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Abstract
Frequency Response Functions (FRFs) residues have been widely used in time to update Finite Element models
[2, 3, 4, 5, 6, 11, 12, 14, 15, 16]. Major reasons for this is that FRFs are very sensitive to damping properties
at resonance peaks, local modes influence is included and no modal analysis is required. Nevertheless, it is
well known that due to their nature, the frequency responses may change its order of magnitude very rapidly
for small parameter or frequency changes. This situation may cause serious discontinuities in the topology
of the objective function, causing the updating strategy to diverge or to find a local non-physical minimum
[5, 15, 18]. A primary tool for the correlation of FRFs is the Frequency Domain Assurance Criterion [19].
This technique introduces the concept of frequency shift between the frequency response shapes of a reference
model (the experimental structure) and a perturbed model (an initial non-updated FE model). Such a concept
opens the way for using residues at different frequencies. For instance, in reference [6] the residue is composed
by point FRFs at anti-resonances. This paper introduces a general FRF-based model-updating technique, which
is focused in using stable residues during the interactive optimization procedure. A benchmark case from the
Cost F3 action is used to assess the goodness of the method compared to other well known methods.

1 Introduction

In recent years, a significative amount of work in the
field of structural dynamics has dealt with evaluating
and reducing the distance between numerical models
and experimental structures, in terms of their dynamic
signature. Generally speaking, finite element model
updating may be considered as an optimization prob-
lem and from this point of view, it is important to:

• formulate appropriate cost functions showing a
smooth topological search space with no local
minima around the global minimum.

• guarantee sufficient sensitivity of the objective
with respect to the design parameters.

• select the minimum amount of design parame-
ters to avoid prohibitive computation times and
to increase the conditioning of the problem.

• scale the design parameters in order to avoid nu-
merical problems.

The use of the forced dynamic responses of a sys-
tem in the updating procedure seems attractive since:

• direct measures have a good level of confidence,

• the modal identification effort is avoided, as well
as the errors it produces.

• the redundancy of information may be exploited
to reduce noise effects,

• the operating deflection shapes show the influ-
ence of the local modes, which are known to be
more sensitive to the presence of damage,

• damping effects are readily observed,

• operating deflection shapes are a property of lin-
ear systems, so averaging may be used.

In this paper we investigate an updating strategy
that looks forward to alleviate problems that appear
when using frequency response functions as updating
residue. First we discuss the state-of-the art on the
correlation issues and then we explore current updat-
ing techniques. This lead directly to a method which
shows very good convergence properties.
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2 Previous work

2.1 Correlation

Correlation in the field of model updating is under-
stood as the set of techniques that allows us to mea-
sure the differences that exist between the responses
of the model and those of the experimental structure.
A primary tool for correlation of the operating deflec-
tion shapes is the Frequency Domain Assurance Cri-
terion [19], which is presented in what follows.

Let us consider a reference system with stiffness
matrixK and mass matrixM; and a perturbed system
with matricesK∗, M∗ which follow:

K∗ = αK (1)

M∗ = M

whereα > 0 is a perturbing parameter (termed as
stiffness factor[15]).

It can be easily proven that:

H∗
i

(√
αωi

)
=

1
α
Hi (ωi) (2)

whereH andH∗ are the reference and perturbed dy-
namic flexibility matrices, respectively:

Hi=
(
−ω2

i M+jωiC + K
)−1

= Z−1
i (3)

Equation (2) shows that a shift in frequency(√
α− 1

)
ωi

and a new scale factor appears on all the operating de-
flection shapes (each column inHi) and, what is more
important, a direct correlation exists for both operat-
ing deflection shapes if thisfrequency shiftis taken
into account.

In a general situation, and referring to figure (1),
it makes sense to compare the operating deflection
shapes that show the best mutual agreement, consid-
ering frequency shift. It should be pointed out that
usually, as several parameters at elementary levels are
perturbed, each one of these parameters will shift the
eigenfrequencies in different directions so that an av-
erage frequency shift exists for each operating deflec-
tion shape. Correlation methods based on modal in-
formation (like MAC [1] for instance) implicitly take
the frequency shift into account, since they pair mode
shapes at different frequencies: referring again to fig-
ure (1), the correlated mode pairs associated are not
at the same eigenfrequencies.

