and Friedl (2013) confirmed that integrating information related to crop phenology 
derived from MODIS could significantly improve modelling performance within and 
across years. Therefore, remote sensing-based crop yield estimation models might 
considerably benefit from combining the length of crop phenology growth periods, 
which presents a valuable research avenue for limited Landsat 8 data or other 
moderate and high spatial resolution remote sensing data.  

2.3. Assimilation methods  

The use of crop growth models at large scales usually suffers from the spatial 
heterogeneities of input parameters such as soil properties (soil moisture, field 
capacity, etc.), canopy state variables (LAI, biomass, etc.), thereby leading to large 
errors in yield estimation (Jin et al., 2018b). In addition, empirical methods based on 
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remote sensing data for yield assessment lack some consideration of crop growth 
mechanisms. It is difficult to explain the factors affecting yield formation, and these 
methods rely on a large amount of ground observation data. In order to improve the 
accuracy of yield estimation, methods combining remote sensing data and crop 
growth models have recently emerged, taking advantage of spatially continuous 
remotely sensed information and physiological mechanisms of crop growth models 
(de Wit et al., 2012; Jin et al., 2018b). 

In recent years, crop growth models have been combined with expert systems, 
decision support systems, and 3S technologies (Remote Sensing, Geographical 
Information System, and Global Positioning System) to achieve advanced crop 
simulation and yield estimation. It is an important development direction to try to 
solve the problems of regional applicability and versatility of crop modelling, scale 
problems, application fields, and mechanism and application improvements (de Wit 
et al., 2019a).  

Remote sensing can provide key information about meteorology, vegetation, and 
soil conditions for crop growth simulation in large areas. Initial input parameters, state 
variables, and soil properties can be observed over large areas, such as phenology 
information (Zhou et al., 2019), LAI (Fang et al., 2008; Jiang et al., 2014; Nearing et 
al., 2012; Yao et al., 2015), biomass (Jin et al., 2015), leaf nitrogen accumulation 
(Huang et al., 2013), evapotranspiration (Bastiaanssen and Ali, 2003; Huang et al., 
2015a), and soil moisture (Chakrabarti et al., 2014; Ines et al., 2013). These canopy 
and soil state variables can be integrated into crop growth modelling to improve the 
simulation results. In the last 15 years, in addition to the frequently used MODIS 
satellite data, more new satellite data have become available, such as optical remote 
sensing data with medium and high spatial resolution (Sentinel-2, Landsat 8, 
RapidEye, WorldView-2, SPOT-6, GeoEye-1, Huanjing-1, Gaofen-1, etc.) and radar 
satellite data (ENVISAT, Sentinel-1, ALOS, ALOS-2, RADARSAT-2, TERRASAR-
X, COSMO, etc.).    

The method of combining remote sensing information within crop growth models 
is called data assimilation. In general, the purpose of assimilation methods is to 
integrate spatial and temporal state variables obtained from remote sensing methods 
to optimize input parameters or state variables of crop models (Jin et al., 2018b). The 
assimilation methods that have been extensively studied and used include forcing 
methods, updating (sequential), and calibration (variational) methods. A brief 
description of these data assimilation methods is shown in Figure 1–7.  

Forcing methods (Figure 1–7a) use the remotely sensed data to directly replace state 
variables into the models. Several studies have suggested forcing the LAI variable at 
specific periods in order to improve simulated LAI, above-ground biomass (AGB), 
yield, and transpiration accuracy (Hadria et al., 2006; Thorp et al., 2010; Schneider, 
2003; Yao et al., 2015; Tripathy et al., 2013). Flowering dates deduced from remote 
sensing data have been used to improve the simulated wheat yield of the ROTASK 
model (Jongschaap and Schouten, 2005). Remotely sensed interception efficiency 
index and FAPAR (Fraction of Absorbed Photosynthetically Active Radiation) have 
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been forced into the MOSICAS model to estimate yields of sugar beet and sugarcane, 
respectively (Morel et al., 2012, 2014).  
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Figure 1–7: Schematic representation of three assimilation methods: (a) Forcing method, (b) 
calibration method, (c) updating method (Jin et al., 2018b). 

Calibration methods (Figure 1–7b) usually employ specific algorithms to adjust 
initial input parameters for optimal agreement between the remotely sensed state 
variables and simulated values from the crop model. They take all the available 
observations during the main growth season and attempt to fit the model to the 
observations by minimizing a cost function, thereby optimizing the initial parameters 
of crop models. Maximum Likelihood Solution (MLS) (Dente et al., 2008), Simplex 
Search Algorithm (SSA) (Ma et al., 2013), Least Squares Method (LSM) (Zhao et al., 
2013), Powell's Conjugate Direction Method (PCDM) (Fang et al., 2011), Shuffled 
Complex Evolution (SCE-UA) (Huang et al., 2015a), Three-Dimensional Variational 
Data Assimilation (3DVAR) (Lorenc et al., 2000), Four-Dimensional Variational 
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Data Assimilation (4DVAR) (Rawlins et al., 2007), Very Fast Annealing Algorithm 
(VFSA) (Dong et al., 2013), and Particle Swarm Optimization Algorithm (PSO) 
(Wang et al., 2014; Liu et al., 2015) are the main calibration methods described in the 
literature. These methods consider only the spatial heterogeneities of the initial 
conditions of the model parameters without taking into account their time evolution. 
Therefore, for practical applications, the assimilation accuracy of such methods often 
depends on the quality of the remote observations.  

Updating methods (Figure 1–7c) directly correct the state variables of a modelling 
system when an observation becomes available. The magnitude of the state update 
then depends on the uncertainty in both the modelling and observed state variables 
(Huang et al., 2019). Examples of updating (sequential) approaches are the Ensemble 
Kalman Filter (EnKF) (Bolten et al., 2010; Chakrabarti et al., 2014; Cheng et al., 2018; 
Curnel et al., 2011; de Wit and van Diepen, 2007; Huang et al., 2016; Ines et al., 2013; 
Li et al., 2014; Ma et al., 2013; Nearing et al., 2012; Pauwels et al., 2007; Wang et al., 
2013; Wu et al., 2012; Xie et al., 2017; Zhao et al., 2013; Zhu et al., 2013), Particle 
Filter (PF) (Jiang et al., 2014), Constant Gain Kalman Filter (CGKF) (Chen et al., 
2018; Vazifedoust et al., 2009), and Ensemble Square Root Filter (EnSRF) (Huang et 
al., 2013; Mishra et al., 2015). For the state variables of sequential methods, LAI is 
also a widely used state variable, followed by soil moisture content (SM). The 
reported studies also show that the EnKF algorithm has been adopted by more 
researchers to improve assimilation accuracy. 

These assimilation methods have their own advantages and disadvantages. The 
forcing method is relatively easy to implement, but the method is highly dependent 
on the accuracy of remotely sensed state variables and whether the state variables of 
the simulation and observation are consistent in phenological time. If there is a large 
error between the simulated and remote sensing observed phenology time, the forcing 
method may make the simulation results of the model worse (Jin et al. 2018b). The 
calibration and update methods have greater flexibility; however, minimization errors 
from remotely sensed data are brought into the crop model when the assimilation 
process is carried out. Phenology information has an important impact on the 
assimilation accuracy of the update method. Assimilation of erroneous phenological 
information not only decreases accuracy, but can also lead to worse simulation results 
(Curnel et al., 2011). In theory, the calibration method is superior to the forcing and 
update methods, because the calibration method can reduce the accumulation and 
diffusion of remote sensing data errors during the assimilation process (Jin et al., 
2018b). However, this method usually requires a large number of optimization 
iterations and more computation time, especially for remote sensing data with a high 
spatial resolution (Jin et al., 2018b). 

The widely used 4DVAR and EnKF methods are typical representations of 
variational and sequential assimilation methods, respectively. EnKF continuously 
updates a new set of input parameters at each observation point. If the state variable 
error statistic of remote sensing is a Gaussian distribution, the EnKF method can be 
considered as the preferred assimilation method because most crop growth models are 
nonlinear (Huang et al., 2019). EnKF requires the most expensive calculation and 
measurement uncertainty (Jin et al., 2018b). In addition, the assimilation accuracy and 
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efficiency of this method are susceptible to phenological shifts (Curnel et al. 2011). If 
the phenology information is uncertain, the variational method is usually superior to 
the sequential method (Jin et al., 2018b). The small disadvantage of the variational 
method is that it requires a large number of optimization iterations. The SUBPLEX 
method is based on the Nelder–Mead simplex algorithm (NMS), which determines an 
improved set of subspaces and then uses NMS to search each subspace (Rowan, 1990). 
For most applications, SUBPLEX shows higher computational efficiency for the 
unconstrained optimization of general multivariate functions than the simplex 
searching or forcing method (Jonsén, 2009). In principle, SUBPLEX is one of the 
calibration methods, and calculates a set of optimal input parameters based on the 
error of observed (satellite) and simulated state variables. In addition, the SUBPLEX 
method can divide the observation points into several lower-dimensional vectors, 
thereby improving computational efficiency. More importantly, for objective 
functions affected by remote sensing observed error, the measurement replication 
option of SUBPLEX can be used to avoid convergence to a false minimum (Rowan, 
1990). Therefore, we can suppose that the SUBPLEX algorithm has the potential to 
be applied to the assimilation of remote sensing and crop growth models. The potential 
of the EnKF and SUBPLEX assimilation methods for jujube fruit yield estimation is 
worthy of further study and exploration. 

3. Objectives and outline of this research 

The main purpose of this thesis is to improve the accuracy of field-scale fruit yield 
estimation based on the WOFOST model and remote sensing assimilation method, 
which in turn helps managers to better analyse variation in yield and its possible 
causes to improve orchard management and agriculture decision-making for small 
agro-ecological areas or large farms. To accomplish this goal, the following specific 
objectives are addressed: 

i. To calibrate input parameters of the WOFOST model for jujube tree growth 
simulation and assess its performance.  

ii. To integrate the jujube phenology derived from the WOFOST model into a 
remote sensing-based yield estimation method.  

iii. To force remotely sensed LAI into the calibrated WOFOST model to improve 
the field-scale jujube fruit yield estimation. 

iv. To develop a new assimilation strategy based on a SUBPLEX algorithm to 
assimilate a time series of remotely sensed LAI into the calibrated WOFOST 
model to improve the fruit yield estimates of jujube trees, and compare the 
accuracy of assimilation with the widely used EnKF method. 

This thesis compiles a series of four scientific articles published in international 
peer-reviewed journals. The outline of this thesis is as follows: 

Chapter 1 introduces the research context, its motivations, and the specific 
objectives of the thesis. The framework of the manuscript is briefly described. This 
chapter reviews the current methods for final crop yield estimation, including crop 
growth models, remote sensing-based regressions, and assimilation methods. This 
chapter also compares the advantages and disadvantages of these methods to support 

https://www.sciencedirect.com/science/article/pii/S1161030117301685#bib0140
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the aims of the proposed methods. 

Chapter 2 describes the research material and strategy. The research experiments at 
the field scale and the yield data collected at the regional scale are detailed. This two-
scale data set will be common for each method proposed in the core chapters of the 
manuscript, namely Chapters 3 to 6. For the sake of completeness, the jujube tree 
phenology and the conventional management of jujube orchards are summarized. 
Finally, the global research methodology is presented.  

Chapter 3 expresses the WOFOST model calibration and validation on the field 
experiments for jujube tree and fruit growth simulation. The performance of the 
WOFOST model in estimating the final jujube fruit yield at the orchard scale is 
evaluated for different planting densities and ages.  

Chapter 4 discusses the integration of a phenological time into a regression based 
on a remotely sensed vegetation index to estimate the final fruit yield of the jujube 
crop. An approach using a model-based phenological length is explored to improve 
the remotely sensed estimate of jujube fruit yield. The proposed approach is compared 
with a conventional cross-validation method to confirm the importance of 
phenological considerations for yield estimation.  

Chapter 5 presents an improvement of the final fruit yield estimation of jujube crops 
by assimilating a single LAI measurement from Landsat satellite data into the 
calibrated WOFOST model by means of a forcing approach. The performances of the 
model with different remotely sensed LAI forcing times are compared. 

Chapter 6 establishes a new assimilation strategy based on the SUBPLEX algorithm 
to improve the field-scale jujube fruit yield estimates. The developments rely on the 
integration of remotely sensed LAI at key growth stages into the calibrated WOFOST 
model, and this original approach is compared with the conventional EnKF 
assimilation method.  

Chapter 7 concludes the research work, and compares and discusses the advantages 
and limitations of the proposed methods. Finally, the main findings and the 
perspectives for further work are highlighted. 
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This chapter focuses on the research materials, data, data usage, and methods, including 

research area and climate information, jujube tree phenology and management, field 

experiments, observed data at field and regional scale, data use, and the research strategy. 

The description of the jujube tree gives the reader a preliminary understanding of the crop.  

The experimental design and research data for the entire doctoral thesis are also presented 

in this chapter. The same field experimental data and observational yields of 181 orchards 

were used across the research. The TDWI parameter is the key parameter of our study for the 

jujube growth simulation, and LAI is an important remotely sensed state variable. Therefore, 

the TDWI and LAI data of 55 observed orchards are also introduced in this chapter. Figure 2–

8 may be helpful for the reader to understand the data usage of the thesis. 
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1. Research area and climate conditions  

1.1. Study area 

The study was conducted in Alaer City (80°30′E–81°58′E, 40°22′N–40°57′N) in 
Western China because of the relatively large and concentrated jujube planting areas 
there. This region represents ten small agro-ecological zones, with around 45,515 ha 
of jujube orchards in 2017. These farms currently produce up to 15.8% of the annual 
national production of jujube fruit (2017 Alaer Statistical Yearbook).  

Figure 2−1 shows the study area and the location of the experimental field which 
was monitored for the crop model calibration. This figure also presents the 181 jujube 
orchards that were observed in terms of annual fruit yield in order to validate the 
proposed yield estimation methods. Among these fields, the leaf area index was 
measured at key growing stages for 55 orchards to establish an inversion model from 
remote sensing data. The total dry weight of jujube at emergence was also measured 
for these orchards for model calibration at the regional scale. These measurements 
and observations were performed during the growing seasons of 2016 and 2017. 
Meteorological data was also observed based on field weather stations because 
weather is one of the main driving conditions of the WOFOST model. 

 

Figure 2–1: Study region and observed data for this study  
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1.2. Climate conditions  

In the studied region, the climate is arid warm-temperate. The annual average 
temperature, radiation, humidity, and rainfall for 1988 to 2018 are shown in Figure 2–
2 (climate data taken from NASA Prediction of Worldwide Energy Resources, 
https://power.larc.nasa.gov). The average temperature fluctuation between years is 
quite large. The maximum temperature difference is 1.59°C. All sky insolation on a 
horizontal surface ranges from 28.04 to 28.32 MJ m–2 d–1, with a standard deviation 
(SD) value of 0.07 MJ m–2 d–1. The inter-annual total rainfall varies greatly, showing 
a relatively large SD value (SD = 20.62 mm). The rainfall is less than 100 mm except 
for 2016. Relative humidity changes also show some volatility, which indicates that 
the study area has had an arid climate for a long time. 

 

Figure 2–2: Interannual variations in major meteorological parameters from 1988 to 2018. 
(a) Annual mean temperature, (b) annual mean all sky insolation on a horizontal surface, (c) 

annual total precipitation, (d) annual mean relative humidity 

Figures 2–3, 2–4, and 2–5 show the daily minimum and maximum temperatures, 
the daily irradiation, and the daily precipitation, respectively, from April to October 
of 2016 and 2017 for the field experimental area. These climate data were collected 
by a local weather station located in Tarim University Jujube Research and 
Experiment Base situated 500 m from the field experiments.  
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The daily minimum and maximum temperatures during the growing season (from 
April–October) in 2016 and 2017 ranged from 13.6°C to 2.3°C and 12.1°C to 28.2°C, 
respectively. The daily minimum and maximum temperatures showed a trend of first 
increasing and then decreasing, with a relatively large daily difference between 
maximum and minimum temperatures which facilitates the accumulation of reducing 
sugar (Kerimu et al., 2018). The average of the maximum temperatures was basically 
the same in 2016 and 2017. The average of the minimum temperatures in 2016 was 
1.5°C higher than that of 2017. The average maximum temperatures for June, July, 
and August in 2016 and 2017 reached almost 31°C. 

 

Figure 2–3: Daily minimum and maximum temperature from April to October, (a) 2016, (b) 
2017. DOY: day of year. Data is from a local weather station. 

The daily total radiation in the study area is strong and shows large fluctuations. The 
average daily radiation from April to October in 2017 was also significantly higher 
than in 2016, which is usually helpful for photosynthesis. 

 

Figure 2–4: Daily total irradiation from April to October, (a) 2016, (b) 2017. DOY: day of 

year. Data is from a local weather station. 

The study area is located on the edge of the desert, with very little rainfall of about 
100 mm per year. The water demand for jujube trees depends mainly on irrigation, 
which is managed by the government department. Generally, a reasonable irrigation 
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strategy is carried out based on the temperature and rainfall conditions, combined with 
the water requirements of different development stages of jujube trees. 

 

Figure 2–5: Daily total rainfall from April to October, (a) 2016, (b) 2017. DOY: day of year. 
Data is from a local weather station. 

2. Description of jujube fruit tree 

2.1. Jujube tree phenology  

The cultivation and management of jujube trees is closely related to their 
phenological characteristics. It is important to clarify the different growth stages of 
jujube trees to help farmers to effectively cultivate their orchards by pruning, 
irrigating, fertilizing, and managing pests. Studies of periodic biological events (such 
as bud breaks, flushing, flowering, and fruit development) are known as phenology, 
which is primarily affected by the climatic conditions (Hernández et al., 2015). The 
phenological development of jujube trees can be divided into eight stages according 
to the BBCH-scale (Biologische Bundesanstalt, Bundessortenamt, Chemische 
Industrie) (Hernández et al., 2015), including bud, leaf development, shoot 
development, inflorescence emergence, flowering, fruit development, fruit maturity 
and senescence. Figure 2–6(D1–D8) shows a typical feature at each developmental 
stage. When the temperature is higher than the threshold temperature for emergence, 
the buds of the jujube tree begin to wake up from the winter dormancy and enter the 
developmental stage of the bud which lasts until the green tip is about 3 mm higher 
than the bud scale (Figure 2–6D1). Next, it enters the leaf development stage, which 
is the period from the first leaf separation (D2) to the complete unfolding and 
expansion of all leaves. Next, it enters the shoot development stage to form different 
branches (D3). Next, it enters the period of inflorescence emergence, from the 
swelling of the inflorescence bud (D4) to the first petal visible. Next, the jujube enters 
the flowering period, from the first flower unfolding, full flowering (50% of flowers 
open, D5), to the end of flowering (all the petals fall or dry, and the fruit begins to 
form). Next, it enters the fruit development period, from the fruit set to the standard 
cultivar size (D6, skin green in colour). Next, it enters the physiological maturity 
period. The fruit begins to fully develop, and the skin colour of the fruit gradually 
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changes from green to yellowish green and finally becomes reddish brown, and the 
fruit begins to soften and wrinkle (D7). Finally, it enters senescence and the next 
dormant period, the leaves begin to age and fall (D8), starting the next dormancy. 

 

 

 

 

 

 

 

 

 

 

  

 

 
 

 

 

 

 

 

 

Figure 2–6: Phenological development stages of the jujube fruit tree. D1: beginning of 
emergence, D2: beginning of leaf development stage, D3: shoot development stage, D4: 
inflorescence emergence, D5: flowering period, D6: fruit development period, D7: maturity 
period, D8: senescence and the next dormant period (The D1and D2 images are from 
http://www.zao.com.cn/, and the D3-D8 images are from the field trials).  

 In this research, only three growing stages of jujube tree, namely emergence, 
flowering, and maturity, were considered for the WOFOST model calibration. The 
emergence date is defined as the time when the fifth leaf on the bud is unfolded 
because the excess buds will be cut off at this time according to the needs of 
production, and the initial bud weight finally retained on the jujube tree and roots can 
be considered as the initial input parameter TDWI (Initial Total Dry Weight) of the 

D1                    D2                    D3 

D4                    D5                    D6 

D7                    D8  
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WOFOST model. The fruit set time is defined as the flowering date. The time when 
the dry weight of the fruit is no longer increasing is defined as the date of maturity. 

2.2. Jujube orchard management 

Jujube cultivation management mainly includes planting density selection, 
irrigation, fertilization, and pruning. Tree age must also be considered in orchard 
management. 

2.2.1. Planting density 

In recent years, high-density planting patterns have been widely adopted in Xinjiang, 
with two to ten thousand plants per hectare. However, the cultivation density cannot 
increase indefinitely; excessive density could lead to an increase in canopy closure, 
which in turn could affect photosynthesis efficiency and yield (Zhang et al., 2013).  

2.2.2. Pruning strategy  

Pruning management can produce different tree shapes, which may affect canopy 
light interception and photosynthesis, thereby affecting final yield. Different tree 
shapes, such as cylindrical, small canopy permanent line, small canopy permanent 
tree, and middle trunk shape with three main branches, have an impact on the structure 
development, fruit yield composition, and quality of jujube fruits (Zhang et al., 2013), 
see Table 2–1. The number and the average weight of the fruits in several tree shapes 
are also different, which is the main factor that constitutes the yield. The tree shape 
with the highest yield per plant is the small canopy permanent line, followed by the 
small canopy permanent tree, and finally the middle trunk shape with three main 
branches and the cylindrical shape. The nutritional quality of different tree shapes is 
also different, which affects total sugar, soluble solid, organic acid, and vitamin C 
contents. The small canopy permanent line shape is shown in Figure 2–7, this shape 
gives a short tree with a simple structure, is good at intercepting light energy (Zhang 
et al., 2013), and has 3–4 main (mother) branches on the trunk extending outward at 
35–45°. 

Table 2–1: Yield per plant of CV. JUN jujube in different tree shapes 

Tree shape 
Average number of 

jujubes per plant 

Average weight 

of fruits (g) 

Average yield per 

plant (kg) 

Cylindrical 142 18.11 2.57 

Middle trunk shape with 

three main branches 
130 17.93 2.34 

Small canopy permanent 

tree 
198 24.79 4.92 

Small canopy permanent 

line 
363 18.95 6.88 
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Figure 2−7: Small canopy permanent line jujube tree shape. 

2.2.3. Irrigation and fertilization 

Irrigation factors have significant effects on the photosynthetic characteristics of 
jujube leaves, such as net photosynthetic rate, transpiration rate, stomatal conductance, 
intercellular carbon dioxide concentration, and water use efficiency (p<0.05) (Bian et 
al., 2018). Too high or too low irrigation is not conducive to photosynthesis, growth, 
and the yield of jujube fruit trees. Generally, the total amount of irrigation can be 
calculated with reference to the soil moisture content at field capacity (Zheng et al., 
2014). The amount of irrigation required during the emergence period and red 
ripening period is relatively small, accounting for about 27% of the irrigation amount 
in the growth period; the irrigation amount required during the flowering period, fruit 
filling period, and white ripening period is about 73% (Bian et al., 2018). Fertilization 
fractioning is usually adopted for jujube. It is recommended that jujube trees are 
fertilized once in the emergence and new shoots periods (3/15 of the total fertilization), 
fertilized twice in the flowering period (4/15), fertilized twice during the fruit filling 
period (4/15), and fertilized twice in the white ripening period (4/15), and no 
fertilization is recommended during the red ripening period (Bian et al. 2018). The 
total amount and number of irrigation and fertilization shows greater variability based 
on meteorological and soil structural properties. 

3. Research data 

The structure of the research data set is depicted in Figure 2–8, including data from 
detailed field experiments, observations of local orchards, and remote sensing data.  
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Data from field 
experiments

24 July, 2016

27 July, 2017

9 June, 2017

12 August, 2017

28 August, 2017

Measured LAI 
for 55 orchards

Measured TDWI  
for 55 orchards

Observed yields for 181 
orchards in 2016 and 2017

Jujube growth 
simulation

Yield estimation based 
on remote sensing

Forcing method

EnKF and SUBPLEX 
assimilation

Calibrated and validated WOFOST model

Landsat 8 data

Only 2017

 

Figure 2–8: Data structure of this thesis. 

3.1. Field experiments and data collection 

3.1.1. Field experiment design 

The WOFOST model is mainly run in two modes: potential and water-limited 
production. We calibrated the WOFOST model for potential mode, considering two 
reasons. The first reason is that the water-limited production of the WOFOST model 
expresses the maximum yield under rain-fed conditions, with no yield losses caused 
by other factors (de Wit et al., 2019). In our research area, there is very little rainfall, 
and the water requirement for jujube growth depends mainly on irrigation, which is 
managed by the local agricultural department. Therefore, the local jujube trees shall 
be not a complete rain-fed crops. The second reason is that irrigation time and 
irrigation data for each local orchard are also difficult to obtain. The unknown 
irrigation information may cause the uncertainty of the water-limited simulation mode.  

In practice, potential yield levels can only be realized with a suitable input of 
fertilizers, an appropriate level of irrigation and a thorough pest and weed control (de 
Wit et al., 2019). In addition, there should be no damage to the crop or loss by other 
factors, such wind, hail, frosts. Of course, it is difficult to fully realize the potential 
production, but near to the potential production line can be found in well-kept trials, 
for example, some cultivated land and grass farms in Western Europe have achieved 
close to potential yield levels (de Wit 2019b).  
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In order to calibrate the WOFOST model for potential simulation, field experiments 
were conducted in two jujube orchards located in the district of Alaer in Xinjiang, 
China (Tarim University Jujube Research and Experiment Base), during the growing 
seasons of 2016–2018 (81°13'2"E, 40°34'45"N) (Figure 2–1, red circle). We chose 
two orchards to perform three years of experiments to avoid natural disasters or other 
factors that could cause the destruction of orchard trees. The soil properties of the two 
orchards are not much different due to their close proximity. The jujube trees were all 
planted in 2009, with a planting density of about 6165 trees per hectare, and a small 
canopy permanent line shape was used for the pruning. We chose field sites where the 
jujube grew evenly to carry out experiments. The amount of chemical fertilizer used 
referred to empirical values, which usually produces the highest yields in our 
experimental and local area. The difference between potential and water-limited 
production shows that irrigation can improve yield (de Wit 2019). Therefore, well-
managed irrigation is helpful to bring the simulation closer to potential production. In 
our experiments, the amount and frequency of irrigation was determined based on the 
measured soil moisture content and the soil moisture content at field capacity. Pests 
and diseases were effectively controlled through standard management. The detailed 
fertilization and irrigation scheme was as follows: 

 The amount of fertilizer applied was empirically based on historical research 
(BAI et al., 2019). During each jujube growing season (2016 to 2018), the fertilization 
amounts of converted pure nitrogen (N), phosphorus pentoxide (P2O5), and potassium 
oxide (K2O) were 375, 240, and 300 kg ha−1, respectively. A first pour of the fertilizer 
was spread by drip irrigation during the emergence and flowering periods (N: 50%, 
P2O5: 80%, and K2O: 70%), and the rest of the fertilizer was applied in the fruit filling 
and early ripening period (N: 50%, P2O5: 20%, and K2O: 30%). The chemical fertilizer 
was divided into seven separate fertilizations, these were applied on 8 May 
(emergence period), 6 June (new shoot growth period), 23 June (flowering period), 3 
July (flowering period), 14 July (fruit setting period), 29 July (fruit filling period), and 
11 August (fruit ripening period),. 
 Irrigation experiments, with three replicates; the jujube tree was irrigated about 

10 times during the main development stages (from early May to mid-August). The 
measured soil moisture content at field capacity (FC) was set as the lower irrigation 
limit control index. Soil moisture content was measured weekly. When the measured 
average water content was lower than the lowest limit with 65% of FC (that is, the 
minimum irrigation amount to ensure the yield and quality of jujube fruits) (Zheng et 
al., 2014), irrigation was performed with a 45 mm quota per irrigation.  

3.1.2. Field data measurement and observation 

Emergence, flowering (fruit set), and maturity dates were recorded. Total above-
ground biomass (TAGP, the dry weight of living leaves, stems, and storage organs) 
and LAI during the growth period were measured approximately ten times at each 
sub-field experimental site. For both fields, ten trees were randomly selected, and one 
quarter of the stems, leaves, and fruits of each tree were brought back to the laboratory 
and weighed after drying at 85°C to a constant weight. The yield of the sampled loss 
was added to the final yield at each site (almost 411 trees per site). LAI in the 
experimental area was measured ten times using a scanning method. The collected 
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leaves were spread on A4 white paper sheets and scanned as an image file. LAI was 
calculated using the LA-S Plant canopy analysis system software (WSeen, Hangzhou, 
China). Extinction coefficients for diffuse visible light were measured using a fruit 
tree canopy analyser (TOP−1300, Zhejiang Top Cloud-Agri Technology Co., Ltd., 
China; Figure 2−9a) 

CO2 assimilation parameters, including light-use efficiency, and single leaf and 
maximum leaf CO2 assimilation rates, were obtained by fitted light response curves 
(Ye and Yu, 2007) based on net photosynthetic rate data measured using a LI-COR 
6400XT meter. 

Jujube trees differ from annual crops; if the stems of the previous year are 
considered this can lead to exaggerated TDWI values. In this research, TDWI at 
emergence was redefined as the weight of the initial new organs (initial buds and 
roots), which was calculated by measuring the dry weight of buds and roots. The depth 
and weight of the roots were sampled by digging a profile and measuring it in the lab 
(Figure 2−9b). 

For weather data, daily maximum and minimum temperatures, solar radiation, wind 
speed at 2 m high, actual vapour pressure, and precipitation were observed using an 
automatic weather station situated 500 m from the field experiments.  

 

Figure 2–9: (a) Leaf area index (LAI) and canopy parameter measurement, (b) root depth 
and weight measurement.  

