Les fonctions exponentielles

François BERTRAND

2014-2015

La superficie du nénuphar

La superficie d'un nénuphar double chaque année.

- 1. Si, à un moment donné, l'aire couverte est 1 m^2 :
 - a) Quelle sera la superficie S 2, 3 ou 4 ans plus tard?
 - b) Quelle sera l'aire après 6 mois ? Après 3 mois ? Après 1 mois ?
 - c) Quelle était l'aire 1 mois, 2 mois ou 3 mois avant le moment d'observation?

2. Réaliser le graphique de la fonction exprimant l'aire en fonction du temps mesuré en années à partir de l'instant où la surface mesure 1 m² (les moments antérieurs sont les temps négatifs). Pouvez-vous donner une expression analytique pour cette fonction?

La superficie du nénuphar

- 1. Si, à un moment donné, la superficie couverte est 1 m^2 :
- a) Quelle sera la superficie S 2, 3 ou 4 ans plus tard?

Superficie [m ²]
1
2

La superficie du nénuphar

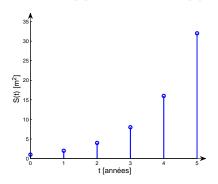
a) Quelle sera la superficie S 2, 3 ou 4 ans plus tard?

$$S(2) = 2^2 = 4$$
 $S(3) = 2^3 = 8$ $S(4) = 2^4 = 16$

` ,	
Temps	Superficie [m²]
- 3 mois	
- 2 mois	
- 1 mois	
0	1
1 mois	
3 mois	
6 mois	
1 an	2
2 ans	4
3 ans	8
4 ans	16
	,

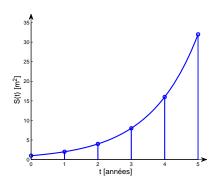
a) Quelle sera la superficie S 2, 3 ou 4 ans plus tard?

$$S(2) = 2^2 = 4$$
 $S(3) = 2^3 = 8$ $S(4) = 2^4 = 16$

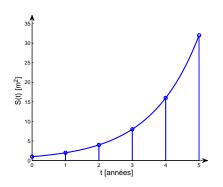


La superficie du nénuphar

b) Quelle sera l'aire après 6 mois? Après 3 mois? Après 1 mois?



b) Quelle sera l'aire après 6 mois? Après 3 mois? Après 1 mois?



$$\mathcal{S}\left(\frac{1}{2}\right) = 2^{\frac{1}{2}} \approx 1,41421$$

$$S\left(\frac{1}{4}\right) = 2^{\frac{1}{4}} \approx 1,18921$$

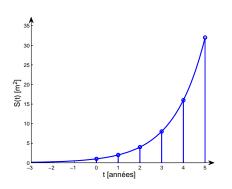
$$S\left(\frac{1}{12}\right) = 2^{\frac{1}{12}} \approx 1,05946$$

La superficie du nénuphar

b) Quelle sera l'aire après 6 mois ? Après 3 mois ? Après 1 mois ?

Temps	Superficie [m²]
- 3 mois	
- 2 mois	
- 1 mois	
0	1
1 mois	1,059
3 mois	1,189
6 mois	1,414
1 an	2
2 ans	4
3 ans	8
4 ans	16

c) Quelle était l'aire 1 mois, 2 mois ou 3 mois avant le moment d'observation?



$$S\left(\frac{-1}{12}\right) = 2^{\frac{-1}{12}} \approx 0,94387$$

$$S\left(\frac{-2}{12}\right) = 2^{\frac{-2}{12}} \approx 0,89090$$

$$S\left(\frac{-3}{12}\right) = 2^{\frac{-3}{12}} \approx 0,84090$$

La superficie du nénuphar

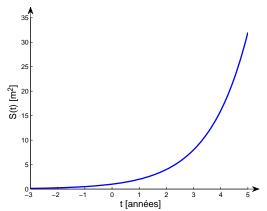
Temps	Superficie [m²]
- 3 mois	0,841
- 2 mois	0,891
- 1 mois	0,944
0	1
1 mois	1,059
3 mois	1,189
6 mois	1,414
1 an	2
2 ans	4
3 ans	8
4 ans	16

La superficie du nénuphar

2. Réaliser le graphique de la fonction exprimant l'aire en fonction du temps mesuré en années à partir de l'instant où la surface mesure 1 m² (les moments antérieurs sont les temps négatifs). Pouvez-vous donner une expression analytique pour cette fonction?

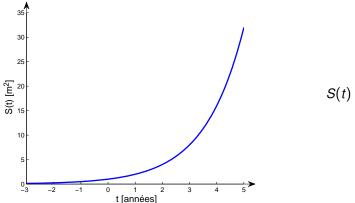
La superficie du nénuphar

2. Réaliser le graphique de la fonction exprimant l'aire en fonction du temps mesuré en années à partir de l'instant où la surface mesure 1 m² (les moments antérieurs sont les temps négatifs). Pouvez-vous donner une expression analytique pour cette fonction?



La superficie du nénuphar

Réaliser le **graphique** de la fonction exprimant l'aire en fonction du temps mesuré en années à partir de l'instant où la surface mesure 1 m^2 (les moments antérieurs sont les temps négatifs). Pouvez-vous donner une **expression analytique** pour cette fonction?



