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Supplemental material 
Supplementary material is available at Brain online.  

 

1 Methods 

 

Age and disease specific cluster solutions based on bootstrapping  
 

In this study, a bootstrapping approach was applied following a two steps procedure. First, we 

created bootstrap samples at the step of computation of the covariance matrices (correlating 

seed and target grey matter values)  (Fig. 1). In a second step, bootstrapping was applied after 

having generated the clustering of each bootstrap samples.  

In the first case, the bootstrap number was identical to the sample size generating as many 

bootstrap samples as participants in the sample. As bootstrapping is resampling with 

replacement, different versions of the original sample were generated. The covariance 

matrices for each bootstrap sample were computed by correlating the seed and target matrices 

within each generated bootstrap sample. Afterwards, we applied the clustering algorithm on 

these covariance matrices resulting in a solution matrix for each dataset-group (e.g. 

HCP_young, eNKI_old etc). This solution matrix contained, for each bootstrap sample (i.e. 

for each different version of the original sample), the assignment of each seed voxel to a 

cluster (i.e. the clustering). We merged the dataset and group specific matrices into one 

group-specific matrix (e.g. HCP_Young, eNKI_Young and CamCAN_Young => Young) 

containing for each bootstrap sample, the cluster assignment of each voxel. We again applied 

bootstrapping (10 000 iterations) on the group specific merged (across datasets) solution 

matrix to ensure further stability and to eliminate further noise. In other words, we 

bootstrapped the bootstrap samples containing the clustering (assignment of voxels to 

clusters). After this step the final matrix contained the final (“stable”) cluster assignment of 

each seed-voxel by taking the mode for each seed-voxel across 10 000 bootstrap samples  

(Fig. 1).  
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Figure 1. Illustration for the computation of a stable clustering with a bootstrapping approach.   
 
 

2 Results 
2.1 Clusters’ stability and consistency  
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Simple cluster solutions (2 and 3) were more stable than partitions of higher granularity and 

were dependent on dataset and age/disease group. In several datasets, stability seemed to 

increase (or to remain stable) from 2 to 3 cluster solutions in both the right (in HCP, 

1000BRAINS and eNKI) and left (in eNKI, 1000BRAINS and OASIS3) hippocampi (Fig.1). 

In contrast, a clear increase in stability from 3 to 4 clusters solution was only observed in the 

CamCAN dataset (n=94) suggesting that this pattern could be dataset specific.  

We additionally examined whether stability of clusters was also dependent on age and disease 

group and performed a 5 (age/disease group: young, middle age, elderly, MCI, dementia) x 6 

(cluster solution: 2-7) ANOVA with the aRI as dependent variable. The ANOVAs were 

performed separately for each hemisphere.  

For the right hippocampus all main and the interaction effects were significant: cluster 

solution, F(5,839970)=45388.74, P < 0.001, age/disease group, F(4,839970) = 24244.72, P < 

0.001, cluster solution x age/disease group, F(20,839970) = 5406.63, P < 0.001. Post-hoc 

Bonferroni corrected multiple comparison computations revealed that MCI was the 

age/disease group with the most stable cluster solutions (aRI=0.95), followed by young 

(aRI=0.94) and elderly (aRI = 0.94), middle aged (aRI=93), and dementia (aRI= 0.90).  

For the left hippocampus all main and the interaction effects were also significant: cluster 

solution, F(5,839970) = 20243.24, P < 0.001, age/disease group, F(4,839970) = 8929.86, P < 

0.001, cluster solution x age/disease group, F(20,839970) = 259.13, P < 0.001. Post-hoc 

Bonferroni corrected multiple comparison computations revealed that elderly had the most 

stable partitions (aRI=0.94), followed by MCI (aRI=0.94), young (aRI = 0.93), middle aged 

(aRI = 0.92) and dementia (aRI = 0.93). 

The most stable cluster solutions were 2 (right aRI=0.96, left aRI =0.96), 3 (right aRI=0.95, 

left aRI=0.95), and 4 (right aRI=0.94, left aRI =0.94) followed by 5 (right aRI=0.91, left aRI 

=0.92) and 6 (right aRI=0.91, left aRI = 0.92), and 7 (right aRI=0.90, left aRI = 0.93). 

Overall, more basic cluster solutions such as 2, 3 and 4 were preferred compared to higher 

granularities in different age/disease groups (Fig. 2). Except for the MCI group the stability 

for all the other groups dropped after cluster solution 4 indicating less consistency in the 

differentiations.  
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Figure 2. A) Clusters’ stability dependent on dataset and age/disease groups. Lower cluster 

solutions (2-4) demonstrated a higher stability compared to higher cluster solutions, even 

though the stability was overall high > .85. B) Clusters’ consistency across dataset and 

age/disease was low for higher cluster solutions (5-7) indicating higher heterogeneity in 

higher granularities possibly due to dataset intrinsic features.  

