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Abstract: Citrus psorosis was reported for the first time in Florida in 1896 and was confirmed as a
graft-transmissible disease in 1934. Citrus psorosis virus (CPsV) is the presumed causal agent of this
disease. It is considered as a type species of the genus Ophiovirus, within the family Aspiviridae.
CPsV genome is a negative single-stranded RNA (-ssRNA) with three segments. It has a coat
protein (CP) of 48 kDa and its particles are non-enveloped with naked filamentous nucleocapsids
existing as either circular open structures or collapsed pseudo-linear forms. Numerous rapid and
sensitive immuno-enzymatic and molecular-based detection methods specific to CPsV are available.
CPsV occurrence in key citrus growing regions across the world has been spurred the establishment
of the earliest eradication and virus-free budwood programs. Despite these efforts, CPsV remains a
common and serious challenge in several countries and causes a range of symptoms depending on the
isolate, the cultivar, and the environment. CPsV can be transmitted mechanically to some herbaceous
hosts and back to citrus. Although CPsV was confirmed to be seedborne, the seed transmission is not
efficient. CPsV natural spread has been increasing based on both CPsV surveys detection and specific
CPsV symptoms monitoring. However, trials to ensure its transmission by a soil-inhabiting fungus
and one aphid species have been unsuccessful. Psorosis disease control is achieved using CPsV-free
buds for new plantations, launching budwood certification and indexing programs, and establishing
a quarantine system for the introduction of new varieties. The use of natural resistance to control
CPsV is very challenging. Transgenic resistance to at least some CPsV isolates is now possible in at
least some sweet orange varieties and constitutes a promising biotechnological alternative to control
CPsV. This paper provides an overview of the most remarkable achievements in CPsV research that
could improve the understanding of the disease and lead the development of better control strategies.

Keywords: CPsV; citrus; ophiovirus; transmission; diagnostic; PDR; RNA-silencing; VIGS;
PTGS; Morocco

1. Introduction

Psorosis is a widespread citrus disease in the world, causing yield, growth, and longevity reduction
of infected trees which may linger for a few years before finally dying out [1]. It was first observed in
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Florida and California at the beginning of the 1890s. However, the disease originated in the Orient and
spread among many citrus-growing countries around the world by the distribution of infected citrus
species and varieties [2,3]. In citrus-growing countries applying advanced techniques, the disease
has been brought under control notably through rigorous indexing, quarantine, and certification
program [2,4]. However, it remains a serious problem in Argentina and Uruguay [5,6]. In Western
Australia, the disease has been present for many years [7] but has only occurred occasionally on some
trees in most groves [1]. Psorosis disease has also been reported in the Mediterranean basin [8] and could
potentially be widespread in citrus-growing areas of Asia [4]. Although CPsV was described as the
first virus disease affecting citrus and was often categorized among the five unusual and economically
important citrus diseases, it was, however, one of the last to be characterized. These include citrus
blight, citrus variegated chlorosis, Rio Grande gummosis of citrus, and dry root rot of citrus [9].
Huanglongbing, also known as citrus greening, is considered as one of the most destructive bacterial
diseases of citrus [10,11]. The first progresses on CPsV characterization were made almost 120 years
after the first report on psorosis disease on citrus [12]. Given the importance of and rapid research
progress in citrus virology in recent years, this review emphasizes advances related to CPsV, one of the
most serious viruses associated with citrus. It comprises reviews and research articles covering broad
research areas on the characterization of the virus and its symptoms, the development of reliable and
rapid diagnosis methods, potential vectors and seed transmission studies, and management strategies.
A brief snapshot of the present situation of CPsV in the Mediterranean region, with an emphasis on its
spread in citrus-growing areas of Morocco, is included.

2. Taxonomy, Genome Structure, and Organization

Citrus psorosis is a serious viral disease infecting citrus species in many countries [4]. The “presumed”
agent of this disease, citrus psorosis virus (Aspiviridae; Ophiovirus; CPsV), has a tripartite (Figure 1),
non-enveloped, negative-sense, single-strand RNA (-ssRNA) genome [12]. CPsV was often described
as the “presumed” causal agent of psorosis since several trials for its detection by nucleic acid-based
techniques and antibodies–antigen-based ones were sometimes unsuccessful and the status of infection
was only based on the observation of field symptoms or reaction of indicator plants [13]. CPsV virions
consist of naked filamentous nucleocapsids that are 3 nm in diameter, and 700 nm or 2000 nm long [14].
RNA1 is ~ 8184 nucleotides (nts). It contains two open reading frames (ORFs) in the viral complementary
strand, separated by a 109 nts intergenic region [15]. These ORFs encode two proteins: (i) a 24kDa protein
involved in the alteration in the processing of microRNAs (miRNAs)–small RNAs (sRNAs) molecules
regulating gene expression in plants and animals [16] and RNA silencing suppressor activity [17], and (ii)
a 280kDa protein which contains the core polymerase motifs typical of viral RNA-dependent RNA
polymerases (RdRp) [15]. RNA2 is ~ 1643 nts [18,19]. It contains a single ORF in the viral complementary
strand encoding a protein of ~ 54kDa [18]. This protein was shown to display several roles of viral
movement protein (MP) [20] and to have RNA silencing suppressing activity as well [17]. Moreover,
the MP was subsequently considered as an isolated member of the 30K superfamily with a unique
structural organization [21]. It contains an aspartic protease required for autocleavage and the formation
of tubule-like structures at plasmodesmata, allowing viral movement between cells [22]. The potential
involvement of the 54kDa protein in symptom expression was readily highlighted [23]. RNA3, the smallest
RNA, is ~1454 nts. It contains a single ORF in the viral complementary strand encoding the coat protein
(CP) whose molecular weight is ~ 48kDa [18,24,25]. A potential role of CP in the movement of ophioviruses
has been addressed by Robles Luna et al. [20]. The CP is localized in the cytoplasm, suggesting that
virions assembly of CPsV occurs in this site [26]. The availability of the CP gene sequences, from
different regions in the world, allowed performing phylogenetic analyses within CPsV isolates and with
other members belonging to the genius Ophiovirus [27–30]. The variability of the CP gene of CPsV was
assessed by analyzing 40 isolates from different geographical areas (Italy, Lebanon, Spain, and the USA)
using 24 monoclonal antibodies (MABs). The serological analysis revealed 14 serogroups and at least
16 different epitopes. Furthermore, a remarkable serological variability, apparently associated with the
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geographical origin of the isolates, was found [31]. A second analysis conducted with 53 psorosis field
sources from Italy using 23 MABs highlighted the presence of nine serogroups and at least 10 different
epitopes. These serogroups were neither associated with the filed location nor with the citrus cultivar.
A low genetic diversity was observed between the Italian isolates and phylogenetic analysis showed
that these sources are phylogenetically distant from the CPsV isolate from Florida [27]. Analyses of
22 isolates from Argentina, California, Florida, Italy, and Spain showed the presence of two populations.
The first one includes isolates from Spain, Italy, Florida, and California, whereas the second one comprises
Argentinean isolates. Both groups are distant from an isolate from Texas that forms a third group alone [29].
Another study conducted by Achachi et al. [30] to examine the variability and genetic structure of the
natural population of CPsV occurring in Morocco showed that genetic diversity is not structured by the
geographic origin of the 34 studied isolates. Further comparisons of these isolates with samples from Spain,
Italy, Argentina, California, and Florida allowed differentiation between four groups. Moroccan isolates
are present in three groups (one of them includes isolate from Italy and Spain, while the two other groups
contain only Moroccan isolates) and they are phylogenetically distant from the Argentinean, Floridian,
Californian, and Italian isolates [30].
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CPsV, the causal agent of psorosis, is the type species of the genus Ophiovirus, within the family
Aspiviridae [12]. However, new discussions have been initiated regarding CPsV position within
this genus, which contains six other species [14]. This is mainly linked to four statements: (i) CPsV
is currently the only ophiovirus with a woody natural host; (ii) to date, there is no evidence of
its soil transmission contrary to the obvious rule for ophioviruses known to be transmitted by the
obligately parasitic soil-inhabiting fungus Olpidium brassicae Woronin (Olpidiaceae); (iii) no serological
cross-reaction between the CP of CPsV and that of other ophioviruses has been highlighted by Western
blotting; and (iv) CPsV has three and not four genome segments, as it is the case for the six other
ophioviruses. All these differences once confirmed, could lead to the placement of CPsV in a different
genus within the family Aspiviridae [4].

