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Abstract 
 

The hippocampus is a plastic region and highly susceptible to aging and dementia. Previous 

studies explicitly imposed apriori models of hippocampus when investigating aging and 

dementia specific atrophy but led to inconsistent results. Consequently, the basic question of 

whether macro-structural changes follow a cytoarchitectonic or functional organization across 

the adult lifespan and in age-related neurodegenerative disease remained open. The aim of 

this cross-sectional study was to identify the spatial pattern of hippocampus differentiation 

based on structural covariance with a data-driven approach across structural magnetic 

resonance imaging data of large cohorts (n=2594). We examined the pattern of structural 
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covariance of hippocampus’ voxels in young, middle-aged, elderly, mild cognitive 

impairment and dementia disease samples by applying a clustering algorithm revealing 

differentiation in SC within the hippocampus. In all the healthy and in the mild cognitive 

impaired participants, the hippocampus was robustly divided into anterior, lateral and medial 

subregions reminiscent of cytoarchitectonic division. In contrast, in dementia patients, the 

pattern of subdivision was closer to known functional differentiation into an anterior, body 

and tail subregions. These results not only contribute to a better understanding of co-plasticity 

and co-atrophy in the hippocampus across the lifespan and in dementia, but also provide 

robust data-driven spatial representations (i.e. maps) for structural studies. 
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Abbreviations: 1000BRAINS = MRI dataset from Forschungszentrum Juelich, AD = 

Alzheimer’s disease, ADNI= Alzheimer’s Disease Neuroimaging Initiative dataset, aRI = 

adjusted Rand Index, CA1= Cornu Ammonis subfield 1, CA2= Cornu Ammonis subfield 2, 

CA3= Cornu Ammonis subfield 3, CA4= Cornu Ammonis subfield 4, CamCAN = Cambridge 

Centre for Ageing and Neuroscience dataset, CAT12= Computational anatomy toolbox, 

CDR= Clinical dementia rating, eNKI= Enhanced Nathan Kline Institute-Rockland Sample, 

FWE = family wise error,  HCP= Human Connectome Project dataset, IQR=interquartile 

range, MCI= mild cognitive impairment, OASIS3= Open Access Series of Imaging Studies 

dataset, SC = structural covariance, SPM= statistical parametric mapping 

 

Introduction 
 

The hippocampus is a notable brain region from its lifelong plasticity potential (Moreno-

Jiménez et al., 2019), which can be observed with microstructural and molecular 

investigations but also at the macro-structural level using morphologic measurements of 

structural MRI. From macro-structural studies, the plasticity of the hippocampus seems to 

relate to experience and more particularly to cognitive training (Maguire et al., 2006; Boyke 

et al., 2008). Relatedly morphological measurements of the hippocampus across individuals 

suggest an important inter-individual variability (Van Petten, 2004; Fleming Beattie et al., 

2017; Llera et al., 2019). 

Since aging and Alzheimer’s disease atrophy patterns resemble each other, in particular, 

showing important atrophy in temporal lobes, several authors suggested that dementia simply 
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represents a more severe or accelerated aging process (Fjell et al., 2014). It has been 

frequently pointed out that clinically normal individuals demonstrate an accumulation of 

amyloid-beta and tau pathologies in the hippocampus and entorhinal cortex suggesting that 

neurobiological features associated with Alzheimer’s disease can also be found in apparently 

healthy elderly populations (Sperling et al., 2019; Ziontz et al., 2019). Thus the 

neurobiological relationship between healthy aging and dementia and in particular the 

hypothesis of dementia as a form of increased aging process remains controversial and poorly 

understood.  

Most researches have focused on hippocampal atrophy assessed at the macro-structural level 

and as representing the most straightforward non-invasive estimates of age-related structural 

changes. In other words, a large amount of investigations have aimed to identify specific 

pattern of atrophy across hippocampus’ organization. Two different models of hippocampus’ 

organization were referred to: the subfield model (based on cytoarchitecture features) and the 

tripartite model differentiating regions along the longitudinal axis such as the head-body and 

tail (based on functional and large-scale connectivity features). Since subfields and subregions 

are suggested to be characterized by different neurobiological features, they are likely to be 

differently affected by ageing and pathological processes. Despite several studies have 

investigated this question, no convergence towards individual subfields and subregions as 

being specifically affected by atrophy has emerged from these studies hindering our 

understanding of the underlying mechanisms. 

 

In sum, our fundamental understanding of structural changes in the human hippocampus 

across the adult life span and in dementia remain fairly limited, but several issues should be 

pointed out to account for the current state of art. First, as described above, most studies were 

based on an a-priori model of hippocampus organization while it is unclear which model is 

the most appropriate. On the one hand, one could expect macro-structural changes to be 

constrained by the topology defined by cytoarchitecture, but on the other hand, as plasticity 

has been related to behavioral function, one could expect macro-structural changes to follow 

the functional organization of the human hippocampus along the longitudinal axis. Second, 

partly related to the first conundrum, the question of whether the pattern of structural changes 

in aging and dementia follow a similar topological pattern remains as a completely open 

question.  

In this study, we have probed morphological changes across large datasets of structural MRI 

in healthy subjects and dementia patients applying a data-driven approach to reveal latent 
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patterns of differentiation in the hippocampus. Using the pattern of covariance with other 

brain regions across individuals to guide the clustering, importantly, allows the integration of 

interrelationships between the hippocampus and the whole brain hence revealing a more 

systemic pattern of change.  

To implement the aforementioned objectives practically, we used a parcellation approach 

applied on hippocampus’ structural co-variance in five different age and disease groups: 

young, middle-aged, elderly adults, mild cognitive impairment patients (MCI) and patients 

with dementia coming from independent datasets. We use the term “co-variance” to refer to 

healthy life-span changes in structural co-variation, which are assumed to be driven mainly by 

co-plasticity (e.g. regions developing together) and partly by co-atrophy, especially in older 

adults (e.g. regions degenerating together). In contrast, in dementia, we expect co-variation to 

be primarily driven by co-degeneration of brain regions. Accordingly, we use the term “co-

atrophy” in the context of dementia patients (even though technically, the same “structural 

covariance” measure was applied across age and disease groups.  