Définition

<u>Rappel</u>: Si $a \in \mathbb{R}_0^+$ alors $a^x \in \mathbb{R}_0^+$ pour tout $x \in \mathbb{Q}$ (nombre rationnel).

Définition

<u>Rappel</u>: Si $a \in \mathbb{R}_0^+$ alors $a^x \in \mathbb{R}_0^+$ pour tout $x \in \mathbb{Q}$ (nombre rationnel).

Exemples: $2^0 =$; $2^2 =$; $2^{-3} =$; $2^{1/2} =$

Définition

<u>Rappel</u>: Si $a \in \mathbb{R}_0^+$ alors $a^x \in \mathbb{R}_0^+$ pour tout $x \in \mathbb{Q}$ (nombre rationnel).

Exemples: $2^0 = 1$; $2^2 = 4$; $2^{-3} = 0,125$; $2^{1/2} \approx 1,414$

<u>Rappel</u>: Si $a \in \mathbb{R}_0^+$ alors $a^x \in \mathbb{R}_0^+$ pour tout $x \in \mathbb{Q}$ (nombre rationnel).

Exemples:
$$2^0 = 1$$
; $2^2 = 4$; $2^{-3} = 0,125$; $2^{1/2} \approx 1,414$

De même, nous admettrons que si $a \in \mathbb{R}_0^+$ alors $a^x \in \mathbb{R}_0^+ \ \forall \ x \in \mathbb{R}$.

Exemples:
$$2^{\sqrt{2}} \approx 2,665$$
; $2^{\pi} \approx 8,825$

Propriétés

Les **propriétés** algébriques des puissances à exposants rationnels peuvent être **étendues aux puissances à exposants réels** : $\forall a,b \in \mathbb{R}_0^+, \forall r,s \in \mathbb{R}$:

$$a^r \cdot a^s = a^{r+s}$$

$$\frac{a^r}{a^s}=a^{r-s}$$

$$(a \cdot b)^r = a^r \cdot b^r$$

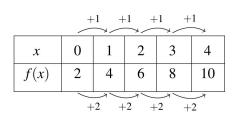
$$(a^r)^s = a^{r \cdot s}$$

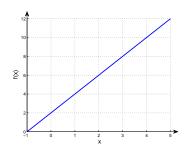
Croissance exponentielle

Rappel : Croissance linéaire

On parle de croissance linéaire lorsqu'un phénomène augmente d'une valeur constante sur des intervalles de temps égaux ; la **progression** est **arithmétique**. Cette situation peut-être modélisée par une fonction du premier degré $(f(x) = a \cdot x + b)$, dont le graphique est une **droite**.

Exemple:
$$f(x) = 2 \cdot x + 2$$



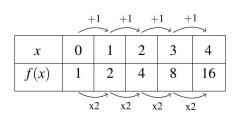


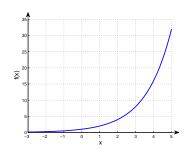
Croissance exponentielle

Croissance exponentielle

On parle de croissance exponentielle lorsqu'un phénomène suit une **progression géométrique**. Le facteur multiplicatif est alors constant sur des intervalles égaux. Le fonction modélisant ce type de situation est de la forme $f(x) = a^x$.

Exemple:
$$f(x) = 2^x$$





Définition

a^x

La fonction exponentielle en base a, a étant un nombre réel strictement positif et différent de 1, est notée \exp_a et est définie par

$$\forall x \in \mathbb{R} : f(x) = a^x = \exp_a x \qquad a \in \mathbb{R}_0^+ \setminus \{1\}$$

Exemples:
$$f(x) = 2^x$$
; $g(x) = \left(\frac{1}{2}\right)^x$; $h(x) = 10^x$ et $i(x) = \pi^x$ sont des fonctions exponentielles.

Propriétés

Pour les fonctions exponentielles $f(x)=2^x$ et $g(x)=\left(\frac{1}{2}\right)^x$, complétez le tableau ci-dessous :

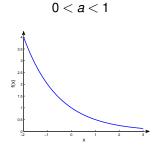
х	-2	-1	-0,5	0	0,5	1	$\sqrt{2}$	2
$f(x)=2^x$								
$g(x) = \left(\frac{1}{2}\right)^x$								

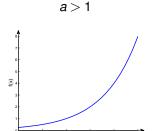
Propriétés

Pour les fonctions exponentielles $f(x)=2^x$ et $g(x)=\left(\frac{1}{2}\right)^x$, complétez le tableau ci-dessous :

х	-2	-1	-0,5	0	0,5	1	$\sqrt{2}$	2
$f(x)=2^x$	0,25	0,5	0,7071	1	1,4142	2	2,6651	4
$g(x) = \left(\frac{1}{2}\right)^x$	4	2	1,4142	1	0,7071	0,5	0,3752	0,25

Propriétés



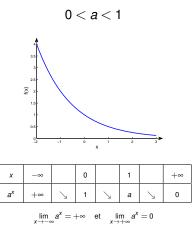


$$\operatorname{dom} \ \operatorname{exp}_a = \mathbb{R}$$

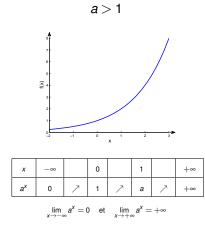
$$\operatorname{im} \ \operatorname{exp}_a = \mathbb{R}_0^+$$

Point particulier à toutes les fonctions exponentielles : (0;1) O_x est une asymptote horizontale : $AH \equiv y = 0$ Il n'y a pas d'autres asymptotes.