3. Symptoms and Economical Impact

Citrus psorosis could affect various parts of the tree including the trunk, branches, leaves,
and fruits, thus causing different types of damages such as growth reduction, the appearance of thin
foliage, low fruit-bearing, and tree decline. CPsV-infected trees in the orchard show typical symptoms.
The most characteristic one is bark scaling in both the trunk and branches with gum production and
wood discoloration below the bark lesions [12]. The major susceptible citrus varieties, which show
psorosis bark scaling symptoms, are sweet orange, mandarin, and grapefruit. The sour orange, sour
lemon, pomelo, and rough lemon usually do not manifest external bark symptoms. In addition to bark
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scaling, some foliar symptoms were reported to be associated with psorosis disease [32], including
leaf flecking, vein clearing, and oak-leaf pattern [33–35]. It is important to emphasize that these foliar
symptoms could be caused by viruses other than CPsV [3].

Although citrus psorosis progress is slow and unspectacular, it is classified as a deadly disease [36].
In light of the disease progress, CPsV-infected trees could be classified into one of four stages. Trees in
stage 1 show first evidence of the disease, with the appearance of bark lesions on the trunk or one
or more limbs [36]. These lesions usually begin to develop after infected trees attain an age of six
years or more. Furthermore, the average age time of the first lesion development is twelve to fifteen
years [37,38]. Very little dieback of the branches or deterioration of the top occurs at this stage of
infection. At stage 2, one or more main limbs proving severe symptoms and bearing very few fruits
appear. Regarding trees at stage 3, they are known by the loss of one-half to three-fourths of their limbs
or bearing surface. These trees are considered as submarginal producers. Trees of stage 4 are usually
known by the loss of most of their limbs and the production of small amounts of fruits. Since the widest
range of severity of the four classes is encountered in stage 2, this stage was further divided into three
sub-stages: 2A, 2B, and 2C. Trees classified as stage 2A had one main limb proving symptom. In stage
2B, trees had two or three main limbs (or up to one-third of the tree) out of production. Regarding trees
in stage 2C, they are known by the destruction of up to half of their bearing surface [36]. The potential
economic losses caused by CPsV to citrus producers have been assessed in a Valencia orange orchard
located in California. It has been shown that the estimated reduction in yield, on trees belonging
to stage 2, is 35% or by around 147 boxes of lost fruits (273 fruit boxes instead of 420 fruit boxes for
normal yield from 75 infected and non-infected trees, respectively). The calculated loss of fruit in the
entire orchard has been estimated after figuring the reduced yield from the remaining infected trees,
blank spaces, and non-bearing replants. It was around 12% of a normal crop, which is equivalent to a
complete loss of the fruit crop from 3.804 m2 of a 32.375 m2 orchard [36].

Based on the induced symptoms, two different forms of citrus psorosis disease have been later
identified [32,39]. The first one is characterized by mild symptoms in which the lesions may be limited
to some areas of the stem and the main branches, and is known as psorosis A (PsA). The second one is
more severe and called psorosis B (PsB). The lesions induced by PsB may be rampant and affect even
thin branches shedding large strips of bark (Figure 2) and cause chlorotic blotching in old leaves with the
appearance of brownish gummy pustules in the leaf underside [12,23,40]. Fruits from PsB-infected trees
may show depressed spots or rings in the rind with discoloration of the tissue [12]. PsB, the viral isolate
associated with severe symptoms, has been referred over the years as citrus ringspot virus [41], an isolate
of CPsV which is different from the Indian citrus ringspot virus (Alphaflexiviridae; Mandarivirus; ICRSV).
CPsV distribution within the plant is not uniform [42]. The typical PsB symptoms are associated with
a sequence variant of the RNA2 of CPsV. Single-strand conformation polymorphism (SSCP) analysis
carried out to differentiate between PsA- and PsB-inducing CPsV sub-isolates showed identical profiles
in homologous segments of RNA1 and RNA3, whereas segments of RNA2 allowed differentiation
between PsA- and PsB-associated sequence variants. In other words, SSCP analysis of the RNA2
population occurring within different tissues of psorosis-infected plants showed that: (i) PsA-inducing
isolates accumulate in all tissues and contain PsB-associated sequence variants at low frequency; (ii) the
PsB-associated sequence variant is prevalent in blistered twigs and gummy pustules produced in old
leaves, characteristic of PsB isolates; and (iii) the PsB-associated sequence variant shows a preference
for accumulating in bark lesions of the trunk and limbs [23]. Overall, these results agree with those of
previous studies suggesting that different CPsV isolates may be involved in citrus psorosis and ringspot
diseases [43,44].
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Moulouya region in 2019. (a) Bark scaling and gumming restricted to the stem and main branches of
sweet orange trees, characteristic of psorosis A (PsA); (b) rampant bark scaling affecting thin branches
of sweet orange trees, characteristic of PsB.

A positive correlation was observed between tree age and the number of symptomatic trees
(showing bark scaling) in citrus orchards. A study carried out in three Argentina citrus groves showed
that the proportion of symptomatic trees was higher in orchards that were 27 and 31 years old than
in an orchard that was 17 years old [45]. However, it is important to point out that bark scaling
usually appears when trees are 12–15 years old, but non-scaled psorosis-infected trees aged 20 years or
more have also been found [23], especially in the absence of the severe form of the disease (PsB) [32].
Based on previous findings and conclusions reported by Velázquez et al. [23], the delayed onset of bark
scaling symptoms in the trunk of trees propagated with vegetal material (buds) from PsA-infected
trees (12–15 years) could be related to the low frequency of PsB-associated sequence variants in green
symptomless tissues, including buds, of PsA-infected trees. Over time, and since the PsB variants prefer
to accumulate in the trunk bark, their concentrations in this site raise and lead to the development of
bark lesions. The late appearance of this type of symptoms was one of the factors behind the spread of
CPsV in most citrus-growing areas in the world through the propagation of infected buds unknown
to growers, who presumed them to be virus-free [23]. Furthermore, it has been emphasized that
leaf symptoms alone and the absence or presence of bark scaling do not define psorosis [33,46–50].
Therefore, the presence or absence of the virus can only be confirmed by biological indexing [2,32],
and antibodies–antigen- or nucleic acid-based methods [46,49].

4. Transmission and Epidemiology

CPsV is the first citrus viral disease showed to be transmissible by vegetative propagation and
for which the first programs for eradication and budwood certification were launched to prevent its
economic impacts [12,14]. In many woody species, the roots of adjacent trees graft together, forming a
functional organic union through which the biological processes of one tree are highly influenced by
neighboring trees by means other than simple competition. Roots are considered functionally grafted
when a connection is established between them by common bark, phloem, cambium, and xylem tissues.
The role of root grafting as a means of transmission of tree pathogens, including viruses, has been
speculated [13]. A significant spread of two rose mosaic viruses by natural root grafting has already
been reported [51]. Natural grafts of roots within a citrus orchard seem to be associated with the
widespread of CPsV. This is mainly linked to the fact that citrus trees are generally planted close to
each other [52]. Furthermore, statistical studies of the distribution of CPsV-infected trees in citrus
orchards showed that in thirteen of fourteen examined orchards, trees adjacent to a diseased tree are
more likely to be infected with the virus compared with those surrounding a healthy tree. Based on
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this finding, it was concluded that some natural spread of CPsV had occurred within citrus groves and
that root grafting seemed to be the most likely pathway of its transmission [53].