 

2.2 Silhouette estimation of clusterings 

 
The choice of the optimal cluster solution was guided by three criteria. To estimate the 

internal validity, we used stability measures estimated with split-half cross-validation and 

consistency measure using the mean silhouette values. As an approximation of external 

validity, we assessed the consistency of parcellations across datasets and age/disease specific 

groups. 

Based on the silhouette value, our results indicated that cluster solution 2 and 3 (across all age 

and disease groups) provide the best data representation of voxels’ differentiation in the 

hippocampus (Fig. 3). This result was in accordance with our previous results based on split-

half cross validation and based on consistency across groups and datasets.   

The silhouette value was defined in terms of both similarity and distance metric comparing 

cluster compactness to cluster separation. Silhouette values can range between -1 and +1. 

Higher positive values indicate a better fit of each individual voxel to the cluster it was 

assigned to. Negative values indicate a poor fit in the assignment.  

We tested with an ANOVA whether silhouette values were significantly different between 

groups (young, middle-aged, elderly, MCI and dementia) and cluster solutions (k=2:7), 

revealing significant main effects of group, [F(4,25920) = 30.26, P < 0.0001 for right 

hippocampus; F(4,24900)=25.73, P < 0.001 for the left hippocampus], cluster solutions, 

[F(5,25920)=693.6, P < 0.0001 for right hippocampus; F(5,24900)=586.27, P < 0.001 for left 

hippocampus] and the interaction effect, [F(20,25920) = 17.48, P < 0.0001 for right 

hippocampus; F(20,24900)=8.09, P < 0.001 for left hippocampus].  

More simplistic differentiations into 2, 3 and 4 clusters had significantly higher silhouette 

values compared to subdivision patterns of higher granularity for both, right and left 

hippocampus (P < 0.001, Bonferroni corrected comparisons revealed (P < 0.001). But there 

was no significant difference between cluster solution 5 and 6 (P =0.32 for right hippocampus 

and P = 0.62 for left hippocampus). 
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Post-hoc Bonferroni corrected multiple comparisons showed that parcellations in young and 

middle-aged participants had lower silhouette values compared to all the other groups (young 

vs all the other groups P < 0.001 for right hippocampus; young and middle aged  (P = 0.77) 

compared to all the other groups P < 0.001 for the left hippocampus). There was no 

significant difference in silhouette values between the group of elderly and dementia patients 

(P = 0.39 for left hippocampus).  

In sum, the silhouette metric supported cluster solution 2 and 3 as optimal subdivisions for the 

hippocampus across age and disease groups.  
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Figure 3. Silhouette measure for right and left hippocampus across age and disease groups 
and cluster solutions. Boxplots show the median, 1.5 interquartile range, min. Q1-1.5*IQR, 
max. Q3+1.5*IQR.  
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2.3 Dataset specific similarity of cluster solution three 

 

Cluster solution 3 showed very high similarity across datasets and age/disease groups dividing 

the hippocampus in an anterior head region, lateral and medial subregions. Independent of 

dataset, in the group of young adulthood the tail was covered by the lateral (green) parcel, 

whereas with increasing age the lateral subregion decreased gradually from the tail. The 

parcellation in the CamCAN young sample did not follow this differentiation probably due to 

either a high variability within a small sample size (n=94) or dataset specific intrinsic 

features.  

 

 

 
Figure 4. Sample and age/disease specific 3-cluster solution differentiation. Overall 

hippocampal parcellation showed a high similarity for each age/disease group even though 

derived from different datasets. In cases where high variability is to expect (young, middle 
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aged and MCI patients) clusterings diverged slightly coming from different datasets. 

CamCAN_young and OASIS_old slightly dropped out from the overall phenotype 

parcellation pattern.   

 

 

2.4 Age and disease specific differentiation of cluster solution two and three 

 

Based on stability and consistency measures we chose cluster solution 3 to study lifespan and 

disease related alterations, as this differentiation seemed to be more neurobiologically 

informative than others. First, the differentiation into 3 clusters was stable enough to ensure 

that we measured the same biological feature. Secondly, despite stability, it also captured age 

and disease dependent divergences that better reflected co-plasticity and co-atrophy than 

cluster solution 2. Indeed the differentiation into 2 clusters was more stable than cluster 

solution 3 but it was less suitable to study alterations, as this differentiation mirrored a very 

stable simple partition into one anterior and one posterior subregion independent of age and 

disease condition (Fig. 5). On the other hand, cluster solution 4 was less stable and more 

diverse in its qualitatively unique differentiation pattern across age/disease groups, which 

showed less convergence between groups (Fig. 5), and therefore challenging to study related 

features of aging and dementia. In the group of young and middle aged healthy adults, the 

subdivision into 4 parcels resulted in an additional cluster in the head hippocampus, whereas 

in healthy elderly and in MCI patients the posterior lateral subregion was subdivided 

additionally in the tail. In dementia, however, the fourth subregion emerged in the medial 

head-body region, illustrating high divergence between age/disease groups.  

Overall, as already summarized in our analysis the composition of stability and consistency of 

differentiations driven by age/disease specific intrinsic characteristics are better represented in 

cluster solution 3 compared to 2 and 4.  
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Figure 5. Age/disease specific and stable differentiations of the hippocampus into 2 and 4 

parcels.  

