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11 Abstract

12 In the context of the expansion of the human population, availability of food, and in extension of animal 

13 feed, is a big issue. Favoring a circular economy by the valorization of by-products is a sustainable way 

14 to be more efficient. Animal by-products are an interesting source of feed materials due to their richness 

15 in proteins of high nutritional value. Prevention and control efforts have allowed a gradual lifting of the 

16 feed ban regarding the use of animal by-products. Nevertheless, the challenge remains the development 

17 of analytical methods enabling a distinction between authorized and unauthorized feed materials. This 

18 review focuses on the historical and epidemiological context of the official control, the evaluation of 

19 current and foreseen legislation and the available methods of analysis for the detection of constituents 

20 of animal origin in feedingstuffs. It also underlines the analytical limitations of the approach and 

21 discusses some prospects of novel methods to ensure food and feed safety.

22 Keywords

23 BSE, processed animal protein, feed fraud, feed adulteration, light microscopy, PCR, spectroscopy, 

24 immunoassays, mass spectroscopy, PMCA, RT-QuIC, insect.
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25 1. Introduction

26 Since the mid-1980s and the emergence of the epidemic, several thousand cases of classical bovine 

27 spongiform encephalopathy (BSE) have been reported in Europe. Measures of surveillance, feed ban 

28 and feed control have been rapidly put in place. Fortunately, these extensive actions had a drastic effect 

29 on the number of BSE cases. To date, occasional cases of classical BSE in animals born following the 

30 total feed ban (BARB cases) still occur. In total, 61 BARB cases are currently recorded. Improper 

31 implementations of the feed ban or spontaneous incidents are some of the likely causes 1. Even though 

32 the number of recent cases is very low, this should not be neglected. It is even more important to be 

33 careful because this disease is not completely understood. The current impossibility to establish an ante-

34 mortem confirmation diagnosis provides a crucial role to the specified risk material (SRM) removal and 

35 the feed ban, given the zoonotic nature of BSE. 

36 By now, there is an additional challenge to be faced by the animal feed industry: the feed availability. 

37 Solutions can be found by increasing the efficiency of feed production, finding new feed sources and/or 

38 reusing by-products. Animal by-products are an interesting source of feed materials. Indeed, up to 50% 

39 of the slaughtered animal weight is not intended for human consumption. These materials are rich in 

40 proteins of high nutritional value and also have an economic interest because neglecting their use or 

41 underuse logically results in a loss of potential gains2. Since the first version of the feed ban in 1994, the 

42 regulations linked to the use of animal by-products have been revised many times mostly for additional 

43 restrictions or, more recently, for partial lifting 3. With each revision, the analytical scheme intended to 

44 check proper use of processed animal proteins (PAPs) had to be adapted and became more complex.

45 The aim of this review is to summarize how the analytical framework is constantly being adapted to the 

46 changes in the legislation in order to ensure the control of the proper use of animal proteins in feed. The 

47 foreseen relaxations of the ban are reviewed together with the operational schemes that articulate the 

48 use of official methods depending on the feed destination. However, there are still analytical gaps that 
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49 are highlighted. Alternative analytical methods developed to address them are considered. Finally, future 

50 challenges and some prospects to ensure food and feed safety are proposed.

51 2. Bovine spongiform encephalopathy: origin, feed-borne transmission, risk 

52 assessments and current epidemiological situation

53 BSE is a chronic disease causing a degenerative disorder in bovine neural tissue. The disease is due to 

54 a conformational conversion of a membrane glycoprotein, known as the cellular isoform of the Prion 

55 Protein (PrPc), naturally present in the nervous system and other extra-neural tissues, into an extremely 

56 resistant form of the protein, the scrapie isoform of the Prion Protein (PrPsc) 4. 

57 BSE emerged in cattle in the 1980s. The origin of the first classical BSE (C-BSE) cases remains 

58 unknown. The main hypotheses are the spontaneous occurrence and the scrapie transmission to bovine 

59 4. The cause of the BSE epidemic is clearer. Epidemiological studies related this outbreak to a feed-

60 borne epidemic. A partial ban on the use of mammalian meat and bone meal (MBM) in ruminant feed 

61 was consequently put in place in 1994 5. Although this measure resulted in a decrease in BSE cases, the 

62 epidemic was not stopped. One suggested explanation for this was that ruminant feed was being cross-

63 contaminated with feed intended for other farmed animals for whom ruminant MBM was still 

64 authorized. In 2001, the feed ban was therefore extended to a prohibition of the use of PAPs of all species 

65 in feed for all farmed animals (i.e. a total feed ban) 6.