The seedborne nature of CPsV was confirmed with the detection of viral genomic RNA in seeds of
citrus infected with a CPsV isolate present in the Mediterranean region. However, CPsV was detected
at significantly reduced amounts in the surface of treated seeds (dipped in hot water), suggesting that
most of the virus is located externally (overall, the percentage of positive detection was 32% versus
9.5% in non-treated and treated seeds, respectively). In non-treated seeds, the virus was more prevalent
in seed coats (20–83% incidence) than endosperm/embryos (3–20% incidence). The same tendency
was observed in treated seeds, but positive CPsV detection was extremely low ranging from 1.4 to
35% in seed coats versus 0 to 6% in endosperm/embryos. Even though the virus was detected in the
seed coats and endosperm/embryos, seed transmission was not detected from either surface-treated or
untreated seeds following testing of 690 “Grosso di Puglia” mandarin and 202 “Baladi” sour orange
seedlings. Therefore, although CPsV was confirmed to be seedborne, its seed transmission could have
a limited influence in its spread [54].

Mechanical transmission is defined as a successful inoculation by some type of mechanical contact
not involving any living vector other than man himself. It is therefore synonymous with juice, sap,
hand, and manual transmission, and is different from biological, insect, graft, dodder, seed, and soil
transmission [55]. Mechanical transmissions of some CPsV isolates, originating in Argentina and USA,
from citrus to citrus, citrus to an herbaceous host (Chenopodium quinoa Willd.), or from a herbaceous
host (C. quinoa) to another herbaceous host (Gomphrena globosa L.) and then back to citrus have been
already reported [24,56]. The inocula has been prepared by grinding leaf tissue in a cold buffer with
prechilled mortars and pestles. It has been applied thereafter immediately with cotton swabs to leaves
predusted with carborundum [56]. Chlorotic to necrotic local lesions were produced in inoculated
C. quinoa [24,56]. Some Egyptian CPsV isolates were shown as well to be mechanically transmissible
from citrus to five herbaceous hosts belonging to three families (G. globosa, Chenopodium amaranticolor
Coste & Reyn, C. quinoa, Datura metel L., and Nicotiana rustica L.). The isolates induced different
symptoms and incubation periods on their host plants [57]. Mechanical transmission, as a contaminant,
could be involved in some of the observed natural spread of CPsV, although experimental evidence for
that was not conclusive [56].

Based on the distribution and the increasing incidence of citrus psorosis disease in the field,
the hypothesis of CPsV natural dispersion, including aerial and/or soilborne vectors, has been raised
in several reports [45,58–60]. Since another ophiovirus has been reported to be transmitted by the
soil fungus O. brassicae [61], the possibility of such mode of transmission for CPsV was investigated
as a first step. The results effectively showed that an Olpidium-like fungus is associated with citrus
roots and that CPsV is detectable in zoospores from infected roots (the study was carried out on
grapefruit). However, some tests of the addition of viruliferous zoospores to healthy citrus seedlings
failed to transmit the virus. Further work is still required to confirm the ability of this fungus to
transmit CPsV to healthy citrus [59]. More studies have been conducted to identify the potential natural
vector of CPsV. Field trials suggest the implication of some aphid species in CPsV transmission [62,63].
However, a recent study conducted in Uruguay with the brown citrus aphid, Toxoptera citricida
Kirkaldy (Aphididae), proved the inability of this insect to transmit CPsV, at least under controlled
conditions [5]. As CPsV is biologically and molecularly different from the other ophioviruses [15,28],
further investigations are required to support or definitively reject the potential implication of other
means on the natural spread of this virus. A recent survey, conducted in the main citrus-growing areas
in Uruguay to monitor the spread of several viruses and viroids associated with citrus, showed high
incidence levels (more than 40%) of CPsV in the prospected fields. This statement corroborates the
idea that citrus psorosis remains a graft-transmissible disease that represents a major concern for citrus
growers in the country due to its particular and poorly understood dissemination means [5].
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5. Signaling Pathways in Citrus Psorosis Pathogenesis

Phloem-limited pathogens, including viruses, represent a significant research challenge due to the
difficulty in detecting them, whilst infected host plants exhibit variable symptoms after a sometimes
long incubation phase [64]. Upon infection, the plant, for its part, initiates a set of basal immune
responses through its immune system that recognizes microbial- or damage-associated molecular
patterns (MAMPs or DAMPs) [65]. Furthermore, plants have developed specific mechanisms to
withstand pathogens, including performed barriers and the induction of elaborate signaling pathways,
ensuring the protection against a broad spectrum of pathogens [66]. Such protection is already provided
through both signaling and defense molecules, including hormones, RNA, and proteins, which are
transported via the phloem [67]. Thus, virus multiplication and propagation within an infected plant
is usually restricted by the activation of the small interfering RNA (siRNA) antiviral machinery and/or
phytohormone signaling pathway [68].

RNA silencing mechanisms have been suggested to be involved in the citrus response to CPsV. It has
been shown, through transcriptomic analysis, that CPsV infection promotes a drastic downregulation of
Citrus sinensis L. endogenous miRNAs followed by an upregulation of its target genes, the transcription
factors Squamosa promoter-binding protein-like (SLP) and Scarecrow-like 6 (SCL6). The latter was
involved in the activation of programmed cell death and the reduction of chlorophyll biosynthesis.
Therefore, the vast amount of both transcripts may contribute to the onset of necrosis and chlorosis
symptoms on CPsV-infected plants [16,69]. Additionally, it has been proven that the CPsV 24K protein
physically interacts with citrus miRNA precursors, thus affecting their processing and subsequent
miRNA accumulation and target expression. The downregulation of miRNAs is associated with the
development of symptoms in CPsV-infected plants of sweet orange [16]. Subsequently, ten putative
targets from four downregulated miRNAs of the same host have been predicted. Six of them have been
validated through the analysis of leaf degradome data. Their expression in infected samples was higher
compared to healthy tissues and was positively correlated with symptom severity [69]. Therefore,
the CPsV 24K protein is considered as a potential viral suppressor of RNA silencing (VSR) and effector
of CPsV. This is mainly due to its ability to affect the miRNA pathway, whose components are shared
by antiviral silencing, and to induce the expression of genes probably involved in the development of
disease symptoms [70].

The activation of complex phytohormone signaling networks is a common defense response used
by plants to surmount pathogenic threats [71]. Unsurprisingly, pathogens have evolved in particular
ways to manipulate or subvert the signaling pathways for their benefit [72], thus inducing pathogenesis.
Although plant viruses contain relatively simple genomes, the molecular basis of the mechanisms
by which they infect their hosts and the signaling components involved in host resistance are not
well-defined [73], and CPsV is no exception. Furthermore, the mechanisms underlying molecular and
biochemical changes during compatible and incompatible plant–virus interactions are only beginning
to be deciphered, including changes in proteomic profiles induced by virus infections [74]. It is possible
that signaling pathways may occur upon the infection of citrus by CPsV. However, to our knowledge,
there are no studies describing the phytohormone signaling networks in CPsV-infected plants and
their potential involvement in plant defense. Therefore, additional studies are needed to shed light
on the CPsV–citrus interactions which can regulate phytohormone pathways, thus leading to disease
onset and hormone-mediated signaling and responses to the virus. A deeper understanding of plant
anti-CPsV immunity may facilitate the development of innovative and promising approaches to control
psorosis disease.