Propriétés



expa est une fonction strictement décroissante



exp_a est une fonction strictement croissante

Toute fonction exponentielle étant strictement croissante ou décroissante, elle établit une **bijection** entre les valeurs de la variable x et ses images y (à un x correspond un seul y et inversement).

Reconnaître un accroissement exponentiel

Le facteur multiplicatif entre deux réels r et s d'une fonction définie sur $\mathbb R$ vaut

$$\frac{f(s)}{f(r)} \quad \forall r, s \in \mathbb{R}$$

Reconnaître un accroissement exponentiel

Le facteur multiplicatif entre deux réels r et s d'une fonction définie sur $\mathbb R$ vaut

$$\frac{f(s)}{f(r)}$$
 $\forall r, s \in \mathbb{R}$

Pour une fonction exponentielle de base a, le facteur multiplicatif est donc

$$\frac{\exp_a s}{\exp_a r} = \frac{a^s}{a^r} = a^{s-r} \quad \forall r, s \in \mathbb{R}$$

Ce **rapport** ne dépend que de la différence s-r. Pour toute **différence constante** entre deux réels, on observe donc un **facteur multiplicatif constant**.

Reconnaître un accroissement exponentiel

Il en est de même pour toute fonction multiple d'une fonction exponentielle $f(x) = k \cdot a^x$:

$$\frac{f(s)}{f(r)} = \frac{k \cdot a^s}{k \cdot a^r} = a^{s-r} \quad \forall r, s \in \mathbb{R}$$

Reconnaître un accroissement exponentiel

Il en est de même pour toute fonction multiple d'une fonction exponentielle $f(x) = k \cdot a^x$:

$$\frac{f(s)}{f(r)} = \frac{k \cdot a^s}{k \cdot a^r} = a^{s-r} \quad \forall r, s \in \mathbb{R}$$

Réciproquement, si le **facteur multiplicatif** d'une fonction entre deux réels r et s ne dépend que de la différence s-r, il s'agit d'une **fonction exponentielle** ou d'un multiple d'une fonction exponentielle (ou fonction constante si le facteur multiplicatif vaut 1).

Expliciter les savoirs et les procédures

- 1. Parmi les fonctions suivantes, définies sur \mathbb{R} , lesquelles peuvent être appelées fonctions exponentielles? Lesquelles sont strictement croissantes sur \mathbb{R} ou strictement décroissantes sur \mathbb{R} ?
 - a) $f(x) = 5^x$
 - b) $f(x) = x^3$

 - c) $f(x) = 2^{x+3}$ d) $f(x) = x \cdot 5^x$
 - e) $f(x) = \frac{1}{3^x}$

Expliciter les savoirs et les procédures

- 1. Parmi les fonctions suivantes, définies sur \mathbb{R} , lesquelles peuvent être appelées fonctions exponentielles? Lesquelles sont strictement croissantes sur \mathbb{R} ou strictement décroissantes sur \mathbb{R} ?
 - a) $f(x) = 5^x$ Fonction exponentielle strictement croissante
 - b) $f(x) = x^3$

 - c) $f(x) = 2^{x+3}$ d) $f(x) = x \cdot 5^x$
 - e) $f(x) = \frac{1}{3^x}$

- 1. Parmi les fonctions suivantes, définies sur \mathbb{R} , lesquelles peuvent être appelées fonctions exponentielles? Lesquelles sont strictement croissantes sur \mathbb{R} ou strictement décroissantes sur \mathbb{R} ?
 - a) $f(x) = 5^x$ Fonction exponentielle strictement croissante
 - b) $f(x) = x^3$ Pas une fonction exponentielle

 - c) $f(x) = 2^{x+3}$ d) $f(x) = x \cdot 5^x$
 - e) $f(x) = \frac{1}{3^x}$

- 1. Parmi les fonctions suivantes, définies sur \mathbb{R} , lesquelles peuvent être appelées fonctions exponentielles ? Lesquelles sont strictement croissantes sur \mathbb{R} ou strictement décroissantes sur \mathbb{R} ?
 - a) $f(x) = 5^x$ Fonction exponentielle strictement croissante
 - b) $f(x) = x^3$ Pas une fonction exponentielle
 - c) $f(x) = 2^{x+3}$ Multiple d'une fonction exponentielle strictement croissante
 - d) $f(x) = x \cdot 5^x$
 - e) $f(x) = \frac{1}{3^x}$

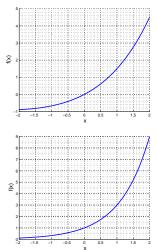
- 1. Parmi les fonctions suivantes, définies sur \mathbb{R} , lesquelles peuvent être appelées fonctions exponentielles ? Lesquelles sont strictement croissantes sur \mathbb{R} ou strictement décroissantes sur \mathbb{R} ?
 - a) $f(x) = 5^x$ Fonction exponentielle strictement croissante
 - b) $f(x) = x^3$ Pas une fonction exponentielle
 - c) $f(x) = 2^{x+3}$ Multiple d'une fonction exponentielle strictement croissante
 - d) $f(x) = x \cdot 5^x$ Pas une fonction exponentielle
 - e) $f(x) = \frac{1}{3^x}$