In reference [17] it is proposed to measure the cor-
relation between two operating deflection shapes at
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Figure 1: Frequency response function of the refer-
ence and perturbed systems

the same frequencies. In this case, a vector of corre-
lation is obtained.

Based on the frequency shift mentioned above, we
may measure the closeness between measured and
synthesized operating deflection shapes by using the
following correlation criterion:

FDAC(ωi, ωj) = ±

√√√√√√
(
hH

j h̄i

)H (
hH

j h̄i

)
(
hH

j hj

) (
h̄H

i h̄i
) (4)

where:
H indicates the conjugate transposed,
ωj corresponds to the frequency at which the nu-

merical operating deflection shapehj is calculated,
ωi corresponds to one frequency at which the ex-

perimental operating deflection shapeh̄i was mea-
sured experimentally (the bar indicates that it is mea-
sured),

and± indicates the relative phase of the operating
deflection shapes.

The so-called Frequency Domain Assurance Cri-
terion (FDAC) can be regarded as equivalent to the
MAC in the frequency domain. It follows from equa-
tion (4) that FDAC values are limited to the interval
[−1, 1]. A value of 1 means perfect correlation,0 no
correlation at all, and−1 perfect correlation but a rel-
ative phase of180o.

From FDAC, it is possible to define thefrequency
shift residue:

∆ω(ωj) = ωj
i − ωj (5)

to measure the distance between the model and the
test structure.ωj represents the selected experimental
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Figure 2: FDAC for a stiffness factor equal 2

frequency, andωj
i is the frequency at which FDAC

reaches its maximum for all frequencies.
The evaluation of equation (4) for a given set of

analytical frequencies and measured frequencies re-
sults in the FDAC matrix. A perfectly updated model
will have only positive unitary values on the axis
ωi = ωj . The special case considered in equation (1)
appears clearly in the FDAC matrix as shown in fig-
ure (2). Thestiffness factormay be estimated easily
from the slope of the line (ωj

i , ωj). The lines of dis-
continuity in each frequency axis represent the eigen-
frequencies. Thus, it may also be utilized for modal
identification purposes.

Several other works deal with correlation issues
using forced responses: [8] introduces a technique
where the criterion mixes operating deflection shapes
and mode shapes to obtain directly the so called cor-
related mode pairs between the model responses and
the experimental data. [11] uses a version of FDAC
at resonances that uses only the imaginary part of the
operating deflection shapes; in this way an increased
sensitivity to damping is obtained.

2.2 Model Updating

It is well known that dynamic flexibility is a func-
tion of frequency which readily changes in ampli-
tude. Therefore, a residue based on the difference be-
tween experimental and numerical operating deflec-
tion shapes may be unstable, leading to numerical dif-
ficulties as reported in [5, 15]. References [2, 4, 10]
avoid the problem by considering a residue using a
log-least squares residue between test and model fre-

quency response functions. Other methods use the
forced responses directly [15, 16].

All methods use residues between the experimen-
tal and analytical operating deflection shapesat the
same frequency(ies). In what follows, an improve-
ment to these approaches will be introduced.

Let us assume the existence of the system matrices
K∗, C∗ andM∗ with the same properties as the cor-
responding analytical matrices. The dynamic equilib-
rium equation in the frequency domain is written as:(

−ω2
i M

∗ + jωiC∗ + K∗
)
h∗

i = f (6)

and for the finite element model:(
−ω2

i M + jωiC + K
)
hi = f (7)

Zihi = f

whereh∗
i is the assumed operating deflection shape

of the actual structure;hi is the operating deflection
shape of the model, andf is the unitary vector of ex-
citation,f = ek. For sake of conciseness the indexk
has been dropped fromhi.