3.2. Observations from local orchards 

3.2.1. Observed yield data 

In order to verify the yield estimation performance of the proposed method, the 
yields of 181 orchards managed by independent farmers were manually measured 
after harvesting at the beginning of November, see Figure 2–10. The spatial 

(a) (b) 
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distribution of the 181 orchards is shown in Figure 2–1 (pink marks). We selected 181 
orchards with almost identical tree shapes (small canopy permanent line) for the study 
to avoid the effects of pruning on assimilation parameters. The 2016 jujube fruit yield 
ranged from 3.51 to 9.43 t ha–1, with an average of 6.57 t ha–1 and SD (standard 
deviation) of 1.21 t ha–1. The 2017 yield ranged from 4.79 to 10.75 t ha–1, with an 
average of 7.74 t ha–1 and SD of 1.36 t ha–1. The average yield in 2017 was higher than 
2016. The first reason may be that the temperature in 2016 was higher than that in 
2017, which caused a short dry matter accumulation time. The second reason may be 
that the average age of jujube trees in 2016 was less than 2017. 

 

Figure 2–10: Yields (dry weight) of 181 in situ sampled orchards in 2016 (a) and 2017 (b). 

3.2.2. Observed TDWI and LAI data  

The observed TDWI and LAI are shown in green in Figure 2–1. It was difficult to 
measure LAIs for all 181 orchards on the day of the satellite coverage. In order to 
meet the requirements of timeliness, 55 orchards among the 181 orchards observed in 
2016 and 2017 were chosen to measure two key parameters, including TDWI at the 
true emergence and LAI when the Landsat 8 satellite covered the study area. The 
centre and edge positions of each orchard were recorded using the Global Positioning 
System so that they could be georeferenced to the Landsat 8 remote sensing images. 
The time when the fifth leaf on the bud was unfolded was defined as the time of 
emergence. The total bud weight for an orchard was calculated by taking the measured 
average bud weight of nine relatively homogeneous trees multiplied by the planting 
density. Then, TDWI values for different orchards were calculated by measuring the 
dry weight of buds at each orchard and distribution coefficient from the field 
experiment (fixed value: 70% for buds).  

LAI values on 24 July 2016 were used in this study because on this day the Landsat 
8 satellite covered the study area and it was near to the maximum LAI development 
stages. In 2017, LAI was monitored four times during the main growth season, which 
was employed to establish and validate the LAI inversion model based on the remotely 
sensed vegetation index. In order to coincide with the time frequency of the Landsat 
satellite, LAI was measured on the same day when the satellite covered the study area 
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during four major developmental stages, including emergence, flowering, white 
maturity, and red maturity. For LAI measurement of 55 orchards, a fruit tree canopy 
analyser (TOP-1300, Zhejiang Top Cloud-Agri Technology Co., Ltd., China) 
calibrated by scanning method was used to quickly measure LAI to ensure real-time 
measurements. Each sampled plot (orchard) consisted of four relatively homogeneous 
subplots (30 m × 30 m) (Huang et al., 2015). LAI was measured for six 5 m × 5 m 
areas uniformly distributed within each subplot. Average LAI values from the four 
subplots were calculated to represent the unique LAI value in each orchard. Observed 
LAI values for 55 orchards are shown in Table 2–2. 

Table 2–2: Observed Leaf Area Indices for 55 orchards. 

Year Sample Date MAX MIN Average STDEV 

2016 24 July 2.36 0.96 1.61 0.36 
2017 9 June 0.78 0.27 0.46 0.12 

 27 July 2.51 1.03 1.76 0.37 

 12 August 2.43 0.89 1.70 0.40 

 28 August 2.35 0.81 1.62 0.41 

3.3. Remote sensing data 

For field and local scale yield estimation, both Landsat and Sentinel satellites with 
medium and high spatial resolution are commonly used data sources. In our research, 
one Landsat image can cover the entire study area but the same area is covered by 
four Sentinel 2 satellite images, so synthesis is required. In addition, Sentinel 2B 
satellite data was not available for the main growing seasons of jujube trees in 2016 
and 2017. The available Landsat 8 and Sentinel 2 satellite data during the main growth 
period of jujube trees are shown in Table 2–3. Although the Sentinel 2A with 10 m 
spatial resolution is higher than the 30 m spatial resolution of Landsat 8, considering 
the amount of valid data and image synthesis error, Landsat 8 was selected. 

Table 2–3: Available remote sensing data for this research 

Year Landsat 8 Sentinel-2A 

 Date 
Amount of 

images needed 
Date 

Amount of 
images needed 

2016 21 May  1 
3 August 4 

 8 July 1 

 24 July 1 
23 August 4 

 9 August 1 

2017 24 May 1 20 May 4 
 9 June 1 / / 
 27 July 1 19 July 4 

 12 August 1 8 August 4 

 28 August 1 28 August 4 

 13 September 1 / / 
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Band 4 (red, 0.630–0.680 𝜇𝑚) and 5 (near-infrared, 0.845–0.885𝜇𝑚) from the 
Operational Land Imager (OLI) of the available Landsat 8 remote sensing images 
were used in this study for vegetation index extraction, including Normalized 
Difference Vegetation Index (NDVI), Soil-adjusted Vegetation Index (SAVI), 
Enhanced Vegetation Index (EVI), and Normalized Difference Water Index (NDWI). 

4. Research methodology  

The main research strategy of this thesis is shown Figure 2–11.  
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Figure 2–11: Main research strategy for this thesis. 
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 First, the crop data files used to run the WOFOST model were recalibrated based 
on the field-scale experimental data set. The input crop parameters, including 
phenology, initial, green area, CO2 assimilation, conversion of assimilates into 
biomass, maintenance respiration and biomass partitioning, were adjusted until a 
satisfactory biomass and LAI output were obtained to simulate jujube growth. Second, 
regression equations between LAI and remote sensing vegetation indices were 
established based on field-observed orchards to estimate the LAI values of 181 
orchards. Third, the vegetation index obtained from Landsat 8 remote sensing data 
was used directly to estimate yield and attempts were made to improve the regression 
model using calculated phenological length based on the WOFOST model. Fourth, a 
forced method was attempted to assimilate a single remotely sensed LAI into the 
WOFOST model to improve yield estimation. Fifth, a SUBPLEX assimilation 
framework was established, and the EnKF and SUBPLEX methods were performed 
to assimilate the four periods of remotely sensed LAI into the calibrated WOFOST 
model. Finally, yield data from 181 jujube orchards were employed to evaluate the 
field-scale yield estimation performance of different methods, and the application 
limitations and advantages of the different methods were compared and discussed. 

According to the research objectives of this thesis, the following special research 
methods are also addressed. 

In Chapter 3, the crop data files used to run the WOFOST model were recalibrated 
based on a field-scale experimental data set. The daily average temperature measured 
from the local weather station and the observed emergence, flowering, and maturity 
dates were used to adapt the phenological parameters of the model. This includes the 
temperature sum from beginning to emergence (TSUMEM), the temperature sum 
from emergence to anthesis (flowering) (TSUM1), and the temperature sum from 
anthesis to maturity (TSUM2). The dry weights of leaves, stems, fruits, and above-
ground biomass measured in the field experiments were mainly used to adapt the 
partitioning parameters such as the fraction of above-ground dry matter to leaves 
(FLTB), the fraction of above-ground dry matter to stems (FSTB), and the fraction of 
above-ground dry matter to storage organs (FOTB). The measured photosynthesis 
parameters were primarily used to calculate the assimilation parameters such as the 
light-use efficiency of a single leaf at average temperature (EFFTB) and the maximum 
leaf CO2 assimilation rate (AMAXTB). The measured leaf area and leaf dry weight 
were used to calculate the initialization and green area parameters such as the leaf area 
index at emergence (LAIEM), the maximum relative increase in LAI (RGRLAI), and 
the specific leaf area (SLATB). Finally, the dry weight of living leaves (WLV), the 
dry weight of living stems (WST), the dry weight of living storage organs (WSO), 
TAGP (dry weight of total aboveground biomass), and LAI (leaf area index) were 
used to validate the performance of the parameter adaptation. The RMSE values of 
the simulation results for WLV, WST, WSO, TAGP, and LAI versus measured values 
were minimized by fine-tuning the crop parameters. The measured and observed soil 
and meteorological data files were imported directly into the WOFOST model. A 
method considering tree ages and planting densities was explored by redefining and 
calculating TDWI. Then, yields of 181 orchards were used to validate the performance 
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of field-scale yield estimation based on the calibrated WOFOST model without 
assimilation. 

In Chapter 4, the potential of using spectral information from Landsat 8 for 
estimating jujube fruit yield at the field scale is evaluated. The optimal phenology 
time for determining a reliable jujube fruit yield estimation was determined, and the 
performance of different vegetation indices (VIs) for yield estimation were also 
compared. The key content is the exploration of an approach that uses the phenology 
length of growth period to improve a remote sensing-based yield estimation model. 
The correlations between VIs, including NDVI, SAVI, NDWI, and EVI, obtained 
from Landsat 8 data during the main growing period and jujube fruit yields were 
analysed to determine the best modelling time and VI. The phenological development 
time (flowering to maturity) calculated using the WOFOST model was used to correct 
the remote sensing-based VI yield model. The estimation accuracy was cross-
validated using the observed yield data of 181 orchards.  

In Chapter 5, we explored whether a single LAI (near to the maximum vegetative 
development stages) obtained from Landsat 8 can improve the yield simulation 
accuracy. The assimilation performance was evaluated by comparing the yield 
estimation results before and after forcing LAI. First, the regression equations 
between vegetation index and LAI were established based on 55 observed orchards. 
Second, the state variable of each orchard, here the LAI which was re-estimated by 
forcing the remotely sensed LAI, was input into the calibrated WOFOST model to 
simulate jujube fruit yield. Finally, in situ yield data for 181 orchards were employed 
to evaluate the performance of the forcing assimilation method. 

In Chapter 6, in order to complete the SUBPLEX assimilation, the four periods of 
LAIs for 55 orchards during the main growing season were first inverted from remote 
sensing data. SUBPLEX obtained an optimal set of TDWI and SPAN values by 
iteratively calculating the minimum objective function values of the four remotely 
sensed and the simulated LAIs during the main growth stages, thereby achieving yield 
estimation based on the SUBPLEX assimilation method. EnKF assimilation was also 
performed; EnKF updates a new set of TDWI and SPAN values when acquiring a new 
remote sensing observation to implement a segmentation simulation. Finally, the yield 
estimation accuracy of the proposed SUBPLEX assimilation method was compared 
with the EnKF method. 
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Crop growth modelling can be considered as one of the main methods for crop yield estimation. 

This chapter, which lays the foundation of this doctoral thesis, describes the implementation 

of a potential growth simulation of jujube trees by means of WOFOST model, including 

detailed parameters calibration and validation procedures. More particularly, it is explained 

how the perennial nature of the studied crop is accounted for in the model initially designed 

for annual crops. The performances of the new calibrated crop model to estimate field-scale 

jujube fruit yield are assessed against local 181 orchards. 
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1. Abstract  

Mathematical models have been widely employed for the simulation of growth 
dynamics of annual crops, thereby performing yield estimation. Their use remains 
limited however for fruit tree species such as the jujube tree. The objectives of this 
study were to investigate the potential use of a calibrated WOFOST (World Food 
Studies) model for estimating jujube yield. The model was established using data 
collected from dedicated field experiments performed in 2016–2018. Simulated 
growth dynamics of leaves, stems, fruits, total biomass, and leaf area index (LAI) 
agreed well with measured values, showing RMSE values of 0.14, 0.33, 0.37, 
0.62 t ha–1 and 0.19 m2 m–2, and R2 values of 0.95, 0.98, 0.99, 0.99, and 0.95, 
respectively. The validated errors of –2, –3, and –3 days were detected in different 
phenological development stages corresponding to emergence, anthesis, and maturity. 
In addition, in order to estimate the yields of trees of different ages, the weight of new 
organs (initial buds and roots) in each growing season was introduced as the initial 
total dry weight (TDWI), which was calculated as averaged values of trees of the same 
age. The results showed that R2 and RMSE for field-scale yield estimation were 0.22 
and 1.07 t ha–1 for 2016, and 0.04 and 1.33 t ha–1 for 2017, respectively. This method 
still suffers from uncertainty. Enhancement could be achieved by considering the 
influence of crop management on CO2 assimilation or by assimilating remote sensing 
data during the growing season.  

2. Introduction 

Field-scale yield monitoring is important for precision agricultural management. 
Most prediction methods for fruit yield still depend on conventional techniques based, 
for instance, on agro-meteorological models and empirical statistical regressions 
between spectral vegetation indices and in-field measured yields (Ye et al., 2006; 
Zaman et al., 2006; Aggelopoulou et al., 2011; Zhou et al., 2012; Sun et al., 2017; 
Rahman et al., 2018; Bai et al., 2019a). One of the main drawbacks of such empirical 
approaches is that they are only validated for specific cultivars, growth stages, or 
certain geographical regions (Huang et al., 2015b). In contrast, cropping system 
modelling based on mathematical descriptions of key physical and physiological 
processes is considered to be a mature technology (Holzworth et al., 2014b) and has 
been applied in precision farming to increase the understanding of crop responses in 
field trials (Asseng et al., 2013; Ewert et al., 2015; de Wit et al., 2019a). Such 
modelling allows better consideration of the complex interactions between plants, 
weather, soil, and agricultural practices (de Wit et al., 2019a). 

In recent decades, many crop models have been developed and optimized for 
different species and purposes. Some notable examples include WOFOST (World 
Food Studies) (van Diepen et al., 1989), DSSAT (Decision Support System for 
Agrotechnology Transfer) (Jones et al., 2003), EPIC (Environmental Policy 
Integrated Climate) (Wang et al., 2012), STICS (Multidisciplinary simulator for 
standard crops) (Brisson et al., 2003), and APSIM (Agricultural Production Systems 
simulator) (Holzworth et al., 2014a). Among them, the WOFOST model was 
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developed for the quantitative analysis of the growth and production of annual field 
crops. It has been applied to the study of climate change effects (Alexandrov et al., 
2005; Reidsma et al., 2009, 2015; Kroes et al., 2011; Van Walsum et al., 2012; Supit 
I et al., 2012; Blanco et al., 2017; Gilardelli et al., 2018), regional yield forecasting 
and analysis (Rötter R et al., 1997; Supit I et al., 1997; Dobermann et al., 2000; de 
Wit et al., 2010; Wolf J. et al., 2011; Huang et al., 2015 a, b, 2016, 2019; Cheng et al., 
2016; Ceglar et al., 2019; Zhuo et al., 2019), and the comparison of different irrigation 
and soil conditions (Eitzinger et al., 2004; Confalonieri et al., 2009; Todorovic et al., 
2009). It can explain plant growth by using light interception and CO2 assimilation as 
the growth-driving processes, and includes photosynthesis, respiration, and their 
changes due to environmental conditions (de Wit et al., 2005). WOFOST has also 
been optimized and validated over 25 years by countless researchers all over the world 
and used for many new crops over a broad range of climatic and management 
conditions (de Wit et al., 2019a). The WOFOST model can be implemented in two 
different ways: potential production, where crop growth is determined by irradiation, 
temperature, and plant characteristics only; and water-limited production, where crop 
growth is limited by water use. Such a crop model can be enriched by remote sensing 
assimilation data in order to solve scale problems and reduce uncertainties for regional 
yield forecasting (de Wit et al., 2007, 2008, 2012; Curnel et al., 2011; Ma et al., 2013; 
Tripathy et al., 2013; Liu et al., 2015; Huang et al., 2019; Zhuo et al., 2019). 

Crop modelling reported in the literature has mainly been developed for annual 
crops, including spring barley, cotton, maize, millet, potato, rice, sorghum, soybean, 
sugar beet, sweet potato, and winter wheat. Few studies have focused on perennial 
fruit trees. In Xinjiang, jujube trees are densely planted in orchards. An existing study 
has confirmed that the WOFOST model can be used to simulate jujube growth in field 
experiments (Bai et al., 2019b). However, the yield of such a perennial crop sharply 
increases with tree age because of the continuous evolution of branches, canopy width, 
tree height, and leaf area index (He et al., 2010). This evolution is mainly reflected in 
the difference of the initial total dry weight (TDWI), which is directly dependent on 
tree age. In addition, excessive TDWI values will inevitably result in overestimation 
of the simulation results if the weight of the jujube tree’s main stems and branches are 
simply added up, therefore, the TDWI parameter was redefined for accurate jujube 
fruit growth modelling. The aim of this study was to develop and evaluate an approach 
for fruit tree growth dynamic simulation and yield estimation, by integrating the tree 
age into the WOFOST model. To reach this goal, the following specific objectives 
were defined: 

(i) To explore the methods for growth simulation and yield estimation of perennial 
jujube trees by redefining TDWI. 

(ii) To evaluate whether the calibrated WOFOST model can be employed to 
accurately simulate the jujube development from the phenological development stages 
and growth dynamics of different organs in specific field experiments. 

(iii) To validate the accuracy of field-scale fruit yield estimation. 
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3. Research data and methods 

3.1. Field experiment and research data 

Field experiment and data collection are described in Section 3.1 of Chapter 2. 
Field-measured emergence, flowering, and maturity dates and observed daily 
temperatures were used to calibrate and validate the phenology parameters of the 
WOFOST model. Total above-ground biomass (TAGP), the dry weight of living 
leaves, stems, and fruit, and LAI during the growth period were used to calibrate and 
validate the crop parameters. Observed climate data were used to drive the model. 
Data obtained in 2016 and 2017 were employed to calibrate the model, whereas data 
obtained in 2018 were used for model validation.  

Observed local yield data for 181 orchards were used to evaluate the yield 
estimation performance of the calibrated WOFOST model at the field scale, see 
Section 3.2 of Chapter 2. 

3.2. Redefinition and calculation of TDWI parameter  

TDWI was redefined as the weight of the initial new organs (initial buds and roots) 
during each growing season. The initial weight of buds can be calculated by 
multiplying the planting density by the average weight of buds retained on a sample 
of trees. TDWI of the field experiments is equal to the sum of the dry weight of the 
buds and the roots at the time of emergence, defined as the time when the fifth leaf on 
the bud was unfolded (DVS=0). The ratio of the average dry weight of buds and roots 
measured in the field experiment is approximately 7:3. Root measurement is very 
difficult, so it is only measured in our field experiments as a fixed value for other 
orchards. TDWI values for different orchards were then calculated by measuring the 
dry weight of buds at each orchard and the bud-root distribution coefficient from the 
field experiments.  

Based on experimental observations, the TDWI value of each orchard was mainly 
affected by the tree age. The average TDWI of each tree gradually increased with the 
tree age, and remained basically unchanged when the tree age was greater than 10. 
The TDWI values were measured in 55 orchards between 2015 and 2017. The average 
TDWI for 3 to 10 year-old jujube orchards were 4.88, 6.24, 9.24, 13.17, 14.28, 16.31, 
19.73, and 21.61 kg ha−1, for each year of increasing age respectively. 

3.3. Calibration of WOFOST model  

Jujube crop parameters were calibrated for the potential growth simulation from the 
2016 and 2017 experiments according to the principle of average correlation and error 
minimization. The 2018 season data were used to validate the TAGP and LAI growth 
dynamics.  

The calibration process of the WOFOST model was suggested in de Wit and Wolf 
(2010). First, the length of the growth period and the phenology can be effectively 
simulated for a reliable biomass and yield estimation, which was determined by the 
effective accumulated temperature method (van Diepen et al., 1989). TBASEM  

expressing the lower threshold temperature at which jujube trees begin to develop, 
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was set to 10°C (Sun, 2019). TEFFMX, defining the maximum effective temperature 
at emergence, ranged from 18 to 32 °C as given by WOFOST. The observation results 
show that jujube trees were sprouting normally, so the correction principle of this 
parameter was not to affect the growth of jujube trees during the growing season. The 
simulation results of TAGP and LAI of different TEFFMX in 2016 and 2017 showed 
that when TEFFMX was greater than 21 °C, the simulation results of TAGP and LAI 
were almost unchanged, see Fig. 3-1. Therefore, TEFFMX can be set to any value 
from 21 °C to 32 °C (default maximum value from WOFOST). TEFFMX was set to 
30 °C in this study referring to the default value of most crops from WOFOST model. 

Figure 3–1: Comparison of TAGP and LAI simulation results based on different TEFFMX 

TSUMEM (temperature sum from beginning to emergence), TSUM1 (temperature 
sum from emergence to flowering), and TSUM2 (temperature sum from flowing to 
maturity) were calibrated by daily average temperature and emergence, flowering, and 
maturity dates for the years 2016 and 2017. The DTSMTB (daily increase in 
temperature sum as a function of average temperature) can be calculated from the 
maximum suitable temperature (35.5°C; Wang et al., 2002) and minimum 
development temperature (10°C; Sun, 2019). TDWI was equal to the field 
measurement. 

 For LAIEM (LAI at emergence), the measured maximum value in all field 
experiments was less than 0.004 ha ha−1, so LAIEM was set to 0.004 ha ha−1. For 
RGRLAI (maximum relative increase in LAI), the measured maximum value was less 
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than 0.05, so RGRLAI was set to 0.05. SLATB (specific leaf area) was calibrated on 
the basis of the measured values and simulated TAGP and LAI. SPAN (life span of 
leaves growing at 35°C) was corrected based on LAI measured in the field during the 
late growing season.  

Light interception and potential biomass production were mainly determined by 
leaf-related (SLATB, LAIEM, and RGRLAI) and CO2 assimilation parameters. For 
CO2 assimilation parameter calibration, first the daily gross CO2-assimilation rate was 
calculated from the absorbed radiation and the photosynthesis-light response curve of 
individual leaves. Net photosynthetic rate was measured using a LI-COR 6400XT. 
The light response curve at 35.5°C that was fitted by a rectangular hyperbolic 
correction model (Ye and Yu et al., 2007) was constructed for jujube leaves 
(Equations (3–1) and (3–2), Figure 3–2).  

𝑃𝑛 = α
1 − 𝛽 × 𝑃𝐴𝑅

1 + 𝛾𝑖
𝑃𝐴𝑅 − 𝑅𝑑 (3 − 1) 

𝐴𝑚𝑎𝑥 = α(
√𝛽 + 𝛾 − √𝛽

𝛾
)

2

− 𝑅𝑑 (3 − 2) 

Where 𝑃𝑛 is the net CO2 assimilation rate, α  is the efficiency of initial light 
use, 𝛽 and 𝛾 are the fitting coefficients, 𝑃𝐴𝑅 is the photosynthetic active radiation, 
and 𝑅𝑑 is the respiration rate in the dark. In this study, α = 0.495, 𝛽 = 0.000548, 
𝛾 = 0.007887, and 𝑅𝑑 = 2.423.  

It was confirmed that the fitted results of the rectangular hyperbolic correction 
model with the minimum RMSE (0.63 kg ha–1 h–1) and almost ideal R2 (0.998) were 
superior to those from either rectangular hyperbola (Baly et al., 1935; RMSE = 
0.997 kg ha–1 h–1), non-rectangular hyperbola (Thornley et al., 1976; RMSE = 
0.828 kg ha–1 h–1), or exponential equations (RMSE = 1.102 kg ha–1 h–1). The main 
CO2 assimilation parameters characterizing this curve included the initial light use 
efficiency, α = 0.495; the respiration rate in the dark, 𝑅𝑑 = 2.42; and the maximum 
rate of net CO2 assimilation at high light intensity, 𝐴𝑚𝑎𝑥= 34.85. Values of α, 𝐴𝑚𝑎𝑥, 
and 𝑅𝑑  at 19.5°C could also be attained in the same way. As assimilation and 
respiration proceed concurrently, the measured value represents the net assimilation 
rate, which is the difference between assimilation and respiration. Thus, to obtain the 
maximum CO2 assimilation rate (AMAXTB), the measured value should be implicitly 
augmented by the value of the dark respiration, which assumes that it had the same 
rate compared to the light respiration (van Diepen et al., 1989). AMAXTB and EFFTB 
(light-use efficiency single leaf at average temperature) were calculated. Second, the 
correction factor TMPFTB was determined by the average day-time temperature and 
is also crop specific (de Wit et al., 2019b). Jujube trees begin to develop when the 
temperature is greater than 10°C. The optimal temperature for jujube development is 
between 19.5 to 35.5°C. Therefore, TMPFTB was set to 0, 1, and 1 when the day-time 
temperature was 10, 19.5, and 35.5°C, respectively. KDIFTB (extinction coefficient 
for diffuse visible light) was first set as a field measurement. Finally, KDIFTB, 
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AMAXTB, and EFFTB were calibrated on the basis of measured and simulated TAGP 
and LAI. 

 

Figure 3–2: Light response curve of jujube leaf at 35.5°C 

Conversion of assimilates into biomass expresses growth respiration, this includes 
CVL (efficiency of conversion into leaves), CVO (efficiency of conversion into 
storage organs), CVR (efficiency of conversion into roots), and CVS (efficiency of 
conversion into stems). Dry matter partitioning parameters, FRTB (fraction roots), 
FSTB (fraction stems), FOTB (fraction organs), and FLTB (fraction leaves), which 
all describe the fraction as a function of the development stage. They were calibrated 
using measured and simulated dry matter weights of above-ground organs. The 
maintenance respiration costs, Q10 (relative increase in respiration rate per 10°C 
temperature increase), RML (relative maintenance respiration rate of leaves), RMO 
(relative maintenance respiration rate of storage organs), RMR (relative maintenance 
respiration rate of roots), and RMS (relative maintenance respiration rate of stems), 
may be estimated on the basis of the quantities of proteins and minerals present in the 
biomass and on crop metabolic activity (de Wit et al., 2019b). RDRSTB (relative 
death rate of stems) was set to 0 because stems of perennial fruit trees usually do not 
die during development 

The model evaluations were based on the comparison between simulated and 
observed data in 2018. The agreement between measured and simulated yield was 
quantified using a coefficient of determination (R2). The root mean square error 
(RMSE) was used to evaluate simulation accuracy. R2 can give the percentage of 
samples that can be interpreted by the model to all samples. The RMSE can show a 
weighted change in the error (residual) between the estimated and actual values. Due 
to the wide range of jujube yields, a normalized root mean square error (NRMSE, i.e., 
the ratio between RMSE and the average of observed values), and the ratio of 
performance to deviation (RPD) calculated as the ratio of the standard deviation of 
measured samples to the standard error of estimated values (Fleming et al., 2017), 
were determined as an additional evaluation of model utility. Their values were 
calculated by the Equations (3–3), (3–4), (3–5) and (3–6). 
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R2  =  1 −
∑ (yi − ỹi)

2n
i=1

∑ (yi − y̅i )
2n

i=1

(3– 3) 

RMSE = √
∑ (�̃�𝑖 − 𝑦𝑖)

2𝑛
𝑖=1

𝑛
(3– 4) 

NRMSE =
√
∑ (�̃�𝑖 − 𝑦𝑖)

2𝑛
𝑖=1

𝑛
�̅�𝑖 

(3– 5)
 

RPD =
SD

RMSE
(3– 6) 

Where �̃�𝑖 was the simulated value based on the model, 𝑦𝑖 was the measured value, 
�̅�𝑖 was the mean of the measured values, and 𝑛 was the number of samples. SD is 
the standard deviation of measured samples. 

4. Results  

4.1. Calibrated model parameters  

The calibrated main parameters for the potential growth simulation are shown in 
Table 3−1.  
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Table 3–1: Calibrated model parameters. 