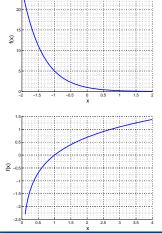
- 1. Parmi les fonctions suivantes, définies sur \mathbb{R} , lesquelles peuvent être appelées fonctions exponentielles ? Lesquelles sont strictement croissantes sur \mathbb{R} ou strictement décroissantes sur \mathbb{R} ?
 - a) $f(x) = 5^x$ Fonction exponentielle strictement croissante
 - b) $f(x) = x^3$ Pas une fonction exponentielle
 - c) $f(x) = 2^{x+3}$ Multiple d'une fonction exponentielle strictement croissante
 - d) $f(x) = x \cdot 5^x$ Pas une fonction exponentielle
 - e) $f(x) = \frac{1}{3^x}$ Fonction exponentielle strictement décroissante

Exercices

Expliciter les savoirs et les procédures

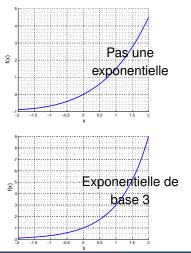
Parmi les graphiques suivants, lesquels correspondent à une fonction exponentielle? Préciser la base.

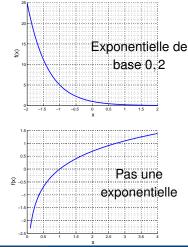




Expliciter les savoirs et les procédures

Parmi les graphiques suivants, lesquels correspondent à une fonction exponentielle? Préciser la base.

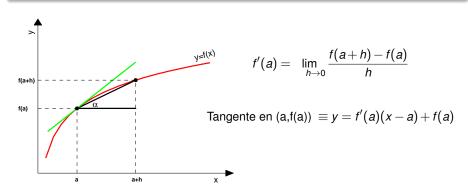




Dérivée

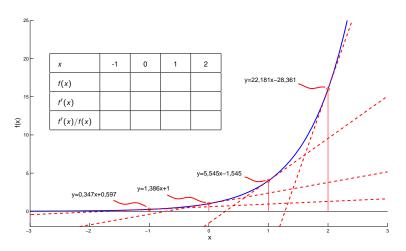
Rappel: Nombre dérivé

Le nombre dérivé de la fonction f en un point est le **coefficient angulaire** de la **tangente** au graphe de la fonction en ce point. Le signe de ce nombre détermine la croissance ou la décroissance de f.



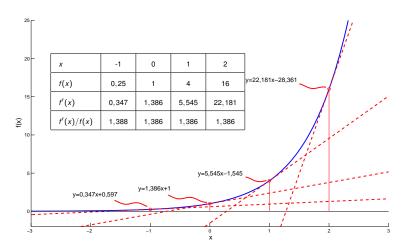
Dérivée

Graphe de la fonction exponentielle $f(x) = 4^x$ ainsi que quelques unes de ses tangentes.



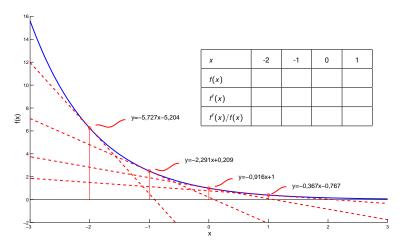
Dérivée

Graphe de la fonction exponentielle $f(x) = 4^x$ ainsi que quelques unes de ses tangentes.



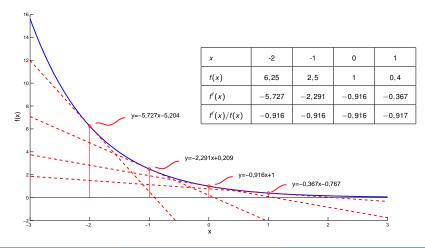
Dérivée

Graphe de la fonction exponentielle $f(x) = 0, 4^x$ et quelques unes de ses tangentes.



Dérivée

Graphe de la fonction exponentielle $f(x) = 0, 4^x$ et quelques unes de ses tangentes.



Dérivée

Dérivée d'une exponentielle

La fonction exponentielle $f(x) = a^x$ est une fonction dont la fonction dérivée est un **multiple de la fonction elle-même**.

$$(a^x)' = k \cdot a^x$$

k étant un nombre réel constant pour une même exponentielle.

Les **images** des **dérivées** des fonctions exponentielles sont directement **proportionnelles** aux **images** de la **fonction elle-même**. Ainsi, le taux de variation d'une fonction exponentielle est directement proportionnel à l'image de la fonction; c'est l'**effet boule de neige**.

Dérivée

Dérivée d'une exponentielle

La fonction exponentielle $f(x) = a^x$ est une fonction dont la fonction dérivée est un **multiple de la fonction elle-même**.

$$(a^x)' = k \cdot a^x$$

k étant un nombre réel constant pour une même exponentielle.