6. Methods to Detect the Disease

6.1. Biological Indexing and Cross Protection

Biological indexing requires one year and is currently the only and validated technique applied
for citrus psorosis diagnosis [75]. In some cases, psorosis is completely symptomless in field trees
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over several years, and biological indexing is, therefore, an absolute requirement to verify that citrus
trees are not infected with CPsV. Indexing is also an extremely important technology for selecting
source trees for commercial propagation since it can detect other graft-transmissible pathogens [2].
CPsV diagnosis by indexing has been reported on several indicator plants, including Madam Vinous
sweet orange, Eureka lemon, citron grafted on a rough lemon rootstock [48], Pneapple sweet orange,
and Citrus excelsa Wester seedlings [46]. The glasshouse temperatures for psorosis indexing should be
maintained within a relatively cool temperature range at 16–18 ◦C minimum and 27–30 ◦C maximum.
If the requirements set out for indexing are met, and plants are vigorous and in good growing condition,
the indexing will be successful and specific symptoms will appear. The first symptom induced by
the disease on the favorite sweet orange indicator varieties of Madam Vinous or Pineapple is the
wilting and dieback of the new emerging shoots. This symptom is known as “shock reaction” [2],
and it starts to appear during a very brief time interval (around 15 days) [16]. The young leaves will
dry up and drop off [2]. In addition to shock reaction, oak-leaf pattern symptoms have also been
reported on different woody indicator plants following their infection by distinct CPsV isolates [35,57].
It has been shown that symptoms expression on indicator plants varies according to CPsV isolates and
temperature conditions [48,57].

CPsV is associated with the development of “shock reaction” in many indicator plants and leaf
mottle and yellows in citron under cool conditions. There is a considerable variation in the leaf mottle
produced by different CPsV isolates (from a mild general mottle in the young flush to an intense
chlorotic spotting and variegation in mature leaves) [48]. Regarding the effect of temperature on
symptom expression, it has been found that cool temperature promotes the onset of “shock reaction”
in young shoots and intensifies chlorotic flecks and spots in young leaves, whereas warm temperature
tends to inhibit shock and cover-up leaf symptoms. It has also been proven that temperature regulates
the viral load, thus affecting symptom expression; temperature increase raises the RNA silencing
response of citrus plants and reduces viral accumulation [76]. It is important to emphasize that the
single use of biological indexing in the diagnosis of psorosis disease is not enough since some leaf
symptoms, like chlorotic leaf flecking and spotting in the following flushes, are also induced by other
graft-transmissible pathogens [32] such as citrus leaf rugose virus (Bromoviridae; Ilarvirus; CLRV) and
citrus tatter leaf virus (Betaflexiviridae; Capillovirus; CLRV) [3]. Therefore, a specific CPsV diagnosis
also requires a cross-protection test using PsB [32].

Cross-protection is known as an acquired immunity phenomenon by which a mild virus isolate can
protect a plant against economic damage induced by a severe challenge isolate of the same virus [77].
In the case of psorosis disease, PsA and PsB are considered as the mild virus and severe challenge
isolate, respectively [32,37]. Therefore, plants containing the PsA isolate will protect against a challenge
with lesion PsB inoculum [2]. The cross-protection test has been subsequently applied as a supplement
to biological indexing in psorosis diagnosis in several studies [46,47]. Since biological indexing is a
slow and costly procedure that requires special skills and facilities, the recourse to the development
of faster diagnosis methods, as an adjunct to currently available indicator plant indexing methods,
is imperative [44,78].

Although biological indexing is considered as the only validated technique for the diagnosis of
citrus viruses including CPsV [75], its results remain incomplete. This is based on the fact that its
sensitivity to detect CPsV varies depending on the viral isolates associated with the disease. Thus,
the probability of occurrence of false negatives, with this technique, is high, especially when using
one woody indicator plant and when the requirements set out for indexing are not fulfilled [48,57].
This technique should, therefore, be complemented by at least one other diagnostic method to confirm
its findings.

6.2. Antibodies–Antigen-Based Methods

Enzyme-linked immunosorbent assay (ELISA) and direct tissue immunoblot assay (DTBIA),
the most common detection methods for plant viruses, were shown to be able to identify CPsV
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sensitively and reliably [33,79,80]. This is basically due to the successful trials implemented to produce
polyclonal and monoclonal antibodies to CPsV which were highly effective in detecting several CPsV
isolates from many sources and originating in many countries [31,44,81,82]. Since the successes of
those trials, these serological methods have had high success for routine and large-scale diagnosis
of CPsV [83]. Additionally, the developed antibodies have been used to detect CPsV virions using
immunosorbent electron microscopy (ISEM). The results indicate that CPsV can be readily detected by
this technique [49].

Comparing these serological methods to each other revealed that the triple antibody sandwich
(TAS-) ELISA is at least five times more sensitive than the double antibody sandwich (DAS-)ELISA in
detecting CPsV isolates (Table 1). This test allowed CPsV detection even when the viral concentration
is low, the year season is unfavorable (in the wintertime), or composite samples including some healthy
material are used. Under controlled conditions, CPsV was still detectable at a leaf extract dilution of
1/6,250 in DAS- and at 1/31,250 in TAS-ELISA [82]. It has also been shown that CPsV detection by DTBIA
was less consistent than TAS-ELISA, especially in old leaves. TAS-ELISA can be used in any season
as pointed out earlier, whereas DTBIA requires young tissue [46]. ISEM results were similar to those
achieved by different ELISA formats using antibodies or even other procedures detecting viral RNA
such as reverse transcription polymerase chain reaction (RT-PCR) and molecular hybridization [49].
Considering the high variability of the CP gene of CPsV [27], and to take into account all CPsV isolates
while enhancing the inclusiveness of serological tests, it is recommended to include a mixture of
MABs when applying this testing procedure [46]. Additionally, it has been shown that the use of an
alternative enzyme to alkaline phosphatase (AP), the horseradish peroxidase (HRP), in TAS-ELISA
improves the test analytical sensitivity and reliability with reduced time. Moreover, TAS-ELISA-HRP
sensitivity was comparable to that of RT-PCR [33]. The high specificity of the TAS-ELISA was reported
in several studies carried out in Argentina, Spain, and Italy. Optical density (OD) values obtained for
non-infected samples were always low and similar to those obtained with phosphate-buffered saline
(PBS buffer) [33].