66 In parallel, other measures were put in place, including the removal of SRM from the food chain 7. These 

67 measures were clearly justified by the zoonotic character of the disease, its long incubation time and the 

68 impossibility of direct detection of prions in feed 8. 

69 These measures have proved to be key actions to stop the progression of the disease. While the total 

70 number of C-BSE cases reported in the EU was 2174 in 2001, this number has drastically and 

71 continuously decreased to 37 cases in 2010, 21 cases in 2011, 11 cases in 2012, 2 cases in 2013, 3 cases 

72 in 2014, 2 cases in 2015 and only 1 case in 2016 9, 10. Worldwide, 2017 was the first year for which no 
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73 classical BSE case has been reported. However, in the meantime, UK confirmed a new case of classical 

74 BSE in 2018. It is still unclear if the few cases encountered indicate an inadequate implementation of 

75 the feed ban or a spontaneous occurrence of C-BSE 11. This statement concerns the last two cases in 

76 March 2016 and October 2018 affecting animals born in 2011 and 2013, respectively, well after the total 

77 feed ban of 2001. 

78 3. Animal by-products and derived products not intended for human 

79 consumption

80 Since the BSE crisis, the legal framework on the feed ban and utilization of animal proteins in 

81 feedingstuffs has been in continuous development. In order to understand the challenges linked to the 

82 development of analytical methods, it is important to have an overview of the regulations linked to them.

83 3.1. Animal by-product regulations

84 In 2002, the so-called animal by-product legislation, Regulation (EC) No 1774/2002 12, repealed and 

85 replaced by Regulation (EC) No 1069/2009 13, defined animal by-products (ABPs) as “entire bodies or 

86 parts of animal origin or other products obtained from animals, which are not intended for human 

87 consumption, including oocytes, embryos and semen”.

88 This regulation introduced the classification of ABPs into three risk categories that also determine their 

89 subsequent use. Category 1 materials show the highest risk must be destroyed by incineration or 

90 converted into biofuel. In addition to incineration or conversion into biofuel, ABPs of Category 2 can 

91 also be used as organic fertilizers or soil improvers following specific processing. Only Category 3 

92 material may be used for the manufacturing of feed for farmed animals, fur animals or pet food in 

93 accordance with Regulation (EC) No 1069/2009. ABPs of Categories 1 and 2 must be permanently 

94 marked with glyceroltriheptanoate (GTH). The goal of this labelling is to monitor potential 

95 contamination of Category 3 by Category 1 or 2 materials. In order to distinguish them, the term “MBM” 

96 is reserved for animal proteins derived from Category 1 or Category 2 materials whereas the term 
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97 “PAPs” can only be used for Category 3 materials. Moreover, Category 3 materials must undergo a 

98 specific rendering process according to their type 14. 

99 Another important point of the ABP Regulation is the prohibition of intra-species recycling. This rule is 

100 based on the “Species Barrier Concept” which means that transmission beyond the species barrier is 

101 more difficult. This prohibition is of paramount importance in the process of lifting the feed ban on the 

102 use of non-ruminant PAPs in non-ruminant feed 15. This last point underlines the importance of the 

103 availability of species-specific methods to identify feed material of animal origin and ensure feed safety 

104 16.

105 3.2. Use of animal proteins of Category 3 in feedingstuffs: current legislation

106 The prohibition of the use of ABPs of Category 3 in animal feed depends on three factors (Table 1): by-

107 product type, species of origin, and final destination (pets, fur animals or other farmed animals). These 

108 rules are described in Regulation (EC) No 999/2001 6. While the species of origin and the final 

109 destination are two easy-to-understand concepts, by-product type is more complex as it depends on the 

110 constituents of animal origin considered in combination with the production process undergone 14.