Parameter Description Value Units Source 

*Emergence 

TBASEM lower threshold temperature emergence 10 °C (Sun, 2019) 

TEFFMX max. effective temperature emergence 30 °C e 

TSUMEM temperature sum from sowing to 

emergence 

230 °C m-c 

*Phenology parameter 

TSUM1 temperature sum from emergence to 

anthesis 

967 °C d−1 m-c 

TSUM2 temperature sum from anthesis to 

maturity 

960 °C d−1 m-c 

DTSMTB0 daily increase in temperature sum as a 

function of average at = 0°C 

0.00  °C d−1 (Sun 2019) 

DTSMTB100 daily increase in temperature sum as a 

function of average at = 10°C 

0 °C d−1 (Sun 2019) 

DTSMTB355 daily increase in temperature sum as a 

function of average at = 35.5°C 

25.5 °C d−1 (Wang et 

al.,2002) 

DTSMTB400 daily increase in temperature sum as a 

function of average at = 40°C 

25.5 °C d−1 (Wang et 

al.,2002) 

*Initial parameters 

TDWI Redefined initial total emergence dry 

weight 

\ kg ha−1 m 

LAIEM leaf area index at emergence  0.004 ha ha−1 m 

RGRLAI maximum relative increase in LAI 0.05 ha ha−1 d−1 m 

*Green area 

SLATB000 specific leaf area when DVS = 0 0.00165 ha kg−1 m-c 

SLATB55 specific leaf area when DVS = 0.55 0.0013 ha kg−1 m-c 

SLATB100 specific leaf area when DVS = 1 0.0013 ha kg−1 m-c 

SLATB200 specific leaf area when DVS = 2 0.0014 ha kg−1 m-c 

SPAN life span of leaves growing at 35 

degrees Celsius  

60 [d] c 

TBASE lower threshold temp. for ageing of 

leaves 

10 °C (Sun, 2019) 

*CO2 assimilation 

KDIFTB00 extinction coefficient for diffuse visible 

light at DVS = 0 

0.8 \ m-c 

KDIFTB200 extinction coefficient for diffuse visible 

light at DVS = 2 

0.8 \ m-c 

EFFTB19.5 light-use efficiency single leaf at 

average temp. = 19.5°C 

0.495 kg ha−1 hr−1 

J−1 m2 s 

m-c 

EFFTB355 light-use efficiency single leaf at 

average temp. = 35.5°C 

0.495 kg ha−1 hr−1 

J−1 m2 s 

m-c 

AMAXTB00 maximum leaf CO2 assimilation. Rate 

at DVS = 0 

39.0 kg ha−1 hr−1 m-c 

AMAXTB170 maximum leaf CO2 assimilation. Rate 

at DVS = 1.7 

39.0 kg ha−1 hr−1 m-c 
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AMAXTB200 maximum leaf CO2 assimilation. Rate 

at DVS = 2 

20.0 kg ha−1 hr−1 m-c 

TMPFTB10 reduction factor of AMAX at 10°C 0 \ (Sun, 2019) 

TMPFTB195 reduction factor of AMAX at 19.5°C 1 \ (Wang et 

al.,2002) 

TMPFTB355 reduction factor of AMAX at 35.5°C 1 \ (Wang et 

al.,2002) 

*Conversion of assimilates into biomass 

CVL efficiency of conversion into leaves 0.732 kg kg−1 c 

CVO efficiency of conversion into storage 

organs 

0.780 kg kg−1 c 

CVR efficiency of conversion into roots 0.690 kg kg−1 c 

CVS efficiency of conversion into stems 0.751 kg kg−1 c 

*Maintenance respiration 

Q10 Relative increase in respiration rate per 

10°C temperature increase 

2 kg CH2O 

kg−1 d−1 

m 

RML Relative maintenance respiration rate 

of leaves  

0.03 kg CH2O 

kg−1 d−1 

m 

RMO Relative maintenance respiration rate 

of storage organs 

0.01 kg CH2O 

kg−1 d−1 

m 

RMR Relative maintenance respiration rate 

of roots 

0.01 kg CH2O 

kg−1 d−1 

m 

RMS Relative maintenance respiration rate 

of stems  

0.015 kg CH2O 

kg−1 d−1 

m 

*Partitioning parameters 

FRTB00 fraction of total dry matter to roots at 

DVS = 0 

0.3 kg kg−1 m-c 

FRTB154 fraction of total dry matter to roots at 

DVS = 1.54 

0.0 kg kg−1 m-c 

FLTB00 fraction of above-ground dry matter to 

leaves at DVS = 0 

0.67 kg kg−1 m-c 

FLTB012 fraction of above-ground dry matter to 

leaves at DVS = 0.12 

0.31 kg kg−1 m-c 

FLTB022 fraction of above-ground dry matter to 

leaves at DVS = 0.22 

0.41 kg kg−1 m-c 

FLTB032 fraction of above-ground dry matter to 

leaves at DVS = 0.32 

0.55 kg kg−1 m-c 

FLTB051 fraction of above-ground dry matter to 

leaves at DVS = 0.51 

0.4 kg kg−1 m-c 

FLTB097 fraction of above-ground dry matter to 

leaves at DVS = 0.97 

0.15 kg kg−1 m-c 

FLTB100 fraction of above-ground dry matter to 

leaves at DVS = 1.00 

0.1 kg kg−1 m-c 

FLTB145 fraction of above-ground dry matter to 

leaves at DVS = 1.45 

0 kg kg−1 m-c 

FLTB200 fraction of above-ground dry matter to 

leaves at DVS = 2.00 

0 kg kg−1 m-c 

FSTB00 fraction of above-ground dry matter to 

stems at DVS = 0 

0.33 kg kg−1 m-c 
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FSTB012 fraction of above-ground dry matter to 

stems at DVS = 0.12 

0.69 kg kg−1 m-c 

FSTB022 fraction of above-ground dry matter to 

stems at DVS = 0.22 

0.59 kg kg−1 m-c 

FSTB032 fraction of above-ground dry matter to 

stems at DVS = 0.32 

0.45 kg kg−1 m-c 

FSTB051 fraction of above-ground dry matter to 

stems at DVS = 0.51 

0.6 kg kg−1 m-c 

FSTB097 fraction of above-ground dry matter to 

stems at DVS = 0.97 

0.85 kg kg−1 m-c 

FSTB100 fraction of above-ground dry matter to 

stems at DVS = 1.00 

0.43 kg kg−1 m-c 

FSTB145 fraction of above-ground dry matter to 

stems at DVS = 1.45 

0.2 kg kg−1 m-c 

FSTB200 fraction of above-ground dry matter to 

stems at DVS = 2.00 

0 kg kg−1 m-c 

FOTB00 fraction of above-ground dry matter to 

storage organs at DVS = 0 

0 kg kg−1 m-c 

FOTB012 fraction of above-ground dry matter to 

storage organs at DVS = 0.12 

0 kg kg−1 m-c 

FOTB022 fraction of above-ground dry matter to 

storage organs at DVS = 0.22 

0 kg kg−1 m-c 

FOTB032 fraction of above-ground dry matter to 

storage organs at DVS = 0.32 

0 kg kg−1 m-c 

FOTB051 fraction of above-ground dry matter to 

storage organs at DVS = 0.51 

0 kg kg−1 m-c 

FOTB097 fraction of above-ground dry matter to 

storage organs at DVS = 0.97 

0 kg kg−1 m-c 

FOTB100 fraction of above-ground dry matter to 

storage organs at DVS = 1.00 

0.47 kg kg−1 m-c 

FOTB145 fraction of above-ground dry matter to 

storage organs at DVS = 1.45 

0.8 kg kg−1 m-c 

FOTB200 fraction of above-ground dry matter to 

storage organs at DVS = 2.00 

1 kg kg−1 m-c 

*Death rates 

RDRSTB00 Relative death rate of stems at DVS = 0 0 \ e 

RDRSTB200 Relative death rate of stems at DVS = 

2.0 

0 \ e 

Sources: e, estimated value from observed data and simulated results; m, measured; c, 
calibrated values based on simulated results; m–c, calibrated values on the basis of 
the measured values and simulated results; TDWI = 15.1 kg ha−1 for 2016, 
17.2 kg ha−1 for 2017, and 19.4 kg ha-1 for 2018, respectively, with an increase in tree 
age. DVS: Development stages. 
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4.2. Validation of calibrated WOFOST model  

4.2.1. Phenology development 

 The simulated time course of biomass production can be represented by three phases 
(Table 3–2) according to jujube growth characteristics. Field validation was employed 
to describe the errors of simulated emergence, anthesis (flowering), and maturity dates, 
which were –2, –3, and –3 days difference, respectively. In addition, the simulated 
length of the growth season was one day shorter than the measured value. Therefore, 
the model had gone through a number of phenological development stages, which 
serve as the controlling and steering mechanism for jujube growth. 

Table 3–2: Validation of jujube development stages in 2018. 

Activity Emergence date Anthesis date Red maturity date 
Simulation result 118th 193rd 264th 
Validation result 120th 196th 267th 

Difference –2 days –3 days –3 days 

4.2.2. Simulation of jujube growth dynamics  

The indices of agreement between measured and simulated time series of WLV (dry 
weight of living leaves), WST (dry weight of living stems), WSO (dry weight of living 
storage organs), and TAGP (dry weight of total above-ground production) values are 
shown in Table 3–3. Calibrated and validated R2 for WLV, WST, WSO, and TAGP 
ranged from 0.95 to 0.99, RMSE from 0.08 to 0.48 t ha−1 and 0.14 to 0.62 t ha−1, 
respectively. Validated results showed that simulated dynamics for WLV, WST, WSO, 
and TAGP were accurately estimated with a RMSE of 0.14, 0.33, 0.37, 0.62 t ha−1 and 
a R2 of 0.95, 0.98, 0.99, 0.99, respectively (Figure 3−2). 

Table 3–3: Performances of the model in calibration and validation. 

Year 
Measured 

TDWI 
(kg ha−1) 

R2 RMSE (t ha−1) 

WLV WST WSO TAGP WLV WST WSO TAGP 

Calibration          
2016 15.1 0.96 0.99 0.99 0.99 0.08 0.17 0.175 0.46 
2017 17.2 0.95 0.96 0.99 0.99 0.12 0.36 0.23 0.48 

Validation          
2018 19.4 0.95 0.98 0.99 0.99 0.14 0.33 0.37 0.62 

Figure 3−3 also showed relative deviations of simulated and measured values, 
ranging from 0.03 to 0.63 for WLV, 0.05 to 0.76 for WST, 0.04 to 0.6 for WSO, and 
0.02 to 0.72 for TAGP, respectively. Note that the first to fourth observations were 
slightly underestimated for the WLV, WST, and TAGP with high relative deviations. 
This bias could be attributed to a slightly lower fraction of above-ground dry matter 
to leaves. Therefore, the model generated a low LAI that resulted in a decrease in total 
photosynthesis accumulation in the early growth period. Overall, TAGP, WLV, WST, 
and WSO simulations are in good agreement with the measured values, see 
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Figure 3−2.  

 

Figure 3−3: Simulated and measured the dry weight of organs in 2018. (a) Leaves, (b) 
stems, (c) storage organs, (d) total above-ground biomass. WLV: Living leaves, WST: 

Living stems, WSO: Living storage organs, TAGP: Total above-grund production. 

LAI is an important output parameter which considerably affects photosynthesis and 
total biomass. Within the calibration datasets, the improved model showed a greater 
accuracy in simulating LAI values (calibrated R2 = 0.98 for 2016, 0.96 for 2017, 
calibrated RMSE = 0.07 m2 m−2 for 2016, 0.19 m2 m−2 for 2017). Within the 
validation datasets, the model succeeded in reproducing timing variability for LAI in 
the total growth period, demonstrated by values of the agreement metrics (validated 
RMSE = 0.19 m2 m−2 and R2 = 0.95) (Figure 3−4). Therefore, this outcome allowed a 
realistic estimation of light interception and CO2 assimilation during the main growth 
period. In addition, the simulated LAI change trend was in agreement with the 
observed time series of LAI of jujube trees. LAI conveyed an upward trend before the 
fruit white maturity period first, increasing slowly during emergence and rapidly from 
late May to early July, followed by slight decrease during the white maturity period, 
which peaked at the end of the fruit filling period. 
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Figure 3–4: Simulated and measured LAI change trends. 

4.2.3. Responses to temperature and radiation 

The model allocated the produced biomass to the different organs depending on the 
phenological development stage. Temperature and radiation changes mainly affected 
the potential dry weight of different organs. Among them, temperature mainly 
affected the length of the growing season, including crucial growth duration between 
DVS = 0 and 1, and between DVS = 1 and 2 (Table 3–4), and radiation mainly affected 
total photosynthesis accumulation.  

Table 3–4: Simulated development days, total above-ground biomass (TAGP), and yield for 

the nine-year-old jujube orchards 

Year 

Average R 

(kJ m–2 d–1) 

DVS 0-2 

Average 

T (°C) 

DVS 0-1 

Days 

DVS 

0-1 

Average T 

(°C) 

DVS 1-2 

Days 

DVS 1-2 

 

Simulated 

TAGP 

(t ha–1) 

Simulated 

yield 

(t ha–1) 

2016 18875 23.8 71 23.2 73 13.61 7.34 

2017 19683 23.9 71 21.2 85 16.48 9.32 

2018 19516 22.9 75 23.5 71 15.14 7.95 

R: represents radiation. T: represents temperature. 

It should be noted that the temperatures in 2017 were slightly lower than those in 
2016 and 2018, especially in the fruit filling period, so the longer growth period of 9-
12 days resulted in higher potential WSO and TAGP. Although the time difference 
between the growth periods in 2016 and 2018 was only two days, the amount of 
radiation in 2018 (19516 kJ m–2 d–1) was significantly higher than in 2016 
(18875 kJ m–2 d–1), which also resulted in a greater TAGP value and yield. Therefore, 
given that total biomass was determined by growth duration and daily assimilation, 
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the simulated yield in 2017 should be the highest, followed by 2018, and lastly 2016. 
Both observed and simulated results based on validation datasets agreed with our 
analysis, demonstrating that the calibrated model had good temperature and radiation 
change responses. 

4.3. Yield estimation performance for different orchards  

Based on the 181 samples, the scatter plots of yield estimation based on the 
WOFOST model are shown in Figure 3–4. The actual yield of most of the samples in 
2016 was underestimated, and 2017 was overestimated. The estimated yields showed 
a slightly low correlation and accuracy for 2016 (R2 = 0.22, RMSE = 1.07 t ha–1) and 
2017 (R2 = 0.04, RMSE = 1.33 t ha–1), see Table 3–5. The percentage RMSE was 16.3% 
and 17.2, respectively. The RPD values were all less than 2, indicating that the 
evaluation ability of the model was not high.  

 

Figure 3–5: Scatter plots of yields estimation 

Table 3–5: Yield estimation performance for different orchards based on the calibrated 

WOFOST Model  

Estimation method Year R2 RMSE (%) t ha–1 RPD 

Potential simulation 
2016 0.22 1.07 (16.3) 1.13 

2017 0.04 1.33 (17.2) 1.02 

5. Discussion 

The proposed model expresses a potential growth simulation, which requires that the 
crop growth is not limited by water excess or shortage, nutrient shortage, weed 
competition, or pest and disease infestation (de Wit et al., 2019b). This situation is 
very difficult to achieve in practice. In addition, the methods of collecting regional 
yield data can differ in different parts of the region and might not always be accurate 
(Reidsma et al., 2009). Some uncertainty may be introduced into the model parameter 
correction and verification process. Moreover, the genetic variation of parameters can 
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also lead to considerable uncertainty in yield estimates (Zheng et al., 2018). Although 
the calibrated WOFOST model can provide an approach for simulating the growth of 
jujube fruit trees, there may still be some uncertainty in the method of setting the fixed 
TDWI for the same aged jujube orchards, resulting in a slightly low estimation 
accuracy. The effect appears, however, to not be optimal. This can be due to the fact 
that same aged trees may have different growth dynamics and yields induced by 
strength, height, and pruning differences.  

In addition, the effect of changes in the atmospheric CO2 concentration on the 
simulation results is not initially considered in the WOFOST model. Recent WOFOST 
implementations correct this effect by using a CO2 dependency factor that changes the 
leaf level maximum assimilation rate (AMAX) and initial light utilization efficiency 
(EFF) (Vanuytrecht et al., 2017). Moreover, different pruning patterns and pruning 
quality have a great impact on the jujube yield, which is a crucial aspect for a reliable 
fruit yield simulation. In the process of establishing and correcting model parameters, 
a small canopy permanent line tree shape, which is widely employed in Xinjiang, was 
adopted for all orchards. However, there are other tree shapes in the actual production 
management, including cylindrical, a middle trunk shape with three main branches, 
and small canopy permanent trees. Since the tree shape affects the photosynthetic 
effect, the yield components such as the number of mother branches, the amount of 
fruiting branches, the single fruit weight, and the number of jujubes can differ greatly 
(Zhang et al., 2013). Of course, tree age also contributes to CO2 flux (He 2010). 
Accordingly, further analysis and demonstration of the effects of different tree shapes 
and ages on the CO2 assimilation rate and extinction coefficient would also improve 
the accuracy of jujube yield estimation. 

6. Conclusions  

Growth simulations of fruit trees should consider the tree age, which is one of the 
key factors in accurate simulation. The results show that the model accurately 
simulates the biomass of different organs and describes the key phenological stages 
in a reliable way. It is also demonstrated that the calibrated model shows some 
uncertainty for field-scale fruit yield estimation. Further research on the influences of 
canopy structure, planting density, and tree ages on CO2 assimilation is one of most 
noteworthy aspects, which is expected to improve estimation accuracy and enhance 
adaptability. Assimilation of remote sensing information into the WOFOST model 
also has promise for reducing the uncertainty of input parameters. In summary, the 
method of incorporating tree age into the crop model can provide a scheme for 
modelling growth and yield estimation of other types of fruit trees. 
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Remote sensing-based regression is an important method used for yield estimation, which 

is easy to implement and operate. This method is different from the simulation-based method 

presented in Chapter 3, and does not require a large number of input parameters. In Chapter 4, 

a method of yield assessment based on a remotely sensed vegetation index is implemented and 

its performance is tested. As shown in some previous studies, the accuracy of such a method 

is affected by phenological information. Therefore, the phenological length of jujube growth 

calculated in Chapter 3 was utilized to improve the proposed remote sensing-based yield 

assessment method. 

This chapter describes how Landsat 8 satellite data combined with phenological 

information was used to assess jujube fruit yield at the field scale. Further implementation 

details are also described, including satellite image processing, screening of vegetation 

indices, determination of phenological time for yield assessment, calculation of phenological 

length, and VI-YIELD evaluation equations. 
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1. Abstract 

It is challenging to have a consistent time series of vegetation indices from moderate 
spatial resolution Landsat Thematic Mapper images (Landsat 8) due to cloud coverage 
and the satellite’s long revisit cycle. In addition, crop yields are correlated with 
phenology information, especially the fruit filling days. The objectives of this study 
were to identify the optimal phenology time for determining reliable jujube yield 
estimation, and particularly to explore an approach that used the length of the 
phenology growth period to improve remotely sensed estimates of inter-annual 
variability for jujube fruit yields. The best period for jujube yield estimation was found 
to be during the fruit filling period, showing higher R2 values between vegetation 
indices and yields. The average NDVI from July 15 to August 15 represented a better 
performance for yield estimation, with the highest R2 values of 0.74 for NDVI, 0.61 
for SAVI, 0.46 for NDWI, and 0.44 for EVI, respectively. The potential of using 
Landsat-NDVI combined with the phenological length for field-scale jujube fruit 
yield estimation was proved based on 181 observed orchards, showing a validated R2 
of 0.64 and RMSE of 0.73 t ha–1 (11.1%) for 2016, 0.71 and 0.73 t ha–1 (9.5%) for 
2017, respectively. The RPD values for jujube fruit yield estimation in 2016 and 2017 
were 1.66 and 1.86, respectively. The proposed method was verified as having a good 
fit to jujube yield monitoring and mapping two months before harvest. 

2. Introduction 

Local and field-scale jujube growth and yield estimates before harvest allow farmers 
to improve yield management decision-making. Remote sensing has been widely 
employed to monitor crop growth conditions and estimate yields for over three 
decades (Bolton and Friedl, 2013). In particular, vegetation indices (VIs) such as the 
Normalized Difference Vegetation Index (NDVI) have been widely utilized for yield 
monitoring and mapping (Bolton and Friedl, 2013; Funk and Budde, 2009; Panda et 
al., 2010; Dempewolf et al., 2014; Mkhabela et al., 2011; de la Casa et al., 2018; Yu 
and Shang, 2018). In addition, other indices have also been used for crop yield 
estimation, like Green Leaf Area Index (GLAI) (Duchemin et al., 2008); Enhanced 
Vegetation Index (EVI) (Bolton and Friedl, 2013; Son et al., 2014; Kouadio et al., 
2014); and the Normalized Difference Water Index (NDWI) (Bolton and Friedl, 2013). 

Recently, an increasing number of remote sensing-based studies have performed 
yield estimation for annual crops using data collected from the National Aeronautics 
and Space Administration’s (NASA) Moderate Resolution Imaging 
Spectroradiometer (MODIS) because of its high frequency observations and superior 
spectral resolution (Bolton and Friedl, 2013; Dempewolf et al., 2014; Kouadio et al., 
2014; Ren et al., 2008; Victoria et al., 2012; Becker-Reshef et al., 2010). However, 
the spatial resolution of MODIS data is low, with images available at 250 m, 500 m, 
and 1000 m scales (Bolton and Friedl, 2013). It is therefore more suitable for large-
scale crop yield estimation. Fruit trees are different from annual crops and are usually 
grown in specific areas which requires remote sensing data with higher spatial 
resolution for yield estimation, such as Landsat Thematic Mapper (TM), WorldView-
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3, and ASTER. Spectral bands from these remote sensing satellites have been found 
to have good performance in yield estimation for grapes (Sun et al., 2017; Anastasiou 
et al., 2018), mangoes (Rahman et al., 2018), and olives (Sepulcre-Cantó et al., 2007), 
showing strong correlations. In addition, an airborne remote sensing monitoring 
system has also shown good yield and quality estimation ability, such as for grapes 
and citrus (Bonilla et al., 2015; Ye et al., 2006, 2008a, 2008b). It should be noted that 
NDVI is still frequently used as an index for fruit yield assessment. The Landsat 8 
satellite can provide data with moderate spatial resolution (30 m) but a long repeat 
period (16 days), which partly limits its applications in large-scale yield estimation. 
However, this can generally be produced at regional scales, which has also been used 
for annual and fruit crop yield estimation (de la Casa et al., 2018; Sun et al., 2017; 
Rudorff and Batista, 1991; Hamar et al., 1996; Thenkabail, 2003; Liu et al., 2006). 

The fitting equation between crop yield and vegetation index varies strongly at 
different developmental stages (Dempewolf et al., 2014; Brian et al., 2004; Salazar et 
al., 2007; Bognár et al., 2017; Wall et al., 2008). Therefore, a fixed calendar date may 
not be an optimal choice for yield estimation (Bolton and Friedl, 2013; Dempewolf et 
al., 2014; Brian et al., 2004). As a consequence, several studies have used the 
phenology information, time series of VIs, ground-based ancillary data, or surface 
parameters to adjust VIs or optimize the estimation model (Bolton and Friedl, 2013; 
Funk and Budde, 2009; Rojas, 2007; Reynolds et al., 2000; Prasad et al., 2006; Wang 
et al., 2014; Sakamoto et al., 2013). Bolton and Friedl (2013) confirmed that 
integrating information related to crop phenology derived from MODIS could 
significantly improve modelling performance within and across years. According to 
the conventional characterization of crop growth, a crop usually includes three main 
growing stages, sowing/planting or emergence, flowering, and maturity. The length 
of the growth period can be defined as the period between crop emergence and 
maturity or senescence (yellowing of leaves). The total biomass production can be 
calculated from the mean daily biomass production multiplied by the total growth 
duration (de Wit et al., 2019). A longer growth duration, especially a long fruit filling 
period (from flowering to maturity), usually results in higher yields. Therefore, remote 
sensing-based crop yield estimation models might benefit considerably from 
incorporating the length of the crop phenology growth period, which presents a 
valuable research avenue for limited Landsat 8 data or other moderate and high spatial 
resolution remote sensing data. Therefore, taking jujube tree yield estimation as an 
example in this research, an approach combining Landsat 8 VIs and phenology 
development length is explored to improve the yield estimation accuracy. The aims 
of this study are to: 

(i) Evaluate the potential of using spectral information from Landsat 8 for estimating 
jujube fruit yield at the field scale. 

(ii) Identify the optimal phenology time for determining a reliable jujube yield 
estimation, and compare the performance of different VIs for yield estimation. 

(iii) Explore an approach that uses the phenological length to improve the remote 
sensing-based yield estimation model. 
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3. Research data and methods  

3.1. Research data 

The data used in this chapter included Landsat 8 images which were used to extract 
vegetation indices, and yield data for 181 orchards which were used to evaluate the 
yield estimation performance of the proposed remote sensing regression method at the 
local scale. For details, see Section 3.2 and 3.3 in Chapter 2, respectively. 

3.2. Landsat 8 data processing  

Processed available and cloud-free Landsat 8 images taken during the main growing 
seasons (May–September) for Alaer city from 2016 to 2017 were obtained from the 
United States Geological Survey (USGS, https://earthexplorer.usgs.gov/). Landsat 8 
remote sensing images were obtained for four dates in 2016 (21 May, 8 July, 24 July, 
and 9 August), and six remote sensing images were obtained for 2017 (24 May, 9 June, 
27 July, 12 August, 28 August, and 13 September). Each image covers all 181 
orchards in the study area.  

First, geometric correction was performed by reference to the Albers conical equal-
area map projection using 50 field-measured ground control points, including road 
intersection, and important building and farmland intersections. The root mean square 
error (RMSE) of the corrected and measured locations was less than one pixel (30 m) 
for each Landsat image. Second, the Fast Line-of-sight Atmospheric Analysis of 
Spectral Hypercubes (FLAASH) model was employed to carry out an atmospheric 
correction. Parameters of FLAASH correction can be set as follows: sensor 
altitude = 705 km, ground elevation = 0.0175 km, pixel size = 30 mm, atmospheric 
model = sub-Arctic summer, aerosol model = urban, water column multiplier = 1.00, 
aerosol retrieval = 2-Band (K-T), initial visibility = 40 km, KT upper 
channel = SWIR 2, KT lower channel = red, maximum upper channel 
reflectance = 0.08, reflectance ratio = 0.50. Third, a border file for Alaer city was used 
to extract our research area. 

A small area within the area of interest (AOI) with several orchards is shown in 
Figure 4–1. The RGB bands were set to SWIR, near infrared (NIR) and red bands. 
From the image, it is easy to distinguish between jujube trees and cotton crops. 

Four vegetation indices commonly used for remote sensing yield estimation, 
including NDVI (Pettorelli, 2013), SAVI (Huete, 1988), NDWI (Gao, 1996) and EVI 
(Wardlow et al., 2007) were calculated using the Equations (4–1), (4–2), (4–3) and (4–
4), respectively. 

NDVI =
𝜌𝑛𝑖𝑟 − 𝜌𝑟𝑒𝑑
𝜌𝑛𝑖𝑟 + 𝜌𝑟𝑒𝑑

(4 − 1) 

SAVI =
𝜌𝑛𝑖𝑟 − 𝜌𝑟𝑒𝑑

𝜌𝑛𝑖𝑟 + 𝜌𝑟𝑒𝑑 + 𝐿
× (1 + 𝐿)      𝐿 = 0.5 (4 − 2) 

NDWI =
𝜌𝑛𝑖𝑟 − 𝜌𝑠𝑤𝑖𝑟
𝜌𝑛𝑖𝑟 + 𝜌𝑠𝑤𝑖𝑟

(4 − 3) 

https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/united-states-geological-survey
https://earthexplorer.usgs.gov/
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 EVI = 2.5 ×
𝜌𝑛𝑖𝑟 − 𝜌𝑟𝑒𝑑

𝜌𝑛𝑖𝑟 + 6.0 × 𝜌𝑟𝑒𝑑 − 7.5 × 𝜌𝑏𝑙𝑢𝑒 + 1
(4 − 4) 

Where, 𝜌𝑛𝑖𝑟, 𝜌𝑟𝑒𝑑, 𝜌𝑏𝑙𝑢𝑒  and  𝜌𝑠𝑤𝑖𝑟  were spectral reflectances from the NIR-band, 
RED-band, BLUE-band, and SWIR-band of Landsat 8 images, respectively. In equation 
2, L=0.5 is a widely used value in most studies, which is related to soil properties and 
vegetation coverage (Huete, 1988; Huang et al., 2015).  

Finally, the GPS-positioned orchard boundary coordinates were used to extract the 
delineations of 181 orchards, respectively. The NDVI, SAVI, NDWI, and EVI values of 
the 181 observed orchards during the growing season were extracted based on the above 
processing. 

 

Figure 4–1: A small area of interest with several orchards. (Landsat 8, 27 July 2017) 

3.3. Phenology-adjusted VI-Yield estimation approach  

Previous studies have confirmed that there may be different fitting equations for 
crop yield and VIs, including linear (Mkhabela et al., 2005), exponential (Holzapfel 
et al., 2009), and power models (Dempewolf et al., 2014; Ma et al., 2001). Results 
have indicated that many factors, such as soil, crop type, and environment, can affect 
the regression model (Dempewolf et al., 2014). Therefore, different statistical 
regression models, based on VIs obtained during the main growing period, were 
separately implemented for jujube yield estimation. Results from linear, exponential, 
power, and logarithmic models were compared in order to select the best one. The key 
innovation of our approach was that the length of the growth period calculated by the 
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effective accumulated temperature was employed to improve the estimation model. 
The proposed method included two main steps:  

i. Calculate the length of the jujube growth period 

A crop growth season is the period between crop emergence and maturity or 
senescence (yellowing of leaves, expressed in degree days) (de Wit and Wolf, 2010). 
The phenology development stages of jujube can be defined in three important stages, 
which were presented as a numerical scale that ranged from 0 to 2, with 0 being 
emergence (𝐷𝑠,𝑡  = 0), 1 flowering (𝐷𝑠,𝑡  = 1), and 2 maturity (𝐷𝑠,𝑡 = 2). The length of 
growth the period, 𝐷𝑠,𝑡 = 0-1 and 𝐷𝑠,𝑡 = 1–2, was determined by the effective 
accumulated temperature sum, which was defined as a function of the daily effective 
temperature (FOR Community, 1994). Emergence, flowering, and maturity took place 
when the effective temperature sum reached the threshold temperature. The daily 
effective temperature  (𝑇𝑒)  as a function of the daily average temperature  (𝑇)  is 
depicted in Figure 4–2, which was equal to the daily average temperature minus the 
base temperature (𝑇𝑏𝑎𝑠𝑒) when 𝑇𝑏𝑎𝑠𝑒 ≤ 𝑇 ≤ 𝑇𝑚𝑎𝑥,𝑒. Since jujube tree would begin to 
sprout when the daily average temperature was greater than 10 °C, the base 
temperature (𝑇𝑏𝑎𝑠𝑒) was 10 °C (Sun, 2019).. When the daily average temperature was 
greater than 35.5°C (maximum critical temperature, 𝑇𝑚𝑎𝑥,𝑒 ), the daily effective 
temperature would not continue to increase, but was equal to a fixed value of 25.5°C. 

 

Figure 4–2: The relationship between the daily effective temperature and daily average 
temperature for jujube trees 

The following Equations (4–5, 6, 7) were used to calculate the daily effective 
temperature: 

𝑇𝑒 = 0      𝑇 ≤ 𝑇base (4 − 5) 

𝑇𝑒 = 𝑇 − 𝑇𝑏𝑎𝑠𝑒     𝑇𝑏𝑎𝑠𝑒 ≤ 𝑇 ≤ 𝑇𝑚𝑎𝑥,𝑒 (4 − 6) 

𝑇𝑒 = 𝑇𝑚𝑎𝑥,𝑒 − 𝑇𝑏𝑎𝑠𝑒     𝑇 ≥ 𝑇𝑚𝑎𝑥,𝑒 (4 − 7) 
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Where,  

 𝑇𝑒: Daily effective temperature. 

 𝑇𝑚𝑎𝑥,𝑒 : Maximum critical temperature. If the temperature goes beyond this, 
phenological activity does not increase. 

 𝑇𝑏𝑎𝑠𝑒 : Base temperature. If the temperature goes below this, phenological 
development will stop. 

 𝑇: Daily average temperature. 

Next, the development rate per day was the ratio of the daily effective temperature 
and accumulated temperature sum. Higher temperatures accelerate the development rate, 
thereby leading to shorter growing periods. In the research, a more flexible development 
rate relation can be obtained by Equation (4–8): 

𝐷𝑟,𝑡 =
𝐷𝑇𝑠
∑𝑇𝑖  

(4 − 8) 

Where, 𝐷𝑟,𝑡  is the development rate at time step t [d-1], 𝐷𝑇𝑠  is the temperature 

dependent correction factor [°C], which is equal to the effective temperature sum at 

time step t. This can be calculated based on Equations (5), (6), and (7). ∑ 𝑇𝑖  is the 

effective accumulated temperature sum required to complete stage i [°C d]. In our 

research, the effective temperature sum for emergence, emergence-flowering, and 

flowering-maturity were respectively 230, 967, and 960°C based on observed data from 

2016 to 2017. 