6.3. Nucleic Acid-Based Methods

A comparison of the RT-PCR and DAS-ELISA results suggests that both methods can be applied
to detect a wide range of CPsV isolates, but that viral variation in the field might cause problems for
any single diagnostic test [42,44]. To address issues of the major limitations of some serological tests
(low titer, sampling season, uneven distribution of the virus in infected plants, etc.), molecular assays
based on RT-PCR and hybridization have been developed for the detection of CPsV. These RNA-based
detection methods have been set up notably through the availability of the complete genomic sequence
of two CPsV isolates and partial sequences of many others [12]. All RT-PCR and related tests developed
to detect CPsV are presented in Table 2. To address the problem of non-detection of some CPsV
heterologous isolates by the RT-PCR previously developed by Garcia et al. [44], a highly sensitive
and reproducible heminested RT-PCR assay was developed. The new test can detect CPsV in a small
amount as an equivalent of 1010 of the original sample. This represents a considerable improvement
(of 106-fold) compared to the previously reported sensitivity [78]. An improved RT-PCR test was
developed by Achachi et al. [84] based on the assay previously reported by Martín et al. [49]. It has
been shown that this test is more sensitive and more reliable than DAS-ELISA in detecting CPsV in
field samples. Additionally, a difference in the sensitivity was reported by comparing three primer
pairs, CPV1/CPV2, Ps65/Ps66, and CPsV-f/CPsV-r (Table 2). The primer pair Ps66/Ps65, which targets
the most conserved region of the CP gene, enables the detection of the virus in 22 out of 30 samples
tested, whereas CPV1/CPV2 and CPsV-f/CPsV-r could detect CPsV only in 11 and 12 samples out of
22 samples, respectively [84]. Since several RNA and DNA viruses can infect a single host, a multiplex
RT-PCR assay was developed to allow the simultaneous detection of seven viruses associated with
citrus, including CPsV. This test is considered as a useful rapid method that will aid in the production
of virus-tested citrus plants for certification purposes [85]. Real-time RT-PCR is a well-established
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diagnostic method applied to many pathogens and crops, including woody plants such as citrus and its
relatives [75]. Recently, many studies have shown the reliability of this tool even for the simultaneous
detection of several viruses in citrus [75,86]. It has been shown that the real-time RT-PCR assay is
100 times more sensitive than conventional RT-PCR when tenfold serial dilutions were prepared using
total RNAs from CPsV-infected plants [34]. Additionally, rapid and accurate multiple detections
of CPsV and two other citrus viruses were reached applying a triplex one-step real-time RT-PCR.
Therefore, it has been suggested that this test may be helpful as a tool to support quarantine, eradication,
and certification programs. This is mainly because this test is faster, more sensitive, relatively easier
to perform, and more cost-effective than the conventional detection procedures [34]. Other triplex
real-time RT-PCR assays have been developed by Osman et al. [86] to detect CPsV simultaneously
with two other citrus-infecting viruses. The developed tests have been proven to ensure the detection
of each of the three targeted viruses both in single infected samples and in a mixture of infected
samples. Each of the triplex real-time RT-PCR assays showed the same level of robustness than that
of the singleplex ones. Triplex real time RT-PCR is, therefore, considered as a good tool streamlining
the detection of multiple viruses at citrus nurseries by reducing time and labor without affecting
both sensitivity and specificity [86]. A SYBR Green real-time RT-PCR protocol was developed by
De Francesco et al. [75] and compared to ELISA, the most sensitive and universal method used to date
in CPsV diagnosis [46]. It has been proven that the real-time RT-PCR sensitivity was three orders
of magnitude higher than that of TAS-ELISA [75]. The specificity of the tests described above was
confirmed by including healthy controls and/or plant tissue infected with other citrus viruses and viroid.
No amplification was obtained with these controls [34,75,78,84,86]. Table 1 provides a comparison of
the methods described above in terms of both sensitivity and specificity.

Dot-blot hybridization protocols have been developed to detect CPsV [25,49,87]. Although its
results that could be 100% or less coincident with those of other tests like RT-PCR, DTBIA, DAS-ELISA,
and TAS-ELISA [25,49], dot-blot hybridization is considered as an outdated technique to detect CPsV.

The current advancements in molecular biology allow the direct detection, identification,
and discovery of known and novel viruses in multiple plants without antibodies or prior knowledge
of viral sequences [88]. Over the last decade, an unprecedented number of viruses have been
discovered using high-throughput sequencing (HTS), which led to the advancement of our knowledge
on viral diversity in nature, particularly apprehending and deciphering the virome of many crops [89].
This approach has been often applied to study and identify new viruses in fruit tree species, including
citrus [90–92]. The electronic-probe (e-probe) bioinformatics approach has been developed and
evaluated recently for its ability to detect several citrus viruses simultaneously in HTS data. The research
included 11 citrus-infecting viruses of global economic importance. This approach has been useful for
the rapid and simultaneous identification of 11 recognized viruses, including CPsV. This latter has
been detected in only one field sample and the result was confirmed with de novo assembly-based
similarity searches and RT-PCR [93].

The availability of advanced and sensitive diagnostic methods for detecting the CPsV reduces the
need to use biological indexing, which requires more time to detect the same virus.
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Table 1. Summary table of the main findings from the different CPsV detection tests.

Tested Methods
Main Findings References

DAS- and TAS-ELISA [82]
TAS-ELISA is five times more sensitive than DAS-ELISA.

Threshold of sensitivity: CPsV is still detectable in a leaf extract dilution 1/31,250 for TAS-ELISA and only 1/6,250 for DAS-ELISA,
with optical density (OD) of 0.036 and 0.027, respectively.

High specificity of TAS-ELISA in non-infected samples. It always gives low OD values (0.006).

RT- and Heminested RT-PCR
Heminested RT-PCR allows the detection of eight CPsV isolates, whereas no signal was detected with the conventional RT-PCR using only two primers.

Threshold of sensitivity: CPsV is still detectable until a dilution of 10−5 with heminested RT-PCR.
[78]

DAS-, TAS-ELISA, and DTBIA
DTBIA for CPsV detection in the same trees is reliable only when using young shoots. It is less consistent in old leaves.

TAS-ELISA sensitivity is two to eight times higher in young shoots compared to old ones.
High specificity of ELISA tests: the ELISA readings of positive controls were within the range 0.300–0.550, and those of the negative controls were within the range 0.002–0.013.

[46]

TAS-ELISA-HRP and TAS-ELISA-AP
TAS-ELISA-HRP readings are at least two times higher than those of TAS-ELISA-AP after two hours of incubation.

TAS-ELISA-HRP is highly sensitive and comparable to the level of the RT-PCR. It gives the same results as RT-PCR using primers CPV1 and CPV2 (Table 2). High specificity:
TAS-ELISA in non-infected samples always gives low OD values.

[33]

One-Step RT-PCR and DAS-ELISA
One-step RT-PCR is more sensitive than DAS-ELISA. (One-step RT-PCR allows the detection of 22/30 positive samples, whereas DAS-ELISA allows the detection of only

7/30 positive samples and gives 15/30 false negatives.)
The primer pair Ps66/Ps65 is more sensitive than two other primer pairs (Table 2). Ps66/Ps65 allows the detection of 22/30 positive samples, whereas CPV1/CPV2 and

CPsV-f/CPsV-r allow the detection of only 11/22 and 12/22, respectively.

[84]

Real-Time RT-PCR and RT-PCR
Real-time RT-PCR is 100 times more sensitive than conventional RT-PCR.

High specificity: no amplification was obtained with healthy controls or with plant tissue infected with other citrus viruses and viroid.
[34]

Real-Time RT-PCR and TAS-ELISA
Real time RT-PCR sensitivity is three orders of magnitude higher than that of TAS-ELISA. TAS-ELISA gives eight false-negative field samples. Two of these eight samples

showed symptoms of psorosis; the remaining samples were asymptomatic.
Threshold of sensitivity: positive TAS-ELISA readings were only obtained with undiluted samples or samples diluted by 10−1. In contrast, real-time RT-PCR was positive up to

the 10−4 dilution.

[75]

Singleplex and Triplex Real-Time RT-PCR [86]
No significant differences in detection between singleplex and triplex assays in CPsV detection.

The specificity was not affected by the inclusion of the three singleplex assays in a multiplex real-time RT-PCR reaction.
No amplification was detected with samples from healthy citrus or water control.
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Table 2. Primer sequences and their annealing temperature (Tm), primer/probe location, and expected size of PCR products for each primer pair when used to amplify
CPsV by RT-PCR and related tests.