111 Table 1 summarizes the current situation about the legal status regarding the use of animal-derived 

112 products in feedingstuffs. To date, ruminant PAPs and ruminant blood products are still forbidden in 

113 any type of feed other than for fur animals or as petfood. Following the lifting of the ban in June 2013 

114 3, non-ruminant PAPs were reauthorized for aquafeed and now supplement non-ruminant blood meal 

115 and fishmeal, which were already permitted. Non-ruminant blood products and fishmeal are also 

116 authorized in feed for non-ruminants other than fish. Fishmeal can also be used in milk replacers for 

117 unweaned calves or lambs. Besides that, non-ruminant gelatin, egg, egg products, milk, milk products, 

118 colostrum and hydrolyzed proteins derived from non-ruminants or from ruminant hides and skins are 

119 authorized in all types of feed. Finally, since July 2017, a closed list of seven insect species (Hermetia 

120 illucens, Tenebrio molitor, Musca domestica, Alphitobius diaperinus, Acheta domesticus, Gryllodes 

121 sigillatus and Gryllus assimilis) has been authorized for use in aquafeed 17. Interestingly, only reared 
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122 insects are authorized 18. Therefore, according to EU regulation 18, these insects are also on their turn 

123 considered as non-ruminant farmed animals and are consequently also submitted to the same animal 

124 regulation rules.

125 When taking into consideration all the regulations cited above, one understands the complexity 

126 regarding the development of analytical methods enabling the correct application of these regulations. 

127 4. Methods of analysis for the determination of constituents of animal origin 

128 for the official control of feed

129 In order to control the presence of unauthorized products of animal origin in feed intended for farmed 

130 animals, analytical methods have been developed 19, 20. These methods are described in Commission 

131 Regulation (EC) No 152/2009 21. Until 2013, official control was performed entirely by light microscopy 

132 (LM) 22. With the reintroduction of non-ruminant PAPs in aquafeed, it was necessary to be able to 

133 identify the species of origin of the PAPs. For this purpose, polymerase chain reaction (PCR) for the 

134 detection of ruminant DNA was added as an official analytical method by amending Annex VI of the 

135 Regulation 23. In what follows, the two methods are described as well as their advantages and limitations. 

136 The operational schemes currently in application are also discussed.

137 4.1. Light microscopy

138 The light microscopic method (LM) is based on the identification of particles such as muscle fibers, 

139 cartilages, bones, horns, hairs, bristles, feathers, eggshells and scales on the basis of typical and 

140 morphologically identifiable characteristics 24. Before the microscopic observations, samples are 

141 prepared according to Annex VI of Commission Regulation (EC) No 152/2009, as amended by 

142 Commission Regulation (EC) No 51/2013 23. 

143 The LM technique is rapid, low-cost and very sensitive with a limit of detection as low as 0.0025 % 

144 (w/w), depending on the matrix and the type of PAPs 25. However, LM requires experienced analysts 

Page 7 of 30

ACS Paragon Plus Environment

Journal of Agricultural and Food Chemistry



8

145 and is unable to determine the species of origin of the detected particles. In the case of bone particles, 

146 microscopy is able to distinguish terrestrial bones from fish bones, but is unable to determine lower taxa 

147 (e.g. cattle, pig, and poultry). Muscle fibers cannot be assigned to a species or a species group. Additional 

148 types of particle such as hairs, feather, eggshells or fish scale can also be observed. The identification 

149 of feather or eggshell particles will indicate the presence of by-products of poultry origin and fish scales 

150 that of fish. Hairs may confirm the presence of by-products of mammal origin and the observation of 

151 their structure may even allow the species of origin to be determined. However, even when such particles 

152 are present, the simultaneous observation of terrestrial bone particles does not exclude the presence of 

153 PAPs of other origin.

154 4.2. Real-time polymerase chain reaction

155 Due to the limitations of LM regarding species determination, and in the context of the partial relaxation 

156 of the feed ban concerning non-ruminant PAPs in aquafeed, it was crucial, before any legislation change, 

157 to have analytical methods able to distinguish ruminant PAPs from non-ruminant PAPs.

158 An ad hoc real-time PCR assay was therefore developed and introduced in the legislation. PCR is based 

159 on the amplification of a particular DNA target specific to a species or taxon (e.g. ruminant). DNA 

160 extraction and amplification have to be performed according to the Standard Operating Procedure (SOP) 

161 established by the EURL-AP 26, 27 as it has to be done in a harmonized way. Up to now, only the ruminant 

162 PCR test is part of the official method linked to Annex VI of Commission Regulation N° 152/2009 but 

163 two other PCR assays were already validated and are ready to be introduced in the legislation (data not 

164 published). They target pig DNA and simultaneously chicken and turkey DNA respectively.