The development stage at time step t was equal to the integral of the development rate 
over the time, which can be calculated using the Equation (4–9): 

  𝐷𝑠,𝑡 = 𝐷𝑠,𝑡−1 + 𝐷𝑟,𝑡∆𝑡 (4 − 9) 

Where, 𝐷𝑠,𝑡 is the development stage at time step t, ∆𝑡 is time step [day]. Then, the 
length of the growth period (t) between 𝐷𝑠,𝑡= 0 and 𝐷𝑠,𝑡= 2, between 𝐷𝑠,𝑡= 1 and 
𝐷𝑠,𝑡 = 2 can be obtained. The development stages for jujube were calibrated and 
validated using observed data from 2016 to 2018 (2016 and 2017 data for calibration, 
2018 data for validation), with an error of –2 days for emergence, –3 days for flowering, 
and –3 days for maturity (see Chapter 3). In addition, the calculated jujube phenological 
lengths were 144 (DVS = 0-2) and 73 days (DVS = 1-2) for 2016, and 156 (DVS = 0-
2) and 85 days (DVS = 1-2) for 2017, respectively. 

Finally, the adjusted fitted equation based on the length of the phenological growth 
period and Landsat 8 NDVI can be implemented using the Equation (4–10). 

𝑦 =
𝑙𝑦

𝑙𝑏
𝑓(𝑁𝐷𝑉𝐼) (4 − 10) 

Where, y is the estimated yield, 𝑓(𝑁𝐷𝑉𝐼) is the fitted equation based on the yield and 
NDVI,  𝑙𝑏  (days) is the phenological length of the year in which the yield and 
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vegetation index equations are established, which is calculated based on the model. 
𝑙𝑦  is the phenological length for the year of the estimated yield. The yield estimation 
for other indices referred to the adjustment method for NDVI. 

ii. Establish and initially validate models. 

Correlations between VIs of different growth stages (independent variable) and jujube 
yields (dependent variable) were performed for the best modelling time and VI. The 
accuracy of linear, exponential, power, and logarithmic models was compared for a fit 
equation. The phenological development lengths between DVS = 1 and DVS = 2 were 
tested to improve the accuracy of the yield estimation. 

The agreement between measured and estimated yields was quantified using the 
coefficient of determination (R2). Due to the wide range of jujube yields, a normalized 
root mean square error (NRMSE, i.e., the ratio between the RMSE and the average of 
observed values), and RPD were used to evaluate estimation accuracy.  

4. Results 

4.1. Remote sensing imagery processing results 

Taking NDVI as an example, NDVI changes for July in a small jujube planting area 
(area of interest) from 2014 to 2017 are shown in Figure 4–3. Similarly, NDVI, SAVI, 
NDWI, and EVI for jujube orchards during the main fruit filling period in 2016 and 
2017 can be calculated. These VIs showed an increasing trend year by year due to the 
increasing age of the trees. Most of the pixels had a NDVI value between 0.4 and 0.8.  

 

Figure 4–3: NDVI changes in a small jujube planting area in late July from 2014 to 2017.  

0.1      0.2     0.3     0.4      0.5     0.6     0.7      0.8

19 July 2014                      22 July 2015 

24 July 2016                      27 July 2017 

NDVI 
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In addition, SAVI during the main growth season ranged from 0.3 to 0.6, NDWI 
from 0.2 to 0.4, and EVI from 0.3 to 0.5. The average values of four VIs for August 
were also slightly lower than those for July, which was consistent with the result for 
the 181 observation orchards. 

4.2. Selection of the best time for yield estimation modelling  

The trends of four Landsat VIs for 181 observations during the 2016 and 2017  
growing period are shown in Figure 4–4 and 4–5. The lack of available remote sensing 
observation data after mid-August in 2016 makes it difficult to express the dynamic 
changes of vegetation indices during the growing season for jujube orchards. Figure 
4–5 (2017 data) can reflect the vegetation index changes of jujube trees from 
emergence to early maturity. The four vegetation indices value first rose to the 
saturation point, and then showed a downward trend with the death of leaves at the 
end of the growing season. Landsat data from 24 July 2016 and 27 July 2017 presented 
higher NDVI, SAVI, NDWI, and EVI values ranging from 0.55 to 0.80, from 0.39 to 
0.57, from 0.25 to 0.43, and 0.4 to 0.63, respectively, which coincided with the early 
stage of fruit development.  

 

 

Figure 4–4: Time series of Landsat 8 vegetation indices for 181 orchards in the 2016 growth 
season. 
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Figure 4–5: Time series of Landsat 8 vegetation indices for 181 orchards in the 2017 growth 
season. 

The evolution of the two-year average coefficient of determination (R2) between the 
VIs and final jujube fruit yields obtained from 181 orchards per year is shown in 
Figure 4–6(a), 4–6(b), 4–6(c), and 4–6(d). For a single VI, the correlations between 
the four VIs and fruit yields showed the same trend, which is low before the flowering 
period (10th and 11th half-month), and strong from flowering to fruit maturity (14th to 
17th half-month). The R2 values peaked during the main fruit filling period (14th and 
15th half-months), with NDVI showing the strongest R2 value (R2 = 0.71), followed 
by SAVI (R2 = 0.59), and finally NDWI (R2 = 0.41) and EVI (R2 = 0.40).  
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Figure 4–6: Evolution of the two year average R2 for four vegetation indices versus jujube 
fruit yields based on 181 orchards from the 10th half-month (half a month) to 17th half-month. 

(a) NDVI (Normalized Difference Vegetation Index), (b) SAVI (Soil-adjusted Vegetation 
Index), (c) NDWI (Normalized Difference Water Index), (d) EVI (Enhanced Vegetation 

Index). Note that the 10th half-month was from 16 to 31 May, while the 17th half-month was 
from 1 to 15 September.  

In addition, for each VI the R2 values between maximum values, average values for 
June, July, and August, average values for July and August, the average values for the 
14th and 15th half-months based on an exponential regression equation with best 
performance compared to other linear regression equations, and yields were also 
compared (Table 4–1). The average value for the 14th and 15th half-months represented 
a good performance, with an average R2 value of 0.75 for NDVI, 0.61 for SAVI, 0.47 
for NDWI, and 0.44 for EVI. NDVI was more highly correlated with yields than the 
other VIs. Collectively, the main fruit filling period (14th and 15th half-months) was 
shown to be the best time for jujube yield estimation. The average NDVI for the 14th 
and 15th half-months can be recommended as the best VI for yield estimation, 
followed by the average SAVI of the 14th and 15th half-months. 
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Table 4–1: R2 values of the composite indices based on an exponential regression equation  

“/” represents uncalculated values because of the lack of remote sensing observations for 

June 2016.  

4.3. Yield estimation models 

Average NDVIs showed the highest R2 values (Table 4–1), so the NDVI was used 
to establish the yield estimation model. Of all observations over the two years, the 
relationship between Landsat-NDVI and jujube yields was best described by an 
exponential equation, with the strongest correlation and highest accuracy. The 
estimation accuracy using average VIs for the 14th and 15th half-months was also 
significantly higher than that using other VIs, showing the strongest agreement (R2 = 
0.77) and best accuracy (RMSE = 0.66 t ha–1) for 2017 (R2 = 0.71 and RMSE = 
0.65 t ha–1 for 2016). The modelling time was also consistent with the best time 
determined in fruit filling periods.   

4.4. Yield estimation performance 

In order to cross-validate the jujube yield estimation accuracy of the proposed 
method, scatterplots of validation results for 181 local orchards in 2016 and 2017, 
before and after phenologically adjustment, are shown in Figure 4–7.  

 

Figure 4–7: Validation results of phenology-adjusted models based on the phenological 
length (a) 2016 cross-validation, (b) 2017 cross-validation. 

Year Composite indices  
Average R2 

NDVI SAVI NDWI EVI 

2016 

Maximum index during growth season 0.69 0.51 0.34 0.40 
Average for 6th, 7th and 8th month / / / / 

Average for 7th and 8th month 0.64 0.60 0.38 0.42 
Average for 14th and 15th half-months 0.71 0.64 0.46 0.45 

2017 

Maximum 0.76 0.52 0.38 0.30 
Average for 6th, 7th and 8th month 0.59 0.50 0.36 0.39 

Average for 7th and 8th month 0.72 0.54 0.44 0.42 
Average for 14th and 15th half-months 0.78 0.58 0.48 0.42 
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The scatterplots clearly show that the phenology-adjusted model (using the 
phenological length from flowering to maturity) presents better performance than 
without adjustment. 

The details for equations and validated results are shown in Table 4–2. The 
verification results suggest that the estimation accuracy of the phenology-adjusted 
model was higher than that of the unadjusted model. The validated R2 for the adjusted 
model was increased by 0.29 and 0.28 compared to the unadjusted model for 2016 
and 2017, respectively. This suggests that NDVI is the most suitable index and the 
phenology-adjusted model presented the highest estimation precision, with the best 
validated R2 = 0.71 and 0.64, and RMSE = 0.73 (11.1%) and 0.73 t ha–1 (9.5%) for 
2016 and 2017, respectively. The RPD values for the 2016 and 2017 jujube yield 
estimation based on the adjusted model were 1.66 and 1.86, respectively, which were 
higher than the unadjusted model. 

Table 4–2: Inter-annual cross-validation details for the proposed regression models. 

Year Activity Equation R2 
RMSE 

(ha−1) 

NRMSE 

(%) 
RPD 

2016 
Without 

adjustment 
y = 1.01914 × 𝑒3.06548×𝑁𝐷𝑉𝐼  0.35 0.98 14.8 1.23 

2016 Adjustment  y =
73

85
× 1.01914 × 𝑒3.06548×𝑁𝐷𝑉𝐼 0.64 0.73 11.1 1.66 

2017 
Without 

adjustment 
y = 0.77227 × 𝑒3.33227×𝑁𝐷𝑉𝐼  0.43 1.02 13.3 1.33 

2017 Adjustment  y =
85

73
× 0.77227 × 𝑒3.33227×𝑁𝐷𝑉𝐼 0.71 0.73 9.5 1.86 

5. Discussion 

In our research, NDVI during the main fruit filling period was found to be 
significantly correlated to the jujube fruit yield in all research sites. Consistent with 
numerous studies, the current study also demonstrated high correlations between 
NDVIs during the flowering and fruit filling period and crop yields (Mkhabela et al., 
2011; Unganai and Kogan, 1998; Mkhabela and Mkhabela, 2000; Labus et al., 2002; 
Marti et al., 2007), which was considered to be the most critical period for yield 
estimation in most crops. The maximum development stages of the crop can also be 
defined by reference to their highest NDVI value to estimate crop yields (Satir and 
Berberoglu, 2016; Yousfi et al., 2016), which was usually during the fruit filling 
period. In addition, the results in this research showed that average NDVI 
during the main fruit filling period (14th and 15th half-months) allowed higher 
accuracy for jujube yield estimation than using a single NDVI, which was in 
agreement with previous studies that have reported higher correlations between 
average NDVI and crop yields. Sun et al. (2017) found that the maximum and seasonal 
cumulative vegetation indices and grape yields showed slightly lower correlations 
than the average. Mkhabela et al. (2011) found that the regression models using 
average NDVI for four decades rather than a single average decade NDVI showed 
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better estimation ability for maize yield. Hochheim and Barber (1998) also found that 
a 3 week average NDVI increased the coefficient of determination (R2) and stabilized 
spring wheat yield estimation models. Tariqul et al. (2018) found that using the mean 
Landsat-NDVI can provide the maximum R2 value for potato yield estimation. 
However, the estimation accuracy of the mean, maximum, and cumulative values of 
the vegetation indices may vary slightly due to crop varieties and growing 
environments. 

Average temperature in the 2016 growing season was significantly higher than in 
2017 (Figure 4–8). Higher average temperature usually results in a shorter growth 
period and lower yield (de Wit et al., 2019). Actual observations also showed that the 
length of jujube growing period in 2016 was significantly lower than in 2017, 
especially during the fruit filling period (12-day deviation). This difference also 
resulted in the difference between the actual average yields for 2016 and 2017. 
Therefore, the length of crop phenology development is likely to benefit crop yield 
forecasting. Hochheim and Barber (1998) also found that inter-annual differences in 
crop phenology across Census Agricultural Regions (CARs) normally varied by 2–
3 weeks and therefore required consideration when integrating data over time. The 
results in this research also confirmed that the proposed phenology-adjusted model 
significantly improved the estimation accuracy. 

 

Figure 4–8: Daily average temperature of the growth season in 2016 and 2017.  

MODIS data is more suitable for crop yield estimation at large regional scales. The 
coarser pixels of the MODIS reflectance data usually lead to higher scale errors 
(Huang et al., 2015). Most pixels usually represent mixtures of crops. Thus, separation 
of crops based on satellite-derived phenological information is likely to be challenging 
in many areas (Ozdogan, 2010). Conversely, Landsat or other satellites with higher 
spatial resolution can provide a high-precision fragmented vegetation index for yield 
estimation at field and regional scales (Bolton and Friedl, 2013), which has been 
successfully used to estimate the yield of fruit tree crops. Sun et al. (2017) used the 
cumulative NDVI from TM satellites to estimate grape yield, with relative errors 
ranging from 10 to 18% and correlations from 0.62 to 0.77. Anastasiou et al. (2018) 
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established regression models between TM satellite-derived GNDVI and table grape 
yield, showing a coefficient of determination of 0.33 and RMSE of 5382 kg ha−1. In 
addition, Rahman et al. (2018) explored the potential of WorldView-3 imagery for 
estimating the yield of mangoes based on all sampled trees from three orchards in two 
growing seasons, showing a strong correlation (R2 = 0.70). In this research, NDVI 
derived from Landsat 8 was also confirmed to be well correlated with jujube fruit 
yield. Therefore, moderate and high spatial resolution remote sensing images have 
potential for yield estimation of fruit tree crops at the field scale. It is worth noting 
that each observed orchard selected in this research is more than 45 pixels in a Landsat 
image. If the model is used to estimate the yield of an individual orchard with a small 
acreage, the estimation accuracy may be reduced because of the mixed pixels. For the 
yield estimation of an individual jujube orchard with a small area, a higher spatial 
resolution remote sensing satellite or airborne dataset may be more appropriate. 

Although the single Landsat satellite has a relatively long revisit cycle of 16 days, 
at present both Landsat 7 and 8 data can be available, which can be collected at one 
location every 8 days, depending on cloud coverage. Tariqul Islam et al. (2018) 
successfully used Landsat 5, 7, and 8 data to build a time series of NDVI for potato 
yield estimation, with a highly significant coefficient of correlation (R2 = 0.81). It is 
also possible to construct a time series of NDVI based on Landsat 7 and 8 combined 
with Sentinel satellite data for our study area to estimate jujube yields, which needs 
to be determined by further research. In addition, the combination of Landsat and 
MODIS data has also been successfully applied to improve the accuracy of crop yield 
estimation, such as maize and soybeans (Bolton and Friedl, 2013), winter wheat 
(Huang et al., 2015), and corn (Doraiswamy et al., 2005). Usually, classification of 
the study area is performed by using remote sensing images with medium or high 
spatial resolution. For large-scale jujube yield estimation, it is worth exploring a 
combined time series of MODIS and Landsat data based on the proposed phenology-
adjusted model. The 30 m land-use and crop type map based on Landsat data can be 
employed to determine the percentage of jujube areas in each MODIS image, thereby 
achieving large-scale monitoring for jujube yields. 

Note that our research assumes that the phenological length of crop growth is only 
affected by temperature. The effect of day length and other factors could be taken into 
account if necessary when studying specific species or cultivars (Holzapfel et al., 
2009). Moreover, different types of crops frequently present distinct phenological 
lengths, which can be calculated from the daily average temperature and the effective 
accumulated temperature sum, including TSUM1 (temperature sum from emergence 
to flowering) and TSUM2 (temperature sum from flowering to maturity) (de Wit et 
al., 2019). TSUM1 and TSUM2 values for some major crops are available in the 
WOFOST model software. However, the accumulated temperature required for crop 
growth could vary a lot with species and growing areas, and the phenological length 
needs to be verified by experiments. 
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6. Conclusions  

Our results showed that the main fruit filling period was the best time to estimate 
jujube yields. NDVI was better correlated with jujube yield than SAVI, NDWI, and 
EVI. The average NDVI of the 14th and 15th half-months was verified to fit best for 
yield estimation, with the highest R2. In addition, the relationship between Landsat 8-
NDVI and jujube yields was well described by an exponential function. More 
importantly, the Landsat-NDVI yield estimation model was effectively optimized by 
introducing the phenological length as a key parameter, highlighting the potential of 
combining medium spatial resolution Landsat 8 images and phenology. 
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This chapter describes the use of a forced method to assimilate a single remotely sensed LAI 

in order to improve yield estimation based on the WOFOST model calibrated in Chapter 3. 

When crop growth models are applied at regional scales, critical input parameters or state 

variables may be affected by factors such as genetics, management, and pests and diseases of 

the crop. Remote sensing technology can provide more accurate local state variables during 

crop development periods, which is helpful for improving the accuracy of crop growth 

simulations.  

Firstly, a LAI regression model based on a vegetation index obtained from Landsat 8 was 

established, built on cross-validation of 2016 and 2017 data to produce the LAI for local jujube 

orchards. Secondly, a single LAI near to the maximum vegetative development stage was 

assimilated into the calibrated WOFOST model to improve the estimation of jujube fruit yield. 

The contribution of LAI at different phenological development stages to assimilation accuracy 

was also compared and discussed. 
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1. Abstract 

Few studies have focused on yield estimation of perennial fruit tree crops by 
integrating remotely sensed information into crop models. This study presents an 
attempt to assimilate a single leaf area index (LAI) at near to maximum vegetative 
development stages derived from Landsat satellite data into a calibrated WOFOST 
model to estimate field-scale fruit yields. Normalized Difference Vegetation Index 
(NDVI) showed better performance for LAI estimation than a Soil-adjusted 
Vegetation Index (SAVI) during the fruit filling periods, with better agreement and 
accuracy (R2 = 0.79, RMSE = 0.16 m2 m–2 for 2016, and R2 = 0.88, RMSE = 
0.13 m2 m–2 for 2017). The assimilation after forcing LAI improved the yield 
estimation accuracy compared with the unassimilated simulation, showing a R2 of 
0.62 and RMSE of 0.74 t ha–1 for 2016, and R2 of 0.59 and RMSE of 0.87 t ha–1 for 
2017. The RPD value after forced assimilation was also increased from 1.13 to 1.63 
for 2016, and 1.02 to 1.56 for 2017. This research provides a strategy to employ 
remotely sensed state variables and a crop growth model to improve field-scale yield 
estimates for fruit tree crops. 

2. Introduction 

The regional-scale jujube fruit yield estimation before harvest is essential for 
national planting policies, food security, and export strategies. More importantly, 
field-scale jujube growth and yield estimates before harvest allow farmers to improve 
yield management decision-making, such as irrigation, fertilization, pruning, and 
density selection (Schulthess et al., 2013), which is also an important research topic 
for precision agriculture and forestry. Yield spatial distribution data can be used to 
determine crop and soil investments, nutrient applications, and farm trials. The spatial 
variability of yield data at a particular location can often respond to factors that affect 
yield (Oliver, 2010). 

Cropping systems modelling based on mathematical descriptions expresses and 
quantifies the crop development process as influenced by climate, soil, and 
management conditions. This is considered to be a mature method for yield estimation 
(de Wit et al., 2019). Over the past decades, such crop models have been developed 
for different crops and purposes. Prominent models are WOFOST (World Food 
Studies) (van Diepen et al., 1989), DSSAT (Decision Support System for 
Agrotechnology Transfer) (Jones et al., 2003), EPIC (Environmental Policy 
Integrated Climate) (Wang et al., 2013), STICS (multidisciplinary simulator for 
standard crops) (Brisson et al., 2003), APSIM (Agricultural Production Systems 
Simulator) (Holzworth et al., 2014), SWAP (Soil, Water, Atmosphere, and Plant) 
(Van Dam et al., 1997), AquaCrop (a crop-water productivity model) (Raes et al., 
2009), and CropSyst (Cropping Systems Simulation Model) (Stöckle et al., 2003). 
However, the spatial variation of input parameters of such models should be 
accounted for when crop yields are estimated over large regions (Jin et al., 2018). The 
uncertainties of soil properties (soil moisture and field capacity, etc.), and initial and 
canopy state variables (sowing date, initial dry weight, LAI, biomass, etc.) may affect 
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the accuracy of crop growth simulation and yield assessments (de Wit et al., 2012, 
2019).  

Remote sensing (RS) data can provide information about meteorological, vegetation, 
and soil conditions. More specifically, crop variables, such as LAI (Fang et al., 2011; 
Jiang et al., 2014; Nearing et al., 2012; Yao et al., 2015), biomass (Jin et al., 2015), 
leaf nitrogen accumulation (Huang et al., 2013), evapotranspiration (Bastiaanssen and 
Ali, 2003; Huang et al., 2015a), and soil moisture (Chakrabarti et al., 2014; Dente et 
al., 2008; Ines et al., 2013), can be observed from remote sensing data over large areas. 
Such RS data are often integrated into crop models to adjust and optimize input 
parameters and state variables in order to improve simulation results at field and 
regional scales. RS data have also been employed to accurately monitor crop 
phenology, which controls crop biomass accumulation length and distribution during 
the growth period (Sakamoto et al., 2013). In the last 15 years, new satellite data has 
become available, such as optical remote sensing data with medium and high spatial 
and temporal resolution (Sentinel-2, Landsat 8, RapidEye, WorldView-2, SPOT-6, 
GeoEye-1, Huanjing-1, Gaofen-1, et al.) and radar satellite data (ENVISAT, Sentinel-
1, ALOS, ALOS-2, RADARSAT-2, TERRASAR-X, COSMO, etc.). These provide 
more timely and reliable data for crop model inputs (Jin et al., 2018). 

Assimilation methods are often used to integrate remote sensing data into crop 
growth models, mainly including calibration methods, forcing methods, and updating 
methods (Argent, 2014; Delécolle et al., 1992; Dorigo et al., 2007; Moulin et al., 1998). 
In general, the main purpose of assimilation is to integrate canopy state variables or 
soil properties that are closely related to the crop growth process to optimize the key 
input parameters for the crop model. These methods have been employed to improve 
the estimation accuracy of crop yields at a regional scale (Chen et al., 2018; Curnel et 
al., 2011; Dente et al., 2008; Guo et al., 2017; Huang et al., 2019, 2016, 2015a, 2015b; 
Li et al., 2017; Xie et al., 2017) and at the field scale (Cheng et al., 2016; Donohue et 
al., 2018; Gilardelli et al., 2018; Silvestro et al., 2017; Jin et al., 2016). 

For calibration methods, an optimization algorithm is employed to minimize the 
difference between the remote sensing observed values and the crop model simulated 
values for re-calibrating and optimizing the input parameters of crop models. The 
main optimization algorithms include the Maximum Likelihood Solution (MLS) 
(Dente et al., 2008), simplex search algorithm (Ma et al., 2013), Least Squares Method 
(LSM) (Zhao et al., 2013), Powell's Conjugate Direction Method (PCDM) (Fang et 
al., 2011), Shuffled Complex Evolution (SCE-UA) (Wang et al., 2014), Three-
Dimensional Variational Data Assimilation (3DVAR) (Lorenc et al., 2000), Four-
Dimensional Variational Data Assimilation (4DVAR) (Trémolet, 2007), Very Fast 
Annealing Algorithm (VFSA) (Dong et al., 2013), and Particle Swarm Optimization 
Algorithm (PSO) (Liu et al., 2015). For forcing methods, the simulated value of a crop 
growth state variable is directly replaced by a remotely sensed value to improve the 
simulated result (Jin et al., 2018) This has been performed for state variables such as 
LAI, above-ground biomass (AGB), yield, transpiration (Hadria et al., 2006; K. R. 
Schneider, 2003; Yao et al., 2015; Tripathy et al., 2013), and flowering date 
(Jongschaap, 2007). The updating method focuses on continuously updating crop 
model simulation data, methods include the Kalman Filter (KF) (Aubert et al., 2003; 
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Pellenq and Boulet, 2004), Ensemble Kalman Filter (EnKF) (Crow and Wood, 2003), 
Particle Filter (PF) (Moradkhani et al., 2005), and Hierarchical Bayesian Method 
(HBM) (Plant and Holland, 2011; Sahu et al., 2009). The correct orthogonal 
decomposition technique and the aggregate square root filtering method in EnKF, 
4DVAR, PF, and 4DVAR (POD4DVAR) are used to combine the state variables of 
the remote sensing data and the crop model with the estimated soil moisture, AGB, 
LAI, and yield (Bolten et al., 2010; de Wit and van Diepen, 2007; Li et al., 2014). In 
short, it is generally believed that the yield estimation based on crop models can be 
improved by combining biophysical variables from remotely sensed data during the 
growing period (de Wit et al., 2012).  

However, almost all crop growth models and assimilation methods have been 
employed and improved for annual crops. Few studies have focused on production 
simulation and assimilation of perennial fruit trees. Although existing research has 
confirmed that a crop growth model (WOFOST) can be used to simulate jujube 
growth in field experiments by calibrating input parameters (Bai et al., 2019), the 
difference in actual tree age and planting density may also lead to uncertainties. This 
difference shows a strong influence on jujube fruit yield. The main objective of this 
study was to use a remote sensing assimilation method to reduce the uncertainty of 
state variables associated with tree age and planting density and improve field-scale 
yield estimation accuracy. To accomplish this goal, the following specific objectives 
were defined: 

i. To explore whether a single LAI (near to the maximum vegetative development 
stages) obtained from Landsat 8 with medium spatial resolution can improve the 
field-scale yield simulation accuracy for a fruit tree crop;  

ii. To evaluate the assimilation performance by comparing the yield estimation 
results before and after forcing LAI, as well as to explore and compare the 
accuracy of yield estimation of forcing LAI at different phenological periods. 

3. Research data and methods  

3.1. Research data 

The available Landsat 8 data from near to the maximum vegetative development 
stages were used to extract vegetation indices (VI), see Section 3.3 in Chapter 2. The 
measured LAI in 55 local orchards were used to calibrate and validate the LAI-VI 
regression model, see Section 3.2.2 in Chapter 2. Yield data for 181 orchards were 
used to evaluate the fruit yield estimation performance of the proposed forcing method 
at the local scale, see Section 3.2.1 in Chapter 2. 

3.2. Research framework 

The core of our strategy was to force a single LAI at near to the maximum vegetative 
development stages from Landsat 8 remote sensing data into the WOFOST model to 
improve jujube fruit yield estimation accuracy, and compare the estimation 
performance before and after the forced LAI. The research included three key steps:  

(i) Model calibration for fruit yield estimation without forcing LAI, see Chapter 3. 
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(ii) A single LAI derived by regression from Landsat data at a near-maximum 
vegetative stage and forced into the calibrated WOFOST model to improve fruit yield 
estimation. 

(iii) An assessment of the fruit yield estimation accuracy before and after forcing 
LAI with a discussion about the developmental stage at which the forcing is performed. 

3.3. Forcing remotely sensed LAI and yield estimation 

Based on LAI data from 55 monitored orchards, the accuracy of the NDVI-LAI or 
SAVI-LAI regression model for 2016 and 2017 was cross-validated. The validated 
VI-LAI model was employed to estimate LAI values for 181 orchards. Since 
maximum LAI played a dominant role in improving assimilation accuracy compared 
with LAI during other phenological stages (Huang et al., 2015b), LAI derived from 
Landsat 8 data at a near-peak vegetative stages (24 July 2016 and 27 July 2017) was 
forced into the calibrated WOFOST model to replace the state variable. The replaced 
value of this state variable determines the growth rate of the state variables at the next 
time step. Therefore, it was assumed that the final simulated yield was close to the 
actual value (Tripathy et al., 2013).  

3.4. Accuracy evaluation 

The coefficient of determination (R2) was used to evaluate the agreement between 
estimated or simulated values and measured values. The root mean square error 
(RMSE) and a normalized root mean square error (NRMSE) were employed to 
quantify the estimation accuracy. The relative bias error (RBE, %), the mean absolute 
error (MAE, %), and RPD were also used to evaluate estimation performance, RBE 
and MAE are shown in Equations (5–1) and (5–2), respectively: 

RBE(%) =
ỹi − yi
yi

× 100 (5 − 1) 

MAE(%) =
∑ |ỹi − yi|
n
i=1

n × y̅i 
× 100 (5 − 2) 

Where ỹi was the estimated or simulated values, yi was the observed or measured 
values, y̅i was the mean of the observed or measured values, and n was the number 
of samples.  

4. Results 

4.1. Remotely sensed LAI 

In the calibration or validation sets, the LAI regression results using NDVI were 
higher than using SAVI. The best regression equation for LAI and NDVI is shown in 
Table 5–1. For the year 2016, calibrated R2 and RMSE were 0.89 and 0.12 m2 m–2 
(6.8%) for NDVI, 0.79 and 0.17 m2 m–2 (9.7%) for SAVI, respectively, and the 
validated R2 and RMSE were 0.79 and 0.16 m2 m–2 (10.1%) for NDVI, 0.51 and 
0.25 m2 m–2 (15%) for SAVI, respectively. For 2017, NDVI also showed better LAI 
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estimation performance, with a validated R2 of 0.88 and RMSE of 0.13 m2 m–2 (7.3%). 
Previous studies have also confirmed that NDVI may perform better for estimating 
LAI than SAVI when vegetation coverage is high (Huang et al., 2015b). 

Table 5–1: Leaf Area Index regression model (cross-validation of 2016 versus 2017). 

Year Equation Calibration Validation 

Accuracy  R2 
RMSE 

(m2 m–2) 
R2 

RMSE 

(m2 m–2) 

2016 LAI = 0.1115 × e4.00316×NDVI    0.89 0.12 (6.8%) 0.79 0.16 (10.1%) 

 LAI = 0.1367 × e5.33345×SAVI    0.79 0.17 (9.7%) 0.51 0.25 (15.4) 

2017 LAI = 0.1417 × e3.63713×NDVI   0.80 0.16 (9.9%) 0.88 0.13 (7.3%) 

 LAI = 0.2733 × e3.81461×SAVI    0.65 0.21 (13.0) 0.72 0.21 (12.0%) 

Brackets expressed the percentage of RMSE to the measured average LAI. 