Keeping model updating in mind, a natural objec-
tive function to be minimized is the output residue
computed at one or several frequency(ies)ωi:

min
p
‖εdi

‖2 (8)

with
εdi

= hi − h∗
i (9)

Note that for the moment we do not handle the fre-
quency shift between the operating deflection shapes.

In order to solve problem (8), the forced response
of the model may be approximated with a truncated
Taylor series expansion in terms of the parameter cor-
rection vectorp (with np parameters):

hi(p) = hi +
np∑
j=1

∂hi

∂pj
pj (10)

The derivative of the forced response∂hi
∂p is

a highly discontinuous, non-monotonous function.
This limits the approximation severely as it is re-
ported in references [5, 15]. We can observe the dis-
continuity in the derivative ofHi by looking at the
computations needed to obtain it:

∂Hi

∂pj
= −Hi

∂Zi

∂pj
Hi (11)

As can be seen in equation (11), the derivative de-
pends twice onHi. Hi presents a discontinuity at
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each resonance, and so does its derivative. Updating
methods based on equations (9 and 10) will be highly
unstable:

np∑
j=1

∂hi

∂pj
pj = hi − h∗

i (12)

An alternative objective function that avoids the
computation of equation (11), may be based on the
minimization of the input errors (or force errors) in
the equation of motion, that is:

min
p
‖εfi

‖2 (13)

with
εfi

= Ziεdi
= ek − Zih∗

i (14)

Similarly, the Taylor series expansion ofZi is used
to solve the problem (13):

Zi(p) = Zi +
np∑
j=1

∂Zi

∂pj
pj (15)

This leads to the following updating equation: np∑
j=1

∂Zi

∂pj
pj

h∗
i ≈ ek − Zih∗

i (16)

An approximative equality has been written be-
cause the design parameters vectorp may be an in-
complete list (and also biased) of the true parameters
p∗. Note that the measured̄hi always include some
noisen:

h̄i = h∗
i + n (17)

that will inevitably perturb the updating equation, so
that it is more correct to write: np∑

j=1

∂Zi

∂pj
pj

 h̄i ≈ ek − Zih̄i (18)

The noise termn appears on both sides of the
equation multiplied by∂Zi

∂p andZi respectively. This
couples the noise in the updating equation and may
induce biased and unstable results. To overcome the
situation, a convenient weighting matrix may be em-
ployed. If equation (18) is pre-multiplied byHi, it
becomes:

Hi

 np∑
j=1

∂Zi

∂pj
pj

 h̄i ≈ hi − h̄i (19)

which can be expressed as:

Ap = b (20)

with

A = Hi

[
∂Zi
∂p1

h̄i, ..., ∂Zi
∂pnp

h̄i

]
b = hi − h̄i

Note that the right hand side in equation (19) is the
output residue that also appears in equation (12). The
improvement is that the use of∂hi

∂p is avoided.Zi is a
linear or quasi-linear explicitfunction of the parame-
ters [15] so its derivative∂Zi

∂p shows a smooth behav-
ior; and its computation is straightforward. The in-
troduction ofHi reduces the effects of the noise term
and improves the conditioning of the formulation [9].
Equation (19) may be evaluated for a set of frequen-
cies, in order to obtain the correctionsp. These will
define a new model, which will also be updated un-
til the residuehi − h̄i stabilizes at a minimum. Note
also that each column in the matrix of coefficientsA
corresponds to the shape adopted by the structure ac-
cording to the model for the external force configura-
tion:

∂Zi

∂pk
h̄i (21)

The force (21) only operates in the degrees of free-
dom associated to the substructurek. If the substruc-
tures being updated are close in space, their effects on
the global dynamic behavior will be similar. This may
generate a set of columns almost linearly dependent in
the left hand side of equation (19), and the problem of
finding the rightp becomes ill-conditioned. To allevi-
ate the problem, parameters should actuate on larger
substructures ormacro-elementsinstead of single fi-
nite elements.