165 Although PCR has limitations in case of DNA degradation, the method developed allows ruminant DNA 

166 to be detected even in highly processed feed materials, thanks to the shortness of the DNA target (85 

167 bp) as well as its multicopy character in a cell 28. Potentially, PCR enables a clear identification to be 

168 made of various species or group of species 29. It is also a very sensitive method and reaches the same 

169 limit of detection as light microscopy. However, although PCR provides information on the genetic 
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170 origin of the DNA present in a feed, it cannot distinguish the cellular origin of the signal (e.g. leucocyte, 

171 osteocyte or myocyte). Therefore, this method is unable to discriminate between authorized and 

172 prohibited feed material from the same species of origin (e.g. milk is an authorized product that will 

173 react positively to the ruminant PCR test).

174 5. Current operational schemes and related analytical gaps

175 Depending on the type of feed being analyzed, the two official methods have to be applied differently. 

176 The operational protocols that have to be followed are described in the SOP for the combination of LM 

177 and PCR 30. The final destination of the compound feed or feed materials determines the operational 

178 protocol that has to be followed. 

179 For the analysis of aquafeed, the two methods are combined depending on the labelling and/or the LM 

180 results (Figure 1). If no terrestrial particle is detected by LM, no further analysis is necessary and the 

181 feed is declared free of prohibited constituents of terrestrial origin. However, if terrestrial particles are 

182 identified or if the feed is known to contain terrestrial PAPs or blood products, ruminant PCR has to be 

183 performed. Following this, the detection of ruminant DNA in the feed leads to a single conclusion: the 

184 presence of prohibited constituents of animal origin. 

185 When compound feeds are considered, a first analytical gap becomes clearly apparent. If a positive 

186 reaction is obtained by PCR using the official ruminant probe, the presence of ruminant DNA is 

187 considered as an indirect evidence of the presence of prohibited constituents of terrestrial origin 30. This 

188 will be correct if the feed contains PAPs of ruminant origin (prohibited in aquaculture), but in the case 

189 of a feed containing milk products, as this product is authorized in aquaculture, the conclusion will be 

190 wrong. In such cases, additional analyses are needed to determine both the species and source of the 

191 animal products 31. Fortunately, such cases have been evaluated as relatively uncommon as dairy 

192 products are rarely used as feed material in aquafeed. However, some producers have also argued that 

193 casein powder may sometimes be used in aquafeed as a carrier of feed additives. The case of an aquafeed 

194 declared as containing non-ruminant PAPs, non-ruminant blood products and casein is a good 
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195 illustration. All these ingredients are authorized in aquafeed. Terrestrial PAPs will be detected by LM 

196 and a PCR analysis will be performed to detect the possible presence of ruminant DNA. The PCR result 

197 will logically be positive and can be explained by the presence of casein (according to the declaration) 

198 obtained from milk and still containing ruminant DNA. However, the additional presence of ruminant 

199 PAPs or ruminant blood products cannot strictly be excluded without complementary analyses. 

200 Currently, for the analysis of feed or feed material intended for farmed animals other than aquaculture 

201 animals and fur animals, LM is sufficient to detect the presence of prohibited constituents of animal 

202 origin, as no PAP of terrestrial origin is authorized for use in such cases. 

203 However, if the ban on the use of non-ruminant PAPs in non-ruminant feed is relaxed in the future, then 

204 the detection of terrestrial particles will not be sufficient to determine if prohibited feed materials are 

205 present or not with respect to prohibition of intra-species recycling. It is very likely that PCR assays 

206 targeting poultry and porcine products specifically will be added to the analytical operational scheme, 

207 as the targets are already validated for this purpose (unpublished data). Figure 2 and Figure 3 outline 

208 possible scenarios for analytical operational schemes in this context and the expected associated gaps.

209 As for aquafeed, with regard to poultry feed (Figure 2) or pig feed (Figure 3), if no terrestrial particle 

210 is detected by LM, no other analysis is necessary and the feed will be declared free of prohibited 

211 constituents of terrestrial origin. However, if terrestrial particles are present, PCR analysis will have to 

212 be performed. 

