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Abstract

We recently described X-linked acrogigantism (X-LAG) in sporadic cases of infantile 
gigantism and a few familial cases of pituitary gigantism in the context of the disorder 
known as familial isolated pituitary adenomas. X-LAG cases with early onset gigantism 
(in infants or toddlers) shared copy number gains (CNG) of the distal long arm of 
chromosome X (Xq26.3). In all patients described to date with Xq26.3 CNG and acro-
gigantism, the only coding gene sequence shared by all chromosomal defects was that of 
GPR101. GPR101 is a class A, rhodopsin-like orphan guanine nucleotide-binding protein  
(G protein)-coupled receptor (GPCR) with no known endogenous ligand. We review what is 
known about GPR101, specifically its expression profile in human and animal models, the 
evidence supporting causation of X-LAG and possibly other roles, including its function in 
growth, puberty and appetite regulation, as well as efforts to identify putative ligands.

Introduction

In 2014 (Trivellin  et  al. 2014), we described X-linked 
acrogigantism (X-LAG, MIM #300942), a disorder that 
presents with infant-onset overgrowth and gigantism due 
to growth hormone (GH) over secretion (Beckers  et  al. 
2015, Hannah-Shmouni et al. 2016, Trivellin et al. 2018a). 
The clinical characteristics of patients with X-LAG 
are described in the accompanying review by Vasilev  
et al. (2020).

In this review, we will focus on the identification 
of what strongly appears to be the causative gene in 
X-LAG, GPR101, a class A, rhodopsin-like orphan guanine 
nucleotide-binding protein (G protein)-coupled receptor 
(GPCR) (https://www.guidetopharmacology.org/GRAC/
GPCRListForward?class=A) with an as yet unknown 
endogenous ligand (Alexander et al. 2019), the delineation 
of its expression and ongoing work in animal models.
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Identification of GPR101 in X-LAG

To date, 36 patients have been reported to have X-LAG 
due to Xq26.3 copy number gains (CNG) (Trivellin et al. 
2018a, Trivellin & Stratakis 2019). In more than 30 of 
these cases, array comparative genomic hybridization 
(aCGH) has been performed and confirmed that the 
smallest region of overlap (SRO) by these non-recurrent 
genomic rearrangements contains a single fully coded 
gene within a 73-kb sequence that is known to harbor 
GPR101 (SRO2) (Trivellin et al. 2018a). Patients also share 
an 8-kb sequence that includes the last two exons of the 
VGLL1 gene and the miRNA miR-934 (SRO1). All CNG 
described so far are duplications that involve just the 
Xq26.3 locus with no other genomic regions consistently 
affected (e.g., no insertions of the Xq26.3 genes to distant 
loci were reported).

The originally reported SRO contained at least four 
protein-coding genes and a number of other sequences, 
but subsequent work narrowed the X-LAG-linked region 
down to SRO1 and SRO2. Two subsequent cases helped 
to confirm the importance of GPR101: one subject 
with X-LAG in whom the SRO contained only GPR101 
(Iacovazzo  et  al. 2016) and another boy with various 
developmental defects, who carried a Xq26.3 CNG 
that stopped short of including GPR101 and did not 
have overgrowth or other X-LAG related abnormalities 
(Trivellin et al. 2018b).

The duplications are on average about 600-kb long 
and are generated by replication errors at regions of 
microhomology which, in all but one case analyzed so 
far, can be explained by the mitotic DNA replication-
based mechanism of fork stalling and template switching/
microhomology-mediated break-induced replication 
(FoSTeS/MMBIR) (Trivellin et al. 2014, Beckers et al. 2015, 
Iacovazzo et al. 2016). An Alu-Alu mediated rearrangement 
was reported in the remaining case (Iacovazzo et al. 2016). 
So far, the CNG were germline in females and somatic 
in sporadic males, with mosaicism levels varying from 
15% to 60% (Daly  et  al. 2016a, Iacovazzo  et  al. 2016, 
Rodd et al. 2016). However, the clinical characteristics of 
X-LAG patients are similar in both sexes (Beckers  et  al. 
2015, Daly et al. 2016a). This suggests that even a small 
percentage of cells harboring the duplication in specific 
tissues is sufficient to cause the phenotype, as we have 
reviewed elsewhere (Trivellin et al. 2018a).