The scatter plots of the 2016 and 2017 cross-validation results based on the NDVI 
regression equation are shown in Figure 5–1, with good estimations for LAI (RPD = 
2.22 and 2.93 for 2016 and 2017, respectively). 

 

Figure 5–1: Calibrated and validated Leaf Area Index inversion models based on 
Normalized Difference Vegetation Index. SD = Standard deviation, RPD = SD/RMSE.  

4.2. Yield estimation performance based on forcing method 

4.2.1. Above-ground biomass simulation after forcing LAI 

Taking the third orchard of LAI observations as an example, the simulated dry 
weight of leaves, stems, and total above-ground biomass before and after forcing LAI 
are shown in Figure 5–2. The values of all growth parameters after forcing became 
lower than their respective values before forcing. The fruit yield and LAI at forcing 
were reduced from 7,938 to 6,610 kg ha−1 and 2.31 to 1.81 m2 m−2, respectively. With 
these corrections in modelled growth parameters after assimilation, the actual fruit 
yield per orchard was re-estimated. 
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Figure 5–2: Simulated dry weight of leaves (WLV), dry weight of stems (WST), dry weight 
of total above-ground biomass (TAGP), and leaf area index (LAI) before and after forcing. 

4.2.2. Yield estimation after forcing LAI 

For the forcing method, the mean absolute error (MAE, %) of simulated yields 
versus measured values was 9.2% and 10.7% for 2016 and 2017, respectively 
(Figure 5–3). The relative percentage difference (RBE, %) of more than half of the 
samples was between –10% and 10% (62% for 2016 and 54% for 2017). More than 
90% of the samples showed an estimated deviation between –20% and 20%  

 

Figure 5–3: Relative percentage difference for fruit yield estimation for 2016(a) and 
2017(b). MAE = Mean absolute error. 

4.3. Comparison of yield estimation performance before and 
after forcing LAI 

The scatterplots before and after forcing remotely-sensed LAI versus measured 
values are shown in Figure 5–4. The simulated yield without forcing LAI clearly 
deviated from the actual value. The results also indicated that there was still a high 
error in setting the default TDWI value for the same aged jujube orchards. The 
simulation performance of the model was significantly improved when the LAI at near 
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to the maximum vegetative development stages was forced into the calibrated 
WOFOST model. However, for the assimilation methods, actual yields were 
overestimated and underestimated at low yields and high yields, respectively. The 
reason for this may be that the CO2 assimilation rate without forcing LAI was affected 
by tree age, a factor that was not considered in this study, which led to the 
overestimation of the yield at low tree age and underestimation at high tree age. 

 

Figure 5–4: (a) Estimated versus measured yields of assimilation versus without 
assimilation. (a) 2016, (b) 2017. 

Figure 5–5 shows the distributions of RBE (%) values before and after forcing the 
remotely sensed LAI. The forcing method resulted in RBE that were distributed more 
centrally around zero compared to the simulation without assimilation. Only two 
samples were overestimated and underestimated more than 30% in 2016 and 2017, 
respectively. The results also indicate the better performance of the assimilation-based 
estimation in reproducing spatial distribution for jujube yields.  

 

Figure 5–5: Frequency distributions (%) of relative bias error (RBE; %) resulting from the 
comparison between observed and simulated yields. RBE% = 0% (red line) represents the 

perfect estimation. Bin size is equal to 5. 
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The positive results achieved by the assimilation method were also confirmed by 
the indices of agreement and error between simulated and observed yields (Table 5–
2). The assimilation method showed the better performance, with a R2 of 0.62 and 
RMSE of 0.74 t ha–1 (11.3%) for 2016, and a R2 of 0.59 and RMSE of 0.87 t ha–1 
(11.3%) for 2017 compared to without assimilation (R2 = 0.22, RMSE = 1.07 t ha–1 
(16.3%) for 2016 and R2 = 0.04, RMSE = 1.33 t ha–1 (17.2%) for 2017). The RPD 
values after forcing assimilation were also increased by 44% and 53% for 2016 and 
2017, respectively. 

Table 5–2: Accuracy comparison before and after assimilation 

Estimation method Year R2 
RMSE (%) 

t ha–1 
RPD 

Without assimilation 
2016 0.22 1.07 (16.3) 1.13 
2017 0.04 1.33 (17.2) 1.02 

Forcing LAI (assimilation) 
2016 0.62 0.74 (11.3) 1.63 

2017 0.59 0.87 (11.3) 1.56 

a. Numbers in brackets are percentages of root mean square error (RMSE) to average actual 
yields. LAI = leaf area index, RPD = standard deviation/RMSE. 

4.4. Selection of the phenological periods of forced LAI  

The accuracy of estimated jujube fruit yields using LAI from different phenological 
periods in 2017 is shown in Table 5–3. The LAI in the fruit filling period has the 
highest contribution to the estimation accuracy of forced assimilation, followed by the 
white ripening period, then the red ripening period, and finally the new leaf and stem 
development period. The LAI at the fruit filling and white ripening stages could be 
closer to the maximum LAI. Therefore, forcing at this period obtains a relatively high 
yield evaluation accuracy. Previous studies have proved that the heading LAI plays a 
key role in improving assimilation accuracy compared with LAI during other 
phenological stages (Huang et al., 2015b; Tripathy et al., 2013). In addition, jujube 
yield is highly correlated with the maximum LAI (Yang et al., 2012).  

Table 5–3: Accuracy of the yield estimation using LAI from different phenological periods 
in 2017. 

Phenological stage R2 
RMSE (%) 

t ha–1 
RPD 

Leaf and stem development (9 June) / 1.67 (21.6) 0.81 

Fruit filling (27 July) 0.59 0.87 (11.3) 1.56 

White maturity (12 August) 0.54 0.92 (11.9) 1.48 

Red ripening maturity (28 August) 0.35 1.09 (14.1) 1.25 
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5. Discussion 

Previous studies have reported the use of remote sensing (Landsat 7 and 8) 
vegetation indices to estimate fruit crop yields at field scale, showing low relative 
errors from 6.9% to 11.5% for grape yield estimation (Sun et al., 2017). Rahman et al. 
(2018) also explored the potential of WorldView-3 imagery for predicting the yield 
of mangoes, showing a R2 value ranging from 0.79–0.93 and RMSE from 7.9–
9.1 kg tree–1 for three orchards. However, phenology information should be 
considered when performing crop yield estimations, and a time series of VI could be 
useful for crop yield forecasting (Yang et al., 2012). Although remote sensing 
satellites with medium and high spatial resolution have the potential to be used for 
field-scale yield estimation, it is a challenge to construct a time series of vegetation 
indices for the consideration of phenological information due to low temporal 
resolution. In contrast, crop growth models can take into account the growth process 
of the phenology. However, for the estimation method using the WOFOST model, the 
fruit yields of most jujube orchards were overestimated in 2017. The main reason may 
be that uncertainty in strongly varying tree age and planting densities may be 
introduced into the model structure, which may lead to a simulated yield bias for 
different orchards.  

An approach forcing the LAI at near the peak vegetative stage into a calibrated 
WOFOST model was attempted to reduce the uncertainty and simulate the yield for a 
perennial jujube fruit tree crop at the field scale, showing better performance. Actual 
yields were slightly overestimated and underestimated at low and high values in 2016 
and 2017, respectively. Two reasons may cause this deviation. The first may be that 
the CO2 assimilation rate increased with the increase of tree age. The CO2 assimilation 
parameters are set to fixed values in this research, which can lead to overestimation 
of yield at low tree age and underestimation at high tree age. The second reason may 
be the genetic varieties of phenological stages and crop characteristics, such as special 
leaf area (SLATB) and CO2 assimilation parameters, thereby influencing potential 
yield. These parameters are expected to be further optimized by the assimilation of 
remote sensing information.  

Assimilation accuracy based on the forcing method mainly relied on the accuracy 
of the state variables obtained by remote sensing. For Landsat satellite data with a 
resolution of 30 m, mixed pixels are inevitably present in the process of inverting LAI 
and estimating yields. In particular, the pixels may be mixed with shelter forest foliage 
and roads at the edge of the orchard, resulting in a decrease in the accuracy of the 
observed LAI. These errors from remote sensing observation data may be introduced 
into crop models when the assimilation is completed. Remote sensing data with higher 
spatial resolution can provide high-precision state variable estimation and can be 
recommended for inverting state variables to improve the accuracy of the observed 
variables. In addition, the combination of higher spatial resolution satellite data and 
Landsat satellite data is also expected to improve LAI inversion accuracy and yield 
estimation capabilities. Although calibration and updating methods with greater 
flexibility can minimize the simulation error and the remote sensing inversion error, 
they require sufficient observation points (Jin et al., 2018). High spatial resolution 
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satellites typically have low temporal resolution and it is often challenging to obtain 
more efficient observations. Therefore, fully exploiting the potential of single 
observational data is valuable for the remote sensing assimilation of fruit tree crops 
planted in a specific region. 

In this study, LAI was assimilated into the crop model as the only state variable. 
Although LAI is an important indicator for canopy light interception and CO2 

assimilation, a single LAI does not accurately express the effect of effective radiation, 
temperature, nitrogen, and soil moisture content on jujube yield (Huang et al., 2015b). 
LAI, biomass, leaf nitrogen accumulation, evapotranspiration, and soil moisture 
obtained from remote sensing data can be expected to assimilate into the calibrated 
WOFOST model to optimize state variables and improve the accuracy of simulated 
jujube yields. In addition, the WOFOST model is carried out using a potential 
production simulation; the effects of other factors such as water stress are not 
considered. Temporal evolution of LAI and final yields can change with irrigation 
management and soil properties in different regions. The state variable SM (soil 
moisture content) can be recommended to respond to water transport conditions in 
rain-fed or irrigated jujube orchards when the model is applied in a water-limited 
production simulation (de Wit et al., 2019). Moreover, differences in plant diseases 
and pests, nitrogen stress, and jujube genetic parameters are not considered in the 
study. These several limiting factors can occur in the field, so that the external 
conditions are beyond the boundary conditions of the effective model range and 
influence the yield estimation accuracy when carrying out data assimilation (Jin et al., 
2018). How to respond to these factors in the model will be a valuable avenue of 
research.  

6. Conclusions  

In this study, the WOFOST process-based growth model was tested to estimate the 
jujube fruit yield at a field scale. The modelling accuracy was enhanced by 
incorporating a single remotely sensed LAI at near to the maximum vegetative 
development period from Landsat 8 data into the growth model. Results indicated that 
the proposed method may be promising when using long-revisit cycle and medium 
spatial resolution remote sensing satellites for assimilation research. Note that the 
proposed method shows a slight deviation in high-yield and low-yield orchards, which 
may occur because the effect of tree age on CO2 assimilation parameters and specific 
leaf parameters is not considered. In addition, when the model is applied to orchards 
with different pruning schemes, the CO2 assimilation parameters may also need to be 
re-corrected. In future research work, the following points could be investigated: 

(i) Assimilation of remotely sensed soil moisture content into the WOFOST model 
to determine the effects of irrigation and rainfall on the simulation results.  

(ii) The influence of tree age and shape on CO2 assimilation parameters and the use 
of remote sensing data to optimize these parameters are worth exploring in order to 
improve simulation accuracy in high-yield and low-yield jujube orchards. 
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(iii) Whether assimilating a time series remotely sensed state variables can obtain 
better fruit yield prediction performance. 

7. References  

Argent, R., 2014. Land Surface Observation, Modelling and Data Assimilation. Environ. 

Model. Softw. 57, 248–249. https://doi.org/10.1016/j.envsoft.2014.02.009 

Aubert, D., Loumagne, C., Oudin, L., 2003. Sequential assimilation of soil moisture and 

streamflow data in a conceptual rainfall - Runoff model. J. Hydrol. 280, 145–161. 

https://doi.org/10.1016/S0022-1694(03)00229-4 

Bai, T., Zhang, N., Chen, Y., Mercatoris, B., 2019. Assessing the performance of the WOFOST 

model in simulating jujube fruit tree growth under different irrigation regimes. Sustain. 

11. https://doi.org/10.3390/su11051466 

Bastiaanssen, W.G.M., Ali, S., 2003. A new crop yield forecasting model based on satellite 

measurements applied across the Indus Basin, Pakistan. Agric. Ecosyst. Environ. 94, 

321–340. https://doi.org/10.1016/S0167-8809(02)00034-8 

Bolten, J.D., Crow, W.T., Jackson, T.J., Zhan, X., Reynolds, C.A., 2010. Evaluating the 

Utility of Remotely Sensed Soil Moisture Retrievals for Operational Agricultural 

Drought Monitoring. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 3, 57–66. 

https://doi.org/10.1109/JSTARS.2009.2037163 

Brisson, N., Gary, C., Justes, E., Roche, R., Mary, B., Ripoche, D., Zimmer, D., Sierra, J., 

Bertuzzi, P., Burger, P., Bussière, F., Cabidoche, Y.M., Cellier, P., Debaeke, P., 

Gaudillère, J.P., Hénault, C., Maraux, F., Seguin, B., Sinoquet, H., 2003. An overview 

of the crop model STICS, in: European Journal of Agronomy. pp. 309–332. 

https://doi.org/10.1016/S1161-0301(02)00110-7 

Chakrabarti, S., Bongiovanni, T., Judge, J., Zotarelli, L., Bayer, C., 2014. Assimilation of 

SMOS soil moisture for quantifying drought impacts on crop yield in agricultural 

regions. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 7, 3867–3879. 

https://doi.org/10.1109/JSTARS.2014.2315999 

Chen, Y., Zhang, Z., Tao, F., 2018. Improving regional winter wheat yield estimation through 

assimilation of phenology and leaf area index from remote sensing data. Eur. J. Agron. 

101, 163–173. https://doi.org/10.1016/j.eja.2018.09.006 

Cheng, Z., Meng, J., Wang, Y., 2016. Improving spring maize yield estimation at field scale 

by assimilating time-series HJ-1 CCD data into the WOFOST model using a new method 

with fast algorithms. Remote Sens. 8. https://doi.org/10.3390/rs8040303 

Crow, W.T., Wood, E.F., 2003. The assimilation of remotely sensed soil brightness 

temperature imagery into a land surface model using Ensemble Kalman filtering: A case 

study based on ESTAR measurements during SGP97. Adv. Water Resour. 26, 137–149. 

https://doi.org/10.1016/S0309-1708(02)00088-X 

Curnel, Y., de Wit, A.J.W., Duveiller, G., Defourny, P., 2011. Potential performances of 

remotely sensed LAI assimilation in WOFOST model based on an OSS Experiment. 

Agric. For. Meteorol. 151, 1843–1855. https://doi.org/10.1016/j.agrformet.2011.08.002 

de Wit, A., Boogaard, H., Fumagalli, D., Janssen, S., Knapen, R., van Kraalingen, D., Supit, 

I., van der Wijngaart, R., van Diepen, K., 2019. 25 years of the WOFOST cropping 

systems model. Agric. Syst. 168, 154–167. https://doi.org/10.1016/j.agsy.2018.06.018 



Improving jujube fruit yield estimation by assimilating a remotely sensed LAI into WOFOST model 

108 

de Wit, A., Duveiller, G., Defourny, P., 2012. Estimating regional winter wheat yield with 

WOFOST through the assimilation of green area index retrieved from MODIS 

observations. Agric. For. Meteorol. 164, 39–52. 

https://doi.org/10.1016/j.agrformet.2012.04.011 

de Wit, A.J.W., van Diepen, C.A., 2007. Crop model data assimilation with the Ensemble 

Kalman filter for improving regional crop yield forecasts. Agric. For. Meteorol. 146, 38–

56. https://doi.org/10.1016/j.agrformet.2007.05.004 

Delécolle, R., Maas, S.J., Guérif, M., Baret, F., 1992. Remote sensing and crop production 

models: present trends. ISPRS J. Photogramm. Remote Sens. 47, 145–161. 

https://doi.org/10.1016/0924-2716(92)90030-D 

Dente, L., Satalino, G., Mattia, F., Rinaldi, M., 2008. Assimilation of leaf area index derived 

from ASAR and MERIS data into CERES-Wheat model to map wheat yield. Remote 

Sens. Environ. 112, 1395–1407. https://doi.org/10.1016/j.rse.2007.05.023 

Dong, Y., Zhao, C., Yang, G., Chen, L., Wang, J., Feng, H., 2013. Integrating a very fast 

simulated annealing optimization algorithm for crop leaf area index variational 

assimilation. Math. Comput. Model. 58, 877–885. 

https://doi.org/10.1016/j.mcm.2012.12.013 

Donohue, R.J., Lawes, R.A., Mata, G., Gobbett, D., Ouzman, J., 2018. Towards a national, 

remote-sensing-based model for predicting field-scale crop yield. F. Crop. Res. 227, 79–

90. https://doi.org/10.1016/j.fcr.2018.08.005 

Dorigo, W.A., Zurita-Milla, R., de Wit, A.J.W., Brazile, J., Singh, R., Schaepman, M.E., 

2007. A review on reflective remote sensing and data assimilation techniques for 

enhanced agroecosystem modelling. Int. J. Appl. Earth Obs. Geoinf. 9, 165–193. 

https://doi.org/10.1016/j.jag.2006.05.003 

Fang, H., Liang, S., Hoogenboom, G., 2011. Integration of MODIS LAI and vegetation index 

products with the CSM-CERES-Maize model for corn yield estimation. Int. J. Remote 

Sens. 32, 1039–1065. https://doi.org/10.1080/01431160903505310 

Gilardelli, C., Confalonieri, R., Cappelli, G.A., Bellocchi, G., 2018. Sensitivity of WOFOST-

based modelling solutions to crop parameters under climate change. Ecol. Modell. 368, 

1–14. https://doi.org/10.1016/j.ecolmodel.2017.11.003 

Guo, C., Zhang, L., Zhou, X., Zhu, Y., Cao, W., Qiu, X., Cheng, T., Tian, Y., 2017. Integrating 

remote sensing information with crop model to monitor wheat growth and yield based 

on simulation zone partitioning. Precis. Agric. 1–24. https://doi.org/10.1007/s11119-

017-9498-5 

Hadria, R., Duchemin, B., Lahrouni, A., Khabba, S., Er-Raki, S., Dedieu, G., Chehbouni, A.G., 

Olioso, A., 2006. Monitoring of irrigated wheat in a semi-arid climate using crop 

modelling and remote sensing data: Impact of satellite revisit time frequency. Int. J. 

Remote Sens. 27, 1093–1117. https://doi.org/10.1080/01431160500382980 

Holzworth, D.P., Huth, N.I., deVoil, P.G., Zurcher, E.J., Herrmann, N.I., McLean, G., 

Chenu, K., van Oosterom, E.J., Snow, V., Murphy, C., Moore, A.D., Brown, H., 

Whish, J.P.M., Verrall, S., Fainges, J., Bell, L.W., Peake, A.S., Poulton, P.L., 

Hochman, Z., Thorburn, P.J., Gaydon, D.S., Dalgliesh, N.P., Rodriguez, D., Cox, H., 

Chapman, S., Doherty, A., Teixeira, E., Sharp, J., Cichota, R., Vogeler, I., Li, F.Y., 

Wang, E., Hammer, G.L., Robertson, M.J., Dimes, J.P., Whitbread, A.M., Hunt, J., van 

Rees, H., McClelland, T., Carberry, P.S., Hargreaves, J.N.G., MacLeod, N., 



Chapter 5. Improving jujube fruit yield estimation based on forcing method 

109 

McDonald, C., Harsdorf, J., Wedgwood, S., Keating, B.A., 2014. APSIM - Evolution 

towards a new generation of agricultural systems simulation. Environ. Model. Softw. 

62, 327–350. https://doi.org/10.1016/j.envsoft.2014.07.009 

Huang, J., Ma, H., Sedano, F., Lewis, P., Liang, S., Wu, Q., Su, W., Zhang, X., Zhu, D., 2019. 

Evaluation of regional estimates of winter wheat yield by assimilating three remotely 

sensed reflectance datasets into the coupled WOFOST–PROSAIL model. Eur. J. Agron. 

102, 1–13. https://doi.org/10.1016/j.eja.2018.10.008 

Huang, J., Ma, H., Su, W., Zhang, X., Huang, Y., Fan, J., Wu, W., 2015a. Jointly 

Assimilating MODIS LAI and et Products into the SWAP Model for Winter Wheat 

Yield Estimation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 8, 4060–4071. 

https://doi.org/10.1109/JSTARS.2015.2403135 

Huang, J., Sedano, F., Huang, Y., Ma, H., Li, X., Liang, S., Tian, L., Zhang, X., Fan, J., Wu, 

W., 2016. Assimilating a synthetic Kalman filter leaf area index series into the WOFOST 

model to improve regional winter wheat yield estimation. Agric. For. Meteorol. 216, 

188–202. https://doi.org/10.1016/j.agrformet.2015.10.013 

Huang, J., Tian, L., Liang, S., Ma, H., Becker-Reshef, I., Huang, Y., Su, W., Zhang, X., Zhu, 

D., Wu, W., 2015b. Improving winter wheat yield estimation by assimilation of the leaf 

area index from Landsat TM and MODIS data into the WOFOST model. Agric. For. 

Meteorol. 204, 106–121. https://doi.org/10.1016/j.agrformet.2015.02.001 

Huang, Y., Zhu, Y., Li, W., Cao, W., Tian, Y., 2013. Assimilating Remotely Sensed 

Information with the WheatGrow Model Based on the Ensemble Square Root Filter 

forImproving Regional Wheat Yield Forecasts. Plant Prod. Sci. 16, 352–364. 

https://doi.org/10.1626/pps.16.352 

Ines, A.V.M., Das, N.N., Hansen, J.W., Njoku, E.G., 2013. Assimilation of remotely sensed 

soil moisture and vegetation with a crop simulation model for maize yield prediction. 

Remote Sens. Environ. 138, 149–164. https://doi.org/10.1016/j.rse.2013.07.018 

Jiang, Z., Chen, Z., Chen, J., Liu, J., Ren, J., Li, Z., Sun, L., Li, H., 2014. Application of crop 

model data assimilation with a particle filter for estimating regional winter wheat 

yields. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 7, 4422–4431. 

https://doi.org/10.1109/JSTARS.2014.2316012 

Jin, X., Kumar, L., Li, Z., Feng, H., Xu, X., Yang, G., Wang, J., 2018. A review of data 

assimilation of remote sensing and crop models. Eur. J. Agron. 

https://doi.org/10.1016/j.eja.2017.11.002 

Jin, X., Kumar, L., Li, Z., Xu, X., Yang, G., Wang, J., 2016. Estimation of winter wheat 

biomass and yield by combining the aquacrop model and field hyperspectral data. 

Remote Sens. 8. https://doi.org/10.3390/rs8120972 

Jin, X., Yang, G., Xu, X., Yang, H., Feng, H., Li, Z., Shen, J., Zhao, C., Lan, Y., 2015. 

Combined multi-temporal optical and radar parameters for estimating LAI and biomass 

in winter wheat using HJ and RADARSAR-2 data. Remote Sens. 7, 13251–13272. 

https://doi.org/10.3390/rs71013251 

Jones, J.W., Hoogenboom, G., Porter, C.H., Boote, K.J., Batchelor, W.D., Hunt, L.A., Wilkens, 

P.W., Singh, U., Gijsman, A.J., Ritchie, J.T., 2003. The DSSAT cropping system model, 

in: European Journal of Agronomy. pp. 235–265. https://doi.org/10.1016/S1161-

0301(02)00107-7 



Improving jujube fruit yield estimation by assimilating a remotely sensed LAI into WOFOST model 

110 

Jongschaap, R.E.E., 2007. Sensitivity of a crop growth simulation model to variation in LAI 

and canopy nitrogen used for run-time calibration. Ecol. Modell. 200, 89–98. 

https://doi.org/10.1016/j.ecolmodel.2006.07.015 

Li, H., Chen, Z., Liu, G., Jiang, Z., Huang, C., 2017. Improving winter wheat yield estimation 

from the CERES-Wheat model to assimilate leaf area index with different assimilation 

methods and spatio-temporal scales. Remote Sens. 9. https://doi.org/10.3390/rs9030190 

Li, Y., Zhou, Q., Zhou, J., Zhang, G., Chen, C., Wang, J., 2014. Assimilating remote sensing 

information into a coupled hydrology-crop growth model to estimate regional maize 

yield in arid regions. Ecol. Modell. 291, 15–27. 

https://doi.org/10.1016/j.ecolmodel.2014.07.013 

Liu, F., Liu, X., Zhao, L., Ding, C., Jiang, J., Wu, L., 2015. The Dynamic Assessment Model 

for Monitoring Cadmium Stress Levels in Rice Based on the Assimilation of Remote 

Sensing and the WOFOST Model. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 8, 

1330–1338. https://doi.org/10.1109/JSTARS.2014.2371058 

Lorenc, A.C., Ballard, S.P., Bell, R.S., Ingleby, N.B., Andrews, P.L.F., Barker, D.M., Bray, 

J.R., Clayton, A.M., Dalby, T., Li, D., Payne, T.J., Saunders, F.W., 2000. The Met. 

Office global three-dimensional variational data assimilation scheme. Q. J. R. Meteorol. 

Soc. 126, 2991–3012. https://doi.org/10.1256/smsqj.57001 

Ma, G., Huang, J., Wu, W., Fan, J., Zou, J., Wu, S., 2013. Assimilation of MODIS-LAI into 

the WOFOST model for forecasting regional winter wheat yield. Math. Comput. Model. 

58, 634–643. https://doi.org/10.1016/j.mcm.2011.10.038 

Moradkhani, H., Hsu, K.L., Gupta, H., Sorooshian, S., 2005. Uncertainty assessment of 

hydrologic model states and parameters: Sequential data assimilation using the particle 

filter. Water Resour. Res. 41, 1–17. https://doi.org/10.1029/2004WR003604 

Moulin, S., Bondeau, A., Delecolle, R., 1998. Combining agricultural crop models and 

satellite observations: From field to regional scales. Int. J. Remote Sens. 

https://doi.org/10.1080/014311698215586 

Nearing, G.S., Crow, W.T., Thorp, K.R., Moran, M.S., Reichle, R.H., Gupta, H. V., 2012. 

Assimilating remote sensing observations of leaf area index and soil moisture for wheat 

yield estimates: An observing system simulation experiment. Water Resour. Res. 48. 

https://doi.org/10.1029/2011WR011420 

Oliver. M. A. Geostatistical Applications for Precision Agriculture, 2010. , Geostatistical 

Applications for Precision Agriculture. https://doi.org/10.1007/978-90-481-9133-8 

Pellenq, J., Boulet, G., 2004. A methodology to test the pertinence of remote-sensing data 

assimilation into vegetation models for water and energy exchange at the land surface. 

Agronomie 24, 197–204. https://doi.org/10.1051/agro:2004017 

Plant, N.G., Holland, K.T., 2011. Prediction and assimilation of surf-zone processes using a 

Bayesian network. Part II: Inverse models. Coast. Eng. 58, 256–266. 

https://doi.org/10.1016/j.coastaleng.2010.11.002 

Raes, D., Steduto, P., Hsiao, T.C., Fereres, E., 2009. Aquacrop-The FAO crop model to 

simulate yield response to water: II. main algorithms and software description. Agron. J. 

101, 438–447. https://doi.org/10.2134/agronj2008.0140s 

Rahman, M.M., Robson, A., Bristow, M., 2018. Exploring the potential of high resolution 

worldview-3 Imagery for estimating yield of mango. Remote Sens. 10. 

https://doi.org/10.3390/rs10121866 



Chapter 5. Improving jujube fruit yield estimation based on forcing method 

111 

Sahu, S.K., Yip, S., Holland, D.M., 2009. Improved space-time forecasting of next day 

ozone concentrations in the eastern US. Atmos. Environ. 43, 494–501. 

https://doi.org/10.1016/j.atmosenv.2008.10.028 

Sakamoto, T., Gitelson, A.A., Arkebauer, T.J., 2013. MODIS-based corn grain yield 

estimation model incorporating crop phenology information. Remote Sens. Environ. 131, 

215–231. https://doi.org/10.1016/j.rse.2012.12.017 

Schneider, K., 2003. Assimilating remote sensing data into a land-surface process model. Int. 

J. Remote Sens. 24, 2959–2980. https://doi.org/10.1080/01431160210154803 

Schulthess, U., Timsina, J., Herrera, J.M., McDonald, A., 2013. Mapping field-scale yield gaps 

for maize: An example from Bangladesh. F. Crop. Res. 143, 151–156. 

https://doi.org/10.1016/j.fcr.2012.11.004 

Silvestro, P.C., Pignatti, S., Pascucci, S., Yang, H., Li, Z., Yang, G., Huang, W., Casa, R., 

2017. Estimating wheat yield in China at the field and district scale from the assimilation 

of satellite data into the Aquacrop and simple algorithm for yield (SAFY) models. 

Remote Sens. 9. https://doi.org/10.3390/rs9050509 

Stöckle, C.O., Donatelli, M., Nelson, R., 2003. CropSyst, a cropping systems simulation model, 

in: European Journal of Agronomy. pp. 289–307. https://doi.org/10.1016/S1161-

0301(02)00109-0 

Sun, L., Gao, F., Anderson, M.C., Kustas, W.P., Alsina, M.M., Sanchez, L., Sams, B., McKee, 

L., Dulaney, W., White, W.A., Alfieri, J.G., Prueger, J.H., Melton, F., Post, K., 2017. 

Daily mapping of 30 m LAI and NDVI for grape yield prediction in California vineyards. 

Remote Sens. 9. https://doi.org/10.3390/rs9040317 

Trémolet, Y., 2007. Model-error estimation in 4D-Var. Q. J. R. Meteorol. Soc. 133, 1267–

1280. https://doi.org/10.1002/qj.94 

Tripathy, R., Chaudhari, K.N., Mukherjee, J., Ray, S.S., Patel, N.K., Panigrahy, S., Singh 

Parihar, J., 2013. Forecasting wheat yield in Punjab state of India by combining crop 

simulation model WOFOST and remotely sensed inputs. Remote Sens. Lett. 4, 19–28. 

https://doi.org/10.1080/2150704X.2012.683117 

Van Dam, J.C., Wesseling, J.G., Feddes, R. a., Kabat, P., Walsum, P.E.V. Van, Diepen, C. a. 