In this framework, a data-driven approach of structural covariance offers a bottom-up 

examination of the topological patterns of co-plasticity/co-variation in the first adult life 

periods and co-atrophy in elderly and dementia. Importantly, we examined the stability of the 

pattern across datasets by using split-half cross validation and robustness across groups with 

bootstrapping approaches. We explored the possible mechanisms explaining these patterns by 

examining the similarity of these topological patterns with the pattern of functional 

organization of the hippocampus, and investigated the structural networks that underlie the 

different hippocampus subregions. Finally, we characterized these structural networks with 

regards to behavioral functions and compared these structural networks with functional 

networks. 

 

 

Materials and methods 
 

Datasets, cohort samples and age-phenotypical groups  

 

We included six different datasets: Human Connectome Project (HCP) 

(http://www.humanconnectome.org), Enhanced Nathan Kline Institute-Rockland Sample 

(eNKI) (http://fcon_1000.projects.nitrc.org/indi/enhanced/), Cambridge Centre for Ageing 

and Neuroscience (CamCAN) (https://www.cam-can.org/) (Shafto et al., 2014; Taylor et al., 
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2017), 1000BRAINS from Forschungszentrum Juelich 

(https://www.frontiersin.org/articles/10.3389/fnagi.2014.00149/full), Alzheimer’s Disease 

Neuroimaging Initiative (ADNI) (http://adni.loni.usc.edu/) and Open Access Series of 

Imaging Studies (OASIS3) (https://www.oasis-brains.org/). From these datasets, we formed 

five cohort samples: young, middle-aged, elderly, MCI and dementia participants. The age 

range of the group of young adults was set to 20-35 years. In turn, the age range of the 

middle-aged group was 35-55 years and for the elderly, we set a conservative age range of 60- 

80 years. MCI and AD patients were selected within the same age range as the elderly group. 

For the dementia group we included patients with probable Alzheimer’s type pathology by 

selecting Alzheimer’s disease patients from the OASIS3 dataset and ADNI dataset, as well as 

the late cognitive impaired individuals from the ADNI dataset who are considered as patients 

at the early stage of Alzheimer’s disease (Qiu et al., 2014). The MCI group was formed by the 

participants with the diagnosis ‘early MCI’ (ADNI dataset) and by participants with a CDR 

score of 0.5 from the OASIS3 dataset. The demographic data of each study samples and 

groups are reported in Table 1 and Tab 2 below. The analyses of these data were approved by 

the ethical committee of the Heinrich Heine University Düsseldorf. 

 

 

Structural MRI acquisition, preprocessing and structural covariance 

computation 
 

Only 3T MRI anatomical scans were included in this study acquired with different scanning 

parameters (Tab. 3). All images were preprocessed with SPM12 and the CAT12 toolbox, 

running on Matlab R2016a. The normalization was performed with the DARTEL algorithm to 

the ICBM-152 template using both affine and non-linear spatial normalization. The MRI 

images were bias-field corrected and segmented into gray, white matter, and cerebrospinal 

fluid tissues. The gray matter segments were then modulated for non-linear transformations 

only and subsequently smoothed with an isotropic Gaussian kernel (full-width-half-maximum 

= 8).  

We used a mask of the human hippocampus created in a previous study (Plachti et al., 2019) 

from macro-anatomical atlas and cytoarchitecture maps. Structural covariance was computed 

by correlating hippocampal voxels with all other grey matter voxels using Pearson 

correlation, which were z-transformed. For each dataset, hundreds of bootstrap samples 

(corresponding to the size of the dataset) were created and a respective structural covariance 
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matrix was computed for each bootstrap sample (see Supplemental material Methods).  

 

Parcellation – clustering of hippocampus’ voxels— based on structural 

covariance 

 

Clustering 

 

To identify patterns of similar and different structural covariance among hippocampus voxels, 

we used an unsupervised clustering approach extensively applied in the field of brain 

parcellation. More precisely, for each voxel within the hippocampus, an individual structural 

covariance profile to all other brain voxels across subjects was computed. In the next step, 

hippocampus’ voxels were clustered based on the similarity/dissimilarity of their profiles. As 

a clustering algorithm we applied the k-means ++ algorithm in Matlab identifying two to 

seven parcels. We used 255 iteration and 500 repetition parameters in line with Plachti et al. 

(2019) to allow comparison with previous parcellations.   

 

Split-half cross validation as stability measure  

 

In order to identify which cluster solution best summarized similarity and dissimilarity in the 

pattern of structural covariance of hippocampus’ voxels, we used split-half cross validation to 

estimate the stability of differentiations. We divided each sample into halves 10 000 times 

(splits) and compared with the adjusted Rand Index (aRI) the convergence between the two 

halves. The aRI estimates the consistency of two clusterings and is adjusted for chance. It can 

have values between 0 (not similar at all) and 1 (identical). A higher convergence reflects a 

higher consistency of the clusterings indicating high stability. In order to quantify statistically 

the stability of the different cluster solutions, we performed an ANOVA.  

 

 

Cross-dataset group parcellation 

 
To obtain robust patterns of structural covariance parcellation in each age/disease group, we 

merged after the clustering the parcellation results from different datasets corresponding to 

the same age and disease group. This procedure aimed to extract patterns that captured the 

relevant features under investigation (e.g. aging or dementia effects) rather than dataset 
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specific effects (Jockwitz et al., 2019). First, the clustering approach was applied on 

hippocampus’ voxels structural covariance profiles within each sample and age group 

resulting in sample-group-specific matrices. We then concatenated the solution matrix of one 

sample (e.g. Young_HCP) with all the other samples (e.g. Young_eNKI, Young_CamCAN) 

belonging to the same age or disease group (e.g. Young) and applied bootstrapping (10 000 

resampling) on the ‘merged’ solution matrix across bootstrap samples (see Supplemental 

material Methods and Fig. 1).  