Moreover, the contribution of X chromosome 
inactivation (XCI) in females should be taken into 
consideration, as this could alter the expression of the 
duplicated genes. To test this hypothesis, we conducted 

an XCI analysis in 12 X-LAG patients. We observed 
skewed XCI in just two patients (17%) (Trivellin  et  al. 
2014, Trivellin & Stratakis 2019). However, no significant 
differences in clinical phenotypes were observed in these 
two patients compared with the rest. This observation 
resembles what happens in mosaic males, in whom just a 
small fraction of cells with the duplicated X-chromosome 
leads to acrogigantism. While we cannot completely 
rule out an effect of age on the rate of skewing (these 
two patients were tested for XCI using blood that was 
collected, on average, 26 years later than the others), 
these data suggest that X-LAG patients commonly 
undergo random XCI. Most recently, it was reported that 
patients with autoimmunity and CD40LG duplications 
preferentially inactivate their duplicated X-chromosome 
(Le Coz  et  al. 2018). Although CD40LG, located in the 
Xq26.3 region about 400 kb upstream of GPR101, is 
commonly duplicated alongside GPR101 in patients with 
X-LAG, no autoimmune phenotypes have been observed 
to date (Beckers  et  al. 2015, Iacovazzo  et  al. 2016). This 
likely suggests that Xq26.3 CNG associated with X-LAG 
have a different impact on local chromatin domains 
and consequently on gene regulation, therefore causing 
unrelated phenotypes.

There are several results that support a crucial 
role for GPR101 as being the causative gene in X-LAG. 
Besides being the only entire protein-coding gene that is 
always duplicated in all X-LAG patients analyzed so far, 
as stated previously, it is also strongly over-expressed in 
their pituitary tumors/hyperplasia (up to 1000 times the 
expression levels detected in non-duplicated somatotroph 
tumors or the normal pituitary gland) (Trivellin  et  al. 
2014, 2016), and it activates the cyclic AMP (cAMP) 
signaling pathway (Bates et al. 2006, Trivellin et al. 2014), 
which is one of the major stimuli of proliferation and 
GH and prolactin secretion in pituitary cells (Hernandez-
Ramirez  et al. 2018). GPR101 seems thus to behave as a 
putative oncogene in X-LAG, but it remains to be fully 
elucidated how this GPCR is involved in the pathogenesis 
of this disease. To address this aspect, our groups are 
currently characterizing GPR101 transgenic and knockout 
mouse and zebrafish models.

Moreover, there is no published data as yet that 
explain how GPR101 expression is so massively enhanced 
in X-LAG lesions. Simplistically, by duplicating the 
genomic content of a DNA segment, one can expect 
to find double the expression of the affected genes. 
Clearly, what happens in X-LAG is more complicated 
than that. We hypothesize that Xq26.3 CNG affects 
local interactions of non-coding regulatory sequences;  
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this, in turn, leads to the abnormal expression of GPR101 
in specific tissues, such as the pituitary (Trivellin  et  al. 
2014). Other tissues might be involved as well, but this 
will be difficult to prove since X-LAG patients develop 
gross lesions affecting only the pituitary gland; finer 
cellular and subcellular abnormalities in other tissues 
such as the brain are difficult to assess in humans. The 
animal models under study can also help to shed light on 
this still obscure aspect of X-LAG molecular pathogenesis.

Although GPR101 was identified as a GPCR linked 
to Gs and is constitutively active, as shown by increased 
cAMP production following transient over-expression in 
HEK293 and GH3 cells (Bates  et al. 2006, Trivellin  et al. 
2014), one recent study reported conflicting results 
(Martin  et  al. 2015). In the experimental setting used 
by the authors (CHO-K1 cells), GPR101 did not meet 
their criteria for constitutive activity (200% elevation 
over baseline cAMP-dependent response element (CRE) 
reporter activity). Further studies will be needed to address 
these different observations about the pharmacology of 
GPR101 in different cellular settings.