Van, 1997. Theory of SWAP version 2.0: Softw. Man. 153. 

van Diepen, C.A., Wolf, J., van Keulen, H., Rappoldt, C., 1989. WOFOST: a simulation model 

of crop production. Soil Use Manag. 5, 16–24. https://doi.org/10.1111/j.1475-

2743.1989.tb00755.x 

Wang, H., Zhu, Y., Li, W., Cao, W., Tian, Y., 2014. Integrating remotely sensed leaf area 

index and leaf nitrogen accumulation with RiceGrow model based on particle swarm 

optimization algorithm for rice grain yield assessment. J. Appl. Remote Sens. 8, 083674. 

https://doi.org/10.1117/1.JRS.8.083674 

Wang, X., Williams, J. R., Gassman, P. W., Baffaut, C., Izaurralde, R. C., Jeong, J., and Kiniry, 

J. R., 2013. EPIC and APEX: Model Use, Calibration, and Validation. Trans. ASABE 

55, 1447–1462. https://doi.org/10.13031/2013.42253 

Xie, Y., Wang, P., Bai, X., Khan, J., Zhang, S., Li, L., Wang, L., 2017. Assimilation of the 

leaf area index and vegetation temperature condition index for winter wheat yield 

estimation using Landsat imagery and the CERES-Wheat model. Agric. For. Meteorol. 

246, 194–206. https://doi.org/10.1016/j.agrformet.2017.06.015 



Improving jujube fruit yield estimation by assimilating a remotely sensed LAI into WOFOST model 

112 

Yang, W., Gao, J., Xu, C., 2012. The correlation analysis of leaf area index and yield of red 

jujube. Xinjiang Agricultural Sciences, 49, 1397-1400. (In Chinese with English abstract) 

Yao, F., Tang, Y., Wang, P., Zhang, J., 2015. Estimation of maize yield by using a process-

based model and remote sensing data in the Northeast China Plain. Phys. Chem. Earth 

87–88, 142–152. https://doi.org/10.1016/j.pce.2015.08.010 

Zhao, Y., Chen, S., Shen, S., 2013. Assimilating remote sensing information with crop model 

using Ensemble Kalman Filter for improving LAI monitoring and yield estimation. Ecol. 

Modell. 270, 30–42. https://doi.org/10.1016/j.ecolmodel.2013.08.016 



 

Chapter 6 

Assimilation of a time series of remotely 

sensed LAI into the WOFOST model to 

improve the field-scale jujube fruit yield 

estimation 



Improving jujube fruit yield estimation by assimilating a remotely sensed LAI into WOFOST model 

114 

In the previous chapter, a remotely sensed LAI was assimilated into the WOFOST growth 

model to improve the fruit yield estimation accuracy for jujube fruits. This approach gave 

promising results but remains limited by the correction of a state variable at a single specific 

time during the growing season. In this spirit, this chapter presents attempts to assimilate a 

time series of remotely sensed LAI to improve jujube yield estimation by using the EnKF and 

SUBPLEX methods, respectively. The main innovation of this chapter is to develop a new 

calibration assimilation method – SUBPLEX. The assimilation accuracy for jujube fruit yield 

estimation of the proposed SUBPLEX with a widely used sequential method (EnKF) is 

compared. 

Firstly, the assimilation mechanism and implementation process of the EnKF and 

SUBPLEX algorithms are described, and the effect of parameter settings on assimilation 

accuracy is also analysed. Secondly, the accuracy of jujube fruit yield estimation of the two 

assimilation methods is evaluated by assimilating field-measured and remotely sensed LAI, 

respectively. Finally, for the proposed SUBPLEX method, the contribution of LAI at different 

phenological development stages to the assimilation accuracy is discussed.  
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1. Abstract 

In order to enhance the simulated accuracy of jujube fruit yields at the field scale, 
this study employs the SUBPLEX algorithm to assimilate remotely sensed LAI of 
four key growth stages into a calibrated WOFOST model, and compares the accuracy 
of such an assimilation with the widely used Ensemble Kalman Filter (EnKF) 
assimilation. LAIs obtained from remote sensing were assimilated into the WOFOST 
model to re-calibrate input TDWI (initial total crop dry weight) and SPAN (life span 
of leaves growing at 35°C) parameters. Results showed that both SUBPLEX and 
EnKF assimilations significantly improved yield estimation performance compared 
with the un-assimilated simulation. The SUBPLEX (R2 = 0.78 and RMSE = 
0.64 t ha−1) also showed slightly better yield estimation accuracy compared with 
EnKF assimilation (R2 = 0.66 and RMSE = 0.79 t ha−1), especially for high-yield and 
low-yield jujube orchards. SUBPLEX assimilation produced a relative bias error 
(RBE, %) that was more concentrated near zero, being lower than 10% in 80.1%, and 
lower than 20% in 96.1% for SUBPLEX, 80.1% and 93.9% for EnKF, respectively. 
The study provided a new assimilation scheme based on the SUBPLEX algorithm to 
combine remotely sensed information and a crop growth model to improve field-scale 
fruit crop yield estimates. 

2. Introduction 

Jujube (Zizyphus jujuba) is a significant economically valuable tree species in China 
with approximately 3,250,000 farmed hectares in 2017, and the fruit has important 
nutritional and medicinal value (Chen et al., 2016; Li et al., 2007). Field-scale jujube 
growth monitoring and yield estimation allow farmers to make management decisions, 
such as precision planting, irrigation optimization, fertilization, and pest management, 
which are also important components of precision agriculture and horticulture. 

Assimilation of remote sensing information into crop models is considered to be a 
key technical tool for yield prediction. The goal of assimilation is to reduce the 
uncertainty in the spatial distribution of crop parameters, soil properties, and 
meteorological data of crop model applications in large areas (Jin et al., 2018). The 
key input parameters or state variables, such as phenology information (Zhuo et al., 
2019), leaf area index (LAI) (Fang et al., 2008; Huang et al., 2015a, 2015b, 2016; 
Nearing et al., 2012; Yao et al., 2015), biomass (Jin et al., 2015), crop transpiration 
(ET) (Huang et al., 2015a), and soil moisture (SM) (Chakrabarti et al., 2014; Ines et 
al., 2013; Mishra et al., 2015; Nearing et al., 2012; Wang et al., 2013; Zhuo et al., 
2019), can be observed from remote sensing data. In recent years, data assimilation 
methods, including variational (calibration) and sequential (update) methods, have 
been used to integrate remote sensing data into crop models to improve the estimation 
accuracy of canopy state variables and yields at the field, regional, and national scale 
(Huang et al., 2019b).  

The variational method takes all available observations during the main growth 
season and attempts to fit the model to the observations by minimizing the cost 
function, thereby optimizing the initial parameters of crop models. Several variational 
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methods for remote sensing and crop model assimilation have been reported, 
including, Shuffled Complex Evolution simplex algorithm (SCE-UA) (Dong et al., 
2016; Huang et al., 2019b, 2015a; Ma et al., 2013; Ren et al., 2010), Four-dimensional 
Variational Data Assimilation (4DVAR) (Dong et al., 2013a, 2013b; He et al., 2015; 
Huang et al., 2015b; Jin et al., 2016), Particle Swarm Optimization (PSO) (Guo et al., 
2017; Jin et al., 2015; Jin et al., 2017; Li et al., 2015; Liu et al., 2015; Silvestro et al., 
2017), Powell’s Conjugate Direction Method (PCMD) (Fang et al., 2011, 2008; He et 
al., 2015; Tian et al., 2013), Simplex Search Algorithm (SSA) (Claverie et al., 2009; 
Jégo et al., 2012), Maximum Likelihood Solution (MLS) (Dente et al., 2008), Golden 
Section Searching (GSS) (Hu et al., 2014), and Annealing Algorithm (AA) (Dong et 
al., 2013a; Jin et al., 2016; Morel et al., 2014). Canopy LAI is a state variable used by 
most studies because it directly reflects the growth of the crop. In addition, FAPAR 
(Hu et al., 2014; Morel et al., 2014), ET (Huang et al., 2015a; Ines et al., 2006), leaf 
nitrogen accumulation (Wang et al., 2014), vegetation indices (Dong et al., 2013a; 
Fang et al., 2011; Guo et al., 2017), and band reflectance (Huang et al., 2019b) have 
also demonstrated potential as state variables for remote sensing assimilation to 
optimize initial parameters for crop models. The variational method attributes the 
model input, output, and the model’s own error to the uncertainty of the initial 
conditions or the parameters of the model, and does not consider the state variable 
estimation error during the time evolution of the model parameters. Therefore, in 
practical applications, the assimilation accuracy of the variational method often 
depends on the quality and accuracy of external observation data. 

Sequential methods directly update the state variables of a modelling system when 
observations become available. The magnitude of the state update then depends on 
the uncertainty in both the model state and the observation. Examples of sequential 
approaches are the Ensemble Kalman Filter (EnKF) (Bolten et al., 2010; Chakrabarti 
et al., 2014; Cheng et al., 2018; Curnel et al., 2011; de Wit and van Diepen, 2007; 
Huang et al., 2016; Ines et al., 2013; Li et al., 2014; Ma et al., 2013; Nearing et al., 
2012; Pauwels et al., 2007; Silvestro et al., 2017; Wang et al., 2013; Wu et al., 2012; 
Xie et al., 2017; Zhao et al., 2013; Zhu et al., 2013), Particle Filter (PF) (Jiang et al., 
2014), Constant Gain Kalman Filter (CGKF) (Chen et al., 2018; Vazifedoust et al., 
2009), and Ensemble Square Root Filter (EnSRF) (Huang et al., 2013; Mishra et al., 
2015). For the state variables of sequential methods, LAI is the most focused, followed 
by soil moisture content (SM). The reported studies also show that the EnKF 
algorithm has been adopted by more researchers to improve assimilation accuracy. 

EnKF continuously updates a new set of input parameters at each observation point. 
If the state variable statistic error of remote sensing is a Gaussian distribution, the 
EnKF method is considered to be the preferred assimilation method because most crop 
growth models are nonlinear (Huang et al., 2019a). However, the assimilation 
accuracy of the EnKF method is also easily affected by phenological shifts (Curnel et 
al., 2011). If the phenology information is uncertain, the variational method is usually 
superior to the sequential method, which can reduce the accumulation and diffusion 
of remote sensing data errors in the assimilation process (Jin et al., 2018). Of course, 
it also requires more computing time. The SUBPLEX method is based on the Nelder–
Mead Simplex algorithm (NMS), which determines an improved set of subspaces and 
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then uses NMS to search each subspace (Rowan, 1990). For most applications, 
SUBPLEX shows higher computational efficiency for the unconstrained optimization 
of general multivariate functions than the simplex searching method (Jonsén et al., 
2009). In principle, SUBPLEX is one of the variational assimilation methods, which 
is different from the EnKF assimilation process. It calculates a set of optimal input 
parameters based on the error of all remote sensing observations and simulated values. 
In addition, when the number of remote sensing observations is large, the SUBPLEX 
method can divide the observation points into several lower-dimensional vectors, 
thereby improving computational efficiency. More importantly, for objective 
functions affected by remote sensing observation error, the measurement replication 
option of SUBPLEX can be used to avoid convergence to a false minimum (Rowan, 
1990). Whether the SUBPLEX algorithm has the potential to be applied to the 
assimilation of remote sensing and crop growth models is a valuable avenue of 
research. 

In addition, almost all remote sensing and crop growth model assimilation studies 
focus on annual crops, and few studies have discussed growth simulation and 
assimilation of perennial fruit tree crops. Therefore, the objective of this study is to 
develop a data assimilation framework based on an unconstrained optimization 
algorithm (SUBPLEX) that integrates remotely sensed LAI into a calibrated 
WOFOST model to improve the jujube fruit yield estimation at the field scale. To 
accomplish this goal, the following two specific objectives are defined: 

i. To develop the SUBPLEX algorithm to optimize the key input parameters of 
the WOFOST model for reducing uncertainty, thereby improving field-scale 
fruit yield estimation for local jujube orchards. 

ii. To compare the yield estimation performance of the proposed SUBPLEX 
assimilation with the EnKF method. 

3. Research data and methods  

3.1. Research data 

The available time series of Landsat 8 data were used to extract vegetation indices 
(VI) and calculate LAIs for four development periods, see Section 3.3 in Chapter 2. 
LAIs measured in 55 local orchards were used to calibrate and validate the LAI-VI 
regression model, see Section 3.2.2 in Chapter 2. Yield data for 181 orchards were 
used to evaluate the yield estimation performance of the proposed EnKF and 
SUBPLEX assimilation methods at the local scale, see Section 3.2.1 in Chapter 2.  

3.2. Remotely-sensed LAI 

Four Landsat 8 satellite data images with a spatial resolution of 30 m, taken during 
the main growth season in 2017, were acquired from the United States Geological 
Survey (USGS, https://earthexplorer.usgs.gov/). The dates of the available remote 
sensing images are 9 June, 27 July, 12 August, and 28 August, and correspond to 
emergence, fruit filling, and maturity periods. Band 4 (red, 0.630–0.680 𝜇𝑚) and 5 
(near-infrared, 0.845–0.885𝜇𝑚) from the Operational Land Imager (OLI) were used 

https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/united-states-geological-survey
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/united-states-geological-survey
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in this study for vegetation index extraction and establishing the LAI regression model. 
Geometric and atmospheric corrections were carried out for the Landsat 8 data by 
reference to the Albers conical equal-area map projection using 50 field-measured 
ground control points and the Fast Line-of-sight Atmospheric Analysis of Spectral 
Hypercubes (FLAASH) model, respectively. The parameter settings refer to a 
previous study (Bai et al., 2019b). 

Since the spectral information of the crop is strongly influenced by the soil 
background, a soil-adjusted vegetation index (SAVI) may be a suitable choice to 
establish a statistical relationship during the period before the soil is covered by 
vegetation (Huete, 1988). Referring to the research method of Huang et al. (2015b), 
the LAI inversion models at four different developmental stages were established 
separately. Furthermore, the accuracy of the LAI statistical regression model based on 
remotely sensed NDVI and SAVI was compared to determine a suitable index. 37 of 
the 55 samples were used to calibrate the LAI model and the remaining 18 samples 
were employed to validate the model. SAVI (Huete, 1988) and NDVI (Pettorelli, 
2013), can be calculated using Equations (1) and (2) of Chapter 4, respectively. 

3.3. Assimilation strategy 

3.3.1. Selection of reinitialized parameters for WOFOST 

Previous studies have indicated that TDWI and SPAN parameters show significant 
uncertainty in regional applications of crop models. After optimizing these two 
parameters by the assimilation method, the estimation accuracy of crop yield can be 
significantly improved (de Wit et al., 2012; Huang et al., 2015b). The TDWI of 
perennial jujube trees is strongly influenced by tree age and planting density, showing 
uncertainty in the same area (Bai et al., 2019a). The trends in the impact of TDWI and 
SPAN on the jujube LAI produced by the WOFOST model are shown in Figure 6–1a, 
b.  

Figure 6–1: Evolution of the simulated leaf area index (LAI) profiles produced by the 

WOFOST model (a) LAI versus initial total crop dry weight (TDWI), (b) LAI versus 

the life span of leaves growing at 35°C (SPAN). 
The initial growth rate and maximum leaf area index increased with the increase of 

TDWI, but the growth rate gradually decreased. SPAN determines the rate at which 
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green leaves will turn brown and, therefore, affected the leaf senescence rate and 
effective green leaf index in the late growing season (de Wit et al., 2012). In addition, 
SPAN explains to some extent the effects of water, nutritional stress, insect and 
disease factors on crop growth and yield (Curnel et al., 2011; Huang et al., 2015b). 
Thus, TDWI and SPAN input parameters were selected and recalibrated by 
assimilating a remotely sensed LAI. The simulated jujube fruit yield was affected by 
the TDWI–SPAN joint distributions (Figure 6–2). 

 

Figure 6–2: The effect of TDWI–SPAN joint distributions on jujube fruit yield. TDWI = 
initial total dry weight, SPAN = life span of leaves growing at 35°C). 

3.3.2. Assimilation methods 

Figure 6–3 shows the assimilation flowchart for the SUBPLEX and EnKF methods. 
For the simulation without assimilation, orchards of the same age were set to the same 
TDWI values based on measurements from different orchards, see Chapter 3. SPAN 
is equal to 60, which was the calibrated value in field experiments.  
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Figure 6–3: Assimilation flowchart 

3.2.2.1. Ensemble Kalman Filter (EnKF) 

Based on the work of Evensen (2003), the theoretical framework and actual 
implementation of EnKF are performed by the following steps. 

First the Kalman gain (K) is calculated by Equation (6–1). 

𝐾 =
𝑃𝑒 𝐻

𝑇

(𝐻𝑃𝑒 𝐻
𝑇 + 𝑅𝑒 )

(6 − 1) 

The Kalman gain weights the uncertainty of the simulated values, given by its 
variance 𝑃𝑒, against the uncertainty of the observations, given by its variance 𝑅𝑒. 𝐻 
is the measurement operator. 

The Kalman state updates are then computed by Equation (6–2). 

𝐴𝑎 = 𝐴 + 𝐾(𝐷 − 𝐻𝐴) (6 − 2) 
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The matrix with updated values of the states 𝐴𝑎, also called the analysed states, is 
computed by augmenting the old states 𝐴 with the difference between the observed 
values 𝐷 and simulated values 𝐴 multiplied by the Kalman gain 𝐾. The additional 
part is called the innovation. 

Because only one state variable of LAI is assimilated into the WOFOST model and 
the model state is observed directly (de Wit., 2007; Curnel et al., 2011), the 
measurement operator H is an identity matrix. Equation (2) then reduces to 
Equation (6-3). 

𝐴𝑖
𝑎 = 𝐴𝑖 +

𝑃𝑒 
(𝑃𝑒 + 𝑅𝑒 )

(𝐷𝑖 − 𝐴𝑖) (6 − 3) 

where 𝐴𝑖
𝑎 and 𝐴𝑖  are the analysed and forecasted LAI state for ensemble member 𝑖, 

𝑃𝑒 and 𝑅𝑒 are the variances matrices on the modelled LAI and the assimilated LAI, 
respectively, and 𝐷𝑖  is the perturbed LAI observation which is used to update 
ensemble member 𝑖 (de Wit., 2007).  

Assimilated LAI was generated by using Equation (6–4) (Curnel et al., 2011). 

𝐿𝐴𝐼𝐴𝑆,𝑖 = 𝐿𝐴𝐼𝑂𝐵,𝑖 + 𝜀𝑖   𝑤𝑖𝑡ℎ 𝜀𝑖~𝑁(0, 𝜎𝑖) (6 − 4) 

where, 𝐿𝐴𝐼𝐴𝑆,𝑖 was the assimilated LAI at time 𝑖，𝐿𝐴𝐼𝑂𝐵,𝑖 was the remotely-sensed 
LAI at time 𝑖, and 𝜀𝑖 was the perturbed the uncertainty on remotely-sensed LAI.    

The standard deviation 𝜎𝑖 was set as the ratio of the remotely-sensed LAI values, 
see Equation (6–5).  

𝜎𝑖 = 𝐶𝑉 × 𝐿𝐴𝐼𝑂𝐵,𝑖 (6 − 5) 

where, the calibrated and validated average % error for the remotely-sensed LAI was 
almost 10% (Table 6–2). Therefore, 𝐶𝑉 was equal to 10%.  

It is assumed that there is uncertainty in the model parameters for initial conditions 
like the initial total crop dry weight (TDWI) and life span of leaves (SPAN). These 
two parameters were treated as Gaussian random variables with a default value 
(TDWI = 15 kg ha–1, SPAN = 50 days) and a standard deviation (5 kg ha–1 for TDWI, 
4 days for SPAN) which were defined by the observed value and its uncertainty from 
experience. The default value for TDWI was taken from the average of 55 observed 
orchards. A field-corrected SPAN value of 60 days under potential simulation was 
considered as the upper limit. SPAN may be influenced by water, nutrients, pests and 
diseases; the SPAN value of different orchards may be lower than the potential value, 
so a possible lower limit of 40 days was set. Therefore, the default value for SPAN 
was set to 50 days. The ensemble size was set to 50 because previous research has 
shown that this scale can achieve good assimilation performance (de Wit and van 
Diepen, 2007). Each ensemble member receives a value for the respective parameter 
which is drawn from the distribution of each parameter (Figure 6–4) and this value 
will override the default value (de Wit et al., 2017). 
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Figure 6–4: The distribution of setting TDWI and SPAN. TDWI = initial total dry weight 
(kg ha–1), SPAN = life span of leaves growing at 35°C (days). (Only one assimilated 

observation variable, here LAI) 

The assimilation details of the EnKF method can be found in an existing study (de 
Wit and van Diepen, 2007). EnKF updates a new set of TDWI and SPAN values when 
acquiring a new remote sensing observation point to implement the segmentation 
simulation. 

3.2.2.2. SUBPLEX assimilation method 

The key innovation of this research was to use the SUBPLEX method (Rowan, 1990) 
to achieve the assimilation of the remotely sensed LAI into the WOFOST model. The 
objective function calculator ran the WOFOST model with the given set of input 
parameters, collected the simulation results, and computed the differences between 
the observations. Different objective functions can be selected. In this study, the 
objective function 𝑓(𝑥) for SUBPLEX was constructed as the root mean squared 
error (RMSE), see Equation (6–6). 

𝑓(𝑥)  =  √
1

𝑛
∑ (𝑥𝑠,𝑖 − 𝑥𝑜,𝑖)

2
𝑛

𝑖 = 1

(6 − 6) 

where 𝑥𝑠,𝑖  and 𝑥𝑜,𝑖  represent the simulated and observed LAI values of the ith 
sample, respectively, and where 𝑛 is the number of observation points. 

Relative tolerance for convergence ( 𝜀 ) determines the threshold at which the 
objective function converges. In theory, a smaller 𝜀  value will result in better 
assimilation accuracy. However, a lower tolerance value will require more function 
evaluations. In this research, based on the LAIs of 55 field measurements, the 
minimum objective function of LAIs for the four periods ranged from 0.01 to 0.27, 
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with an average of 0.1. The test results also showed that when the 𝜀  value was 
reduced from 0.05 to 0.01, the coefficient of determination and accuracy of the yield 
estimation were only slightly improved, so in order to maintain calculation efficiency, 
the 𝜀 value was set to 0.05. Therefore, when the objective function 𝑓(𝑥) was less 
than this value, the assimilation process ended. 

The key to implement the SUBPLEX method is to set the step sizes and subspaces, 
and then use a simplex searching algorithm NMS to search each subspace to perform 
an inner minimization. The step sizes, stored in the vector step, determine both the 
scale and orientation of the initial simplex used in the inner minimizations. For the 
first cycle, the step is equal to the initial step. Then, the step is rescaled according to 
how much progress is made during the previous cycle. The rescaled step is shown in 
Equation (6–7): 

𝑠𝑡𝑒𝑝 = {
𝑚𝑖𝑛 (𝑚𝑎𝑥 (‖∆𝑥‖1/(‖𝑠𝑡𝑒𝑝‖1, 𝜔),1/𝜔) ∙ 𝑠𝑡𝑒𝑝 𝑖𝑓 𝑛𝑠𝑢𝑏𝑠 > 1
𝜑 ∙ 𝑠𝑡𝑒𝑝                               𝑖𝑓 𝑛𝑠𝑢𝑏𝑠 = 1

 (6 − 7) 

where ∆𝑥 represents the difference of observed and simulated LAI after successive 
iterations, 𝑛𝑠𝑢𝑏𝑠  represents the number of subspaces. When there is only one 
subspace, the factor 𝜑 that represents the simplex reduction coefficient is used to 
reduce the size of the simplex for the same step amount. If the 𝜑 value is reduced, 
the subspace search becomes more accurate. 𝜔  represents the step reduction 
coefficient, which is employed to control the degree to which step can be modified. A 
smaller 𝜔 value can usually converge quickly to a local minimum. Conversely, a 
larger 𝜔 value will reduce the rate of convergence, but a more comprehensive search 
can be achieved to obtain a smaller objective function value. Next, the ith component 
of the step is reset by Equation (6–8): 

stepi  =  {
sign(∆𝑥𝑖) ∙ |−stepi|  if ∆𝑥𝑖 ≠ 0
−stepi           if ∆𝑥𝑖  =  0

                 (6 − 8) 

To set subspaces, the relationship between 𝑛𝑠𝑢𝑏𝑠 and the subspace dimensions 
𝑛𝑠𝑖 is shown in Equation (6–9): 

∑ 𝑛𝑠𝑖  =  𝑛

𝑛𝑠𝑢𝑏𝑠

𝑖 = 1

(6 − 9) 

And 𝑛𝑠𝑚𝑖𝑛 ≤ 𝑛𝑠𝑖 ≤ 𝑛𝑠𝑚𝑎𝑥,  for 𝑖 = 1, … , 𝑛𝑠𝑢𝑏𝑠.  Here 𝑛𝑠𝑚𝑖𝑛  and nsmax 
represent the minimum and maximum subspace dimensions, respectively. 

And 1 ≤ 𝑛𝑠𝑚𝑖𝑛 ≤ 𝑛𝑠𝑚𝑎𝑥 ≤ 𝑛, 𝑛𝑠𝑚𝑖𝑛⌈𝑛/𝑛𝑠𝑚𝑎𝑥⌉ ≤ 𝑛. 

The first step in determining the subspaces is to sort the components of the vector 
of progress by decreasing magnitude. The vector of progress is denoted by 
Equation (6–10): 

∆𝑥 =  (∆𝑥1, … , ∆𝑥𝑛)
𝑇 (6 − 10) 
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Next, sorting of ∆𝑥 occurs, see Equation (6–11): 

∆�̃�  =  (∆𝑥𝑝1, … , ∆𝑥𝑝𝑛)
𝑇

(6 − 11) 

where |∆𝑥𝑝𝑖| ≥ |∆𝑥𝑝𝑖+1|. 
Specifically, the first subspace dimension ns1 is defined by Equation (6–12): 

𝑛𝑠1 =

{
 
 

 
  ‖(∆𝑥𝑝1, … , ∆𝑥𝑝𝑘)

𝑇
‖
1

𝑘
−
 ‖(∆𝑥𝑝1, … , ∆𝑥𝑝𝑛)

𝑇
‖
1

𝑛 − 𝑘
    if 𝑘 < 𝑛

 ‖(∆𝑥𝑝1, … , ∆𝑥𝑝𝑛)
𝑇
‖
1

𝑛 − 𝑘
                          if 𝑘 = 𝑛

 (6 − 12) 

where 𝑛𝑠𝑚𝑖𝑛 ≤ 𝑘 ≤ 𝑛𝑠𝑚𝑎𝑥 and 𝑛𝑠𝑚𝑖𝑛⌈(𝑛 − 𝑘)/𝑛𝑠𝑚𝑎𝑥⌉ ≤ 𝑛 − 𝑘. 

The first constraint forces 𝑛𝑠1 into the proper range, and the second constraint 
guarantees that the remaining (𝑛 − 𝑛𝑠1) vector can be partitioned. The process is 
repeated to determine 𝑛𝑠2, 𝑛𝑠3, etc. 

After the step sizes and subspaces are set, the NSM algorithm is used to search each 
subspace to minimize the cost function. The setting and selecting parameters for data 
assimilation are shown in Table 6–1. TDWI_range values were set based on the 
range of TDWI for field measurements. The range of SPAN values considered the 
same limitations as the EnKF method. An upper limit value for the SPAN parameter 
(60 days) was set, which is a calibration value from the potential growth simulation 
based on field experiments. Considering that this parameter may be affected by 
various stresses, such as water, nutrients, pests and diseases, the SPAN value of 
different orchards may be lower than the potential value, so a possible lower limit of 
40 days for 181 orchards was set. The ε value was set with reference to the minimum 
value that the objective function 𝑓(𝑥) of all observation points can reach. The initial 
step was set to the expected value of an artificial setting according to the actual 
meaning of the parameter to be optimized, which can be further optimized by using 
the SUBPLEX algorithm at the iteration process. In theory, smaller 𝜑 and larger 𝜔 
values can produce smaller objective function values, but the computational efficiency 
will decrease accordingly. The actual test also showed that when 𝜑 was less than the 
usual value of 0.25 and ω was greater than the usual value of 0.1 (Rowan, 1990), the 
minimized objective function value was not significantly improved, so 𝜑 and ω were 
set to 0.25 and 0.1, respectively.  

SUBPLEX obtained an optimal set of TDWI and SPAN values by iteratively 
calculating the minimum objective function values of the four remotely sensed and 
simulated LAIs during the main growth stages, thereby achieving yield estimation 
based on the SUBPLEX assimilation method. 
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Table 6–1: SUBPLEX assimilation settings 

Name Description Set value  

n the number of assimilated LAI 4 

f function to be minimized Equation (1) 

m the number of optimized parameters for WOFOST 2 

φ simplex reduction coefficient (0<φ<1) 0.25 

ω step reduction coefficient (0<ω<1) 0.1 

ε relative tolerance of convergence 0.05 

TDWI_range the range of TDWI 5–30 

SPAN_range the range of SPAN 40–60 

max-evaluation maximum number of evaluations allowed 200 

Initial step the initial step size to compute numerical gradients 
0.5 for TDWI 

1 for SPAN 

4. Results 

4.1. Remotely sensed LAI 

The statistical regression models between vegetation index (NDVI or SAVI) and 
LAI for the four jujube key growth periods are shown in Equations (6–13, 14, 15 and 
16), respectively, which are obtained from regressions of 37 field-measured LAI and 
SAVI or NDVI (Figure 6–5). The difference between the 37 samples for each period 
was extremely significant (𝑝 < 0.001). On 9 June, between emergence and flowering, 
SAVI was used to establish the LAI linear regression model, while in other 
development stages NDVI was employed to invert LAI (exponential model) to obtain 
a more accurate model. Previous studies have also shown that SAVI exhibits better 
LAI statistical regression performance before the soil is covered by vegetation. NDVI 
performs better when vegetation coverage is higher (Huang et al., 2015b). 