213 For poultry feed (Figure 2), if poultry DNA is detected, the feed will be declared as containing 

214 prohibited animal material due to the intra-species recycling prohibition. If no poultry DNA is detected, 

215 the presence of ruminant DNA will have to be controlled. If ruminant DNA is present, the current 

216 analytical methods cannot sort out if this response is linked to an authorized or unauthorized material 

217 (or a mix of both). In such case, additional analytical solutions will be needed in order to determine the 

218 tissue or cellular origin of the DNA and confirm the absence of prohibited constituents of ruminant 

219 origin. 
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220 For pig feed (Figure 3), ruminant DNA would be control first with the same pathway as for poultry 

221 feed. If no ruminant prohibited materials are identified, the feed will have to be controlled for the 

222 presence of porcine DNA due to the intra-species recycling prohibition. If no porcine DNA is detected, 

223 no other analysis is necessary and the feed will be declared free of prohibited constituents of terrestrial 

224 origin. However, if porcine DNA is detected, additional methods will again be needed: they will be 

225 required to determine whether the porcine DNA is due to the presence of porcine PAPs or porcine blood 

226 meal, both of which being unauthorized, or due to porcine blood products, which are authorized in feed 

227 for pigs. It is important to underline that, by contrast with the situation in aquafeed, whey powder and 

228 porcine plasma powder are frequently used in piglet feeds 32, making additional analysis crucial in this 

229 case.

230 As described, the combination of LM and PCR methods allowed the reintroduction of non-ruminant 

231 PAPs in fish feed while ensuring feed safety thanks to LM’s capacity to discriminate tissue coupled with 

232 PCR’s capacity to identify species. However, if the use of non-ruminant PAPs in non-ruminant feed is 

233 authorized again in the future, even with the addition of pig and poultry PCR tests, these two methods 

234 will be unable to differentiate between authorized products and unauthorized products. This means that 

235 in some cases, it will be impossible to confirm that prohibited animal products are absent. Therefore, to 

236 meet these requirements, complementary methods need to be developed.

237 6. Alternative methods already investigated

238 Since the beginning of the feed ban relaxation, several methods have been investigated in order to 

239 address these analytical gaps. Apart from LM and PCR, most of the research focused on spectroscopic 

240 or protein-based methods. The advantages and disadvantages of the different approaches and 

241 combinations of them have been discussed in several articles or reviews 16, 19, 22, 24, 29, 33-35. 

242 Spectroscopy techniques were among the first to be investigated, as they are non-destructive and widely 

243 used for in situ analysis in the agri-food sector. Among them, near infrared (NIR) spectroscopy methods 

244 were the ones mostly considered in the context of PAP detection 36, 37. The principle of the technique is 
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245 the measurement of the absorbance of NIR light by the sample. The obtained spectrum gives a spectral 

246 overview of the molecular composition of the sample. This technique has the advantages of being rapid, 

247 easy to use and without long sample preparation steps. The resulting disadvantage is that the spectral 

248 information from a given specific particle is diluted by the information of neighboring particles. This 

249 explains the excessively high limit of detection (LOD) of NIR spectroscopy methods, about 1 % (w/w), 

250 which makes them impracticable in the context of the prohibition of ABPs. 

251 NIR microscopy (NIRM) 38-43, NIR hyperspectral imaging 44-46 and Raman imaging 47 were then studied. 

252 These techniques combine the advantages of microscopy and spectroscopy techniques and are based on 

253 the NIR spectral absorbance or Raman scattering signatures of individual particles. The spectral 

254 signatures are then compared to a library database using chemometric analysis. In contrast to 

255 microscopy, the result is therefore independent of the operator's interpretation. When these techniques 

256 are applied to the sediment part of the sample, a LOD of less than 0.1 % (w/w) can be obtained. Even 

257 though these techniques can identify and discriminate terrestrial particles from fish ones, this distinction 

258 is not sufficient to control the correct application of the feed ban in the context of its future relaxation. 