The GPR101 gene and protein: structure 
and expression

Structure

The human GPR101 gene was identified and found to be 
located on the X chromosome in 2001 (Lee et al. 2001), 
while its murine orthologue was identified 5 years later 
(Bates  et  al. 2006). Until we reported in late 2014 that 
GPR101 was associated with a pathological condition, 
X-LAG, only a handful of studies had investigated this 
orphan receptor, mainly in rodents. In the following  

5 years, more than 30 studies on GPR101 and/or 
X-LAG came out, greatly contributing to expand our 
understanding of this disease and the biology of this 
receptor (Fig. 1). Indeed, until recently, just the coding 
sequence (CDS) of GPR101 was reported in human genome 
databases (NM_054021.1). GPR101 encodes a 508 amino 
acid-long GPCR; its CDS is composed of a single protein-
coding exon that is about 80% and 55% identical to the 
rodents and zebrafish orthologues, respectively (http://
www.ncbi.nlm.nih.gov/homologene/). Interestingly, 
some domains seem to have diverged substantially more 
than others during evolution, especially the intracellular 
loop 3 (ICL3) (Trivellin et al. 2018a, Hou & Tao 2019).

We contributed to the characterization of the 
structure of GPR101 by investigating its repertoire of 
transcripts (Trivellin  et  al. 2016a). We identified four 
isoforms generated by alternative splicing involving the 
5ʹUTR; RNA-Seq data from X-LAG tumors allowed to 
discover that the 3ʹUTR is 6.1-kb long (Fig. 2). Isoform-1 
is expressed at levels much higher than what is seen for 
the other isoforms in the pituitary cells of X-LAG patients; 
this finding suggests that this represents the main 
transcript, at least in the pituitary gland (Trivellin  et  al. 
2016a). Supporting our findings, in the most recent 
assembly of the human genome (hg38), a novel transcript 
(ENST00000651716.1, GPR101–202) has been manually 
annotated from the Havana project (https://www.
sanger.ac.uk/science/groups/vertebrate-annotation). 
The structure of this transcript closely resembles that of 
isoform-2 (Fig. 2), and it may be that the two isoforms 
actually represent the same transcript species.

We also predicted using bioinformatics that the GPR101 
promoter is TATA-less and overlaps with a CpG island 
located about 2 kb upstream of the CDS, thus including the 
first non-coding exon of isoform-2 (Trivellin et al. 2016a). 

Figure 1
Number of publications studying GPR101 and X-LAG from 2001 to 2019. The following parameters were used for the search: source, PubMed; search 
terms, ‘GPR101’, ‘GPCR101’, ‘Xq26.3 microduplication’, ‘X-LAG’, ‘XLAG’, ‘X-linked acrogigantism’. Only relevant publications encompassing original studies or 
correspondence letters were included, while literature and systematic reviews were excluded.
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Interestingly, another CpG island overlaps with the ATG, 
indicating that GPR101 transcription may be regulated 
by two promoter sequences, but this prediction requires 
further confirmation. Estradiol was recently described to 
stimulate Gpr101 expression in the arcuate nucleus (ARC) 
in rats, but no classical estrogen response elements (EREs) 
were detected in Gpr101 promoter (Bauman et al. 2017).

GPCRs are integral membrane proteins with a common 
architecture: an extracellular N-terminal domain, seven 
transmembrane domains (TM1-TM7) linked by three 
extracellular (ECL1-ECL3) and three intracellular loops 
(ICL1-ICL3) and an intracellular C-terminal domain. 
While the TM domains show great similarity in overall 
architecture and secondary structure across different 
GPCRs, there is considerable variation among ICL and ECL 
regions, in particular the ICL3 (Moreira 2014). According 
to most recent estimates, the human genome contains 
about 800 GPCRs (Lv  et  al. 2016, Sriram & Insel 2018, 
Alexander et al. 2019), phylogenetically categorized into 
five classes: class A (rhodopsin-like), class B1 (secretin-
like), class B2 (adhesion-like), class C (glutamate-like) 
and the Frizzled/Taste2 family. About half of the GPCRs 
have sensory functions, the rest are non-sensory GPCRs 
that mediate signaling, usually following ligand binding. 
Class A comprises the majority of GPCRs, 719, of which 
around 300 are non-sensory; about 90 class A GPCRs are 
categorized as ‘orphan’ (no known endogenous ligand) 
(Alexander  et  al. 2019). GPCRs vary greatly in length, 
with some consisting of more than 1000 residues; most, 
however, are around 200–400 amino acid in length (Tao & 
Conn 2014, Lv et al. 2016, Alexander et al. 2019).