9 June 2017: LAI = 2.08112 × SAVI − 0.2889 p<0.001   (6 − 13) 

27 July 2017: LAI = 0.11071 × e4.01646×NDVI   p<0.001   (6 − 14) 

12 August 2017: LAI = 0.18101 × e3.48957×NDVI p<0.001   (6 − 15) 

28 August 2017: LAI = 0.16731 × e3.69701×NDVI p<0.001   (6 − 16) 

Table 6–2 shows the detailed results of calibration and validation LAI inversion 
models at four growth periods in 2017. The average R2 for calibration and validation 
was 0.82 and 0.80, respectively, with a range from 0.71 to 0.92. The calibrated and 
validated average % error was 9.9% and 10.4%, respectively. Except for 12 August 
2017, the consistency and accuracy of correction sets for other days was slightly 
higher than the validation sets. The verification results show that the established 
model accurately expressed the LAI values of different phenological development 
stages. 
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Figure 6–5: Leaf area index (LAI) inversion models for four phenological development 
dates. 

Table 6–2: The comparison of LAI inversion models for four key periods 

Date 
Calibrated 

R2 

Calibrated 
RMSE  

(%) m2 m–2 

Validated 
R2 

Validated 
RMSE 

(%) m2 m–2 

9 June 0.77 0.06 (12.7) 0.77 0.06 (12.5) 

27 July 0.92 0.11 (6.2) 0.84 0.14 (8.1) 

12 August 0.71 0.23 (13.6) 0.78 0.18 (10.5) 

28 August 0.88 0.12 (7.1) 0.81 0.17 (10.4) 

4.2. Assimilation process 

4.2.1. EnKF assimilation process 

Taking a sample as an example, the LAI observed in the four key growth stages was 
0.54, 2.12, 1.87, and 1.95 m2 m–2, respectively. The simulated outputs for the variable 
LAI for each ensemble member were plotted on a graph, see Figure 6–6, which clearly 
shows the impact of the observations on the simulated value. At each time step where 
an observation of LAI was available, the uncertainty in the ensemble was strongly 
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reduced, which was demonstrated by the reduction of the variability in the simulated 
ensemble. The red line represents the final simulated state variable, here LAI, which 
was brought forward in time until an observation was available (red dot). At this point, 
an analysis step was performed to adjust the state of the model based on the observed 
LAIs, which resulted in a “jump” in the simulated state. The model was then advanced 
in time until the next observation was reached, and the process was repeated. 

 

Figure 6–6: The spread on modelled LAI resulting from 𝐶𝑉 = 10% for EnKF assimilation 
process. 

4.2.2. SUBPLEX assimilation process 

Taking the same sample that was used in the above section as an example, the blue 
line in Figure 6–7 demonstrates the principle of a variational method of SUBPLEX. 
The model was first run without data assimilation (first guess). Next, all observations 
with an assimilation window were collected to adjust the model until it better matched 
the observations (analysis). In this process, model parameters or other properties were 
adjusted to minimize the cost function. After 28 iterations, a combination of TDWI 
and SPAN was screened (TDWI = 17.4 kg ha–1, SPAN = 49 days), with 8.9% 
difference against measured TDWI = 19.1 kg ha–1. Note that Figure 6–7 only shows a 
sample to illustrate the difference in the assimilation process of the two methods for 
all 181 samples, of which in 100 samples the yield estimation accuracy of the 
SUBPLEX method was superior to the EnKF method. 
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Figure 6–7: SUBPLEX assimilation process. 

4.3. Yield estimation performance based on field-measured LAI 

The 55 field-measured LAIs were assimilated into the WOFOST model to verify 
the performance of the reinitialized input parameters. For the TDWI parameter, when 
the remotely sensed LAI was not assimilated, the average TDWI value of the same 
aged orchards was input to the WOFOST model. The average TDWI for 3 to 10 year-
old jujube orchards were 4.88, 6.24, 9.24, 13.17, 14.28, 16.31, 19.73, and 
21.61 kg ha−1, which came from the average values from 2015 to 2017. Figure 6–8a 
showed that TDWI values without assimilation was significantly higher than the 
measured value of 55 orchards in 2017. The reason was that the planting density of 
jujube trees in young orchards was usually higher, and the quality of jujube fruits was 
poor. Therefore, most fruit farmers cut down some fruit trees at the end of 2016 to 
provide the quality of jujube fruits, thereby resulting in the unassimilated TDWI value 
being significantly higher than the measured value in 2017. Scatter plots for re-
calibrated TDWIs based on SUBPLEX assimilation versus 55 measured TDWIs are 
shown in Figure 6–8a, with a R2 of 0.86. After SUBPLEX assimilation, the accuracy 
of the corrected TDWI with a RMSE of 1.88 kg ha−1 was significantly higher than that 
of the unassimilated LAI (RMSE = 5.09 kg ha−1), and the calibrated average TDWI 
value of 13.91 kg ha−1 showed an error of 3.3% compared with field-measured 
average value of 13.46 kg ha–1. The samples with an estimation error between −10% 
and 10%, −20% and 20% accounted for 41.6% and 83.6%, respectively (Figure 6–8b). 
These values showed better performance for TDWI calibration than the simulation 
without assimilation which had 21.8%, 36.4%, and 49% of −10–10%, −20–20%, and 
−40–40%, respectively. RBE values after SUBPLEX assimilation were distributed 
more centrally around zero compared with the values obtained by the simulation 
without assimilation. For the SPAN parameter, validating its spatial distribution was 



Chapter 6. Jujube fruit yield estimation based on EnKF and SUBPLEX assimilation methods 

129 

difficult due to a lack of corresponding measured data. The results also suggest that 
SUBPLEX assimilation reduced the uncertainty of TDWI and SPAN input parameters 
to some extent. 

 

Figure 6–8: (a) Scatter plots for re-calibrated versus measured TDWI, (b) Frequency 
distribution for RBE based on recalibrated and measured TDWI. Bin size = 5. 

Based on field-measured LAI, the yield estimation performance of two assimilation 
methods is presented in Table 6–3.  

Table 6–3: Comparison of the estimated yield based on field-measured LAI. 

 
Mean 

t ha–1 

Maximum 

 t ha–1 

Minimum 

 t ha–1 
R2 

RMSE (%) 

t ha–1 

Field-measured yield of 

the 55 samples 
7.931 10.71 4.848 – – 

Simulation without 
assimilation 

8.271 8.89 5.946 0.58 0.95 (12.1) 

EnKF assimilation 7.717 9.887 5.303 0.81 0.65 (8.2) 

SUBPLEX assimilation 7.707 9.713 4.791 0.86 0.55 (7.0) 

Both SUBPLEX and EnKF significantly improved yield estimation accuracy 
compared with the unassimilated results, with higher R2 and lower RMSE values. The 
results also show that the SUBPLEX assimilate on accuracy (R2 = 0.86, RMSE = 
0.55 t ha–1 (7%)) was slightly higher than EnKF (R2 = 0.81, RMSE = 0.65 t ha–1 

(8.2%)), and significantly higher than simulation without assimilation. The simulated 
yields without assimilation overestimated the actual average yield, with an error of 
12.1%. SUBPLEX and ENKF assimilations produced only 2.7% and 2.8% estimation 
errors for average yield, respectively, indicating better performance. For maximum 
yield estimation, EnKF was slightly more accurate, while for minimum yield 
estimation, SUBPLEX was slightly better. However, both methods showed slightly 
higher errors in the maximum yield estimation with a value around 7.6%. The jujube 
yield estimation using the field-measured LAI assimilation in the WOFOST model 
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indicated that SUBPLEX had the potential to be an effective assimilation method and 
demonstrated better accuracy than the EnKF method. 

4.4. Yield estimation performance based on remotely sensed LAI 

After carrying out SUBPLEX assimilation, the joint distribution of TDWI and 
SPAN for 181 samples was generated to provide variability in parameter distribution 
between different samples (Figure 6–9a). Explaining the shapes of the distribution 
was difficult because they were the result of many interaction factors (de Wit et al., 
2012), such as meteorological conditions, pests and diseases, and nutritional stress. 
However, TDWI values recalibrated by SUBPLEX assimilation ranged from 5.84 to 
22.75 kg ha–1, showing high variability between orchards. SPAN values ranged from 
40 to 60 days with an average of 49.73 days. Figure 6–9b shows that the SUBPLEX 
algorithm used fewer function calls (iteration times) to complete data assimilation, 
ranging from 9 to 77 with an average of 40, at relative tolerance ε = 0.05. The low 
number of iterations also indicates that the SUBPLEX algorithm showed a relatively 
high computational efficiency to some extent.  

 

Figure 6–9: (a) TDWI-SPAN distribution for 181 samples, (b) Number of iterations for each 
sample. TDWI = initial total dry weight, SPAN = life span of leaves growing at 35°C. 

The scatter plots of the simulated yields achieved from the unassimilated, EnKF, 
and SUBPLEX versus actual yields are shown in Figure 6–10a. The WOFOST-
estimated yield without assimilation simulation exhibited poor spatial distribution and 
estimation performance, clearly deviating from the line y = x and 71.8% of the 
samples were severely overestimated. Both EnKF and SUBPLEX assimilations 
significantly improved yield simulation performance with a scatter distribution closer 
to the line y = x. Although the dispersion of yield estimation achieved by the 
SUBPLEX method was higher than that of EnKF, SUBPLEX showed better 
performance in high-yield and low-yield areas. Compared with the simulation without 
assimilation and the EnKF method, the SUBPLEX assimilation produced a relative 
bias error (RBE, %) that was more concentrated near zero (Figure 6–10b). The 
absolute RBE for yield simulation was lower than 10% in 80.1% and lower than 20% 
in 96.1% for SUBPLEX, 80.1% and 93.9% for EnKF. 
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Figure 6–10: (a) Yield estimation scatter plots for Ensemble Kalman Filter (EnKF), 
SUBPLEX, and simulation without assimilation, (b) Frequency distribution for relative bias 
error (RBE) achieved from the contrast between simulated and observed yields. Bin size = 5. 

The positive results achieved by SUBPLEX or EnKF assimilations were also 
confirmed by the indices of agreement and detailed estimation error (Table 6–4). The 
WOFOST without assimilation showed lower yield estimation accuracy, with a R2 of 
0.14, RMSE of 1.26 t ha−1 (16.3%), MAE (mean absolute error, %) value of 15.4%, 
and average RBE of 13.28%. Both SUBPLEX and EnKF methods improved the 
simulated accuracy, with a much higher coefficient of determination (R2 ≥ 0.66) and 
lower error (RMSE ≤ 0.79 t ha−1). In addition, average RBE values from the two 
assimilation methods agreed with the results shown in Figure 6–10b, giving lower 
values which showed that the error distributions were uniform to some extent. 
SUBPLEX also indicated slightly better assimilation performance with an 
improvement of R2 (increased by 18.2%), RMSE (reduced by 19.0), and MAE 
(reduced by 22.3%) compared to EnKF. SUBPLEX assimilation showed the highest 
RPD value greater than 2, with a better evaluation capability. 

Table 6–4: Validation results of the yield estimation using remotely sensed leaf area index  

Methods R2 
RMSE (%)  

t ha−1 
MAE, % 

Average 

RBE, % 
RPD 

Without assimilated simulation 0.14 1.26 (16.3) 15.4 13.28 1.28 

EnKF with remotely sensed LAI 0.66 0.79 (10.2) 8.81 2.16 1.73 

SUBPLEX with remotely sensed LAI 0.78 0.64 (8.3) 6.85 −0.39 2.13 

4.5. The choice of phenology periods of assimilation LAI 

In theory, more state variables of remote sensing observations can produce better 
assimilation accuracy. In practice, satellite data for key crop growth seasons may not 
be available due to revisit cycles and cloud coverage limitations. Loss of remote 
sensing observations at critical developmental stages may have a key impact on model 
performance. To further discuss the sensitivity of LAI during different phenological 



Improving jujube fruit yield estimation by assimilating a remotely sensed LAI into WOFOST model 

132 

stages and the two assimilation methods to yield estimation, only three field-measured 
LAIs from 55 observations were employed to establish assimilation strategies to 
compare the yield estimation performance of the EnKF and SUBPLEX methods 
(Table 6–5). In this part of the study, the LAI measured by the instrument was used, 
so the CV value was set to 5% recommended by OSSE. 

Table 6–5: Model performance of SUBPLEX versus EnKF when missing an observation. 

 
Available 

observations 
R2 

RMSE 
(%) 

MAE, % 
Average 
RBE, % 

SUBPLEX 

Four observations 0.86 0.55 5.77 −2.3 
Without 9 June 0.84 0.59 6.04 −1.75 
Without 27 July 0.85 0.58 6.01 −1.48 

Without 12 August 0.81 0.65 6.35 −3.31 
Without 28 August (a) 0.36 1.18 12.3 0.23 
Without 28 August (b) 0.73 0.77 9.02 4.49 

EnKF 

Four observations 0.81 0.65 6.78 −1.42 
Without 9 June 0.65 0.88 8.78 −7.69 
Without 27 July 0.75 0.75 7.93 −1.87 

Without 12 August 0.74 0.76 7.98 −1.59 
Without 28 August 0.71 0.81 8.73 −1.02 

(a) represents that total initial dry weight (TDWI) and SPAN (life span of leaves growing at 
35°C) parameters are calibrated. (b) represents that only TDWI is calibrated, SPAN is equal 
to a fixed value that is calibrated by SUBPLEX. RMSE = root mean square error, MAE = 
mean absolute error, RBE = relative bias error, EnKF = Ensemble Kalman Filter. 

The results show that when the observation data on 9 June, 27 July, or 12 August 
are missing, respectively, the performance of the SUBPLEX assimilation is still 
higher than that of the EnKF method. When the observation data of 28 August is 
missing, the performance of the SUBPLEX method drops sharply, and its accuracy is 
also significantly lower than that of the EnKF method. The main reason should be that 
the SPAN parameter mainly affects the LAI change in the late growing season, while 
the lack of LAI (28 August) in the maturity period leads to a larger error in the 
corrected SPAN parameters, with a mean deviation of 2.7 days compared to the use 
of four LAIs. Further tests showed that when the SPAN parameter was set to a fixed 
value (calibrated by SUBPLEX, 50), the R2 and RMSE of the yield estimation were 
improved to 0.73 and 0.77 t ha−1, respectively, which was also slightly higher than the 
EnKF assimilation accuracy under the same conditions. This finding indicates that 
when using the SUBPLEX method to optimize SPAN parameters, the assimilated LAI 
should include at least one observation point in the middle and late stages of maturity. 
If this observation point is not available, design of an average SPAN for SUBPLEX 
assimilation is recommended. In addition, the combination of high or medium spatial 
resolution remote sensing satellite data, such as Landsat and Sentinel satellites, can be 
recommended to obtain more remotely sensed state variables. 
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5. Discussion 

In this study, SUBPLEX demonstrates slightly better global yield estimation 
performance than EnKF. The detailed results also indicate that the accuracy of ENKF 
in 100 of the 181 samples is lower than that of SUBPLEX. The reason may be that 
the tree age and physiological genetic factors may affect the actual emergence date 
and phenology time of jujube trees. The premise of ensuring the accuracy of the EnKF 
method is that the growth cycle between the model and the satellite observations 
(planting date plus phenology) is correct. If the phenological development time has a 
large error, the sequential approach of EnKF may result in lower simulation accuracy 
(de Wit and van Diepen, 2007).  

The uncertainty of crop model parameters and remote sensing observations is an 
important factor affecting the performance of the EnKF assimilation system. 
Determining and analysing this uncertainty is also an important step to improve the 
accuracy of EnKF assimilation (Huang et al., 2016). EnKF is essentially a Monte 
Carlo approximation of the Kalman filter and assumes that the probability 
distributions of the observed and simulated errors are Gaussian (Huang et al., 2019a). 
In the research, we assume that the simulation error is caused by the key input 
parameters TDWI and SPAN, which are treated as Gaussian random variables with a 
mean equal to the default value. However, the actual observed LAI does not fully 
satisfy the Gaussian distribution, which is the main issue that affects the accuracy of 
jujube fruit yield estimation. In addition, since the time and space of the variances on 
the modelled LAI and the observed LAI (both Pe and Re) are variable, it is not easy to 
infer the correct variance. Artificially inflating the observation variance (Re) can 
demonstrate the effect of increased variance on the distribution of normalized 
innovations (de Wit et al., 2007) and enlarge Kalman gain to reduce the effect of filter 
divergence (Huang et al., 2016). If the error of the remote sensing data product is 
Gaussian, EnKF is a good data assimilation option (Huang et al., 2019a). 

The SUBPLEX as a kind of variational method may reduce the accumulation and 
diffusion of remote sensing data errors in the assimilation process (Jin et al., 2018). 
SUBPLEX’s process is to optimize TDWI and SPAN parameters in the WOFOST 
model in order to ensure that the remotely sensed LAI and the simulated LAI match 
as well as possible. Then, the corrected TDWI and SPAN parameters will be used to 
re-drive the WOFOST model. If the WOFOST model is run from a shifted phenology 
time, the emergence, flowering, and maturity dates will be offset. However, the entire 
simulation curve is shifted overall, so it has little effect on the final simulated yield. 
For example, when TDWI and SPAN are set to a fixed value (TDWI = 21.6 kg ha−1, 
SPAN = 53 days) and the corrected WOFOST model is run for 115 days, 118 days, 
and 121 days, respectively, then the simulated yields are 9.039, 9.203, and 9.271. 
Obviously, when the phenological time deviation is six days, there is only a relatively 
small 2.5% yield estimation error. It is speculated that when the phenological 
development time is uncertain, the use of SUBPLEX would usually result in better 
assimilation accuracy for yield estimation than using the EnKF method. 

The present research also compares the computational efficiency of SUBPLEX and 
the brute force optimization method, finding higher computational efficiency for 
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SUBPLEX. Still taking the sample of Section 3.2 as an example, there were 1000 
function calls for the forced method, while the SUBPLEX method used only 25 
function calls. The SUBPLEX algorithm can find a solution with a similar accuracy 
with in a much shorter iteration time. Of course, the computation time is closely 
related to the initial steps of TDWI and SPAN. When the initial step size of TDWI 
and SPAN is adjusted to 0.1 and 0.5, respectively, the iteration number of the cost 
function is increased to 43, and when they are adjusted to 0.05 and 0.1, the number of 
iterations is increased to 76. The running time test also shows that the SUBPLEX 
method runs slightly longer than the EnKF method. However, the time difference is 
usually less than ten seconds for different samples, which is a speed that can be fully 
accepted. However, the yield estimation accuracy of SUBPLEX assimilation is higher 
than EnKF. 

The setting of the key parameters of SUBPLEX will directly affect the minimization 
of the objective function of remote sensing inversion and model simulation, which 
will affect the optimization accuracy of the parameters and the final simulation yield, 
such as relative tolerance for convergence 𝜀, simplex reduction coefficient 𝜑, and 
step reduction coefficient 𝜔. Smaller ε, 𝜑, and larger ω values usually result in a 
minimized objective function and, of course, the computation time increases. In our 
study, the minimization of the objective function of all samples ranges from 0.001 to 
0.26, with most samples between 0.05 and 0.1. Furthermore, when trying to decrease ε 
from 0.05 to 0.01, the R2 value only increases by 0.0015, and the RMSE decreases by 
0.003 t ha−1. Similarly, when 𝜑 decreases from 0.25 and ω increases from 0.1, the final 
yield assimilation accuracy is not significantly improved. Therefore, 𝜀 = 0.05, 𝜑 =
0.25, and 𝜔 = 0.1 are set in the study. It is recommended that when the SUBPLEX 
algorithm is used for remote sensing assimilation, the parameter setting could refer to 
the range of the minimum value of the objective function. When the parameter 
adjustment cannot significantly improve the objective function value, the parameter 
value at this time can be used as a suitable choice. In the future, further research on 
parameter optimization settings and automatic search methods has significant interest 
for exploring SUBPLEX assimilation. Comparison of the accuracy and computational 
efficiency of the SUBPLEX and the 4DVAR variational algorithm is also worth 
exploring. 

6. Conclusions 

In this study, the SUBPLEX algorithm was tested to assimilate remotely sensed data 
into the WOFOST model to improve the modelling accuracy for jujube yield at the 
field scale. The state variables, here LAIs, from the four key development stages, were 
assimilated into a validated WOFOST model to optimize the initial input parameters, 
TDWI and SPAN, thereby improving yield estimation for jujube fruit trees. The 
results indicated that the assimilation method has the potential to enhance the yield 
estimation accuracy compared with the unassimilated simulation, and the SUBPLEX 
method showed slightly better yield estimation performance versus EnKF assimilation. 
EnKF assimilation overestimated the actual yields in high-yield orchards and 
underestimated yields in low-yield orchards. The SUBPLEX method can reduce the 
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effect of phenological shift on assimilation accuracy to some extent, thereby 
producing a more accurate yield simulation. The results indicate that the SUBPLEX 
algorithm can be considered to be a promising assimilation method for remotely 
sensed information and crop growth models. In the future, the assimilation 
performance of the SUBPLEX method applied to other crops at the field and regional 
scales needs to be further tested and compared. In addition, the determination and 
automatic optimization of the initial input parameters of SUBPLEX assimilation, such 
as initial step size, relative tolerance and initial values of the parameters to be re-
calibrated, are worthy of further research and exploration to enhance its computational 
efficiency and assimilation accuracy. 
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1. General discussion

1.1. Performance comparison of the proposed yield estimation 
methods 

At present, remote sensing regression, crop growth models, and assimilation 
methods are widely used for crop yield estimation at different scales, including field, 
farm, local, regional, country, and global scales (Huang et al., 2019a; Weiss et al., 
2020). Establishing an empirical relationship between in situ yield statistics and 
remotely sensed indicators is a straightforward method of yield estimation (Weiss et 
al., 2020). Sun et al. (2017) used the cumulative NDVI from TM satellites to estimate 
grape yields, with relative errors ranging from 10 to 18% and correlations from 0.62 
to 0.77. Anastasiou et al. (2018) established regression models between TM satellite-
derived GNDVI and table grape yields, showing a coefficient of determination of 0.33. 
In addition, Rahman et al. (2018) explored the potential of WorldView-3 imagery for 
estimating the yield of mangoes based on all sampled trees from three orchards in two 
growing seasons, showing a strong correlation (R2 = 0.70). A mechanistic crop growth 
model simulates the growth of crops and estimates yield by studying the relationship 
between crop growth and the environment (Jin et al., 2018). The assimilation approach 
aims to provide a formal and well-understood yield assessment method by combining 
the advantages of crop growth models and remote sensing observations (Huang et al., 
2019a). In theory, any empirical relationship model involving yield and satellite 
observation indices can be replaced by assimilating remotely sensed data or major 
state variables into a mechanistic crop growth model (Weiss et al., 2020). In this thesis, 
we attempted to test and compare the three kinds of fruit yield estimation methods 
(six modes) at the field scale for local jujube orchards, including WOFOST simulation 
without assimilation, remote sensing-based VI regression, phenology-adjusted remote 
sensing-based VI regression, forcing method, EnKF assimilation, and SUBPLEX 
assimilation. The comparison of yield estimation performance for the methods is 
shown in Table 7–1. Although the corrected WOFOST adequately expressed the 
developmental dynamics of TAGP and LAI in jujube trees in field experiments, the 
unassimilated WOFOST model exhibits a poor estimation performance for field-scale 
jujube fruit yield, with a low coefficient of determination (R2) and a high root mean 
square error (RMSE). The main reason for this is probably that the calibrated model 
is based on the field experiments. However, when the calibrated model is used for the 
yield estimation of different orchards in the local agro-ecological zones, the key input 
parameters may be uncertain, such as TDWI and SPAN which may be affected by tree 
age, planting density, and management. This may lead to a large yield simulation error. 
Research results show that all the assimilation approaches significantly improved the 
jujube fruit yield estimation compared with the WOFOST model without assimilation. 
The phenology length from flowering to maturity corrected by the WOFOST model 
also significantly improved the remote sensing-based yield assessment. Generally, for 
jujube fruit yield estimation at the field scale in 2017, the best results achieved by the 
SUBPLEX assimilation method are also confirmed by the indices of agreement and 
error (R2 = 0.78, RPD = 2.13, NRMSE = 8.3%), followed by the phenology-adjusted 
remotely sensed NDVI regression method (R2 = 0.71, RPD = 1.86, NRMSE = 9.5%), 
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and EnKF assimilation (R2 = 0.66, RPD = 1.73, NRMSE = 10.2%), and finally the 
forcing method and NDVI regression method without phenological adjustment. If the 
RPD value is more than 2, then the model has good evaluation ability (Fleming et al., 
2017). For all methods, only the SUBPLEX method had a RPD value greater than 2. 
Therefore, SUBPLEX method may obtain better jujube fruit yield estimation accuracy 
at the field scale. 

Table 7–1: Comparison of yield estimation performance of the methods proposed in the 
thesis. 

Estimation method Year R2 
RMSE 

t ha–1 

NRMSE 

(%) 
RPD 

Simulation without 

assimilation 

2016 0.22 1.07 16.3 1.13 

2017 0.04 1.33 17.2 1.02 

NDVI regression 

without phenological 

adjustment 

2016 0.35 0.98 14.8 1.23 

2017 0.43 1.02 13.3 1.33 

NDVI regression with 

phenological adjustment 

2016 0.64 0.73 11.1 1.66 

2017 0.71 0.73 9.5 1.86 

Forcing method 
2016 0.62 0.74  11.3 1.63 

2017 0.59 0.87  11.3 1.56 

EnKF assimilation 2017 0.66 0.79 10.2 1.73 

SUBPLEX assimilation 2017 0.78 0.64 8.3 2.13 

Figure 7–1 shows the detailed yield assessment results based on different methods 
for 181 jujube orchards in 2017, with frequency distributions of relative bias error 
(RBE, %). The SUBPLEX assimilation method result in relative bias errors that are 
distributed more centrally around zero compared with other methods. The results also 
indicate that the yield estimation error based on SUBPLEX and EnKF methods are 
closer to the uniform distribution. For the other four estimation methods, WOFOST 
simulation without assimilation, phenology-adjusted remote sensing-based VI 
regression, and forcing methods overestimate the yields of most jujube orchards; 
which are not the case for remote sensing-based VI regression. 
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Figure 7–1: Frequency distributions (%) of relative bias error (RBE, %) resulting from 

different yield estimation methods (2017). Bin size = 5. 

1.2. Local-scale jujube fruit yield mapping and significance 

The yield variation analysis for local jujube orchards is also an important part of the 
precision management of these orchards. Based on the proposed method, the jujube 
fruit yield distribution map of the local agro-ecological zones can be produced 
(Figure 7–3). The estimated average yield increases from 2016 to 2017, showing the 
same inter-annual change as the actual yield, this is probably because the jujube fruit 
yield rose sharply with the increase of tree age. The maps also show that there were 
annual spatial changes in the different ecological zones. Spatial distribution analysis 
of jujube fruit yields can help agricultural management departments or fruit farmers 
to quickly locate low-yield and high-yield areas, and then analyse the causes and 
economic benefits of yield variation, such as irrigation, fertilization, pruning, and pest 
control. For yield losses due to orchard management factors, the yield can be increased 
through technical training and improved management. For some yield declines due to 
soil structure and characteristics, it may be that these site-specific soils are not suitable 
for the growth of jujube trees, and it may be a reasonable option to cultivate other 
jujube varieties or other, more suitable crops to increase economic benefits. Variations 
in yields may also be caused by meteorological changes. Based on the correlation 
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analysis of historical meteorological data and yields, the environmental adaptability 
of tree species can be analysed, and the results can also be used as a reference for 
screening and cultivating suitable fruit crop varieties. The proposed method combined 
with higher resolution UAV remote sensing data could be used to assess the yield 
distribution at a sub-field scale, which would be helpful in improving farm precision 
management. 

 

Figure 7–2: Jujube yield mapping for local agro-ecological zones  

In addition, local-scale production evaluation is also the basis of regional-scale and 
national-scale production evaluations. Regional-scale yield estimation has certain 
reference value for the sale price of jujube fruit and for policy formulation. As 
mentioned in the introduction section of Chapter 1 (Figure 1−3), the price of jujube 
fluctuated significantly from 2000 to 2018. The main reason for this may be that the 
price of jujube fruit is determined by the balance of market supply and demand. 
According to the classic theory of market economy, if the production of jujube fruit 
is higher, the supply will be greater, and the price will become lower. Inversely, if its 
production is lower, the supply becomes smaller, and the price will be higher (Li, 
2016). The method proposed in the paper has the potential to be extended to estimate 
regional-scale jujube fruit yield distributions, which can help government departments 
to evaluate the distribution of production in different regions. Furthermore, reasonable 
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price, transportation, and sales strategies will hopefully be formulated to prevent 
excessive price fluctuations, avoid damaging farmers' enthusiasm and income, and 
ensure the sustainable development of the jujube industry. 

1.3. The limitation of error sources on yield estimation  

1.3.1. Uncertainty of input parameters of crop models 

When using crop growth models for yield assessment, the uncertainties of input 
parameters, meteorological driving data, and the simplification of model simulation 
processes will affect the accuracy of yield estimation (Huang et al., 2019a). In our 
research, we used local weather station data and the potential growth simulation of 
the WOFOST model; we did not consider the weather data driving error and the 
structural error of the model itself and assumed that jujube growth simulations were 
only affected by the key crop input parameters of WOFOST. Some studies have 
confirmed that the TDWI parameter strongly influences the initial growth rate of crops 
and shows a high degree of uncertainty, which can affect the growth rate of the initial 
LAI and the maximum LAI (de Wit et al., 2012). In this study, tree age mainly affects 
TDWI. Although SPAN, which determines the rate and timing of leaf senescence, is 
a characteristic of crop variety, this parameter may be influenced by nitrogen shortage, 
as well as pests and diseases (Huang et al., 2015), and crop management (de Wit et 
al., 2012). Yet the WOFOST model cannot simulate the effects of these factors on 
SPAN (Curnel et al., 2011). Recognizing that tree age and planting density may affect 
the initial TDWI of jujube trees, and that stress factors and irrigation, fertilization, and 
pruning management may influence the SPAN value, the effects of these two 
parameters on the accuracy of the simulated and assimilated yield are mainly 
considered in our study.  