Model updating using equation (19) does, however
have its own difficulties. If for instance:

‖hi‖ >>
∥∥h̄i

∥∥ (22)

occurs (and this may happen easily during the itera-
tions due to the nature of the dynamic flexibility, see
figure 3), then the right hand side of (19) becomes
unbalanced. This may not be the case at the first iter-
ation if the user chooses the adequate updating fre-
quencies. But, at intermediary iterations steps,hi

may become close to a resonance frequency so that its
amplitude increases drastically. Some common prac-
tice rules are given in references [15, 20]:

• choose updating frequencies at the foot of exper-
imental peaks, and

• avoid frequencies between corresponding ana-
lytical and experimental resonances.
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Figure 3: Problems during the iterations

The first rule assures a good sensitivity, according
to equation (11). The second one avoids the prob-
lem of amplitude differences, but implies that a modal
analysis has been performed. The implementation
mustrevise at each iteration step to check that the cho-
sen frequencies comply with these rules.

Other current approaches are presented in refer-
ences [6] and [11] respectively. The first one presents
a method where a residue is built between numerical
and experimental anti-resonances; thus considering
the frequency shift for each degree of freedom. The
second reference introduces a strategy that defines a
residue between numerical and experimental operat-
ing deflection shapes at different frequencies (at the
resonances). The residue is built using the FDAC
technique. They also use the imaginary part of the
shapes in order to improve the updating of damping
parameters.

3 Improved Model Updating

Taking into account the considerations described in
§2.1, instead of comparing measured and analytical
operating shapes at the same frequencyωi, the idea
developed here is to define a more balanced residue.
For this purpose, let us use the following residue:

min
p

∥∥∥ε′di

∥∥∥2
(23)

with
ε′di

= hj − h∗
i (24)

where two different frequencies are considered:ωi

for the experimental operating deflection shape and
ωj for the numerical operating deflection shape.

It is easy to show that:

Z∗
i − Zj = ∆Z∗

i + j (ωi − ωj)C−
(
ω2

i − ω2
j

)
M
(25)

This allows us to express a new force residue as:

ε′fi
= Ziε

′
di

= −∆Z∗
i h

∗
i + j (ωi − ωj)Ch∗

i −(
ω2

i − ω2
j

)
Mh∗

i

taking into account noise effects:

ε′fi
≈ −∆Z∗

i h̄i + j (ωi − ωj)Ch̄i −(
ω2

i − ω2
j

)
Mh̄i

and to alleviate the noise coupling,Hj is used:

Hjε
′
fi

≈ −Hj∆Z∗
i h̄i + j (ωi − ωj)HjCh̄i −(

ω2
i − ω2

j

)
HjMh̄i

or

hj − h̄i ≈ Hj∆Z∗
i h̄i + j (ωi − ωj)HjCh̄i −(

ω2
i − ω2

j

)
HjMh̄i

Reordering

Hj∆Z∗
i h̄i ≈

(
hj − h̄i

)
− j (ωi − ωj)HjCh̄i

+
(
ω2

i − ω2
j

)
HjMh̄i

and substituting the approximation to the exact∆Z∗
i :

Hj

 np∑
j=1

∂Zi

∂pj
pj

 h̄i ≈
(
hj − h̄i

)
− (26)

j (ωi − ωj)HjCh̄i +(
ω2

i − ω2
j

)
HjMh̄i

The right hand side of equation (26) is composed
of a residue representing the difference in the operat-
ing shapes plus the terms penalizing their difference
in frequency. Note that ifωi = ωj , equation (26) is
identical to equation (19).

3.1 Model reduction

The problem of model matching is addressed here
by using dynamic reduction of the model matrices at
each frequency. The reduced matrices are obtained
through:

M̃i = TT
i MTi (27)

Z̃i = TT
i ZiTi (28)
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whereTi corresponds to the operator of the dynamic
expansion technique [13] (superscript˜ is used for all
variables related to the reduced model).

An advantage of this reduction approach is that it
avoids approximations in the dynamic response of the
reduced system:

H̃i = Hmm(i) (29)

wheremm represents the measured partition of de-
grees of freedom.