Phylogenetic analyses revealed that GPR101 belongs 
to class A (Kakarala & Jamil 2014, Alexander et al. 2019), 
which includes the prototypical rhodopsin and β2-
adrenergic receptors. Within class A, GPR101 belongs to 
the family of aminergic receptors (adrenergic, serotonin 
(5-HT), dopamine and histamine receptors). In particular, 
the 5-HT2C receptor shows the highest identity with 

GPR101 in the transmembrane domains (24%), while 
the 5-HT2B shows the highest identity in the putative 
binding cavity (28%) (analysis performed through the 
structure-based alignment tool of GPCRdb) (Munk  et al. 
2019). GPR101 was also shown to be related to GPR161, 
another orphan GPCR that is associated with primary 
cilia (Mukhopadhyay  et  al. 2013, Bachmann  et  al. 
2016). Interestingly, GPR161 defects were associated to 
a pituitary developmental disorder: a homozygous loss-
of-function (LOF) missense variant was observed in a 
consanguineous family with pituitary stalk interruption 
syndrome (Karaca et al. 2015).

A transmembrane topology and signal peptide 
analysis of human GPR101 predicted the absence of a 
N-terminal signal peptide for endoplasmic reticulum 
targeting and insertion (analysis performed with Phobius, 
http://phobius.sbc.su.se/, (Kall  et  al. 2004) and further 
confirmed by SignalP 4.1, http://www.cbs.dtu.dk/services/
SignalP-4.1/, (Petersen et al. 2011)). This is not surprising, 
since the vast majority of GPCRs (90–95%) rather contain 
signal anchor sequences that are not cleaved-off but are 
inherent parts of the mature GPCRs. This function is 
usually exerted by TM1 (Rutz et al. 2015). Moreover, out 
of three highly conserved structural motifs involved in 
G protein coupling/recognition and activation, GPR101 
was found to harbor only an intact E/DRY motif at the 
ECL2-TM3 interface (DRY residues 128–130), while it lacks 
a complete BBXXB motif (B represents a basic residue and 
X a non-basic residue) at the ICL3-TM6 interface (CKAAK 
residues 395–399) and a complete D/NPXXY motif within 
TM7 (HPYVY residues 450–454). As in the majority of 
GPCRs, GPR101 contains also two conserved cysteines 
in TM3 and ECL2 that form a disulphide bond (residues 
104 and 182) (Trivellin  et  al. 2018a). Different kinases 
usually phosphorylate GPCRs at serine/threonine residues 
located in the ICL3 and C-terminus after activation of 
the receptor. This event promotes β-arrestin binding, 
which, in turn, leads to receptor desensitization and 

Figure 2
The five different GPR101 isoforms reported in the literature (isoform-1 to isoform-4, (Trivellin et al. 2016a)) and in the UCSC Genome Browser  
(GPR101-202, http://genome.ucsc.edu/) were drawn with the Gene Structure Display Server (GSDS 2.0, http://gsds.cbi.pku.edu.cn/) (Hu et al. 2015). The 
location of two CpG islands, the transcription start sites (TSS) and a H3K4me3 mark (promoter-specific histone modification) are also indicated.
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internalization (Yang  et  al. 2017). Four phosphorylation 
sites at serine 15 (N-terminus), 27 (TM1) and 309–310 
(ICL3) have been functionally annotated for GPR101 
(Hornbeck  et al. 2015). It is interesting to note that the 
p.E308D variant precedes the ICL3 phosphorylation site 
and might therefore interfere with this post-translational 
modification, an hypothesis that needs to be tested.

Out of the more than 800 diverse GPCRs, about 60 
have been crystalized to date (https://zhanglab.ccmb.med.
umich.edu/GPCR-EXP/); the vast majority belongs to class 
A (Munk et al. 2019). The modest number of crystalized 
3D structures depends mainly by challenges in GPCRs 
expression, purification, stability and crystallization 
(Salon et al. 2011). Using the crystallized structure of the 
activated β2 adrenergic receptor (β2 AR) as a template, we 
have previously generated an in silico predicted structural 
model of GPR101 in complex with the Gs heterotrimer 
(Trivellin et al. 2014). Of note, the long ICL3 connecting 
TM5 and TM6 (163 amino acids, about 30% of the total 
protein length) could not be modeled because of the lack 
of a template. ICL3 is indeed one of the least conserved 
GPCR domains, being very heterogeneous in sequence 
and length. In particular, the difference in length (which 
can range from five to up to hundreds of residues) has 
been proposed to account for selectivity on G proteins 
coupling (Katritch et al. 2012, Bouvier 2013).