 

 

 

2.5 Hippocampal structural covariance networks  

 

Uncorrected and corrected structural co-variance networks across age/disease groups.  
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Figure 6. Uncorrected (P < 0.001, T=1) structural covariance networks of hippocampal 

clusters in middle age and MCI age/disease group.  
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Figure 7. Corrected (FWE, P < 0.05, T=4.46) structural covariance networks of hippocampal 

clusters dependent on age/disease groups.  

 

2.6 Harmonized hippocampal structural covariance networks  

 
In order to account for data coming from different sites the grey matter values that were used 

for the general linear model in SPM to obtain underlying structural covariance networks of 

hippocampal subregions, were harmonized. To reduce site related noise, we harmonized the 

grey matter values (https://github.com/Jfortin1/ComBatHarmonization) (Fortin et al., 2018) 

across sites n=71, before performing general linear model computations. The primary 

function of harmonization is to reduce unwanted, non-biological sources of variance related to 

MRI scanners and sites such as field strength, manufacturer and divergent scanning protocols 

(Fortin et al., 2018). Harmonized hippocampal structural covariance networks are represented 

in Fig. 8 and Fig. 9 showing similar patterns compared to non-harmonized data.  
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Figure 8. Uncorrected (P < 0.001, T=1) hippocampus associated structural covariance 
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networks derived after harmonization of grey matter values.  
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Figure 9. Corrected (FWE, P < 0.05, T=4.46) structural covariance networks of hippocampal 

clusters derived after harmonization of grey matter values.  

 

2.7 Behavioral profiling of clusters’ structural covariance networks 

 

In the group of middle-aged participants and MCI patients the behavioral profile of the 

anterior and medial cluster did not change compared to other healthy age groups. The anterior 

cluster was involved in the perceptual-emotional-regulatory processing of information into 

self-relevant internal memories. The medial (blue) cluster was associated with motor 

exploration and orientation behavior (Fig. 10), but in MCI patients the medial (blue) cluster 

was additionally related to behavioral terms such as recognition, recollection and retrieval. 

In both groups of middle-aged and MCI patients, the behavioral association of the lateral 

(green) cluster was less distinctive compared to the anterior and medial clusters. In MCI 

patients it was related to autobiographical memory, episodic memory and retrieval, all terms 

also related to either the medial or anterior parcel.  

 

 
Figure 10. Behavioral characterization of structural covariance networks in the group of 

middle aged healthy adults and MCI patients.  

 

 

3 Discussion  
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Structural covariance pattern in the hippocampus in MCI resemble healthy 

adults’ pattern 
 

In addition to our observations that the pattern of hippocampus differentiation based on 

structural covariance remained similar across age groups, we also found that this pattern was 

replicated in patients with mild cognitive impairment, despite an ongoing decrease in the tail 

of the lateral (green) subregion. Accordingly, the hippocampus’ differentiation pattern in MCI 

represents a transition model between normal covariance in healthy aging and co-atrophy 

caused by pathology of dementia. One reason for a higher similarity with healthy elderly in 

this study might be the criteria of selection of the MCI patients. We here selected only 

patients with a strict very mild cognitive impairment (e.g. ADNI sample) by excluding 

patients with more pronounced memory deficits associated with Alzheimer’s disease. In other 

words, we have excluded patients who were likely to be patients with Alzheimer-type 

pathology at the early stage of the disease (late MCI). We therefore hypothesize that some 

participants were patients at a so early stage of Alzheimer’s disease that pathology hasn’t 

affected brain structure in a way that would result in qualitatively different disease-related 

structural covariance patterns.  

 

Asymmetrical differentiation pattern of the hippocampus in dementia  

 
We found asymmetric differentiation patterns in our study for the right and left hippocampus, 

which were especially evident in the MCI and dementia group with the left hippocampus 

seemingly being more affected by disease. In MCI, this could be inferred by a higher decrease 

of the lateral-green cluster from the tail and, in dementia, by a higher extension of the lateral-

body cluster into the medial direction. Higher left hippocampal susceptibility was already 

reported several times in the context of volume reductions in dementia and MCI (Lindberg et 

al., 2012; Müller et al., 2005; Shi, Liu, Zhou, Yu, & Jiang, 2009). It has been hypothesized 

that aging and disease affect more likely the left hemisphere than the right hemisphere. 

Nevertheless, a meta-analysis by Minkova et al. (2017) suggested a lack of support for this 

hypothesis, despite a tendency for the right hippocampus to be more atrophied in MCI and the 

left hippocampus being more affected in AD. Global lateralized atrophy as assessed by 

Minkova et al. (2017) might appear late in pathology or with increase in disease severity. In 

contrast, lateralized differentiation patterns as investigated in the present study, seem to be 
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more evident in the hippocampus in dementia. Future studies could reveal under which 

circumstances lateralized differentiation patterns and lateralized atrophy arise.  
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