Démonstration (pour information):

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{a^{x+h} - a^x}{h} = \lim_{h \to 0} \frac{a^x (a^h - a^0)}{h} = a^x \lim_{h \to 0} \frac{a^h - a^0}{h}$$
$$= a^x \left(\lim_{h \to 0} \frac{f(0+h) - f(0)}{h}\right) = a^x \cdot f'(0)$$

Principe d'équivalence

$$\forall a \in \mathbb{R}_0^+ \setminus \{1\}, \forall x, y \in \mathbb{R}: a^x = a^y \iff x = y$$

Résoudre une équation ou une inéquation exponentielle consiste à comparer les images de deux fonctions ayant **même base**. Sous cette condition impérative, il est permis de **comparer les exposants** et donc résoudre l'équation ou l'inéquation.

$$3^{x+1} = 12 - 3^{x+2}$$

$$3^{x+1} = 12 - 3^{x+2}$$

$$3^{x+1} + 3^{x+2} = 12$$

$$3^{x+1} = 12 - 3^{x+2}$$

$$3^{x+1} + 3^{x+2} = 12$$

$$3^x \cdot 3 + 3^x \cdot 3^2 = 12$$

$$3^{x+1} = 12 - 3^{x+2}$$

$$3^{x+1} + 3^{x+2} = 12$$

$$3^{x} \cdot 3 + 3^{x} \cdot 3^{2} = 12$$

$$3^X \cdot (3+9) = 12$$

$$3^{x+1} = 12 - 3^{x+2}$$
$$3^{x+1} + 3^{x+2} = 12$$
$$3^{x} \cdot 3 + 3^{x} \cdot 3^{2} = 12$$
$$3^{x} \cdot (3+9) = 12$$
$$3^{x} = 1$$

$$3^{x+1} = 12 - 3^{x+2}$$
$$3^{x+1} + 3^{x+2} = 12$$
$$3^{x} \cdot 3 + 3^{x} \cdot 3^{2} = 12$$
$$3^{x} \cdot (3+9) = 12$$
$$3^{x} = 1$$
$$3^{x} = 3^{0}$$

$$3^{x+1} = 12 - 3^{x+2}$$

$$3^{x+1} + 3^{x+2} = 12$$

$$3^{x} \cdot 3 + 3^{x} \cdot 3^{2} = 12$$

$$3^{x} \cdot (3+9) = 12$$

$$3^{x} = 1$$

$$3^{x} = 3^{0}$$

$$x = 0$$

Appliquer une procédure

a)
$$3^{2x-5} = \frac{1}{3}$$

b)
$$5^x = \frac{\sqrt{5}}{5}$$

c)
$$16^x = \frac{1}{2}$$

d)
$$3^{x^2-3x+5}=27$$

d)
$$3^{x^2-3x+5} = 27$$

e) $3^{x-2} - \left(\frac{1}{9}\right)^{-2x+1} = 0$

Appliquer une procédure

a)
$$3^{2x-5} = \frac{1}{3} \Leftrightarrow 3^{2x-5} = 3^{-1} \Leftrightarrow 2x-5 = -1 \Leftrightarrow 2x = 4 \Rightarrow x = 2$$

- b) $5^x = \frac{\sqrt{5}}{5}$
- c) $16^x = \frac{1}{2}$
- d) $3^{x^2-3x+5} = 27$
- e) $3^{x-2} \left(\frac{1}{9}\right)^{-2x+1} = 0$

Appliquer une procédure

a)
$$3^{2x-5} = \frac{1}{3} \Leftrightarrow 3^{2x-5} = 3^{-1} \Leftrightarrow 2x-5 = -1 \Leftrightarrow 2x = 4 \Rightarrow x = 2$$

b)
$$5^x = \frac{\sqrt{5}}{5} \Leftrightarrow 5^{x+1} = 5^{\frac{1}{2}} \Leftrightarrow x+1 = \frac{1}{2} \Rightarrow x = -\frac{1}{2}$$

- c) $16^x = \frac{1}{2}$
- d) $3^{x^2-3x+5} = 27$
- e) $3^{x-2} \left(\frac{1}{9}\right)^{-2x+1} = 0$

Appliquer une procédure

a)
$$3^{2x-5} = \frac{1}{3} \Leftrightarrow 3^{2x-5} = 3^{-1} \Leftrightarrow 2x-5 = -1 \Leftrightarrow 2x = 4 \Rightarrow x = 2$$

b)
$$5^x = \frac{\sqrt{5}}{5} \iff 5^{x+1} = 5^{\frac{1}{2}} \iff x+1 = \frac{1}{2} \implies x = -\frac{1}{2}$$

c)
$$16^x = \frac{1}{2} \Leftrightarrow 2^{4x} = 2^{-1} \Leftrightarrow 4x = -1 \Rightarrow x = -\frac{1}{4}$$

d)
$$3^{x^2-3x+5} = 27$$

e)
$$3^{x-2} - \left(\frac{1}{9}\right)^{-2x+1} = 0$$

Appliquer une procédure

a)
$$3^{2x-5} = \frac{1}{3} \Leftrightarrow 3^{2x-5} = 3^{-1} \Leftrightarrow 2x-5 = -1 \Leftrightarrow 2x = 4 \Rightarrow x = 2$$

b)
$$5^x = \frac{\sqrt{5}}{5} \iff 5^{x+1} = 5^{\frac{1}{2}} \iff x+1 = \frac{1}{2} \implies x = -\frac{1}{2}$$

c)
$$16^x = \frac{1}{2} \Leftrightarrow 2^{4x} = 2^{-1} \Leftrightarrow 4x = -1 \Rightarrow x = -\frac{1}{4}$$