Tissue expression

Different labs have extensively studied GPR101 mRNA 
and protein expression in vertebrate tissues. Several 
studies revealed a strong expression in the CNS in 
different species (zebrafish, rodents and humans), 
suggesting its function has been conserved during 
evolution. In particular, GPR101 is highly expressed in 
the amygdala and hypothalamus, especially the ARC, 
and in the nucleus accumbens (NAc) (Bates  et  al. 2006, 
Nilaweera  et  al. 2007, 2008, Regard  et  al. 2008, GTEx 
Consortium 2013, Ronnekleiv et al. 2014, Trivellin et al. 
2014, 2016a, Ehrlich  et  al. 2018, LaRese  et  al. 2019, 
Ieda et al. 2020). Other human tissues showing moderate 
mRNA expression are fat, optic nerve and lymphocytes 
(Trivellin  et  al. 2016a). The detection of GPR101 in the 
NAc is an interesting finding, especially in the context 
of X-LAG. The NAc is the main component of ventral 
striatum and is involved in food reward by coding for 
motivated appetite behavior (Uribe-Cerda  et  al. 2018). 
About one-third of X-LAG patients show increased food 
seeking, a behavior that we speculate might be controlled 
by GPR101 (Beckers et al. 2015). Supporting the findings 

in humans, Gpr101 expression in mouse brain regions was 
found to positively correlate with GPR101 expression in 
human brain. In mice, Gpr101 was found to be restricted 
in the shell of the NAc, enriched in the central amygdala 
and densely localized throughout several hypothalamic 
nuclei (Ehrlich et al. 2018). Moreover, Gpr101 was reported 
as a marker of γ-Aminobutyric acid (GABA) neurons and 
also expressed by a small subgroup of dopamine neurons 
within the ventral tegmental area (VTA) (Paul et al. 2019). 
Starvation was also found to increase Gpr101 expression 
in the posterior hypothalamus, while ob/ob obese mice 
showed decreased expression. Within the ARC, Gpr101 
is expressed in about 50% of the neurons expressing 
the anorexigenic peptide proopiomelanocortin (POMC) 
(Nilaweera  et  al. 2007) and in glutamatergic neurons 
(Ieda  et  al. 2020), while thyrotropin-releasing hormone 
(TRH) positive neurons expressed Gpr101 in the lateral 
hypothalamus (Mickelsen  et  al. 2019). All these brain 
regions are implicated in various aspects of feeding and 
reward (Uribe-Cerda  et  al. 2018). Interestingly, several 
GPCRs endowed with constitutive activity play a crucial 
role in modulating dopamine signaling in the mesolimbic 
dopamine system, a neural network critical in processing 
rewards and their cues (Meye et al. 2014). GPR101 might 
well be one of these. Altogether, these findings suggest a 
possible role for GPR101 in the control of energy balance 
and showed that mice may represent a good model to test 
this hypothesis.

The expression of Gpr101 in the medial preoptic 
(mPOA) area in mice suggests also a possible role for this 
GPCR in reproduction. Gonadotrophin-releasing hormone 
(GnRH) is the master regulator of reproduction through 
its activity on the hypothalamus–pituitary–gonadal axis, 
and the mPOA is a major site for GnRH cell bodies. In the 
ARC, kisspeptin neurons control the pulsatile release of 
GnRH. Very few kisspeptin neurons express Gpr101, while 
Gpr101 is found in the glutamatergic neurons (Ieda et al. 
2020). Since glutamate stimulates luteinizing hormone 
(LH) release from the pituitary by affecting kisspeptin 
neurons (Uenoyama et al. 2015), these findings raise the 
possibility that GPR101 signaling may facilitate LH release 
via indirect activation of kisspeptin neurons (Ieda  et  al. 
2020). Further studies are therefore necessary to shed light 
on the precise role played by GPR101 in reproduction.

The elevated circulating growth hormone releasing 
hormone (GHRH) levels detected in some X-LAG patients 
(Daly et al. 2016b) pointed toward the possible regulation 
of hypothalamic GHRH secretion by GPR101. The high 
levels of GPR101 in the ARC, where GHRH neurons are 
localized, support this hypothesis. However, no studies 
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have yet specifically addressed whether GPR101 indeed 
co-localizes with GHRH in the ARC. Whether GPR101 has 
a direct or indirect effect on GHRH secretion is still an 
answered question.