In order to use equation (26) we need to find also
∂Z̃i
∂pk

. The dynamic flexibility matrix of the reduced
model is by definition:

H̃i = Z̃−1
i (30)

and the sensitivities of the reduced dynamic stiffness
with respect to the design parameters are obtained
through the identity relationships:

∂Hi

∂pk
= −Hi

∂Zi

∂pk
Hi =

[
δHk

mm(i) δHk
mo(i)

δHk
om(i) δHk

oo(i)

]
(31)

∂Zi

∂pk
= −Zi

∂Hi

∂pk
Zi (32)

whereo represents the unmeasured partition of de-
grees of freedom.

Recalling that

δHk
mm(i) =

∂H̃i

∂pk
(33)

leads to:

∂Z̃i

∂pk
= Z̃i δHk

mm(i) Z̃i (34)

thus, problem (19) is implemented using the fol-
lowing equation:

H̃i

 np∑
j=1

∂Z̃i

∂pj
pj

 h̄i ≈ h̃i − h̄i (35)

The improved method (26) is implemented using:

H̃j

 np∑
j=1

∂Z̃i

∂pj
pj

 h̄i ≈
(
h̃j − h̄i

)
− (36)

j (ωi − ωj) H̃jC̃h̄i +(
ω2

i − ω2
j

)
H̃jM̃h̄i

A drawback of any method based on the reduction
(27) is that it is valid only at one frequencyωj ; and
several frequencies may be used to handle noise.

Figure 4: The GARTEUR structure
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Figure 5: Beam elements model

4 Example

The model updating method proposed here is tested
with a benchmark from the COST F3 Group1. The
GARTEUR2 structure is shown in figure 4. It con-
sists of 6 aluminium beams with rectangular cross
sections which represent a typical aircraft design. The
total mass of the structure is 44 Kg. In order to in-
crease damping a viscoelastic tape bounded the wing
upper surface and was covered by a thin aluminium
constraining layer. The structure was suspended with
soft cords in order to assure correct free-free bound-
ary conditions. The FE model is shown in figure 5
and considers 35 Euler-Bernoulli elements (216 de-
grees of freedom). 24 experimental FRFs were used
as input for the model updating procedure. Excitation
actuated at the end of the right wing.

1European COoperative on Science and Technology

2Group for Aeronautical Research and Technology in EU-
Rope. See ref. [7].
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Mode no Exp (Hz) FE (Hz) MAC df %
1 6.38 5.80 0.995 -8.94
2 16.10 15.38 0.988 -4.51
3 33.13 31.94 0.679 -3.57
4 33.53 32.75 0.847 -2.32
5 35.65 33.80 0.670 -5.19
6 48.38 45.11 0.964 -6.76
7 49.43 49.70 0.968 0.53
8 55.08 56.66 0.966 2.88
9 63.04 59.40 0.958 -5.78

10 66.50 62.48 0.998 -6.04
mean 0.903 4.65

Table 1: Initial corrrelation

0 5 10 15
−0.5

0

1.5

Iterations

U
pd

at
in

g 
pa

ra
m

et
er

s

Figure 6: Updating history

The initial correlation of experimental and numer-
ical mode shapes is listed in table 1.

A preliminary comparison between correlated
mode pairs allowed a selection of the design parame-
ters listed in table 2 where we also present the updated
values referred to the initial values. Figure 6 shows
the evolution of the updating parameters. The correc-
tions are physically significant and lead to a notorious
improvement of the correlation between the natural
frequencies and mode shapes (table 3), and also with
FRFs (figure 7). In this last figure we have marked
the frequency shift proposed by FDAC (see the con-
necting line at 30 Hz).