d)
$$3^{x^2-3x+5} = 27 \Leftrightarrow 3^{x^2-3x+5} = 3^3 \Leftrightarrow x^2-3x+2=0 \Rightarrow x=1 \text{ et } x=2$$

e)
$$3^{x-2} - \left(\frac{1}{9}\right)^{-2x+1} = 0$$

Appliquer une procédure

a)
$$3^{2x-5} = \frac{1}{3} \Leftrightarrow 3^{2x-5} = 3^{-1} \Leftrightarrow 2x-5 = -1 \Leftrightarrow 2x = 4 \Rightarrow x = 2$$

b)
$$5^x = \frac{\sqrt{5}}{5} \iff 5^{x+1} = 5^{\frac{1}{2}} \iff x+1 = \frac{1}{2} \implies x = -\frac{1}{2}$$

c)
$$16^x = \frac{1}{2} \Leftrightarrow 2^{4x} = 2^{-1} \Leftrightarrow 4x = -1 \Rightarrow x = -\frac{1}{4}$$

d)
$$3^{x^2-3x+5} = 27 \Leftrightarrow 3^{x^2-3x+5} = 3^3 \Leftrightarrow x^2-3x+2=0 \Rightarrow x=1 \text{ et } x=2$$

e)
$$3^{x-2} - \left(\frac{1}{9}\right)^{-2x+1} = 0$$

 $\Leftrightarrow 3^{x-2} - 3^{4x-2} = 0 \Leftrightarrow x - 2 = 4x - 2 \Leftrightarrow 3x = 0 \Rightarrow x = 0$

Résoudre un problème

4. Une population de bactéries triple tous les deux jours. C'est-à-dire que le facteur multiplicatif est de pour deux jours, le facteur pour un jour est alors

Si N_0 représente le nombre initial de bactéries, la fonction exprimant le nombre de bactéries en fonction du nombre de jours écoulés à partir du jour initial est $f(x) = \dots$.

Quel sera, en fonction de N_0 , le nombre de bactéries

- a) dans 8 jours ?
- b) 5 jours avant le jour initial d'observation?

Résoudre un problème

4. Une population de bactéries triple tous les deux jours. C'est-à-dire que le facteur multiplicatif est de 3 pour deux jours, le facteur pour un jour est alors $3^{\frac{1}{2}}$.

Si N_0 représente le nombre initial de bactéries, la fonction exprimant le nombre de bactéries en fonction du nombre de jours écoulés à partir du jour initial est $f(x) = \dots$.

Quel sera, en fonction de N_0 , le nombre de bactéries

- a) dans 8 jours ?
- b) 5 jours avant le jour initial d'observation?

Résoudre un problème

4. Une population de bactéries triple tous les deux jours. C'est-à-dire que le facteur multiplicatif est de 3 pour deux jours, le facteur pour un jour est alors $3^{\frac{1}{2}}$.

Si N_0 représente le nombre initial de bactéries, la fonction exprimant le nombre de bactéries en fonction du nombre de jours écoulés à partir du jour initial est $f(x) = N_0 \cdot \left(\sqrt{3}\right)^t$.

Quel sera, en fonction de N₀, le nombre de bactéries

- a) dans 8 jours?
- b) 5 jours avant le jour initial d'observation?

Résoudre un problème

4. Une population de bactéries triple tous les deux jours. C'est-à-dire que le facteur multiplicatif est de 3 pour deux jours, le facteur pour un jour est alors $3^{\frac{1}{2}}$.

Si N_0 représente le nombre initial de bactéries, la fonction exprimant le nombre de bactéries en fonction du nombre de jours écoulés à partir du jour initial est $f(x) = N_0 \cdot (\sqrt{3})^t$.

Quel sera, en fonction de N₀, le nombre de bactéries

- a) dans 8 jours ? $N_0 (\sqrt{3})^8 = 81 \cdot N_0$
- b) 5 jours avant le jour initial d'observation?

$$N_0 (\sqrt{3})^{-5} = \frac{N_0}{(\sqrt{3})^5} = \frac{N_0}{9\sqrt{3}} = \frac{\sqrt{3}N_0}{27}$$

Résoudre un problème

- 5. Une somme de 12000€ est placée le premier janvier 2014 sur un compte à intérêts composés au taux annuel de 2%. Cela signifie qu'au bout d'une année, l'intérêt produit est capitalisé et l'année suivante l'intérêt est calculé sur le capital initial augmenté des intérêts de l'année précédente.
 - a) Par quel nombre le capital d'une année doit-il être multiplié pour obtenir le capital de l'année suivante?
 - b) Exprimer la fonction f(x) donnant le montant du capital en fonction du nombre x d'années.
 - c) Quel sera le capital obtenu le 01/01/2020?

- 5. Une somme de 12000€ est placée le premier janvier 2014 sur un compte à intérêts composés au taux annuel de 2%. Cela signifie qu'au bout d'une année, l'intérêt produit est capitalisé et l'année suivante l'intérêt est calculé sur le capital initial augmenté des intérêts de l'année précédente.
 - a)

$$(1+2\%)$$

- b) Exprimer la fonction f(x) donnant le montant du capital en fonction du nombre x d'années.
- c) Quel sera le capital obtenu le 01/01/2020?