In the normal human anterior pituitary gland, 
GPR101 seems to show an age-dependent pattern of 
expression. GPR101 was indeed found to be strongly 
expressed during fetal development (starting at around 
the gestational age of 19 weeks), while it appears only 
moderately so during the so-called adolescent growth 
spurt; on the contrary, GPR101 is expressed at very low 
levels in adult life. This expression pattern points toward 
an important physiological role for GPR101 during 
pituitary maturation. Moreover, the strong expression 
restricted to the lateral wings of the fetal anterior lobe, 
where most GH- and prolactin-secreting cells are located, 
suggests that GPR101 might regulate, directly or indirectly, 
the differentiation of mammosomatotroph cells. In the 
adult pituitary gland of rat and rhesus macaque, GPR101 
is expressed in different cell types: gonadotroph cells in 
monkey and somatotrophs in rat. These results imply that 
GPR101 might have different functions in the pituitary 
gland of different species (Trivellin et al. 2016a, 2018a).

As mentioned in the previous section, GPR101 was 
found to be strongly over-expressed both at the mRNA 
and protein level in the pituitary lesions of X-LAG 
patients (Trivellin  et al. 2014, 2016a). However, GPR101 
rarely co-localized with GH-expressing cells, as assessed 
by immunostaining (Trivellin  et  al. 2014). The tumors 
expressed relatively high levels of somatostatin receptor 
type 2 and GHRH receptor (Beckers et al. 2015), as well as 
stem cell/progenitor cell markers such as SOX2 and OCT4 
and multiple lineage-specific transcription factors such as 
PIT1, suggesting that the tumors are multipotential (Wise-
Oringer et al. 2019).

GnRH-(1–5) and RvD5n-3 DPA: putative ligands?

GPCRs can be activated by an extremely diverse repertoire 
of ligands (Alexander  et  al. 2019). In 2014, the same 
year we described X-LAG, GnRH-(1–5), a processed 
pentapeptide cleaved from GnRH, was reported as a 
putative GPR101 ligand (Cho-Clark  et  al. 2014). GnRH-
(1–5) is involved in reproduction by regulating GnRH 
and LH levels (Wu  et  al. 2005, Ieda  et  al. 2020). In 
Ishikawa cells (endometrial cancer), following GPR101 
binding, GnRH-(1–5) induced EGF release, followed by 
EGF receptor (EGFR) phosphorylation and activation of 
downstream signaling pathways; this ultimately led to 

increased proliferation, migration and invasion (Cho-
Clark  et  al. 2014, 2015). However, this ligand does not 
seem to be effective in pituitary cells secreting GH and 
prolactin. Indeed, no significant effects on cAMP pathway 
activation and hormone secretion were observed in  
in vitro studies using GH3 cells (rat pituitary tumor 
cells) and primary X-LAG tumor cells with high GPR101 
expression (Naves et al. 2016, Trivellin et al. 2018a). Since 
the treatment of Ishikawa cells with GnRH-(1–5) had no 
effect on cAMP accumulation (Baldwin et al. 2007), it is 
possible that this molecule activates a different signal 
transduction pathway in a cell type-dependent fashion. 
Further studies employing different and relevant cell 
types using the same experimental settings are needed to 
determine whether this is indeed the case.

Most recently, N-3 docosapentaenoic acid-derived 
resolvin D5 (RvD5n-3 DPA), an autacoid, pro-resolving 
mediator, regulating inflammatory responses like 
arachidonic acid was reported as a putative ligand of 
GPR101 in macrophages and other monocytes (Flak et al. 
2020). Interestingly, knockdown of GPR101 reversed the 
protective actions of RvD5n-3 DPA in limiting inflammatory 
arthritis, suggesting a potential role for GPR101 in the 
regulation of inflammation in leucocytes (Flak  et  al. 
2020). It remains unclear how these findings translate to 
the pituitary gland and hypothalamic GPR101 functions 
and require characterization in these tissues.

GPCRs are considered the largest family of targets 
for approved pharmaceutical drugs, with estimates 
of around 30–50% of them targeting these proteins 
(Fang  et al. 2015). We are currently performing a high-
throughput screening of small molecule libraries to 
identify additional GPR101-binding molecules. Clearly, 
the discovery of inhibitors, especially inverse agonists, 
can be very beneficial to illuminate the physiology of 
GPR101 and hopefully can lead to a specific treatment 
for X-LAG patients.