 

Clusters’ covariance network and their relationship to functional large-scale 

networks  
 

In order to identify the pattern of structural covariance underlying the clustering in each 

age/disease group (n=2584), we examined the network of structural covariance more 

specifically associated to each cluster. To do so, we used the general linear model as 

implemented in SPM, hence at the voxel level. Accordingly, at each voxel, the linear 

relationship with the average grey matter value of the cluster of interest is tested. This 

procedure provided some insight into the individual pattern of structural covariance of the 

different subregions of the hippocampus that have driven the clustering. As the clustering is 

not performed on any thresholded values but based on the full pattern of structural covariance, 

we here examined the map of structural covariance of each cluster across the whole brain at 

an uncorrected level of P < 0.001 with a threshold of T=1. Nevertheless, we additionally 

corrected for multiple comparisons using family wise error (FWE) rate at the significance 

level of P < 0.05 to examine the brain patterns that survived at a strict statistical threshold 

(Supplementary Fig. 7).  

To test whether structural covariance networks in dementia follow functional co-activation 

networks, we examined the functional connectivity of the subregions derived in dementia but 

in a sample of healthy participants. Our underlying hypothesis was that the pattern of co-

atrophy in dementia could mirror functional connectivity patterns observed in late life (but 

before dementia). To explore this question, we performed a similar general linear model 

analysis using resting-state fMRI time-series in the group of healthy elderly (n=428 in 

1000BRAINS; EPI, 36 slices, TR=2.2 s, TE=30 ms, FOV = 200 x 200 mm2, flip angel = 90 °, 

voxel resolution =3.1 x 3.1 x 3.1 mm3) for the hippocampus’ subregions derived from the 

dementia group. Preprocessing included movement correction by affine 2-pass registration 

and alignment of the images to the first volume and to the mean of the volumes. The six 
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motion parameters and their first derivatives from the realignment step were regressed out. 

Spatial normalization was performed to the MNI-152 Template for the average EPI scans for 

each subject using the unified segmentation approach. Images were band-pass filtered with 

cut-off values of 0.01-0.08 Hz and smoothed with the isotropic Gaussian kernel (full-width-

half-maximum = 5 mm). Denoising was performed using white-matter and CSF signal 

regression.   

For each grey matter voxel, a linear relationship with the average BOLD-response of the 

cluster of interest was computed. In this way, we obtained the functional connectivity network 

of each individual cluster and contrasted it against the whole brain pattern of association of 

other clusters.	

 

 

Clusters’ covariance network and their behavioral associations 

 

After having identified the structural covariance network for each cluster, we characterized 

those networks in terms of associated behavioral functions using NeuroSynth database 

(https://neurosynth.org/) and its cognitive decoding tool with above 1 300 terms included. For 

the most frequent terms reported in the literature (such as “episodic memory”), NeuroSynth 

provides meta-analytic maps of the most frequently associated voxels in activation studies. It 

therefore offers the possibility to compare any given brain pattern, such as the whole brain 

structural co-variation patterns in the present study, to the collection of maps related to each 

term using the cognitive decoding tool. Accordingly, we used the uncorrected whole-brain 

maps of each cluster and ran Pearson correlations between our structural covariance maps and 

the meta-analytic maps of NeuroSynth. As our objective here was not to identify specific 

behavioral functions associated to a specific network but rather to identify the broad pattern of 

behavioral associations of cluster’s network, we included all correlations for associated terms 

above 0.1, we excluded non-behavioral terms (e.g. hippocampus, dementia) and summarized 

similar lexical terms into a summary label (e.i. ‘emotions’, ‘affect’, ‘happy’, ‘fear’ -> 

emotion). The pattern of associated behavioral terms, which could differ in number depending 

on the spatial extent the of clusters’ covariance pattern, was then interpreted qualitatively 

rather than with regards to magnitude of association.  

 

Data availability statement  
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The data that support the findings of this study are available from open science initiatives 

reported and cited above. Code can be shared upon reasonable request from the corresponding 

author. The derived clusters are available at (http://anima.fz-juelich.de/) as ROI in .nii format.  

 

Results 
 

Stable clustering level 
 

We used split-half cross-validation (10 000 splits) to identify the most stable cluster solution 

based on similarity across splits as measured by the aRI index. We performed a 6 (datasets: 

HCP, eNKI, CamCAN, 1000BRAINS, ADNI, OASIS3) x 6 (cluster solution: 2-7) ANOVA 

with the aRI as dependent variable. The ANOVAs were performed separately for each 

hemisphere.  

Overall, examining cluster solutions’ main effect F(5,839964) = 32365.18, P < 0.001), in the 

right hippocampus, parcellations into 2 and 3 clusters were the most stable solutions even 

though the differences between all cluster solutions were marginal: 2 (M=0.97,), 3 (M=0.96), 

4 (M=0.95) (Fig. 1A). For the left hippocampus, cluster solution two and three were also the 

most stable: 2 (M= 0.97), 3 (M= 0.96), 4 (M= 0.94), F(5,839964) = 25194.75, P < 0.001(Fig. 

1A). The significant interaction effects in right and left hippocampi indicated that the stability 

of parcellations was dependent on dataset, F(25, 839964) = 2006.7, P < 0.001, F(25,839964) 

= 4884.36, P < 0.001 (Supplementary Fig. 2).  

In line with previous clustering studies, our first exploration showed a relatively linear 

decrease in the stability as the number of cluster increases, suggesting that the simpler, more 

parsimonious models are the most robust ones (additionally supported by silhouette plots in 

Supplemental material 2.2). In particular here, the 2- and 3- cluster solutions are the most 

stable levels of differentiation.  

 

Similarity/consistency of the hippocampal differentiation  

 

To further ensure that the stability of cluster solutions 2-4 was driven by intrinsic properties 

of the structural covariance pattern rather than by intrinsic properties of the dataset, we 

examined the pattern of similarity (measured by the aRI) between the different cohort samples 

(Fig. 1B).  
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The inspection of the similarity matrices revealed that, cluster solution 2 showed a general 

pattern of high similarity, whatever the dataset or age group. This suggested a global 

differentiation being robust across data and age/disease group (Fig. 1B). The 3-cluster 

solution mainly and remarkably showed a high within group (age and disease) and between 

group consistency suggesting a differentiation pattern driven by intrinsic features of the 

age/disease groups rather than by the intrinsic features of the dataset. This suggests that 

neurobiological rather than technical factors specific to the dataset guided the parcellation.  