Résoudre un problème

5. Une somme de 12000€ est placée le premier janvier 2014 sur un compte à intérêts composés au taux annuel de 2%. Cela signifie qu'au bout d'une année, l'intérêt produit est capitalisé et l'année suivante l'intérêt est calculé sur le capital initial augmenté des intérêts de l'année précédente.

a)
$$(1+2\%)$$
 b)
$$f(x) = 12000 \cdot (1+0.02)^x$$

c) Quel sera le capital obtenu le 01/01/2020?

5. Une somme de 12000€ est placée le premier janvier 2014 sur un compte à intérêts composés au taux annuel de 2%. Cela signifie qu'au bout d'une année, l'intérêt produit est capitalisé et l'année suivante l'intérêt est calculé sur le capital initial augmenté des intérêts de l'année précédente.

b)
$$f(x) = 12000 \cdot (1+0.02)^x$$

c)
$$12000 \cdot 1,02^6 = 13513,95 {\small \bigodot}$$

Résoudre un problème

5. Une somme de 12000€ est placée le premier janvier 2014 sur un compte à intérêts composés au taux annuel de 2%. Cela signifie qu'au bout d'une année, l'intérêt produit est capitalisé et l'année suivante l'intérêt est calculé sur le capital initial augmenté des intérêts de l'année précédente.

a)
$$(1+2\%)$$
 b)
$$f(x) = 12000 \cdot (1+0,02)^x$$
 c)

Avec ce même taux annuel, quelle somme aurait-il fallu placer il y a dix ans pour produire un capital de 5000€ aujourd'hui?

 $12000 \cdot 1.02^6 = 13513.95 \in$

$$S_0 \cdot 1,02^{10} = 5000 \quad \Rightarrow \quad S_0 = \frac{5000}{1,02^{10}} = 4101,74 \in$$

Résoudre un problème

6. Un condensateur - dispositif électrique qui permet d'emmagasiner des charges électriques - contient une charge de 3,12 μ C au temps t=5 s. Il est en train de se décharger; au temps t=7 s, la charge n'est plus que de 2,75 μ C.

Si la variation de charge par unité de temps est proportionnelle à la quantité de charge encore présente dans le condensateur :

- a) Quelle sera la quantité de charge dans le condensateur aux temps t = 11 s et t = 15 s?
- b) Quelle était la charge au temps t = 0 s?

Résoudre un problème

« Variation de charge proportionnelle à la quantité de charge »
 → Fonction exponentielle

$$C(t) = b \cdot a^{t}$$

$$C(5) = b \cdot a^{5} = 3,12$$

$$C(7) = b \cdot a^{7} = 2,75$$

$$\frac{a^{7}}{a^{5}} = \frac{2,75}{3,12} \quad \Leftrightarrow \quad a^{2} = 0,88141$$

$$\Rightarrow a = 0,93883$$

$$\Rightarrow b = 4,27769$$

Résoudre un problème

« Variation de charge proportionnelle à la quantité de charge »

ightarrow Fonction exponentielle

$$C(t) = 4,27769 \cdot 0,93883^t$$

$$C(0) = 4,28 \,\mu C$$

$$C(11) = 2,14 \,\mu C$$

$$C(15) = 1,66 \,\mu C$$

Résoudre un problème

7. Le carbone 14 (¹⁴C) est un isotope radioactif ; il se désintègre naturellement en se transformant en azote. Cette propriété peut-être utilisée pour dater certains vestiges archéologiques.

On a pu établir que pendant chaque période de 5734 ans, la masse de 14 C est multiplié par $\frac{1}{2}$. L'évolution du nombre d'atomes N de 14 C suit alors une décroissance exponentielle de la forme :

$$N(t) = N_0 \cdot a^{b \cdot t}$$
 où N_0 est le nombre d'atomes initial.

- a) Que valent a et b?
- b) Calculer le % d'atomes perdus au bout de 20 000 ans.
- c) On analyse un fragment d'os et on constate qu'il a perdu 87,5% de sa teneur en carbone. Déterminer l'age de cet os.

Résoudre un problème

a)

$$N(t) = N_0 \left(\frac{1}{2}\right)^{\frac{1}{5734}t}$$

Résoudre un problème

a)

$$N(t) = N_0 \left(\frac{1}{2}\right)^{\frac{1}{5734}t}$$

b)

$$N(20000) = N_0 \left(\frac{1}{2}\right)^{\frac{1}{5734}20000} = 0,089 \cdot N_0$$

$$N_0 = 100\% \quad \Rightarrow N(20000) = 8,9\%$$

$$\Rightarrow 100 - 8,9 = 91,1\% \text{ perdus}$$

Résoudre un problème

a)

$$N(t) = N_0 \left(\frac{1}{2}\right)^{\frac{1}{5734}t}$$

b)

$$\begin{split} \textit{N(20000)} &= \textit{N}_0 \left(\frac{1}{2}\right)^{\frac{1}{5734}20000} = 0,089 \cdot \textit{N}_0 \\ \textit{N}_0 &= 100\% \quad \Rightarrow \textit{N(20000)} = 8,9\% \\ &\Rightarrow 100 - 8,9 = 91,1\% \text{ perdus} \end{split}$$

c)

$$N(t) = N_0 \left(\frac{1}{2}\right)^{\frac{1}{5734}t} = 0,125 \cdot N_0$$

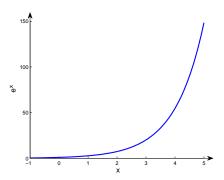
$$\left(\frac{1}{2}\right)^{\frac{1}{5734}t} = 0,125$$

$$\left(\frac{1}{2}\right)^{\frac{1}{5734}t} = \left(\frac{1}{2}\right)^3$$

$$\frac{t}{5734} = 3 \quad \Rightarrow \quad t = 17202ans$$

 e^{x}

La **fonction exponentielle de base** e est appelée fonction exponentielle népérienne, elle est notée $exp_e(x)$ ou simplement e^x .