Is GPR101 involved in other diseases?

Like we and others have done elsewhere (Trivellin  et al. 
2018a, Hou & Tao 2019), we will discuss here several 
rare GPR101 single nucleotide variants (SNVs) with a 
global minor allele frequency (MAF) <1% as reported 
in the Genome Aggregation Database (gnomAD). These 
variants have been reported in patients with X-LAG and 
other pathologies, such as other types of pituitary tumors, 
GH deficiency and heterotaxy. With the exception of 
c.370G>T (p.V124L, MAF = 36.7%), more common SNVs 
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such as c.878C>T (p.T293I, MAF = 2.2%) and c.1127T>C 
(p.L376P, MAF = 16.8%) will not be discussed. The location 
of all naturally occurring SNVs is shown in Fig. 3.

A heterozygous missense SNV affecting residue 308 
(c.924G>C, p.E308D), located within ICL3, was identified 
in about 4% of patients with sporadic acromegaly, 
in one case occurring de novo in the pituitary tumor 
(Trivellin  et  al. 2014). This variant was described in 
controls with a MAF of 0.36%. A synonymous SNV 
affecting the same residue (c.924G>A, p.E308D) was 
also observed with a MAF of 0.18% (Lek  et  al. 2016). 
p.E308D moderately increased GH secretion and cell 
proliferation when transiently over-expressed in GH- and 
prolactin-secreting cells (Trivellin  et  al. 2014). However, 
subsequent studies in separate cohorts of acromegaly 
patients did not find an increased prevalence, suggesting 
that it probably does not contribute to the pathogenesis 
of this disease (Ferrau  et  al. 2016, Iacovazzo  et  al. 2016, 
Lecoq  et al. 2016, Matsumoto  et al. 2016). Interestingly, 
p.E308D was identified by whole exome sequencing 
(WES) as a secondary finding in two out of six patients 
with premature ovarian failure primarily caused by 
hemizygous deletions in genes essential for meiosis or 
folliculogenesis (Tsuiko et al. 2016). Another heterozygous 
missense, SNV located in ICL3, c.1098C>A (p.D366E), 
was also reported in a patient with sporadic acromegaly 

(Lecoq  et  al. 2016). This variant has been submitted to 
ClinVar (https://www.ncbi.nlm.nih.gov/clinvar/) with 
accession number RCV000172847.6. p.D366E was not 
found in controls or in a series of almost 400 patients with 
sporadic acromegaly (Iacovazzo  et  al. 2016) but has not 
been functionally tested yet. A structural hypothesis on 
the effect of all SNVs located on ICL3 cannot be proposed 
at the moment giving the absence of a properly modeled 
domain. Solving the structure of GPR101 would constitute 
a great step toward a better understanding of the effects 
of its variants, especially since ICL3, where many of the 
variants are located, appears to be a hotspot for gain-of-
function SNVs (Fukami et al. 2018).

Other nonsynonymous SNVs were also detected in 
other types of pituitary tumors, such as prolactinomas 
and corticotropinomas. Two heterozygous missense SNVs 
affecting highly conserved amino acids, c.974C>T (p.T325I) 
and c.1294C>T (p.P432S), were found in one prolactinoma 
patient each (cohort of 256 patients). p.T325I is a novel 
SNV located in ICL3, while p.P432S in ECL3 and is rarely 
seen in controls (MAF = 0.04%) (Lecoq  et  al. 2016). The 
impact of these SNVs on the structure/function of GPR101 
is not known. Two heterozygous missense SNVs were 
also described in patients with Cushing disease (CD). A 
novel SNV in TM3, c.365T>C (p.I122T), was reported in a 
female patient (cohort of 68 patients) (Lecoq et al. 2016).  

Figure 3
The 2D-predicted structure of GPR101 was 
retrieved from GPCRdb (https://gpcrdb.org/) and 
modified to accurately demarcate the 
transmembrane domains. The N-terminal domain 
is given in red, while the C-terminus is given in 
yellow; the seven TM domains are highlighted 
with a different saturation of blue and purple; 
ICL3 is in green; all other domains are in white; 
the naturally occurring SNVs are given in black.