5 Conclusions

A model updating method which uses response mea-
surements as input has been presented. Its main ad-
vantage over current methods resides in its ability to
avoid the numerical difficulties induced by the dis-
continuities in the frequency response functions. This

Location Parameter Correction
%

Right wing EIxx 22
EIyy 0
EIzz −15

Left wing Ixx 17
EIyy −1
EIzz −12

Connection, right wing Ixx 7
GIyy 118
EIzz 30

Connection, left wing EIxx 5
GIyy 149
EIzz 0

Fuselage/wings connec-
tion

EIxx 90

GIzz 15
Fuselage/vertical tail
connection

EIxx 21

GIzz 43
Connection, horizontal
tailplane

EIxx 19

Fuselage GIxx −20
EIyy 10

Table 2: Updating parameters

Mode no Exp (Hz) FE (Hz) MAC df %
1 6.38 6.23 0.994 -2.36
2 16.10 16.50 0.984 2.44
3 33.13 32.70 0.982 -1.30
4 33.53 33.30 0.982 -0.68
5 35.65 35.63 0.953 -0.04
6 48.38 48.49 0.971 0.23
7 49.43 49.59 0.972 0.32
8 55.08 54.68 0.963 -0.71
9 63.04 62.85 0.925 -0.30

10 66.50 66.49 0.996 -0.01
0.970 0.84

Table 3: Updated correlation
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Figure 7: Typical FRF matching

is achieved by tracking the numerical operating de-
flection shapes that show the best correlation with
the selected experimental shapes. Each selected fre-
quency provides a number of equations equal to the
number of measured degrees of freedom; so a large
over-determined system of equations for the updating
parameters is found. The procedure was successfully
applied to a well-known experimental benchmark.

The combined used of the improved model updat-
ing strategy with the Frequency Domain Assurance
Criterion represents a powerful tool that can be used
advantageously in the context of model updating. As
a global correlation tool, FDAC evaluates quantita-
tively the closeness between measured and numerical
operating deflection shapes. This information is very
helpful for the engineer, who is frequently asked to
reduce vibrations in terms of the dynamic responses.
Frequency zones where the model shows poor results
are easily detected. No identification is needed, since
the measurements are used directly.
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the chilean government (project1020810).

References

[1] R. Allemang and D. Brown. A correlation coef-
ficient for modal vector analysis. InProceedings

of the 1st International Modal Analysis Confer-
ence, pages 110–116, Orlando, Florida, 1982.

[2] J.R.F. Arruda. Objective functions for the non-
linear curve fit of frequency response functions.
AIAA Journal, 30(3):855–857, 1992.

[3] J.R.F. Arruda and J.M.C. Santos. Mechanical
joint parameter estimation using frequency re-
sponse functions and component mode synthe-
sis.Mechanical Systems and Signal Processing,
7(6):493–508, 1993.

[4] E. Balmès. A finite element updating procedure
using frequency response functions. Applica-
tions to the MIT/SERC interferometer testbed.
In Proceedings of the XI International Modal
Analysis Conference, pages 176–182, Kissim-
mee, Florida, 1993.

[5] S. Cogan, Lenoir D., G. Lallement, and J.N.
Bricout. An improved frequency response resid-
ual for model correction. InProceedings of the
XIV International Modal Analysis Conference,
pages 568–575, Dearborn, Michigan, 1996.

[6] W. D’ambrogio and A. Fregolent. Robust dy-
namic model updating using point antireso-
nances. InProceedings of the XVIII Interna-
tional Modal Analysis Conference, pages 1503–
1512, San Antonio, Texas, 2000.

[7] M. Degener and M. Hermes. Ground vibra-
tion test and finite element analysis of the GAR-
TEUR SM-AG19 testbed. Technical Report
Bericht IB 232-96 J 08, Deutsches Zentrum fur
Luft und Raumfahrt (DLR), Gottingen, 1996.

[8] D. Fotsch and D.J. Ewins. Aplication of MAC
in the frequency domain. InProceedings of the
XVIII International Modal Analysis Conference,
pages 1225–1231, San Antonio, Texas, 2000.

[9] M.I. Friswell and J.E. Mottershead.Finite El-
ement Model Updating in Structural Dynamics.
Kluwer Academic Publishers, London, 1995.

[10] C.P. Fritzen and S. Zhu. Updating of FE models
by means of measured information.Computers
and Structures, 40(2):475–486, 1991.
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