Name of RT-PCR Test
Primer/Probe Name Sequence Tm (◦C) Targeted RNA/Region

(Genomic Coordinates)
Size of the

Expected Product References

RT-PCR
Primer 1 5′-ACAATAAGCAAGACAAC-3′

45 RNA1 (DN a) 218 bp [44]
DN 5′-CCATGTCACTTCTATTC-3′

CPV1 5′-GCTTCCTGGAAAAGCTGATG-3′
50

RNA3/CP (665–684 a) 600 bp [25]
CPV2 5′-TCTGTTTTTGTCAACACACTCC-3′ RNA3/CP (1243–1264 a)
Ps65 5′-TGCCATCTGGAGTGAGGCT-3′

45
RNA3/CP (1182–1200 b) 430 bp [49]

Ps66 5′-TCGAAGCTGTATGATGGTGA-3′ RNA3/CP (768–787 b)
ConsF 5′-ACAAAGAAATTCCCTGCAAGGG-3′ 58 and 59–60 for singleplex and

multiplex test, respectively. RNA3/ CP (766–1200 c) 411 bp [85]
ConsR 5′-AAGTTTCTATCATTCTGAAACCC-3′

CPsV-f 5′-TGAGGAA/GTTGAGCCATGC-3′
58 RNA3/CP d 390 bp [42]

CPsV-r 5′-CCATCTGGAGTGAGGCTGTA-3′

Heminested RT-PCR
Primer 1 46 and 47 for the first PCR done

with primers 1–7 and the
heminested PCR done with primers

6–7, respectively.

RNA1 (DN a) 195 bp [78]Primer 6 5′-GAGGAAGGTATTTCCATAGG-3′

Primer 7 5′-CCTATTAATGATAATTGCAC-3′

Real-time RT-PCR
CPV200f 5′-GCWGGWAATCGRTCTGTGAGRTAT-3′ 58 and 60 for singleplex and

multiplex tests, respectively.

RNA3/CP (200–223 e)
106 bp [34]CPV287r 5′-AGCAAWGGCATCARGGAYTC-3′ RNA3/CP (287–306 e)

CPVp 5′-Cy5b-TCYCCTGCTGTTGGWGCAACTYC-BHQ1-3′ RNA3/CP (263–285 e)
CP1cf 5′-GTTCAAGATGGAGCAAGTTGATGG-3′ 56 RNA3/CP (738–850 f) 113 bp [75]
CP3r 5′-GAGACCCTTGTGTAAAAACCAGCAC-3′

CPsV-792 F1 5′-TCACAAATCAGTGAGGAATTGAGC-3′
60 for singleplex tests.

For multiplex tests, the Tm was
defined according to the

manufacturer’s recommendation.

RNA3/CP (792–816 g) 154 bp [86]
CPsV-791 F2 5′-CACAAATCAGTGATGAATTGAGCC-3′ RNA3/CP (793–817 g)
CPsV-946 R1 5′-GCAAACCCAGCATATCTCACAG-3′ RNA3/CP (947–925 g)
CPsV-946 R2 5′-CGCAAACCCAGCATATCTTACAG-3′ RNA3/CP (948–925 g)

CPsV-851 p-VIC 5′-TCTCAAGATTGATATAGACAAC-3′ RNA3/CP (851–873 g)

DN: data not shown. a Florida isolate CPsV-4; EMBL accession number AF060855. b Based on regions of the CP gene highly conserved in 23 psorosis isolates from different geographic
areas. c Florida isolate CPsV-6. d Based on the most conserved region of the CP of more than 20 sequences found in public databases. e Based on an Italian isolate CRSA-UBAps101;
EMBL accession number AM409317. f Based on an Argentinian isolate CPsV 90-1-1; EMBL accession number FJ495195 (viral complementary RNA). g Based on a partial sequence of the CP;
EMBL accession number AF036926.
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7. Strategies to Control the Disease

Like many plant virus diseases, the first essential requirement for controlling psorosis disease
is prevention. The meticulous selection of healthy propagating material is, therefore, the key issue
to stop the spread of citrus psorosis [1]. The control of psorosis in any citrus-growing area requires
the establishment of three related but separate programs: sanitation, quarantine, and budwood
certification and indexing. Sanitation programs aim to recover healthy plants from selected local
cultivars. Regarding quarantine programs, the objective is to guarantee that the foreign imported
varieties are free from regulated pests and diseases. Finally, the main aim of certification programs is
to ensure that the sanitary status of the initial material is conserved during commercial propagation
stages of process at the nurseries [94]. Psorosis was the first citrus disease for which both eradication
and budwood certification programs were launched to prevent its economic damage [12].

7.1. CPsV Sanitation

Among sanitation methods, somatic embryogenesis, from stigma and style cultures, has been
tested for its ability to ensure the elimination of CPsV and the production of healthy citrus stocks.
This method was applied to eliminate CPsV from some citrus species including common mandarin,
sweet orange, and Dweet tangor. The results showed that the virus was detected by DAS-ELISA in
both explants and embryogenic callus, but was not detected in any of the plants obtained from somatic
embryos, two years after their regeneration [95]. The same results have been reported by El-Sawy et
al. [96] who proved that the somatic embryogenesis via stigma was a good tool for the production of
CPsV-free citrus plants. Thermotherapy is another method that can be applied to eliminate the virus
from propagative budwood. It can be carried out in a chamber at 40 ◦C for 16 h with lights and 30 ◦C for
8 h in the dark for a period of 8 to 12 weeks [2]. Sanitation by in vitro shoot-tip grafting has also proved
to be a very effective method for citrus graft-transmissible disease elimination including psorosis
(success rate of about 60%) [64,97]. However, this technique should be combined with thermotherapy
to get rid of CPsV [64]. Whatever chosen sanitation method, biological indexing must be conducted to
assure that propagative material (i.e., budwood) is CPsV-free [2].

7.2. Plant Biotechnology and Genetic Engineering for Resistance

Since no sources ensuring natural resistance to CPsV have been found, and pathogen-derived
resistance (PDR) is considered as an efficient alternative to control viral infection in some plant–virus
systems, the recourse to transgenesis to manage CPsV was a necessity and a promising alternative to
exploit. Trials carried out on sweet orange lines genetically transformed with the CP gene of CPsV
and challenged with a CPsV isolate have so far failed. Neither resistance nor tolerance has been
expressed in transgenic lines after one year of observations. Conversely, typical psorosis symptoms
have been observed in all of them after inoculation [98]. A year later, it was reported, by using a
herbaceous model plant, that post-transcriptional gene silencing (PTGS) was the mechanism conferring
resistance to CPsV. PTGS is a mechanism of plant defense against viruses that proved to be induced by
transgenic expression of virus-derived sequences encoding hairpin RNAs. In the case of resistance to
CPsV, PTGS induction occurred efficiently using the CP-derived sequences [99]. A few years later,
it was proved that the generation of transgenic sweet orange lines expressing, this time, hairpin RNA
transcripts corresponding to the CP gene (ihpCP-transcripts) provided a high level of CPsV resistance.
This study is considered as the first report of resistance in citrus plants against a -ssRNA virus as
the CPsV. The key factors associated with this resistance are the pre-activation of the RNA-silencing
processes and the accumulation of a minimum of siRNA molecules targeting the viral genome [100].
Furthermore, a virus-induced gene silencing mechanism (VIGS) has already been pointed out by the
presence of specific siRNA for RNA1, 2, and 3 of CPsV in infected plants [76]. Further investigations
revealed that the strong resistance against CPsV previously reported by Reyes et al. [100] is durable and
stable since the transgenic line remained resistant two years later and even after re-inoculation [101].
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Furthermore, recent scientific works indicate that transgenic line expressing ihpCP-transcripts in
the interstock confers tolerance to CPsV in the non-transgenic scion. It is established, using a triple
plant system generated by grafting, that ihpCP-transcripts translocate through the graft, conferring
silencing induction in the scion by the expression of ihpCP in the interstock and the protection to
the non-transgenic scion against CPsV. These results corroborate the idea that grafting is a promising
biotechnological alternative to protect woody plants against viral infection in vegetatively propagated
material [102].