For WOFOST simulation without assimilation, we set a fixed SPAN value which 
was derived from the calibrated value of the field experiments for different orchards, 
due to a lack of corresponding local-scale measured data, and set the average TDWI 
value for the same aged jujube orchards. Results show that the method of inputting 
the average TDWI for jujube orchards of the same age into the WOFOST model 
cannot produce optimal simulation accuracy for jujube fruit yields for the 181 
orchards, and the uncertainty of inputting TDWI parameters may still be large. 

For the remotely sensed VI regression method based on phenological adjustment, 
we did not correct the simulated TSUM1 parameter (which determines flowering date) 
due to a lack of accurate observation data from local orchards. In the same situation 
as TSUM1, the variability of the TSUM2 parameter (which determines the days from 
flowering to maturity) in different orchards has not been observed and corrected, and 
the calculated phenotypic deviation may also be introduced into the yield regression 
model based on remote sensing, thereby influencing the jujube fruit yield estimation 
accuracy. 

For the forcing method, the state variables in the crop model are directly replaced 
by remotely sensed data (Jin et al., 2018). Tripathy et al. (2013) forced remotely 
sensed LAI at near to peak vegetative stage into the calibrated WOFOST model to 
replace simulated LAI to improve wheat yield estimation. The replaced LAI 
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determined the growth rate of LAI at the next time step. Therefore, it was assumed 
that the final simulated yield was close to the actual value (Tripathy et al., 2013). We 
forced different periods of remotely sensed LAI into the WOFOST model and 
compared the fruit yield estimation accuracy for jujube orchards. Results show that 
assimilating the LAI from the fruit filling period obtained the highest relative yield 
estimation accuracy (R2 = 0.59, NRMSE = 11.3%), followed by the early stage of 
fruit ripening (R2 = 0.54, NRMSE = 11.9%), and the late stage of fruit ripening (R2 
= 0.35, NRMSE = 14.1%). LAI during the leaf and shoot development periods show 
the worst assimilation accuracy, with NRMSE values of 21.6%. The reason for these 
results may be that jujube fruit yield is highly correlated with the maximum LAI 
(Yang et al., 2012). Usually, the LAI of the fruit filling and the early ripening periods 
are closer to the peak vegetative stage, therefore forcing LAI during these periods may 
result in higher yield estimation accuracy. Existing studies have also shown that the 
heading LAI has a higher contribution to the improvement of yield estimation 
accuracy (Huang et al., 2015; Tripathy et al., 2013). Some studies have also confirmed 
that TSUM1 and TSUM2 may be uncertain at the regional scale (Zhao et al., 2013; 
Huang et al., 2019b), and the inconsistency of the phenological time of the observed 
and simulated state variables (phenology shift; Curnel et al., 2011) may lead to a 
decrease in assimilation accuracy. In practice, the jujube tree age may also affect the 
actual emergence date, but we did not consider this factor. The deviation of the 
phenology time between the observed LAI and simulated LAI may also influence the 
jujube fruit yield estimation accuracy of the forcing method. Therefore, we 
recommend that when performing forced methods, especially when remote sensing 
observations are limited, the LAI near the maximum developmental stage is the 
preferred forcing variable. 

For EnKF assimilation, determining and analysing input parameters of the 
WOFOST model is an important step to improve the accuracy of EnKF assimilation 
(Huang et al., 2016). Usually, two kinds of methods can be used to generate the 
ensemble members of simulated LAI, including directly adding a Gaussian 
perturbation into the modelled LAI (Ma et al., 2013) or adding Gaussian perturbated 
values to uncertain input parameters (TDWI and SPAN in our research) to simulate 
the LAI ensemble members (Curnel et al., 2011; de Wit and van Diepen, 2007; Huang 
et al., 2016). The second method assumes that the uncertainty of crop models comes 
from the error of key input parameters (Curnel et al., 2011). Referring to existing 
research results (Curnel et al., 2011; de Wit et al., 2012; Huang et al., 2016) and the 
characteristics of jujube trees, we assume that the uncertainty of the WOFOST 
simulation is caused by the input TDWI and SPAN parameters. The two parameters 
can be treated as Gaussian random variables with the normal distribution centred on 
the default value (Curnel et al., 2011); in this research we set default values (TDWI = 
15 kg ha–1, and SPAN = 50 days), and a standard deviation (5 kg ha–1 for TDWI, 
4 days for SPAN). However, the observed TDWI of 55 orchards does not exactly fit 
the Gaussian distribution, which may also result in a decrease in the assimilation 
accuracy of EnKF. Assuming that the distribution of SPAN parameters is not a 
Gaussian distribution, the performance of EnKF may be further reduced. Of course, 
the spatial distribution of remote sensing observation errors will also affect the 
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assimilation accuracy of EnKF, which we will cover in the next section. In our 
research, the difference of phenology time between remotely sensed and modelled 
LAI (phenology shift) is not considered, which may lead to a decline in assimilation 
accuracy based on the EnKF strategy (Curnel et al., 2011). 

For SUBPLEX assimilation (calibration method), a remotely sensed time series of 
LAIs were assimilated into the calibrated WOFOST model to correct the key input 
parameters, here TDWI and SPAN, thereby improving yield estimation. In theory, 
calibration methods can be used to reduce the accumulation and spread of remote 
sensing data errors during the assimilation process, which may be better for most 
applications than updating methods (Jin et al., 2018). Curnel et al. (2011) compared 
the estimation performance of final grain yields based on a recalibration assimilation 
method with an EnKF approach. Their results show that a recalibration-based 
approach is better than EnKF. Our results also indicate that SUBPLEX assimilation 
provides slightly better jujube fruit yield estimation compared with EnKF. The 
possible reason for this is that the uncertainty of phenological shift has a greater 
impact on the assimilation accuracy of the EnKF method than SUBPLEX. In order to 
test the effect of phenology shift on simulated yield based on SUBPLEX assimilation, 
the corrected WOFOST model was run for 115 days, 118 days, and 121 days. The 
results show the estimated yields are 9.039, 9.203, and 9.271 t ha–1, respectively. 
Obviously, when the phenological time deviation is six days, there is only a relatively 
small 2.5% yield estimation deviation. The reason may be that the entire simulation 
curve is shifted overall when phenological time is shifted, so it has little effect on the 
final estimated yield. The effect of phenological shift on EnKF assimilation was 
reported by Curnel et al. (2011). For SUBPLEX assimilation, in theory, a larger range 
of TDWI and SPAN can find a combination of optimal values to ensure that the error 
of all observed LAIs and simulated LAIs is minimized, but the number of iterations 
and the computation time is increased. The range of TDWI is derived from the field-
measured values of 55 observed orchards. We set an upper limit value for the SPAN 
parameter (60 days) which is a calibrated value from the potential growth simulation 
based on field experiments. Considering that this parameter may be affected by 
various stresses, the SPAN value of different orchards may be lower than the potential 
value, so we set a possible lower limit of 40 days for 181 orchards. The results show 
that the corrected TDWIs based on the SUBPLEX assimilation all fall within the range 
of 5 to 30 kg ha-1, but the SPAN value of 21 orchards may exceed the set SPAN range 
(Figure 6–9a). The actual SPAN values of the three orchards may be overestimated, 
while the SPAN of eighteen orchards may be underestimated. We recommend that 
when performing SUBPLEX assimilation, it is a good choice to increase the SPAN 
range appropriately so that the corrected SPAN values fall within the actual range. 
Note that when the SUBPLEX algorithm is run to correct the SPAN parameters, the 
observed state variables at the end of the growing season are indispensable.  

1.3.2. Uncertainty of remotely sensed state variables  

The acquisition of remotely sensed vegetation indices or LAI is the basis of remote 
sensing-based or assimilation methods of yield estimation. Obtaining agronomic 
variables from remote sensing information largely falls into three categories: pure 
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empirical methods, mechanistic methods, and contextual methods (Weiss et al., 2020). 
The empirical method, also known as the regression method, usually applies a 
calibration empirical relationship to the experimental observations and is therefore 
limited by the representativeness of the calibration data set. Conditions of acquisition 
(Epiphanio and Huete, 1995), such as atmospheric conditions, acquisition geometry, 
crop conditions (Colombo et al., 2003; Gitelson, 2004), and geomorphological context 
(Matsushita et al., 2007) have an impact on empirical relationships. In addition, the 
uncertainty associated with remote sensing signals and ground measurements, 
including the spatial error of the sensor itself and the spatial measurement strategy of 
the field measurement data, are also considered (Huang et al., 2019a). In our research, 
these uncertain factors may also be introduced into the remotely sensed NDVI 
regression method and assimilation process for fruit yield estimation of jujube 
orchards.  

For yield estimation based on NDVI obtained from the Landsat 8 satellite, the 
number of images available per year is limited due to cloud cover (Whitcraft et al., 
2015). It may be difficult to obtain more effective observations for different 
development stages. Therefore, the best period for determining jujube yield estimation 
needs to be selected, and this was found to be during the fruit filling period. The 
phenological length derived from the corrected WOFOST model improved the remote 
sensing-based yield assessment. However, there is no guarantee that two or more 
Landsat 8 observations can be obtained during fruit filling periods each year. 

For forcing and assimilation methods, the empirical regression model between 
remotely sensed NDVI and field-measured LAI was fitted to estimate the LAI values 
of the local orchards, with an error of almost 10%. This error is also accumulated in 
the assimilation process and reduces the yield estimation accuracy. Empirical methods 
require a significant amount of time and effort to obtain correction and validation data 
to establish a good relationship between target agronomic parameters and remote 
sensing information. Radiative transfer models, such as PROSAIL, are also important 
methods for obtaining remotely sensed LAI. However, such models require prior 
knowledge to implement. It is difficult to evaluate which method is better, and 
different studies have shown that both methods may yield good evaluation results (Jin 
et al., 2018). The LAI inversion performance of the PROSAIL model for jujube 
orchards cannot be evaluated due to missing input data that would drive the PROSAIL 
model. Since our research focuses on local-scale jujube orchards, and the inter-annual 
variation in local planting structure and spatial heterogeneity is small, using empirical 
regression models for LAI inversion may also be a good choice. 

1.3.3. Uncertainty of assimilation methods 

The main goal of this thesis is to develop assimilation methods for the fruit yield 
assessment of jujube crops at the field scale. Three assimilation methods, including 
forcing, update (EnKF), and calibration (SUBPLEX) methods, were carried out to 
reduce the uncertainty of the WOFOST simulation process and to improve yield 
estimation performance. For forcing methods, the crop model simulation value is 
directly replaced by the remotely sensed value as a state variable to improve the 
simulated yield (Yao et al., 2015; Tripathy et al., 2013). The forced method is easy to 
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operate but, strictly speaking, it does not involve data assimilation methods. If remote 
sensing can provide high-precision state variables, then good estimates can be 
obtained (Jin et al., 2018). In our search, a remotely sensed LAI near to maximum leaf 
development stage was forced into the calibrated WOFOST model to re-simulate the 
fruit yield for jujube orchards. It is supposed that forcing method may be strongly 
influenced by the phenological shift. If the phenological shift between the remotely 
sensed and modelled LAI is large, this approach may have difficulty in obtaining a 
good estimate. Our research was carried out in a small agro-ecological area (6180 km2) 
and the phenological bias may not be too large, so an acceptable assessment was 
obtained. However, when this method is used for regional-scale jujube yield 
assessment, the phenological development time should be corrected.  

For the EnKF method, remotely sensed and simulated LAI errors are assumed to be 
in accordance with a Gaussian distribution. In our research, the remotely sensed and 
modelled LAI error may not be completely consistent with a Gaussian distribution, 
which will also affect the accuracy of yield estimation based on EnKF. Since the time 
and space of the variances on the modelled LAI and the observed LAI are variable, it 
is not easy to infer the correct variance. Artificially inflating the observation variance 
can demonstrate the effect of increased variance on the distribution of normalized 
innovations (de Wit et al., 2007) and enlarge Kalman gain to reduce the effect of filter 
divergence (Huang et al., 2016). Phenological shifts (Curnel et al., 2011) are also 
important factors influencing estimation accuracy.  

The SUBPLEX (calibration) method calibrates a set of TDWI and SPAN for each 
orchard by minimizing the cost function. The relative tolerance for convergence ε is 
set to the minimum value of the observed and simulated LAI error for all observation 
points. Although a smaller value of ε may improve the accuracy of assimilation, it 
may lead to an increase in the number of iterations, which in turn increases the 
calculation time (Rowan, 1990). The initial step size to compute numerical gradients 
was artificially set to 0.5 kg ha–1 for TDWI and 1 day for SPAN, respectively. A 
smaller initial step size may improve the accuracy of yield evaluation, but may also 
increase the calculation time. In theory, smaller simplex reduction coefficient 𝜑 and 
larger step reduction coefficient 𝜔 values can produce smaller objective function 
values, but the computational time will increase accordingly. The automatic parameter 
optimization algorithm is also expected to be used to set appropriate SUBPLEX 
parameters to maintain a balance between assimilation accuracy and computational 
efficiency. In theory, if there are enough remote sensing observations and the error is 
small, the calibration method may have high yield estimation accuracy because it can 
theoretically reduce the accumulation and spread of remote sensing data errors during 
the assimilation process (Jin et al., 2018). However, the computational efficiency of 
the calibration method is usually lower than the EnKF assimilation method, and real-
time evaluation cannot be achieved (Huang et al., 2019a). 

Research results also show that the use of four periods of LAIs yields higher 
assimilation accuracy than using three periods (Table 6–5). This shows that increasing 
the number of effective remote sensing observations may improve the accuracy of 
yield assessment based on the assimilation method. When there are only three 

https://www.sciencedirect.com/science/article/pii/S1161030117301685#bib0140
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observations, it may be a good choice to assimilate the observations covering major 
developmental stages. 

1.4. Choice of jujube fruit yield estimation methods 

In our thesis, both the phenology-adjusted remote sensing-based estimation method 
(empirical method) and assimilation methods (mechanistic method) achieved fruit 
yield estimations for jujube orchards with high accuracy. However, just as the 
limitations of the different methods were analysed above, the application conditions 
of several proposed methods need to be considered. The advantage of an empirical 
approach based on remote sensing is its simplicity, but it requires the collection of 
large amounts of yield and reflectance data, and may lack extrapolation capacity in 
time and space (Weiss et al., 2020). The purpose of our research is to serve local 
orchard management. The inter-annual variation of agricultural planting structure and 
soil structure is very small, so both methods of yield assessment can be considered. 
However, it should be noted that the proposed methods rely heavily on the number of 
remote sensing observations. The forcing method is a suitable choice when only a 
remote sensing image near to the maximum developmental stage is available. 
Sometimes, in order to perform finer field-scale or sub-field-scale yield analysis, 
remote sensing satellites with high spatial resolution are required. Since there are 
usually few remote sensing observations with high-space resolution, the method of 
forcing a period of remote sensing observation may be suitable. When two satellite 
images of the main developmental stage are available and apply only to specific 
regions, the remote sensing-based regression method can be recommended. Although 
this method lacks a mechanistic description, it is easy to implement and has high 
operability (Chen et al., 2016). In addition, the regression method without 
phenological adjustment based on remote sensing has the ability to predict jujube fruit 
yield three months before harvest. The EnKF (update) and SUBPLEX (calibration) 
methods can be strongly recommended when multiple remote sensing images from 
emergence to maturity are available. However, as was found by the results of the 
above analysis, EnKF may be a suitable choice if the phenological development time 
is clear, otherwise SUBPLEX may obtain good yield evaluation performance. 

As described in Section 2.3 in Chapter 1, other assimilation methods such as PF 
(Particle Filter), KF (Kalman filter) and 4DVAR (Four-Dimensional Variational Data 
Assimilation) are often used in remote sensing assimilation. In addition, the Markov 
Chain Monte Carlo (MCMC) (Gilks et al., 1995) sampling method may have some 
potential to deal with the uncertainty of the non-Gaussian distribution error in the 
process of data assimilation (Huang et al., 2019a). A simple decision tree for the 
selection of data assimilation methods is shown in Figure 7–3. When choosing a data 
assimilation method, real-time can be used as a first reference. KF, EnKF and PF can 
be considered as real-time data assimilation methods, which can be extended to 
within-season estimation (Huang et al., 2019a). Next, whether the observation error 
is Gaussian can be used as a basis for decision. If observed and simulated errors 
conform to a Gaussian distribution, EnKF can be preferred under the assumption that 
the crop model is highly nonlinear. If the crop model is considered to be locally linear, 
KF may be a good choice. If these errors are not Gaussian, PF may produce a good 



Chapter 7. Discussion, conclusions and perspectives 

153 

estimation performance. 4DVAR, SUBPLEX, and MCMC cannot be considered real-
time assimilation methods, and they require consideration of the size of the 
assimilation time window. For non-sequential assimilation methods, if observed and 
simulated errors have a Gaussian distribution, 4DVAR and SUBPLEX may be a good 
choice. If not, MCMC may be a suitable assimilation method. However, MCMC 
requires more computation time than variational algorithms (Huang et al., 2019a). In 
conclusion, the selection of assimilation methods should consider factors such as 
whether they are real-time, the error distribution, phenological shift, and calculation 
efficiency according to the actual application. 

Data assimilation methods 

choice strategy

Real-time inferences

Gaussian 

Uncertainty

Non-gaussian 

Uncertainty

4DVAR or 

SUBPLEX
MCMC

Gaussian 

Uncertainty

Non-gaussian 

Uncertainty

EnKF PF

Linear or locally 

linear models

Highly non-

linear models

KF

No Yes

 

Figure 7–3: Decision tree for the choice of data assimilation methods  

2. General conclusions 

This study shows that the WOFOST model has potential for use in growth 
simulation and yield assessment of perennial jujube trees. The results also support that 
data assimilation technology is a feasible and effective means to realize the coupling 
of a crop growth model and remote sensing information for jujube fruit yield 
estimation. The remote sensing assimilation method shows a slightly higher accuracy 
of jujube fruit yield assessment than the regression method based on the remote 
sensing vegetation index.  

 The jujube growth simulation based on a calibrated WOFOST model was 
successfully established based on crop, soil, and climatic data measured in field 
experiments. Note that the growth simulation of fruit trees should consider the tree 
age, which is one of the key factors in precision simulation. Results show that the 
calibrated model can not only accurately simulate the biomass of different organs but 
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also reliably present a number of phenological development stages and superior 
climate change response under its potential condition. However, the uncertainty of the 
input parameters of the model affects the accuracy of the yield estimation when the 
model is applied to different orchards. In the study, although a method that set the 
fixed (average) TDWI for the same aged jujube orchards was designed to reduce its 
uncertainty, the estimation error is still large. When using a calibrated WOFOST 
model at the local scale, this uncertainty should be improved to obtain accurate 
estimations for jujube fruit yields. 
 Remote sensing-based empirical statistical methods can also be considered as a 

convenient and easy-to-use method of jujube fruit yield assessment. Crop yields are 
correlated with phenology information, especially the fruit filling days. Therefore, the 
research also explored an approach using the phenological length of jujube growth to 
improve remotely sensed estimates of inter-annual variability for jujube fruit yields. 
Based on the remotely sensed estimation method, the best time for determining jujube 
yield estimation was found to be during the fruit filling period. The average NDVI for 
14th and 15th half-months represents a better performance for yield estimation than 
other vegetation indices and modelling time, with a higher R2 and lower NRMSE. 
The potential of integrating the phenology length with Landsat-NDVI for jujube yield 
estimation was proved, showing a well validated R2 for the two growth seasons. The 
proposed method may show better performance between years when the fruit filling 
days differ greatly compared to directly using a remotely sensed VI regression method, 
which was verified to fit well to jujube yield estimation and mapping one and half 
months before harvest.  
 The remote sensing assimilation method may be more promising for jujube fruit 

yield assessment. Remote sensing can provide state variables to link crop growth 
simulations, and has been widely employed to reduce the uncertainty of crop growth 
models. For jujube trees, the input parameters of the growth simulation may not only 
be uncertain at local or regional scales, but the uncertainty of tree age and planting 
density may exist at the field-scale for jujube orchards. In this study, the yield 
modelling accuracy is enhanced by forcing a single remotely sensed LAI at near to 
the maximum vegetative development periods from Landsat 8 data into the calibrated 
WOFOST model. More importantly, the development of a new remote sensing 
assimilation framework based on the SUBPLEX algorithm obtained better estimation 
performance than the commonly used EnKF method.  
 To summarize, the regression model established directly using the remote 

sensing vegetation index has the ability of predicting jujube fruit yield three months 
before harvest. Furthermore, the remote sensing regression method can easily realize 
the prediction of jujube fruit yield at local and regional scales, which may be 
beneficial for predicting the price of jujube fruit, formulating transportation and sales 
strategies to prevent excessive price fluctuations and ensure the sustainable 
development of the jujube industry. Three yield estimation methods integrated with 
remote sensing information and a calibrated WOFOST, including forcing, EnKF and 
SUBPLEX, achieve good performance compared to the simulation without 
assimilation. In practice, the selection of jujube fruit yield estimation methods is 
recommended to refer to the number of remote sensing observations, error distribution 
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and real-time requirements. When only one fruit-filling period of remote sensing 
observation data is available, the forcing method can be used to improve the 
simulation state of the model. EnKF and SUBPLEX methods require more remote 
sensing observations and assume that the observed and simulated errors conforms to 
the Gaussian distribution. Note that both methods cannot improve the difficulty of 
non-Gaussian distribution of observed and simulated errors in the assimilation process. 
Although, the SUBPLEX method exhibits better performance and stability for yield 
estimation compared to EnKF in this study because the accuracy of the EnKF method 
is susceptible to phenological shifts, the EnKF assimilation method after phenology 
time calibration can be recommended for real-time growth monitoring and biomass 
assessment during the growing season to improve jujube orchard management.  

3. Perspectives 

3.1. Improvement of jujube fruit yield estimation 

For field management of fruit crops, field-scale yield mapping provides benefits for 
improving agriculture management, such as irrigation, fertilization, pests and disease 
control, and tree shape pruning strategies. In particular, to target precision farm 
management, mapping the variation in the field yield can help farmers to find causes 
of low production. Assimilation technology will play an important role in the 
operation of fruit yield estimation in agricultural regions, contributing to sustainable 
agricultural development. In order to further improve the accuracy of jujube fruit yield 
assessment, the following aspects are worthy of in-depth study: 

 Advances in crop growth models: Recently, several model extensions have been 
implemented to consider crop nutrient dynamics, crop response to critical 
temperatures (cold and hot), and crop CO2 assimilation in response to changes in 
environmental CO2 levels. Some of these improvements are based on existing 
methods that have been tested in other models (such as NWHEAT or LINTUL), while 
others are based on recent developments in international coordination activities, such 
as the Agricultural Model Intercomparison and Improvement Project (AgMIP; 
Rosenzweig et al., 2013) and the European MACSUR initiative (Modelling European 
Agriculture with Climate Change for Food Security). Improvements in the basic 
theory and process of these models are expected to enhance the simulation mechanism 
and improve jujube yield estimation accuracy. In addition to the approach proposed 
in this thesis, an integrated mature nutrient module and water balance module can be 
expected to further realize the analysis and quantification of jujube water and fertilizer 
nutrient requirements throughout the growing season, and then guide precision 
irrigation and precise fertilization.  
 Improvement of model input parameter uncertainty: In this thesis, it is supposed 

that assimilation error comes from the uncertainty of remotely sensed error and key 
input parameters (TDWI and SPAN). The phenological shift error should be 
considered which may be affected by factors such as jujube tree varieties and tree age. 
In future research, the combination of Landsat and Sentinel-2 satellite data is expected 
to obtain more remote sensing observation information during the main growing 
season to further correct some key model input parameters, such as TDWI, SPAN, 
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TSUMEM, and TSUM1, thereby improving the accuracy of jujube fruit yield 
assessment. In addition, the optimization and correction of CO2 assimilation 
parameters and SLATB, which are highly correlated with the jujube tree growth and 
leaf area index, will also be expected to improve the assimilation accuracy of jujube 
fruit yield. 
 Optimization of remotely sensed state variables: Remote sensing technology is 

the most promising way to assimilate canopy state variables into crop models and 
further improve crop yield estimation and management (Jin et al., 2018). The types of 
satellite data providing remote sensing of terrestrial resources are increasing, and the 
quality of data has been continuously improved, which strongly supports the research 
and application of agricultural remote sensing, including the use of Gaofen-1 and 
Sentinel-2 satellites (Weiss et al., 2020). Due to the characteristics of agriculture itself, 
aerial remote sensing based on manned aircraft and drones will be an important part 
of agricultural remote sensing data acquisition. The new Internet of Things based on 
mobile platforms such as fixed platforms, vehicles, and human-based intelligent 
terminals will be an important part of agricultural remote sensing data acquisition 
(Chen et al., 2016). The combination of satellite, aerospace, and ground integrated 
remote sensing data acquisition systems are expected to achieve more accurate 
regional, field-scale, and sub field-scale yield estimation. For large-scale jujube yield 
estimation, the combination of a time series of MODIS and Landsat/Sentinel data 
based on the proposed methods is worth exploring. For the field scale of local scale 
yield estimation, the integration of free medium and high spatial resolution satellite 
data is also expected to improve estimation accuracy, such as Sentinel-1 and 2, 
Landsat 8, and Gaofen. In addition, high spatial resolution satellites or UAV remote 
sensing data have the potential to monitor growth information and estimate yield at 
the sub-field scale. It is worth noting that Sentinel-2 can provide information on 
chlorophyll concentration, which hopefully can be linked to photosynthetic activity 
(Croft et al., 2017; Delloye et al., 2018). How to link this information with the 
simulation process of crop growth models, such as the carbon dioxide assimilation 
process, is worthy of further exploration. 
 Improvement of assimilation methods: A large number of research experiments 

propose that the combination of variational and filtering algorithms can effectively 
improve assimilation results, which is an important direction for the research and 
development of assimilation algorithms (Poterjoy and Zhang, 2014; Zhang et al., 2012, 
2009). The MCMC method may be a promising method to reduce the uncertainty of 
observation error in the assimilation process. These methods are expected to improve 
the accuracy of jujube fruit yield assessment. 

3.2. Construction of regional assimilation systems 

The assimilation system is a coupling of crop remote sensing parameters, crop 
models, and assimilation algorithms. The basic links involved in the application of an 
assimilation system include a database of regional crops, remote sensing and crop 
model driving parameters, assimilation algorithm modularization, assimilation result 
analysis, and ground verification. The following research priorities present some ideas 
for the construction and operation of crop model assimilation systems. 
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 Remote sensing plays a decisive role in obtaining the key state variables of crop 
canopies. An empirical statistical model is a commonly used inversion method for 
crop canopy state variables (Durbha et al., 2007; Foca et al., 2009; Jin et al., 2013; 
Huang et al., 2015, 2016). An accurate quantitative description of state variables 
requires consideration of the sun angle, leaf area density, and leaf angular space 
distribution, and must have a sufficient number of samples (Curran and Williamson, 
1986). Therefore, many scholars have used physical optics to perform inversion 
studies of canopy state variables (Daughtry et al., 2000; Eitel et al., 2007; Haboudane 
et al., 2002; Li et al., 2015). The established model needs to be validated according to 
different application environments and regions. In summary, the quality of regional 
crop state variables is one of the key factors affecting the results of data assimilation. 
Therefore, the primary task of establishing a regional crop model assimilation system 
is to produce and establish a regional crop or state parameters database. This involves 
a whole set of crop parameters, remote sensing inversion techniques, programs, 
ground verification, and database establishment. 
 It is important to establish and improve the driving database of crop models for 

the assimilation system. Parameter data such as meteorology, soil, crop varieties, and 
field management are the basic driving data of the crop model assimilation system (de 
Wit et al., 2019b). At present, regional meteorological data are obtained by field data 
interpolation. When the distribution density of meteorological stations is low, the 
meteorological parameter data obtained by regional interpolation often has large 
uncertainties, and the results obtained by different interpolation methods often have 
large differences (Huang et al., 2015). Due to the complexity of the natural 
environment, soil parameters vary widely in spatial characteristics (spatial 
heterogeneity) (Jin et al., 2018). Large-scale regional soil parameter data often does 
not meet the accuracy needs of crop models for assimilation systems. There is an 
urgent and critical need to establish a more granular regional or local soil parameter 
database and sharing mechanism for assimilation systems. Differences in data areas 
such as crop varieties and field management strategies are important factors 
influencing the results of the estimation. The establishment and improvement of these 
databases is the basic premise and primary task of the application of the assimilation 
system. 
 It is beneficial for assimilation systems to develop crop growth models based on 

the results of existing crop models. The existing frameworks, parameterization, and 
mechanisms of various crop models have their own characteristics. They are usually 
single-point models. Many crop models have been developed based on the assumption 
of uniform field growth. However, some limiting factors are likely to occur during the 
growth process, so the external conditions are beyond the boundaries of the model. 
Errors from the crop model itself affect the estimation accuracy of LAI, biomass, and 
yield during region-scale data assimilation (Jin et al., 2018). In the application of 
regional expansion, the impact of regional terrain, climate, hydrology and other 
conditions on the agro-ecological environment is not considered. Therefore, it is 
promising to couple mature regional climate, hydrology, and other models with crop 
models to improve the regional adaptability of crop models. In addition, it could be 
worthwhile to combine these models with a remote sensing optical model to realize 
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the conversion of state variables and spectral reflectance, so that the coupling of the 
crop model and remote sensing information becomes simpler.  
 Research and development of practical and efficient assimilation algorithms 

needs to be enhanced. In terms of operational applications for the regional scale, the 
assimilation algorithm should not only fully consider the observations, the initial 
conditions of the model, and the uncertainty in the simulation process, but also 
improve the accuracy of the assimilation results. Importantly, it should have higher 
computational efficiency because it may need to assimilate a large number of 
observations (Jin et al., 2018). 

In short, assimilation technology is an effective means of crop growth monitoring 
and yield estimation, and has significant application prospects. However, the 
construction of mature and feasible business systems requires a lot of infrastructure 
and technical research; such a complex integrated system requires more research 
workers and departments to coordinate and cooperate. 
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