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Figure S1: Thermal profile of the multistrain probiotic vivomixx VSM003NM by TGA-
DSC: TGA curve (red), DSC curve (black), and DTG curve (blue) obtained by 5°C/min 
temperature scan 
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Theoretical aspect of the dynamic capillary rise phenomenon

Capillary rise in a tube is governed by a couple of famous laws. This liquid is itself 
characterized by a surface tension,   and a density . Due to the capillary pressure, a 
liquid penetrates a tube of radius R up to some height H according to the Jurin’s law 

Where  the viscosity and e the contact angle, which describes how the liquid/air 
interface behaves in contact with the tube surface at equilibrium. Often, liquid 
penetration rates are used to obtain information on effective pore dimensions. One 
approach is to measure the rate of penetration of a liquid, which is then modeled as a 
bundle of uniform capillaries.1–3 The driving force is the difference in pressure between 
the liquid and the vapor phase due to the curvature of the meniscus within the pore. 
This is balanced by viscous dissipation and changes in gravitational potential and 
momentum as the liquid imbibes. Simple expressions may be written to describe each 
of these terms, yielding an equation which relates the rate of penetration dh/dt to the 
wetting properties of the tube or the effective tube 

 (Eq.1)

By neglecting inertia, then this equation can easily be written in the form

                     (Eq.2)

Where

   

and

If we assume that the capillary rise h=0 at zero time, we get:4
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 (Eq.3)

Leading by Taylor’s expansion to

(Eq.4)

Or equivalently

(Eq.5)

which is the well-known approximation for the Lucas-Washburn equation. Now, it is also 
known that when the liquid will penetrate into the tube, the liquid/air interface will move 
at a certain speed which will affect the value of the contact angle. The contact angle 
modification due to this displacement can be described  by:5

(Eq.6)

where  refers to the friction between the moving interface and the solid surface. If we 
now insert this correction into Eq. 1, we get 

(Eq.7)

which can be written as

(Eq.8)

Where 

With the same initial boundary conditions as before, we then get the general solution

(Eq.9)
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leading to the expansion

(Eq.10)

Let us here stress that this modification will affect the behavior of the penetration height 
h mostly for small time values since it is speed dependent. It will now behave as . 
Other dissipation channels have also been considered to describe this additional term6 
but again it only affects the small time behavior of the function h. 

For the case of powders or porous media, we usually use Darcy’s equation given by

                                      (Eq. 11)

where Reff is now an effective radius of imbibition and k is the so-called permeability. 
Integration of this equation is easy using the previous arguments leading to

 (Eq.12)

where

   (Eq.13)

from which the permeability k can be seen proportional to Reff2. From the kinematics of 
the imbibition in a porous media, we can thus extract the effective radius characterizing 
its permeability or equivalently its porosity. When the porous media is not 
homogeneous, different scaling behaviors may be observed such as described by Kim 
et al.7
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Figure S2: Experimental data (+) and Lucas-Washburn equation best fit (―) of the 
ethanol capillary rise data into vivomixx VSM003NM packed bed.
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(A)

(B)

Figure S3: The particle size distribution of vivomixx VSM003NM particles determined by 
the laser diffraction expressed in number % (A) and in volume % (B)