7.3. Breeding for Resistance

Since the use of transgenic plants is restricted in many countries, searching for tolerant and
resistant citrus cultivars obtained by breeding programs remains a necessity. In this context, potential
sources conferring natural resistance against CPsV were investigated by graft inoculating different
cultivars and hybrids of Citrus and related genera with the virus and then monitoring symptom
expression, CPsV infection, and viral loads. Graft inoculation has been done using CPsV-infected
sweet orange rootstock (as susceptible infected host) to ensure a continuous virus supply to the tested
genotypes. The results have established that some genotypes (Microcitrus inodora F.M. Bailey and
Fortunella hindsii Swingle) were tolerant to the virus and showed symptomless infections, while others
(Cleopatra mandarin, Poncirus trifoliata (L.) Raf. and Carrizo citrange seedlings) displayed partial
resistance induced by a hypersensitive-like reaction that prevents plant infection or delays viral spread
and accumulation. The observed resistance in these genotypes is CPsV isolate-independent [103].

8. Disease Situation in the Mediterranean Region: Focus on Morocco

Citrus psorosis is a widespread disease in the Mediterranean region. CPsV has been reported
in most Mediterranean countries and is one of the most prevalent citrus viruses in the region [8].
The development of reliable diagnostic methods facilitated extensive surveys for CPsV in different
parts of the region. The virus was successively identified in many countries including Morocco [83],
Palestine [104], Italy [27], Tunisia [105,106], Egypt [57], Turkey [35,107], Greece [108], Albania [109],
Cyprus [110], Malta [111], Algeria [112], Spain [28], Israel [113], Lebanon, Jordan, and Syria [52].
The use of budwood taken from infected trees is assumed to be the main explanatory factor behind the
widespread of this disease in the Mediterranean area [52]. Whenever surveys were conducted, CPsV
appeared to be one of the most common citrus viruses. In Tunisia, the CPsV prevalence was determined
from 575 citrus samples randomly collected in 2014. Some citrus trees from which leaf samples were
taken presented a severe or mild symptom of bark scaling. The virus prevalence was high, and ranged
between 20 and 47%, according to geographical location, citrus species, and varieties [106]. In Algeria,
in an extensive survey carried out from 2004 to 2006, CPsV was detected in 60% out of a total of
467 citrus samples [112].

In Morocco, psorosis constitutes one of the major viral diseases of citrus [114]. This disease is
prevalent in old orchards and can be found in all citrus species and varieties [115,116]. Furthermore,
it has been proved impossible to find old orange trees (more than 20 years), with virus-like symptoms,
lacking the virus associated with this disease [116]. Widespread CPsV has been partly explained by the
grafting-on practice extensively applied by Moroccan growers [117]. The main citrus-growing areas of
Morocco investigated from 2000 to 2018 for CPsV monitoring are summarized in Table 3 and illustrated
in Figure 3. It is clear that CPsV is omnipresent in almost all citrus-growing areas of the country with
relatively high prevalence (9–92%). It is clear from Table 3 that Gharb and Moulouya are the main
areas where extensive samplings have been carried out and where CPsV has been detected frequently,
with an average prevalence of 50%. The virus was also detected in the other three citrus-growing
regions. Furthermore, the virus can infect different citrus species and varieties. Concerning CPsV
genetic analysis, a first sequence comparison among 34 Moroccan isolates collected in the three main
citrus-growing areas of Morocco (Gharb, Tadla, and Moulouya) showed limited variation in the CP
gene [30]. Further comparisons of these isolates with samples from Spain, Italy, Argentina, California,
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and Florida disclosed four groups: group I includes isolates from the three citrus-growing areas of
Morocco; group II includes isolates from Gharb, Moulouya, Spain, and Italy; group III includes isolates
from Tadla and Moulouya; while group IV includes the Argentinean, Floridian, Californian, and Italian
isolates. The genetic diversity within groups is low and not structured by the geographic origin
of each isolate. It is important to emphasize that this genetic structure suggests a displacement of
some CPsV isolates among geographically isolated subpopulations. This assumption is made since
an identical genetic structure was observed among isolates from various areas which are separated
by several hundreds of kilometers. The intense exchange of citrus propagation material, including
CPsV-infected material, between distant geographic regions of Morocco seems to be behind this
observation. Furthermore, the occurrence of high gene flow between the Moulouya and Tadla regions
has been highlighted. This gene flow could have contributed to shaping the genetic structure of the
population, and could also be responsible for the low genetic variability observed within the Moroccan
isolates [30].
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Table 3. Results summary of the known field surveys carried out in the main citrus-growing areas of Morocco to monitor CPsV spread.

Date
(Collection

Period)

Locality
(Number of

Visited Groves)
Plant Material Symptoms

Diagnostic
Techniques

(Tested Tissue)
Tested Varieties

CPsV *
Prevalence

(Positive/Total)

Positive Varieties
(Percent (%) of

Infection)
References

2000 (March)

Gharb (2)

Five flowers,
or six mature
leaves from

trees that were
not in bloom.

Bark scaling and
psorosis-like symptoms
on the leaves (mottling,
flecking, and ringspots).

DTBIA
(ovary tissue)

and ELISA
(mature leaves

from non-
flowering trees).

Maroc-late and
Salustiana orange trees. 50% (172/346) Maroc-late (71%) and

Salustiana (36%).

[83]

Souss (7) Nour clementine,
Ortanique mandarin,
Washington Navel,

Maroc-late and
Salustiana orange,

Eureka lemon, and Star
ruby grapefruit trees.

9% (9/100)

Ortanique (20%),
Washington Navel (20%),

Maroc-late (14%) and
Salustiana (20%).

Haouz (7) 28% (28/100)

Ortanique (50%),
Washington Navel (49%),

Maroc-late (14%),
Salustiana (20%), Eureka
(4%), and Star ruby (8%).

2007 (June) Moulouya (8)

Young leaves
from the four

cardinal
orientations.

Bark scaling.

ELISA.
Berkane clementine and

Washington Navel orange
trees.

77% (50/65)
Berkane clementine (22%)

and Washington
Navel (41%).

[117]
Vein clearing on leaves. 8% (3/39)

Leaves showing oak
leaf pattern. 7% (1/15)

No symptoms. 6% (5/81)

2011 (January) Gharb (DN) Four young
shoots.

Typical psorosis
bark scaling.

RT-PCR (leaves)
and/or

biological
indexing.

Maroc-late, Washington
sanguine, Washington

Navel orange, Sidi Aissa
clementine, and sour

orange trees.

100% (8/8)

DN [118]

Non-scaled trees with
young-leaf symptoms. 100% (4/4)

Atypical bark scaling. 0% (0/2)
Concave gum symptoms. 0% (0/1)
Non-scaled trees showing

young leaf symptoms. 0% (0/5)

No symptoms. 0% (0/4)

2008–2013 (DN)

Gharb, Haouz,
Loukkos,

Moulouya,
Souss,

and Tadla (102)

DN

Randomly and plants
showing virus-like

symptoms were included
in the sampling.

ELISA and
RT-PCR.

Navelina, Salustiana,
Hamlin, Cadenera, Jaffa
(Shamouti), Maroc-late,

Vernia, Grosse Sanguine,
Sanguinelli, and Tarocco

orange trees.

33% (1854/5620) DN [119]
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Table 3. Cont.