Downloaded from Bioscientifica.com at 08/07/2020 08:11:38AM
via free access

https://erc.bioscientifica.com
https://doi.org/10.1530/ERC-20-0025
https://www.ncbi.nlm.nih.gov/clinvar/
https://gpcrdb.org/


Printed in Great Britain
Published by Bioscientifica Ltd.https://doi.org/10.1530/ERC-20-0025

https://erc.bioscientifica.com © 2020 Society for Endocrinology

T94G Trivellin et al. Function of GPR101 27:8Endocrine-Related 
Cancer

This SNV affects a highly conserved residue and is predicted 
to be deleterious, but no in vitro studies have been done. A 
rare SNV located in TM1, c.91G>A (p.G31S, MAF = 0.11%), 
was also reported in a separate cohort (36 CD patients). This 
SNV was evaluated in vitro in a mouse corticotroph tumor 
cell line (AtT-20 cells) but did not affect ACTH secretion or 
cell proliferation (Trivellin et al. 2016b).

GPR101 has also been screened for LOF SNVs and 
deletions in patients with congenital isolated GH deficiency 
(GHD) of unknown genetic etiology (cohort of 41 patients). 
A novel heterozygous missense SNV in TM5, c.589G>T 
(p.V197L), was found in one female patient. Although 
predicted to be deleterious, when functionally tested in 
GH3 cells, it did not significantly decrease GH secretion or 
intracellular cAMP levels (Castinetti et al. 2016).

Heterotaxy syndrome is a condition arising from 
defects of the correct specification of left–right patterning 
established during embryonic development. Interestingly, 
GPR101 is located next to ZIC3, a gene causing X-linked 
heterotaxy (Paulussen  et al. 2016). Moreover, GPR161, a 
GPCR related to GPR101 (Mukhopadhyay  et  al. 2013), 
was also shown to be required for left–right patterning 
(Leung  et  al. 2008). A rare (MAF = 0.07%) missense SNV 
in GPR101, c.1225G>A (p.V409M), was detected by WES 
in one family with X-linked heterotaxy. The pedigree 
consisted of four affected males. This SNV is located in 
TM6, was predicted to be damaging, and functional 
studies in animal models supported a causative role 
(Tariq  et  al. 2013). However, peer-reviewed studies are 
necessary to confirm these preliminary findings published 
as a conference proceeding.

Most recently, the common p.V124L GPR101 SNV was 
reported in a meta-analysis of up to 622,409 individuals as 
being associated with smoking behavior traits, specifically 
cigarettes per day and pack-years (Erzurumluoglu  et  al. 
2019). This finding is intriguing in light of the expression 
of GPR101 in brain regions associated with addictive 
behaviors.

In addition to variants within the CDS, the promoter 
region of GPR101 was found to be hypermethylated in 
about 40% of patients with colorectal cancer (Kober et al. 
2011); this epigenetic modification was found to be of 
prognostic value in stage-IV male patients, as it correlated 
with a longer time to disease progression.

Conclusions and future perspectives

Since the discovery of GPR101 almost 20 years ago, some 
progress, mainly concentrated during the last 6 years, 

has been made. This was mainly due to a strong boost in 
research that took place after the characterization of X-LAG 
and was aided by the rapid progress in the development 
of new high-throughput screening technologies. We have 
now started to shed light on the expression pattern of 
this orphan GPCR in different vertebrates, its regulatory 
regions and isoforms and the intracellular signaling 
pathways engaged when active; new putative ligands 
have been reported, as well as naturally occurring SNVs.

Clearly, much more needs to be done. Concerning 
physiological functions, we need to dissect the potential 
roles played by GPR101 in regulating appetite, energy 
homeostatis, reproduction and human growth. How 
GPR101 affects GH release and pituitary function in 
physiological and pathological states needs also to be 
investigated. Many questions concerning the biology of 
GPR101 remain still unanswered. For example, the role 
of the two reported putative ligands needs to be further 
investigated in physiologically representative models 
as well as the constitutive activity and activation of G 
proteins in different cell types. Finding new ligands, 
especially inhibitors, would also aid in the treatment of 
X-LAG. From a genetic perspective, functional studies for 
many SNVs are still lacking. How GPR101 expression is 
regulated and what are the pituitary cell types expressing 
this receptor in the context of X-LAG are also two 
important translational aspects that have to be addressed. 
Clarifying these and many other gaps in knowledge using 
the most recent technological tools at our disposal as 
well as novel animal models will ultimately benefit not 
only our basic understanding of GPR101 but also, more 
importantly, the patients that harbor defects in this 
orphan GPCR.
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