In contrast, the 4-cluster solution showed high within age group consistency only for the 

healthy elderly group in the right hippocampus, questioning its usability to study lifespan and 

disease related changes. Finally, the higher clustering levels (5, 6 and 7-cluster solution) 

showed overall relatively low similarity between samples (Supplementary Fig 2). Thus, the 

investigations of consistency/similarity between samples supported the focus on the 3-cluster 

solution as the most stable and most likely biological relevant pattern of differentiation of 

hippocampus’ voxels.  

 

In sum, our first ‘bottom-up’ examination of the differentiation of the hippocampus based on 

structural covariance across different datasets suggested that a 3-cluster solution could 

represent the data in a stable manner. Furthermore, our examination of consistency within age 

and disease group suggested that this high stability is not primarily driven by characteristics 

that were intrinsic to the dataset but rather by characteristics that were intrinsic to the 

population group and hence driven by neurobiological factors. Thus, altogether, hippocampus 

voxels within different age/disease groups could be optimally summarized with a 3-cluster 

solution ideally applicable to study lifespan and disease alterations. Importantly, such 

parsimonious 3-partition model also meets previous theories on hippocampus’ organization.  

Even though cluster solution 2 and 4 displayed high stability and consistency compared to 

higher differentiations, they were either less informative as in the case of cluster solution two 

(Supplementary Fig. 5) or demonstrated qualitatively divergent parcellations less comparable 

across age/disease group as in the case of cluster solution four (Supplementary Fig. 5). 

Building on these explorations of the data and previous knowledge, we then focused on the 3-

cluster solution pattern.  

 

Cross-dataset age and disease group parcellation 
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After deriving parcellations in each cohort sample, we merged them to obtain a robust pattern 

of differentiation of hippocampus voxels for five different age and disease groups: young, 

middle-aged, elderly, MCI and dementia patients using a bootstrapping approach to further 

promote stability. This aggregation was done separately for the left and right hippocampi. 

Nevertheless, a very symmetrical pattern of differentiation could be observed across 

hemispheres. For both hippocampi, our maps (Fig. 2) showed a very similar pattern for the 

young, middle-aged, elderly and the MCI group. This pattern highlighted a division in the 

medial-lateral dimension of the hippocampus’ body and to some extent, of the tail while the 

head appeared as a relatively homogeneous region. This pattern replicated the findings from 

our previous parcellation work in the hippocampus performed in a sample of young 

participants from the HCP dataset (Plachti et al., 2019), and as already highlighted in our 

previous study, is reminiscent of the medial-lateral differentiation between CA and subiculum 

subfields known from cytoarchitecture. Of note, it seemed that with increasing age the head 

cluster decreased slightly in size, while the medial (blue) cluster expanded into the tail area 

and the lateral (green) cluster expanded into the anterior direction (Fig. 2). 

Remarkably, the differentiation of the hippocampus in the dementia group deviated from the 

pattern that was observed in healthy population across adult age. Despite the anterior 

subregion also appeared as a relatively homogeneous region, the lateral (green) cluster was 

focused on the hippocampus body while the medial (blue) cluster appeared more prominent in 

the tail. As illustrated in Figure 2, this pattern was reminiscent of the functional differentiation 

along the anterior-posterior dimension (and hence “head-body-tail” tripartite model) observed 

in parcellations using large-scale functional connectivity. In order to further quantitatively 

evaluate these apparent divergences and resemblances, we compared the similarity of the age 

and disease groups among each other and with the functional map of the hippocampus derived 

in healthy adult fMRI data (Plachti et al., 2019) using the aRI.  

Strikingly, the highest similarity with the hippocampus’ functional map was found for the 

parcellation pattern obtained in dementia. This finding suggested that over time, the structural 

changes in the hippocampus in the pathological condition of dementia followed the large-

scale functional organization of the hippocampus. Interestingly, this tendency was higher for 

the right than for the left hippocampus. Finally, it is worth noting that the pattern in 

participants with MCI was more similar to the healthy middle-aged and elderly participants 

than to the pattern observed in dementia.  
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Whole brain structural covariance patterns of each cluster  

 

In order to better understand the structural covariance patterns that drove the differentiation 

among hippocampus’ voxels in each age/disease group, we examined the specific structural 

covariance pattern of each cluster and this, separately in each age/disease group. The 

structural covariance networks for young, elderly adults and dementia patients are presented 

below while the results obtained in middle aged and MCI participants (that were in line with 

other non-demented groups) are presented in Supplementary Fig. 6.  

In young participants the (red) anterior cluster was associated with wide fronto-temporal and 

parietal networks including frontal medial cortex, superior frontal gyrus, orbitofrontal cortex, 

cingulate cortex, temporal lobe, parahippocampal gyrus, (pre-)cuneal cortex, calcarine cortex, 

lingual gyrus and occipital pole. In addition, the putamen, pallidum, amygdala, insular cortex 

belonged to this network. A similar pattern was found in healthy elderly participants despite a 

slight expansion, additionally covering the inferior frontal gyrus, the whole cerebellum, pre- 

and postcentral gyri (Fig. 3).  

The lateral (green) cluster in the young group was mainly associated with subcortical 

structures such as putamen, pallidum, nucleus caudatus, thalamus but also with the cingulate 

gyrus, lingual gyrus, precuneous cortex and intracalcarine/supracalcarine cortex. Additionally, 

frontal and temporal brain regions were included such as frontal orbital cortex, frontal 

operculum cortex, inferior frontal gyrus, pars opercularis and superior temporal gyrus. In the 

older group, this network mainly reduced to the parieto-occipital (posterior cingulate cortex, 

precuneous, lingual and intracalcarine gyrus) and frontal medial (frontal medial cortex, 

subcallocal cortex, frontal pole) brain regions reminiscent of the Default mode network.  