259 More recently, synchronous fluorescence spectroscopy (SFS) was used for the detection of hemoglobin 

260 in various animal feeds through the identification of a hemoglobin signature 48. SFS is an interesting 

261 method to characterize proteins as it takes advantage of intrinsic characteristics of their amino acid 

262 composition: their fluorescence. The limit of detection of hemoglobin powder or blood meal ranged 

263 between 0.5 % and 1 % (w/w) depending on the feed material in which they are. Even if this approach 

264 could be useful as a screening method for the detection of hemoglobin in feed, the method, as it is 

265 currently proposed, is not applicable in the control of the feed ban because it cannot tell what the species 

266 of origin is.

267 Proteomics is the second strategy investigated. Proteomics is defined as the study of an organism’s 

268 proteome, just as genomics studies its genome. The proteome is the set of all expressed proteins in a 

269 cell, tissue or organism 49. The study of the proteome will reflect both the genome and the cells’ 

270 environment as the gene’s expression and the post-translational modifications (PTM) of the proteins is 
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271 influenced by various conditions such as the type of cells, the stage in the life cycle or different 

272 environmental conditions. The two main techniques currently used in proteomics are based on 

273 immunoassays or mass spectrometry. 

274 Immunoassays have been widely studied in the context of PAP identification 50-55. These techniques are 

275 based on the specific detection of an antigen by the use of antibodies. As antigens are in this case proteins 

276 or peptides, they can be selected in order to obtain a tissue- and species-specific method, making these 

277 techniques theoretically well adapted to the specific detection of animal proteins. Moreover, 

278 immunoassays are rapid, easy and cheap methods and do not require a highly trained operator. However, 

279 the main disadvantage of immunoassay techniques is the sensitivity of proteins to denaturation by high-

280 temperature processing. Under high temperatures, most of the original tertiary structure of the proteins 

281 is modified. Many epitopes recognized by antibodies on the native molecule are therefore lost. Hence, 

282 in the context of PAP detection, thermostable antigens capable of withstanding severe rendering 

283 conditions must be chosen. Unfortunately, to date, immunoassays developed for PAP detection have not 

284 been able to reach the LOD of 0.1 % (w/w) while keeping a good degree of specificity. For the detection 

285 of blood-derived products in particular, specific studies have been conducted on the development of 

286 immunoassays targeting bovine thermostable blood proteins by Rao and Hsieh 56, Ofori and Hsieh 57 

287 and Hsieh, et al. 58 but, as yet, no robust method is available. 

288 Mass spectrometry (MS)-based proteomics is another protein-based method. Keeping the advantage of 

289 immunoassays regarding tissue and species specificity, this method bypasses the problem related to loss 

290 of conformation by focusing its detection on the mass-to-charge ratio (m/z) of its primary structure, the 

291 amino acid sequence. In the context of PAP detection, studies have initially focused on the identification 

292 of specific peptide biomarkers derived from the main PAP proteins 59-62: myosin, troponin I, osteocalcin, 

293 collagen and its hydrolyzed form, gelatin. In the last two years, the development of mass-spectrometry 

294 based methods applied to PAPs identification has benefited from increased interest. Investigations were 

295 conducted for the development of targeted methods based on the detection of peptide biomarkers 63-70 or 

296 untargeted approaches using direct spectral library comparisons 71. Generally, the 0.1 % (w/w) level of 
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297 detection was reached for the targeted MS approaches. The use of triple quadrupole mass spectrometers 

298 seems to be particularly adapted for use in routine analysis as this instrument is widely available in feed 

299 testing laboratories 72 and allows excellent analytic sensitivity for selected biomarkers 63.

300 7. Introducing new feed ingredients generates new gaps

301 Regarding the quest for protein source in feed, alternative sources have been considered for years by the 

302 industry and the authorities for sustainable and economic purposes. However, the introduction of new 

303 proteinaceous feed materials may also generate gaps in the current established analytical combination 

304 of methods, possibly even leading to more complex analytical schemes. The recent authorization of 

305 insect PAPs in aquafeed 17 illustrates perfectly this concern. Effectively, this introduction was supported 

306 by European authorities without beforehand having reliable methods for legal enforcement 35, 73. 