e^{x}

La **fonction exponentielle de base** e est appelée fonction exponentielle népérienne, elle est notée $exp_e(x)$ ou simplement e^x .

$$\exp_e : x \in \mathbb{R} \to \exp_e(x) = e^x$$

Cette fonction est telle que

$$(e^x)'=e^x$$

Nombre d'Euler

Le nombre noté e est appelé nombre d'Euler, il est défini par

$$e = \lim_{m \to +\infty} \left(1 + \frac{1}{m} \right)^m \approx 2,71828$$

Démonstration (pour information)

$$(e^{x})' = e^{x}$$

$$\Leftrightarrow \lim_{h \to 0} \left(\frac{e^{x+h} - e^{x}}{h} \right) = e^{x}$$

$$\Leftrightarrow \lim_{h \to 0} \left(e^{x} \frac{(e^{h} - 1)}{h} \right) = e^{x}$$

$$\Leftrightarrow \lim_{h \to 0} \left(\frac{e^{h} - 1}{h} \right) = 1$$

$$\Leftrightarrow \lim_{m \to +\infty} \left(\frac{e^{\frac{m}{m}} - 1}{\frac{1}{m}} \right) = 1$$

$$\Leftrightarrow e = \lim_{m \to +\infty} \left(1 + \frac{1}{m} \right)^{m}$$

Nombre d'Euler

Le nombre noté e est appelé nombre d'Euler, il est défini par

$$e = \lim_{m \to +\infty} \left(1 + \frac{1}{m} \right)^m \approx 2,71828$$

Démonstration (pour information) :

$$(e^{x})' = e^{x}$$

$$\Leftrightarrow \lim_{h \to 0} \left(\frac{e^{x+h} - e^{x}}{h}\right) = e^{x}$$

$$\Leftrightarrow \lim_{h \to 0} \left(e^{x} \frac{(e^{h} - 1)}{h}\right) = e^{x}$$

$$\Leftrightarrow \lim_{h \to 0} \left(\frac{e^{h} - 1}{h}\right) = 1$$

$$\Leftrightarrow \lim_{m \to +\infty} \left(\frac{e^{\frac{m}{m} - 1}}{\frac{1}{m}}\right) = 1$$

$$\Leftrightarrow e = \lim_{m \to +\infty} \left(1 + \frac{1}{m}\right)^{m}$$

	Nombre de périodes	Taux d'intérêt périodique	
après 10 ans	1	100%	2000€
	2		2250€
	10	10%	
	20		
	120		

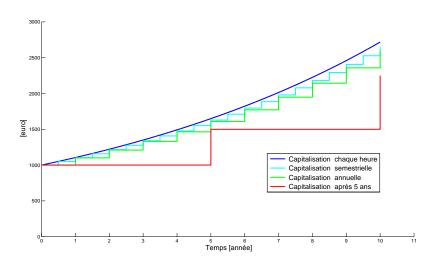
Capitalisation	Nombre de périodes	Taux d'intérêt périodique	Capital obtenu
après 10 ans	1	100%	2000€
après 5 ans	2	50%	2250€
annuelle	10	10%	
semestrielle	20		
mensuelle	120		
quotidienne			
toutes les heures			

Capitalisation	Nombre de périodes	Taux d'intérêt périodique	Capital obtenu
après 10 ans	1	100%	2000€
après 5 ans	2	50%	2250€
annuelle	10	10%	
semestrielle	20		
mensuelle	120		
quotidienne			
toutes les heures			

$$\mbox{Capital obtenu} = 1000 \cdot \left(1 + \frac{100\%}{\mbox{Nombre de périodes}}\right)^{\mbox{Nombre de périodes}}$$

Capitalisation	Nombre de périodes	Taux d'intérêt périodique	Capital obtenu
après 10 ans	1	100%	2000€
après 5 ans	2	50%	2250€
annuelle	10	10%	2594€
semestrielle	20	5%	2653€
mensuelle	120	0,83333%	2707€
quotidienne	3652	0,02738%	2718€
toutes les heures	87648	0,00114%	2718€

$$\mbox{Capital obtenu} = 1000 \cdot \left(1 + \frac{100\%}{\mbox{Nombre de périodes}}\right)^{\mbox{Nombre de périodes}}$$



Résoudre un problème

 Sous l'effet de la pesanteur, un fil suspendu entre deux poteaux adopte une forme courbe. La courbe mathématique est appelée chainette, elle a pour équation

$$f(x) = \frac{a\left(e^{\frac{x}{a}} + e^{-\frac{x}{a}}\right)}{2}$$

où a est une constante physique propre à chaque situation.

Construire le graphique de la fonction au départ de celui de la fonction exponentielle népérienne.

Résoudre un problème

Construire le graphique de la fonction au départ de celui de la fonction exponentielle népérienne. (Prendre par exemple a=5)