The blue medial cluster in the group of young adults was mostly related to middle frontal, 

middle temporal gyri, cerebellum and lateral occipital cortex. Subcortical regions such as the 

caudate and thalamus, but also the insula were included. Interestingly, the (blue) medial 

cluster showed in the group of healthy elderly a very broad pattern of structural covariation 

(Fig 3), especially in the posterior brain regions (e.g. parietal, occipital lobes and motor 

related regions: cerebellum, pre-postcentral gyrus, thalamus, putamen, but also occipital 

gyrus, superior parietal lobule, and temporal gyri). Some smaller associated regions were also 

found in the inferior frontal and middle frontal cortex.  

 

In contrast, in the group of patients with dementia, the pattern of structural covariance of each 

cluster was less spatially extended compared to all the other groups (Fig 3). Furthermore, the 
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pattern was also qualitatively different when compared to the patterns of the three clusters in 

the other age/disease groups confirming that the differentiation into subregions within the 

hippocampus itself is qualitatively different and did not follow the known pattern of healthy 

aging. Hence, the (green) lateral-body cluster was not associated with posterior subcortical 

structures as the lateral (green) cluster in other groups but rather was more specifically 

associated with structures in the frontal (inferior frontal gyrus pars opercularis, frontal pole, 

opercular gyrus), temporal (middle temporal gyrus, Heschl’s gyrus) and occipital brain 

regions (Fig. 3). In contrast, the (blue) tail cluster was more associated with posterior brain 

regions (posterior parts of the temporal lobe, postcentral gyrus and (pre)cuneous, angular 

gyrus) while the anterior cluster was more associated with temporal, temporo-occipital 

fusiform cortex, and parietal regions loosing mainly its co-variation with frontal regions 

compared to younger healthy adults.  

Because of apparent similarity between structural differentiation of the hippocampus in the 

dementia group with the functional organization model of the hippocampus known from 

previous studies in the healthy population, we further explored the relationship between 

functional and structural networks. More concretely, we investigated the pattern of resting-

state functional connectivity in the later life period of healthy participants (i.e. in healthy older 

adults) of the hippocampus’ cluster derived in dementia patients. This exploratory analysis 

suggested that the functional networks of the anterior and the lateral clusters that can be 

observed in an aging population are very similar to their structural networks observed in 

patients with dementia hence further supporting the hypothesis of a an influence of large-scale 

functional interaction in the co-atrophy pattern in dementia. 

 

Behavioral characterization of clusters’ structural covariance networks  
 

In order to explore whether the structural covariance patterns of each cluster could reflect 

functional networks subserving specific behavioral functions, we characterized the spatial 

pattern of each cluster’s covariance network with regards to behavioral terms with 

NeuroSynth. Results of middle aged and MCI patients are presented in Supplementary (Fig. 

10) while we here focused on the associations in the young, elderly and the dementia group, 

as showing a slightly different pattern. 

Overall, the spatial pattern of the anterior (red) cluster was primarily associated with 

emotional, perceptual (olfactory, viewing) and self-related (autobiographical) terms, but also 

with other less ontologically defined terms such as faces, ratings and reactivity (Fig. 4). 
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Overall, this behavioral pattern pointed to an automatic and more perceptual-emotional 

processing and integration of information into self-related internal states. This behavioral 

profile of the anterior subregion was even preserved in dementia pathology. In contrast, the 

pattern of the lateral (green) and the medial (blue) clusters’ diverged depending on the age 

and disease group. Whereas the medial blue clusters’ networks in the group of healthy young 

adults was associated with visual processing of objects and places, in the group of elderly and 

dementia patients, however, it was behaviorally additionally associated with motor/movement 

and orientation (Fig.4).  

Most changes in structural co-variation and behavior were observed for the lateral (green) 

cluster. In the group of young healthy adults the network was associated with motor-related 

behavior (e.g. motor, navigation), whereas in the elderly the behavioral association suggested 

an involvement of storing self-related information (e.g. autobiographic memory, episodic 

memory). In the group of dementia patients, on the other hand, the network was primarily 

associated with communication and social cognition, both of its own internal states (e.g. pain) 

as well as external information (e.g. comprehension, theory of mind). Overall, these results 

suggested that, the changes in the patterns of structural co-variation of the medial and lateral 

clusters over the life span and in pathology could be related to associations with different 

behavioral functions.  

 

 

Discussion 

 
The hippocampus is susceptible to senescence and neurodegenerative processes but the 

patterns of structural changes at the macro-scale revealed inconsistencies across studies. 

Observed changes in grey matter volume could be either constrained by micro-anatomical 

organization of the cytoarchitecture or follow an organization determined by lifelong 

functional large-scale networks.  

In a previous recent study, we used a parcellation approach to study human hippocampus 

organization with a multimodal parcellation approach. We hence examined the pattern of 

structural covariance in the human hippocampus in healthy young adults and found a 

topology that mimics both medial-lateral differentiation from cytoarchitecture and anterior-

posterior differentiation shown by functional connectivity profiles (Plachti et al., 2019). A 

similar pattern was found in a very recent study using a similar population but different 
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parcellation approaches (Ge et al., 2019), and was reproduced again in this study, hence 

suggesting that this pattern reflects a robust pattern of co-plasticity in young adults.  

We here investigated if structural changes represented in co-variations in older age and 

dementia follow or deviate from the patterns of co-plasticity observed in young adults. Our 

results indicated that during aging the overall pattern of structural covariance follows the 

pattern of structural covariance observed in young adult age with some small differences 

discussed below. However, in participants with probable dementia disease, the pattern of co-

atrophy in the hippocampus deviates from what was observed in these healthy populations. In 

patients with dementia, the co-atrophy seems to follow the functional large-scale networks 

with a pattern that resembles more than the functional model of hippocampus’ organization 

than what was observed in other groups. Overall, the most prominent differences between 

groups in the differentiation patterns of the hippocampus were found in the body and tail 

whereas the head always appears as a uniform region. Group differences were shown not only 

in the topological pattern within the hippocampus, but also in the whole brain structural 

covariance pattern that drove the clustering and their associated behavioral associations.  