307 Therefore, this apparently minor change caused multiple problems of analyses and legal interpretation. 

308 For several reasons, the current combination of LM and PCR does not support the official controls that 

309 should be put into place for proper identification of insect derived proteins. First, classical 

310 tetrachloroethylene (TCE) sedimentation does not allow insect fragments to be concentrated because of 

311 their lighter density. To overcome this issue a dedicated double sedimentation was recently developed 

312 17 and validated 74. Secondly, the validation study revealed that precise identification of insect PAP 

313 fragments requires new expertise to be gained by microscopists before enabling any legal 

314 implementation 75. Thirdly, as already mentioned, LM only authorizes the categorization of animal 

315 remains into “terrestrial animals” and “fish”. The proper existence of only two categories will generate 

316 conflicting situations and lead to erroneous alerts from control authorities because it lacks taxonomic 

317 precision. In order to fix this, a third category, “terrestrial invertebrates” will need to be introduced into 

318 the legislation 17. The introduction of such third category will undoubtedly affect the current observation 

319 protocols and increase the workload. Therefore, conditions on when the presence of insects PAPs should 

320 be investigated must also be stated in the legal texts or the related SOP 30. Fourth, since only a closed 

321 list of seven insect species is authorized so far, controls need to ensure the authenticity of species 

322 incorporated as feed ingredients 17, 73, 76. In this respect, PCR methods offer complementary information 
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323 for species determination and need to be applied. Although to date five insect species out of the seven 

324 authorized would be identifiable by specific DNA targets 77-80, further developments and validations are 

325 still expected. The type of PCR technique used may also be questioned due to the multiplicity of targets 

326 that would be necessary, and so far real-time PCR has been commonly used but multiplex PCR for 

327 simultaneous detection is proposed 80, provided thermal parameters of annealing for all primers can be 

328 encountered, which is an additional challenge to solve. However, even if the seven authorized species 

329 could be characterized by DNA-based techniques, the absence of unauthorized species remains to be 

330 proved. Whereas checking for the absence of ruminant DNA with a single target was eased by the low 

331 taxonomic level required (suborder), enforcement of control for the presence of unauthorized insect 

332 species will be challenging because of the high taxonomic level (class) and because of the omnipresence 

333 of insects in all environments and as a source of contamination. Therefore, alternative methods are 

334 developed for insect detection to complement the existing ones. NIR spectral imaging 81 could be used 

335 as screening method based on the fatty acid profiles of insects against other PAPs from mammals, fish 

336 or crustaceans. Mass spectrometry-based proteomics, tested on several authorized species, successfully 

337 allowed specific discrimination 82 although, for the future, dedicated spectral libraries still need to be 

338 created or completed for efficient data mining. As to reading, the single authorization of insect PAPs in 

339 aquaculture has created new analytical gaps, which, once filled by effective methods, will change the 

340 paradigm of official controls. 

341 8. Future prospects

342 This review went through the present-day situation and the future challenges to ensure feed safety 

343 regarding the use of ABPs. In the context of a future relaxation, apart from the combination of the two 

344 official methods, at least a third method has proved necessary to discriminate the presence of authorized 

345 or prohibited feed material from the same origin. Several developments of analytical method have been 

346 made recently for their detection. Currently, MS-based proteomics seems to be the most promising 

347 approach to solve the identified gaps. The use of a multi-targeted MS/MS strategy (Figure 4) including 

348 multiple peptide biomarkers would allow applying it to the control of several animal ingredients or 
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349 materials by the determination of the tissue/cellular origin of the DNA. Only the interpretation of the 

350 results would be adapted depending on the feed destination with respect to the regulation. The peptide 

351 biomarkers used could be selected taking into account each regulation modification, resulting in an 

352 interesting flexibility of this analytical approach.

353 Looking to the example of aquafeed proposed in section 5, the presence vs the absence of prohibited 

354 materials and the origin of the ruminant DNA detected by PCR could be explained by a MS analysis 

355 using biomarkers specific of forbidden ingredients like blood products and PAPs.     

356 Another reflection arising from this review is that ABPs regulations do not consider the analytical 

357 limitations. On the one hand, this is a good thing as it forces the analytical resource to constantly go 

358 beyond the limits but, on the other hand, it also opens the possibility for fraud due to the lack of 

359 methodology. An adaptation of the legislation, while maintaining the maximum safety, but taking into 

360 account the analytical difficulties, could avoid many frauds. For example, a ban on the use of dairy 

361 products for fish, while the use of this kind of feed material is of no interest in this case, would simplify 

362 the analytical scheme for aquafeed. The argument of not being able to ban something non-dangerous 

363 could be circumvented by the precautionary principle in order to avoid the presence of risk material. 