Date
(Collection

Period)

Locality
(Number of

Visited Groves)
Plant Material Symptoms

Diagnostic
Techniques

(Tested Tissue)
Tested Varieties

CPsV *
Prevalence

(Positive/Total)

Positive Varieties
(Percent (%) of

Infection)
References

DN

Gharb (DN)

Four young
shoots.

Bark scaling.

ELISA, RT-PCR
(leaves for both

techniques),
and/or

biological
indexing.

Maroc-late, Salustiana,
and Washington Navel

sweet orange and Nules
clementine trees.

100% (2/2) Maroc-late (50%)

[84]

No symptoms. 0% (0/2)
Bark scaling. 100% (2/2) Salustiana (100%)

No symptoms. 100% (1/1)
No symptoms. 0% (0/1) Washington Navel (0%)

Moulouya (DN)
Bark scaling. 100% (11/11) Washington Navel (78%)

No symptoms. 43% (3/7)
No symptoms. 75% (3/4) Nules (75%)

Tadla (DN) Bark scaling. 100% (11/11)
DNNo symptoms. 0% (0/1)

2018 (May–July) Moulouya (37) Four young
shoots.

Bark scaling. ELISA and
RT-PCR. Berkane, Nour, Muska,

Nules, Orograndi
clementine and

Maroc-late, Navel,
and Navelina orange

trees.

25% (16/65)

Nour (13%), Berkane
(44%), Navel (25%),

Navelina (6%), unknown
orange cultivar (12%)

[116]

Virus-like symptoms. 17% (/29/170)

Nour (14%), Berkane
(21%), Nules (7%), Navel

(10%), Navelina (17%),
Maroc late (17%),
unknown orange

cultivar (14%)

2018
(July–September) Moulouya (3) DN

Bark scaling in the trunk
and main branches and
internal staining in the

underlying wood in
citrus cultivars.

ELISA and
RT-PCR.

Berkane, Nules,
and Orogrande

clementine trees.
39% (309/790)

Berkane (DN),
Nules (DN) and
Orogrande (DN)

[115]

DN: data not shown. * Percentages (%) denote the CPsV prevalence according to the type of symptoms observed per locality.
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9. Conclusions

The presumed widespread of citrus psorosis in most citrus-growing areas was mainly based on the
unique observation of CPsV symptoms which is reported not sufficient to make such a conclusion [49].
Indeed, a still undefined small proportion of trees expressing “psorosis-like” bark scaling symptoms
shows no evidence of the presence of the virus [4]. In other words, the idea of a non-CPsV psorosis-like
disease of unknown etiology is emerging [4]. HTS technologies can be applied to decipher this issue
and shed light on the disease etiology in these cases. Additionally, stringent testing for CPsV detection
has generally been lacking [4]. Therefore, CPsV incidence might be more limited than it initially
appears to be and in some cases, the reported symptoms might be linked to causes other than CPsV.
It should be recognized, however, that CPsV incidence might be raised since some trees without bark
scaling were shown to be CPsV-infected [49].

It is not easy to select one diagnosis method over another even when their results are consistent.
The rationale of choice will depend on the diagnosis purposes and the facilities available at each
laboratory. DTBIA and molecular hybridization may be advantageous for large scale epidemiological
studies as they do not require a specific sample processing. Furthermore, tissue prints can be conducted
in the field for both methods, thus avoiding the transport of infected plant material between regions.
Membranes can also be stored for a long period of time before processing [49]. Although ELISA is
simpler to handle, it is much less sensitive than RT-PCR. However, to certify the health of source plants,
RT-PCR is considered as a more appropriate method [79]. Briefly, the advantages and disadvantages
of different diagnostic methods should be discussed in advance without forgetting that the use of
more than one method is always the safest decision in most diagnosis situations [49]. Despite the
availability of serological and molecular tools for CPsV detection, biological indexing of donor plants
on sweet orange seedlings will continue to be used in certification programs since it is still the unique
procedure allowing the detection of other graft-transmissible citrus pathogens causing young leaf
symptoms [46,49]. Given its capacity to both detect known viruses and discover new viral species
or distant isolates of known viruses, HTS could potentially be applied to control the movement of
plant material between countries [120]. This is because HTS of either the transcriptome (RNA-Seq) or
sRNAs has been considered as a promising and powerful approach in detecting both RNA and DNA
viruses [121,122]. This approach can, therefore, be adopted to better understand psorosis disease and
to explore CPsV-citrus interactions. This approach will also help to identify putative viruses associated
with citrus psorosis-like symptoms with unknown etiology and compare the frequency and diversity
of viruses between CPsV-symptomatic and -asymptomatic plants grown in a CPsV-infected region,
as it has been already carried out for citrus sudden death disease [91].

Control of the sanitary status of donor plants for the production of CPsV-free propagating material
is crucial. The deployment of shoot-tip grafting in vitro, in combination with thermotherapy or somatic
embryogenesis from stigma and style cultures, has proved effective for eliminating CPsV from plant
propagating material [4]. The fact that most (if not all) commercial varieties of sweet orange, mandarin,
and grapefruit are sensitive to CPsV infection is a key constraint for the use of natural resistance [12].
Although partial resistance has been recently reported, its incorporation in commercial citrus varieties
by conventional breeding programs seems to be a much more complex task. This is closely linked
to the fact that this resistance has been detected only in trifoliate orange, Carrizo citrange, and in
Cleopatra mandarin [103]. An alternative approach for obtaining CPsV-resistant varieties would be
the production of transgenic plants expressing CPsV genes leading to the activation of RNA-silencing
processes upon CPsV infection [12]. In other words, the development of transgenic citrus lines carrying
parts of the CPsV genome may constitute a promising biotechnological approach aimed at eradicating
psorosis [4]. Additionally, highly resistant transgenic sweet orange plants expressing ihpCP-transcripts
have been developed [100]. The stability and durability of the resistance conferred by this construct
have been confirmed [101]. Furthermore, it has been demonstrated that ihpCP-transcripts translocate
through the graft from interstock to scion, activating the silencing of the CP mRNA target. This means
that resistance could be transmitted bi-directionally in a triple plant system generated by grafting.
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This approach is therefore considered as a promising biotechnological alternative to protect woody
plants against viral infections in vegetatively propagated plants [102]. Currently, genome editing
ensured by clustered regularly interspaced short palindromic repeats (CRISPR)-based systems is
considered as a crucial genetic manipulation tool that can be applied to numerous crops, including
citrus. It is in fact established that CRISPR systems, such as CRISPR/CRISPR-associated protein
(Cas)9 and CRISPR/Cpf1 systems, can provide a promising new corridor for producing citrus cultivars
expressing resistant to different pathogens [123].

Regarding the current situation of CPsV in Morocco, this review provides a general overview of
its spread in the Moroccan citrus-growing areas. Preventing the introduction and spread of psorosis
disease in the Moroccan citrus orchards could be ensured by using virus-free (certified) planting
material, disinfecting pruning tools, regularly monitoring of citrus groves for an early detection of
the disease, and grubbing up of diseased trees. This review pointers for new research avenues in
psorosis disease either in Morocco or elsewhere. These research areas could include for instance the
characterization of CPsV isolates, searching for potential vectors and secondary hosts, and developing
sustainable control strategies. Studying functional genomics through transcriptomic analysis and/or
proteomic approaches in citrus–CPsV interaction would be an interesting approach to shed more light
on the full mechanisms underlying the complex and varied events associated with such interactome,
and thus help to develop novel diagnostic methods and plant protection strategies. This further
advanced research will expand our understanding of CPsV epidemiology and the mechanisms behind
its spread across the world in general and Morocco in particular, and could potentially help in devising
innovative management strategies of the virus.
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