  

Consistent pattern of head differentiation in hippocampus’ structural covariance 

across the lifespan 
 

Independent of age and disease, the head of the hippocampus, emerged consistently as one 

homogeneous subregion, except for some minor reductions with higher age and ongoing 

pathology. But the actual underlying covariance pattern of the anterior hippocampal subregion 

changed across age/disease groups. In young adulthood the anterior hippocampal co-variation 

pattern was characterized by a broad network extending across frontal, temporal and occipital 

lobes as well as (inferior) parietal regions. In accordance with the large spatial distribution of 

this network, behavioral associations showed a relatively broader spectrum including 

emotional, cognitive and perceptual processes. These results could suggest that the 

hippocampus head is a plastic region (based for example on cell proliferation in the dentate 

gyrus, (van Praag et al., 2005) during the life span), which structure is modulated by rich 

functional interaction with large-scale brain networks subserving various behavioral 

functions. The structural covariance networks of the hippocampus head in early and late 

adulthood demonstrated that the anterior hippocampus co-varied with the same brain regions 

in both halves of healthy lifespan suggesting a perseverance of co-plasticity and resilience. 
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However, in dementia the structural covariance network of the anterior subregion decreased 

mainly to the temporal lobe suggesting a loss of network. 

 

 

Consistent pattern of medial-lateral differentiation in hippocampus’ structural 

covariance 
 

Across different age groups of the healthy population, we found a consistent differentiation 

pattern along the medial-lateral dimension of the hippocampus dividing it into a lateral and a 

medial subregion. This pattern replicated previous findings and seemed to follow the 

cytoarchitectonic differentiation between the CA and subiculum subfields (Plachti et al., 

2019). Importantly, this pattern, like the head subregion, appeared to remain stable across the 

whole adult life span suggesting a very strong and robust scheme of structural covariance that 

should be referred to when studying structural changes with MRI in adults. This scheme was 

even further retained when subdividing the hippocampus into 4 subregions in healthy adults 

and MCI patients (Supplementary Fig. 5), even if, one additional cluster appeared either in the 

anterior or posterior-lateral region depending on the age/disease group. Even though the 

differentiation into a lateral and medial parcel was preserved over the lifespan, the lateral 

cluster decreased posteriorly with age and the medial cluster expanded into the tail. This 

change in the cluster pattern was reflected both in the associated structural pattern and the 

related behavioral associations.  

The medial hippocampal subdivision showed a co-variation pattern with occipito-parietal, 

temporal (middle temporal gyrus), and frontal (inferior and middle frontal gyri) brain regions. 

Furthermore, the network included subcortical brain regions such as thalamus, caudate, and 

insula. With increasing age, the covariance network expanded highly in size, especially 

covering posterior brain regions. The shift from mostly anteriorly associated brain regions in 

younger years to posteriorly associated regions in elderly is not unusual for the hippocampus. 

It has already been reported in functional connectivity (Blum et al., 2014; Stark et al., 2019), 

in structural covariance studies (Li et al., 2018), and for anatomical connectivity with 

strengthened connections to medial occipital regions (Maller et al., 2019), which was in line 

with our results, even though the responsible mechanisms remain to be elucidated.  

These alterations were also mirrored in the behavioral association patterns. While in younger 

adults visual cognition (e.g. object, place, encoding, familiarity) was prominent, in elderly, 

however, the behavioral spectrum expanded to language processing as well as to motor 



	
	

17	

related (learning) behavior. Both, structural co-variation networks and behavioral profiling, 

suggest that brain regions connected by the inferior longitudinal fasciculus (ILF) co-vary 

more likely with the medial subregion of the hippocampus. The ILF is an occipito-temporal 

association tract with close relationships to the occipital radiations and hippocampus through 

the tapetum (Herbet et al., 2018). The ILF is behaviorally associated with visual object and 

face recognition, reading as well as lexical and semantic processing (Herbet et al., 2018), 

which is in accordance with our behavioral profiling of the medial subregion across the 

lifespan.  

 

While the medial cluster expanded into the tail during healthy aging, the lateral cluster 

decreased from the tail. The lateral subregion’s co-variance network in young adulthood 

yielded primarily associations with subcortical regions (e.g. thalamus, caudate nuclei) and 

additionally with the parieto-occipital fissure. Anatomically those associated brain regions 

were reminiscent to some extent to the grey matter regions around the dorsal hippocampal 

commissure, being connected with posterior cingulum, tapetum, and fornix (Postans et al., 

2019). The dorsal hippocampal commissure is associated with learning, memory and recently 

also with recognition (Postans et al., 2019). The fornix is the white matter output of the 

hippocampus through the tail (Amaral et al., 2018) whereas the tapetum transfers information 

between hemispheres. The hippocampus is connected via the fornix with limbic structures 

(e.i. hypothalamus, thalamus, nucleus accumbens) (Douet and Chang, 2015), and has been 

suggested to play a major role in transferring information from short-term to long-term 

memory via the Papez circuit and is accordingly, involved in long-term memory encoding and 

retrieval (Eichenbaum et al., 2007; Douet and Chang, 2015; Foster et al., 2019).  

 

 

Structural covariance pattern in the hippocampus in dementia resemble 

functional organization 
 

In healthy population, structural covariance across the brain is assumed to reflect 

maturational, developmental and experience-based co-plasticity (Alexander-Bloch et al., 

2013; Geng et al., 2017). In patients with neurodegenerative disorders, structural covariance 

across the brain could be expected to mainly reflect brain structure co-atrophy. The moderate 

to high convergence between structural covariance and task-(un)related functional 

connectivity (Reid et al., 2016; Kotkowski et al., 2018; Paquola et al., 2018; Shah et al., 
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2018) suggests that abnormalities in structural and functional network topology is predictive 

of brain disorders (Seeley et al., 2009; Goodkind et al., 2015) and weaker cognitive 

performance (Spreng and Turner, 2013; McTeague et al., 2016; Montembeault et al., 2016). 