364 Restrictions regarding the use of porcine blood products in porcine feed would also make feed security 

365 easier. While maintaining the use of the porcine plasma powder in piglet feed, the prohibition of porcine 

366 hemoglobin powder would bridge the gaps. Indeed, hemoglobin peptides could be used in MS analysis 

367 to detect the presence of porcine PAPs or porcine blood meal while distinguishing them from the use of 

368 porcine plasma powder in pig feed.

369 Finally, another analytical way to guarantee the food and feed safety could be the direct prion detection. 

370 Novel approaches based on the amplification of prions have evolved considerably in recent years. These 

371 techniques exploit the ability of PrPsc to induce a conformational change of PrPc, so that small amounts 

372 of PrPsc could be amplified to a detectable concentration 83 by protein misfolding cyclic amplification 

373 (PMCA) and real-time quaking-induced conversion (RT-QuIC). These methods are currently developed 

374 on a large range of tissues (e.g. brain, spleen), biological fluids (e.g. blood, urine, cerebrospinal fluid) 
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375 and environmental materials (e.g. soil, grass, water) 84 and reach sufficient sensitivity for prion detection 

376 in blood in the asymptomatic phases 85. Future research could lead to expanding the scope of these 

377 techniques to include feed analysis. These developments would be of particular interest in the context 

378 of controlling the removal of Category 1 material (including SRM) from the food chain. As the detection 

379 of these dangerous materials is based on their marking with glyceroltriheptanoate (GTH), fraud 

380 consisting in the absence of marking makes them undetectable. The direct detection of prions would 

381 overcome this problem.
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642 Table

643 Table 1 Summary of the animal-derived products currently authorized in feedingstuffs (inspired by TSE 
644 Roadmap II 86

Animals to which the feed material is intended

Farmed animals

Category 3 by-product type Ruminants

Non-
ruminants 

(except 
fish)

Fish

Pets and 
fur 

animals

Ruminant PAPs including blood meal NA NA NA A

Ruminant blood products NA NA NA A

Gelatin from ruminants NA NA NA A

Non-ruminant PAPs other than blood 
meal and fish meala NA NA A A

Non-ruminant blood meal NA NA A A

Fishmeal NA* A A A

Non-ruminant blood products NA A A A

Insect PAPsb NA NA A A

Non-ruminant gelatin A A A A

Egg, egg products, milk, milk products, 
colostrum

A A A A

Hydrolyzed proteins from non-ruminants 
or from ruminant hides and skins

A A A A

Hydrolyzed proteins other than those 
derived from non-ruminants or from 
ruminant hides and skins

NA NA NA A

Di- and tricalcium phosphate of animal 
origin

NA A A A

Animal proteins other than the 
abovementioned ones

NA A A A

645 A, authorized; NA, unauthorized; 
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646 *, milk replacers containing fishmeal and intended only for unweaned ruminants are authorized; a, 
647 authorized since June 2013; 
648 b, authorized since July 2017.
649 Figure Captions

650 Figure 1. Operational protocol for the analysis of feed or feed material for aquaculture animals and current 
651 analytical gap

652 Figure 2. Analytical gaps in the analysis of feed or feed material for poultry in the context of a future lifting 
653 of the feed ban

654 Figure 3. Analytical gaps in the analysis of feed or feed material for pigs in the context of a future lifting 
655 of the feed ban

656 Figure 4. Resolving the analytical gaps by the use of multi-targeted MS/MS strategy for the determination 
657 of the tissue/cellular origin of the DNA
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Figure 1. Operational protocol for the analysis of feed or feed material for aquaculture animals and current 
analytical gap 
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Figure 2. Analytical gaps in the analysis of feed or feed material for poultry in the context of a future lifting 
of the feed ban 
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Figure 3. Analytical gaps in the analysis of feed or feed material for pigs in the context of a future lifting of 
the feed ban 
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Figure 4. Resolving the analytical gaps by the use of multi-targeted MS/MS strategy for the determination of 
the tissue/cellular origin of the DNA 
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