Development of a framework integrating TEA and LCA: advances and challenges

Antoine Merlo

Outline

Introduction

- Process description
 - > Electrodeposition
 - > Plasma vapour deposition
- Results and discussion
 - > LCA
 - Costs
- > Outlook

Conclusion

Introduction

IGINFFRING

 Pulsatec project : show the potential of new coating technology

- Plasma vapour deposition w/ HiPIMS generator
- ULiège role : show the economic and environmental performance of the technology
- Life cycle assessment (LCA) and Techno-economic analysis (TEA)

Introduction

- Evaluation of cost and environmental impact of a chromium coating
 - Protective and frictionless coating
- PVD compared to electrodeposition

- Coating of a stainless steel cylinder
- Inventory of inputs and emissions

Introduction

- Integration of LCA and TEA in joint evaluations still a new field
- Environmental impacts and cost as weighed objectives
- Parameters influence

ENGINEERING

Multi-objective analysis and optimization

Other example : OSMOSE from EPFL

Outline

Introduction

> Process description

- > Electrodeposition
- > Plasma vapour deposition
- Results and discussion
 - > LCA
 - Costs
- > Outlook

Conclusion

Process description : electrodeposition

- Most widespread technology
- Piece immersed in acid bath
- Voltage applied to reduce chromate ions to metallic chromium

Process description : electrodeposition

- Cheap and easiest to use
- Push by the EU to replace this technology
- Cr⁶⁺ highly toxic
- High use of solvents and liquid waste generation
- Safety and environmental risks

Process description : electrodeposition

Process description : PVD

- Solvent-free process
- Virtually no emissions
- Higher power consumption (vacuum)
- Low deposition rate
 25µm/h for ED vs ~15µm for PVD

Advantages and disadvantages

-Almost no emission

-Solvent-free

-Ease of use

-Homogeneous coatings

-Ability to treat more complex surfaces

-Safe

-Easily installed

-Need for pumping equipment

-Pricier

-Lower deposition rates

-Higher investment and maintenance costs

-Hard to scale up

- Lower volume of production

-Cheap

-Easy

-Well tried process

-High deposition rates

-Easily scalable

-Lots of aqueous waste

-Low throwing power

-Cracking

-Need for a larger installation

-Unsafe

- High number of steps and piece preparation time

Outline

Introduction

- > Process description
 - > Electrodeposition
 - > Plasma vapour deposition
- Results and discussion
 - > LCA
 - > Costs
- > Outlook

Conclusion

LCA

- LCA : assess all emissions at every step of the production
- Functional unit : coating of a cylinder (d = 40cm, h =80cm, 20µm of chromium)
- Evaluation of the environmental impacts of these emissions

Processes parameters breakdown (ED)

- Water usage (bath, rinsing, evaporation) : 3401
- Acids/bases (rinsing, degreasing) : 71
- Total power usage (heating, venting, plating, ...): 20 kWh
- Chromate usage : ~450g (~150g chromium)
- Deposition time : 48 min
 - Chromium waste (to air, grindings, to water): a few gr

Processes parameters breakdown (PVD)

- Water usage (rinsing) : 20I
- Argon usage : 14000 sccm
- Total power usage (vacuum, plasma, electronics ...): 40 kWh
- Chromium usage : ~150g chromium
- Deposition time : 70 min
- Chromium waste (chromium in chamber): a few gr

LCA Results

LCA Results

- Main impact factor : power generation
- Higher power consumption from PVD = Higher impact
- 100% renewable power make PVD a slightly better choice
- Need for the impact of waste treatment in ED

Cost breakdown

Costs ~10% higher for PVD!

Main factor : wages (in Belgium)

Outline

Introduction

- > Process description
 - > Electrodeposition
 - > Plasma vapour deposition
- Results and discussion
 - > LCA
 - Costs
- > Outlook

Conclusion

Outlook

- Current goal : extend LCA and economic analysis boundaries to include equipment impacts and investment as well as further waste streams processing
- Long term goal : develop a framework integrating LCA and TEA simultaneously as impact indicators of processes (suited for PVD)
- Integrate HiPIMS technology

Framework structure

- Parameters (xi) → Process flows (yi)
- yi \rightarrow Impacts (f(yi)) and cost (g(yi))
- $Min(\chi(f(y),g(y)))$

Need for a PVD process modelling tool

No tool for process modeling of PVD exists at the moment !

Two options: - adapt existing software (NASCAM, Simtra) for our process engineering needs

 make an in-house software adapted for the development of the framework

Outline

Introduction

- > Process description
 - > Electrodeposition
 - > Plasma vapour deposition
- Results and discussion
 - > LCA
 - Costs
- > Outlook

Conclusion

Conclusions

PVD as it is does not compare favourably to ED

- Development of a framework to show the strengths of the technology in cases where ED has shortcomings (complex shapes, less conductive surfaces,...)
- Need for more data and a more extensive analysis of the process
- In the future : integration of LCA and TEA in a framework

Thank you for your attention!

Cost breakdown

Material costs (PVD)			
Average chromium			
price	90	\$/kg	
Argon price	10	£/m³	
Chromium usage	143,759	g	
Argon usage	200	sscm	
Deposition time	1,176	h	
Total cost	13,29707	€	
Personnel costs			
Deposition time	1,176	h	
Preparation time	15	min	
Total workload	1,426	h	
Hourly pay	39,6	€	
Total cost	56,4696	€	
Equipment costs			
Electricity costs	0,2	€/kwh	
Electricity usage	40,29412	kwh	
Miscellaneous	4	€	
Total cost	12,05882	€	
Total cost	81.82549		

Coûts matériels ((ED)		
Average chromate price	20 \$/kg		
% chrome	0,320988		
Water price	5,2 €/m³		
Chromate usage	447,8646 g		
Chromium usage	143,759 g		
Water usage	340 L		
Deposition time	1,176 h		
Total cost	9,837632€		
Personnel cos	ts		
Deposition time	0,8 h		
Preparation time	30 min		
Total workload	1,3 h		
Hourly pay	39,6€		
Total cost	51,48€		
Equipment costs			
Electricity costs	0,2€/kwh		
Electricity usage	20,06995 kwh		
Miscellaneous	8€		
Total cost	12,01399€		
Total cost	73,33162€		

CHEMICAL ENGINEERING