However, the question remains fully open whether structural atrophy changes functional 

BOLD response (He et al., 2007) or the other way around (Chang et al., 2018). From a 

neuropathological standpoint, Alzheimer’s pathology is assumed to follow a specific 

topological pattern distributed along large-scale networks (Braak and Braak, 1991; Corder et 

al., 2000; Montembeault et al., 2016). For example, amyloid-plaque distribution in the brain 

seems to follow functional organization mirrored in the Default mode network (DMN) (Klunk 

et al., 2004; Buckner et al., 2005; Montembeault et al., 2016). Similarly, the spreading of tau 

neurofibrillary tangles seems to follow a functional pattern, which is not explained by spatial 

proximity (Franzmeier et al., 2019). In other words, brain regions that are more likely to be 

functionally coupled together share a stronger tau covariance, which is not explained by pure 

spatial neighborhood. This apparent convergence between spatial distribution of pathology 

markers and the spatial organization of functional networks may be explained by the fact that 

synchronous neuronal firing establishes a network-based synaptogenesis (Katz and Shatz, 

1996; Bi and Poo, 1999), which can then be assumed to be vulnerable to pathological 

processes.  

Linking these neuropathological considerations to the pattern of differentiation based on 

structural covariance found in the hippocampus of patients with probable AD in this study, we 

can hypothesize that the pattern of co-atrophy in these patients followed the pattern of 

functional organization subserving broad behavioral functions. In this regard, we can note that 

the pattern of structural covariance networks of the hippocampal body in dementia patients in 

this study was associated with temporal and frontal regions in turn associated with 

comprehension, language, orthography and theory of mind. We hypothesize that the structural 

covariance network of the hippocampus’ body reflects a functional network of higher 

cognitive functions of social cognition additionally supported by the functional co-activation 

pattern of the lateral-body subregion when applied to healthy elderly. It therefore emphasizes, 

that the hippocampal differentiation based on structural covariance in dementia follows 

functional differentiation. Overall our findings point to the necessity of accounting for 

hippocampus’ functional organization related to large-scale networks subserving broad 

behavioral functions when studying hippocampus’ structural changes at the macro-scale in 

dementia.  
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Table 1. Demographic data of all collected samples  

Samples Sampl

e size 

(n) 

Mean age 

(SD; age 

range) 

% 

female

s 

Education  CDR MMSE 

Young_HCP n= 304 27.8 

(SD=3.55

; 22-34) 

50.6% SSAGA_Edu

c: 14.8 (SD= 

1.75; 11-17); 

NAs: 0  

/ 29.0 (SD 

=1.07; 

23-30); 

NAs: 0  

Young_eNKI n= 140 24.8 

(SD=3.85

; 20-34) 

50% SES-Adult 

Education 

code, 5.4 

SD=0.8; 4-7; 

14.8 (SD = 

1.6; 11-18); 

NAs: 0  

/ / 

MiddleAged_eNKI n= 72 43.6 

(SD=5.7; 

35-54) 

52.7% SES-Adult 

Education 

code, 5.5 

(SD=1; 3-7); 

15.1 (SD=2.3; 

10-21); 

missing n=2 

/ / 

Old_eNKI n= 76 68.3 

(SD=5.5; 

60-79) 

51.3% SES-Adult 

Education 

code, 6.0 

(SD=1.0 4-7); 

16.1 (SD=2.4; 

12-24); NAs: 

0 

/ / 

Young_ CamCAN n= 94 28.4 

(SD=3.97

; 20-34) 

50% Education 

scoring: 6.2 

(SD=1.7; 2-

8); missing 

/ 29.4 

(SD=1.17

, 25-30); 

NAs: 0 



	
	

20	

n=21 

MiddleAged_CamCA

N 

n =207 44.3 

(SD=5.78

; 35-54) 

50.7% 5.7 (SD=1.8, 

1-8); missing 

n=35 

/ 29.1 

(SD=1.17

, 26-30); 

NAs: 0 

Old_CamCAN n = 

213 

69.8 

(SD=5.96

; 60-79) 

50.2% 5.0 (SD=2.2, 

1-8); missing 

n=65 

/ 28.4 

(SD=1.47

, 25-30); 

missing 

n=1 

Old_1000BRAINS n = 

492 

66.9 

(SD=4.24

; 60-75) 

50% Education 

years: 13.7 

(SD= 3.7, 3-

27); missing 

n=1 

/ 

 

/ 

Demtec: 

15.2 

(SD=2.3, 

8-18); 

missing 

n=9 

Old_ADNI n = 

139 

71.6 

(SD=4.65

; 61-79) 

51.7% Education 

years: 16.6 

(SD=2.6, 12-

20); NAs: 0 

CDR 

sum of 

boxes: 

0.02, 

SD= 

0.11, 0-

0.5; 

NAs: 0 

28.9 

(SD=1.24

, 24-30); 

NAs: 0 

MCI_ADNI n = 

213 

69.2 

(SD=5.05

; 60-79) 

50.2% Education 

years: 15.9 

(SD=2.6, 10-

20); NAs: 0 

CDR 

sum of 

boxes: 

1.22, 

SD=0.76

, 0.5-4; 

NAs: 0 

28.4 

(SD=1.5, 

23-30); 

NAs: 0 

AD_ADNI n = 

219 

71.0 

(SD=5.42

51.1% Education 

years: 16.1 

CDR 

sum of 

25.8 

(SD= 3.0, 
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; 60-79) (SD= 2.6, 11-

20); NAs: 0 

boxes: 

2.9, SD= 

1.8, 0.5-

10; NAs: 

0 

19-30); 

NAs: 0 

Old_OASIS3 n = 

298 

70.3 

(SD=4.42

; 60-79) 

50% Education 

years: 16.0 

(SD=2.7, 8-

24); NAs: 0 

0, SD = 

0, 0-0; 

NAs: 0 

28.8 

(SD=1.8, 

9-30); 

missing n 

=2 

MCI_OASIS3 n = 74 70.9 

(SD=4.58

; 61-79) 

50% Education 

years: 15.3  

(SD=2.7, 8-

20); NAs: 0 

0.5, 

SD=0, 

0.5-0.5; 

NAs: 0 

26.7 

(SD=3.4, 

13-30); 

missing 

n=2 

AD_OASIS3 n = 53 69.9 

(SD=5.58

; 60-79) 

47.2% Education 

years: 15.1 

(SD=2.8, 11-

20); NAs: 0 

0.92, 

SD=0.57

, 0-2; 

NAs: 0 

23.5 

(SD=4.8, 

10-30); 

missing 

n=1 

	
 

Table 2. Demographic data of the age and disease groups created from independent samples 

Phenotypical group Size (n) Mean age (SD; age range) % females 

Young n = 538 27.1 (SD = 3.95; 20-34) 50.5 

Middle age n= 279 44.0 (SD=5.77; 35-54) 51.0% 

Elderly n= 1218 68.9 (SD=5.07; 60-79) 50.2% 

MCI n= 287 69.7 (SD=4.98; 60-79) 50.2% 

AD n= 272 70.7 (SD = 5.46; 60-79) 50.4% 

 

 

Table 3. Sequence parameters of the different datasets  

Datasets Sequence parameters  
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HCP T1 (3D-MPRAGE), Siemens Skyra, 256 slices, TR=2400 ms, TE=2.14 ms, 

TI =1000ms, FoV=224x224mm2, flip angle = 8◦, voxel size = 0.7 x 0.7 x 0.7 

mm3 

eNKI  Cross Sectional Lifespan Connectomics and Longitudinal Developmental 

Connectomics study: T1 (3D-MPRAGE), Tim Trio, 176, TR= 1900 ms, TE = 

2.52 ms, TI= 900 ms, FoV = 250 x 250 mm2, flip angle = 9◦, voxel size = 1 x 

1 x 1 mm3; Neurofeedback study: T1 (3D-MPRAGE), Tim Trio, 192 slices, 

TR = 2600 ms, TE = 3.02 ms, TI = 900 ms, flip angle = 8◦, voxel size = 1 x 1 

x 1 mm3 

CamCAN T1 (3D-MPRAGE), Tim Trio, 192, TR=2250 ms  TE= 2.98 ms, TI= 900 ms, 

FoV = 256 x 256 mm2, flip angle = 9◦, voxel size = 1 x 1 x 1 mm3 

1000BRAINS T1 (3D-MPRAGE), Tim-TRIO, 176 slices, TR = 2.25 s, TE = 3.03 ms, TI = 

900ms, FoV = 256 x 256mm2, flip angle = 9◦, voxel resolution = 1 x 1 x 

1mm3 

ADNI ADNI1: T1 (3D-MPRAGE), TR = 0.65 s, TE = min full, FoV = 256 x 256 

mm2, flip angle = 8◦, voxel resolution = 1.2 mm3; 

ADNIGO/2: T1 (3D-MPRAGE), TR = 0.4 s, TE = min full, FoV = 256 x 256 

mm2, flip angle = 11◦, voxel size = 1.2 mm3; 

ADNI3: T1 (3D-MPRAGE), TR = 2300 ms, TE = min full echo, TI = 900 

ms, FoV = 256 mm, resolution = 1 x 1 x 1mm3; 

OASIS3 T1 (3D-MPRAGE), Tim Trio, TR = 2400 ms, TE = 3.08 ms, TI = 1, FoV = 

256 x 256 mm2, flip angle = 8 ◦, voxel size = 1 x 1 x 1 mm3 
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Figure 1. A) Stable organizational patterns were found for right and left hippocampus for 

cluster solution 2-4 estimated with split-half cross-validation. All clusterings reached very 

high stability > 0.9 aRI. B) Cross-sample consistency of lower cluster solutions measured 

with the aRI. Despite overall high stability, the simple parcellation schemes 2-4 were also 

very consistent > 0.6 across datasets and within age/disease specific groups (e.g. young, 

elderly) suggesting biological relevance in those differentiations. Cluster solution 3 was 

exceptionally useful to study age and disease related patterns, because this scheme 

demonstrated not only high within age/disease similarity but to some extent also across 

age/diesease groups indicating relatedness, which did not apply for cluster solution 4. In 

contrast cluster solution 2 showed very high similarity independent of age/disease and dataset 

suggesting on the one hand a robust biological differentiation, but on the other hand a less 
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flexible scheme to represent lifespan and pathological alterations. Boxplots with median, 1.5 

interquartile range, min. Q1-1.5*IQR, max. Q3+1.5*IQR.  

 

 
Figure 2. Age and disease specific clusterings of the hippocampus and its similarity to 

functional differentiation into head, body and tail parcellation. In younger age the 

hippocampal differentiation was reminiscent of the differentiation between subiculum vs. 

CA1-4 and dentate gyrus subfields. With increasing age the lateral subregion decreased from 

the tail, whereas the differentiation in dementia was reminiscent of the functional 

differentiation into head, body and tail also suggested by the similarity estimation.  
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Figure 3. Patterns of structural covariance of each hippocampus’ subregions in young, elderly 

and dementia groups. Relative resting state-functional connectivity networks of dementia-

hippocampus in healthy elderly resembled structural co-variation networks of dementia 

hippocampus in dementia group. Uncorrected (P < 0.001), thresholded T=1. 

 

 

 

 
Figure 4. Behavioral characterization of clusters’ co-variance network in age and disease 

groups using NeuroSynth. Behavioral profiles of anterior cluster’s co-variance network 

remained relatively stable across the lifespan and in disease playing a major role in automatic 

perceptual-emotional approach-behavior in learning, establishing self-related memories. 

Across the lifespan the medial (blue) subregion’s network changed from being associated 
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with visual processing in younger years to being also motor-related in older age. The lateral-

body (green) subregion in the group of dementia was behaviorally associated with language 

and theory of mind processing while the lateral subregion did not show a clear behavioral 

specificity in the second half of lifespan compared to the anterior subregion. 
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