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CregNET: Meta-Analysis of Chlamydomonas reinhardtii Gene Regulatory
Network

by Ngoc C. PHAM

Chlamydomonas reinhardtii is a well-known model organism used to investigate nu-
merous biological processes, such as photosynthesis, starch metabolism, etc. Thanks
to it’s available genome, a high volume of high-throughput transcriptomic data has
been made available during the last few years.

Gene regulatory network (GRNs) underlie all cellular phenomena; and thus, a
comprehensive understanding of GRN maps are essential tools to elucidate gene
function, thereby facilitating interpretations of biological processes Mochida et al.,
2018. However, a GRN underpinning cellular processes of C. reinhardtii with biotech-
nological interest has not been addressed. As a result, a system biology approach for
reverse engineering it’s GRN from the abundance of data is of great interest.

In the thesis, we have evaluated various meta-analysis methods in the context of
inferring GRN from multiple transcriptomic data sets, which has led to a new ver-
sion of the R and Bioconductor minet package (P. E. Meyer, Lafitte, and Bontempi,
2008). Afterwards, we developed a novel meta-analysis computational framework
for inferring a GRN of C. reinhardtii (called CregNET) from various RNA-seq studies
collected from NCBI SRA (Benson et al., 2012). In the first step of our pipeline the
mutual information (MI) based network inference algorithm namely MRNET (P. E.
Meyer, Lafitte, and Bontempi, 2008) was performed on all the RNA-seq data, re-
sulting in a compendium of GRNs. The GRNs were then aggregated to create the
CregNET in the next step. Experimental results with both synthetic data and biolog-
ical data (e.g. E. coli, Saccharomyces cerevisiae and Drosophila) prove that the meta-
analysis approach can generate robust biological hypotheses of gene regulations
from a bunch of gene expression data. Additionally, a set of benchmarks performed
on CregNET demonstrates the robustness and predictive power of CregNET.
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Chapter 1

Introduction

1.1 Motivation

1.1.1 What are gene regulatory networks (GRNs) ?

The genome encodes thousands of genes whose products enable cell survival and
various cellular functions (Karlebach and Shamir, 2008). Moreover, it is now un-
derstood that in cells, genes do not operate in isolation but they are expressed and
work in concert by numerous regulatory mechanisms. In such network of gene-gene
interactions, gene regulation plays a key role in the control of fundamental pro-
cesses in living organisms, ranging from development, to nutrition and metabolic
coordination (Carré, Mas, and Krouk, 2017). To demonstrate, gene regulation at the
transcriptional level in bacteria is essential for controlling metabolic flexibility and
cellular integrity (De Smet and Marchal, 2010). Interestingly, it is observed that the
regulation and expression of some genes are f other genes are more variable: their
levels are differenthighly robust while that o from cell to cell and from individual to
individual (MacNeil and Walhout, 2011). Usually, this regulation process requires a
time lag, which involves the regulation of protein translation, folding, nuclear trans-
port, turnover, and the extension of the target mRNA (Yang et al., 2018). Though
genes are regulated at several levels, one key step is the control of gene transcription
(Carré, Mas, and Krouk, 2017).

Typically complex regulation involving multiple regulators results in single genes
showing highly specific expression behavior that is not shared with other genes. In
addition, it was observed that many transcription factors (TFs) are active in similar
conditions and thus trigger similar sets of genes, suggesting either redundancy in
their function or an intricate cooperation between different TFs to mediate a com-
mon response (De Smet and Marchal, 2010). For years, the bindings of TFs to DNA
sequences, forming gene regulatory networks (GRNs), have been a crucial aspect in
systems biology. In essence, a GRN links TFs to their target genes and represents a
map of transcriptional regulation (Banf and Rhee, 2017). They are composed of mul-
tiple sub-circuits and each of them accomplishes individual regulatory tasks (Eric
H. Davidson, 2010). Understanding the dynamics of these networks, therefore, not
only can we shed light on the mechanisms of diseases that occur when these cellu-
lar processes are dysregulated but also speed up biotechnological projects, as such
predictions are quicker and cheaper than lab experiments (Karlebach and Shamir,
2008). Thanks to GRNs we are able to understand the intracellular physiological ac-
tivity and function of biology, interaction in the pathway and thus gain knowledge
of how to make the organism change (Yang et al., 2018).

Fox example, changes in plant transcriptional regulation led to many modern
crops and enabled large yield increases (R. S. Meyer and Purugganan, 2013). In
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another example developmental GRNs provide the specific causal links between ge-
nomic regulatory sequences and the processes of development (E H Davidson and
Levine, 2008). They consist of the regulatory and signaling genes that drive any
given process of development and the functional interactions among them. The de-
sign features of the GRN directly explain why the events of a given process of de-
velopment occur; for example, why a given set of cells becomes specified to a given
fate, why it emits particular signals to adjacent cells, and why it differentiates in a
given direction (E H Davidson and Levine, 2008). Needless to say computational
analysis contribute to basic biological research, for example, by explaining devel-
opmental mechanisms or new aspects of the evolutionary process (Karlebach and
Shamir, 2008). In precision medicine, only a small fraction of patients respond to the
drug prescribed to treat their disease, which means that most are at risk of unnec-
essary exposure to side effects through ineffective drugs (Van Der Wijst et al., 2018).
And since many diseases are associated with mutations in transcriptional regulators
(TRs) or in TF binding sequences (Banf and Rhee, 2017), their mechanisms that are
characterized by dysfunction of regulatory processes can be elucidated by person-
alized GRNs (Karlebach and Shamir, 2008). Consequently, analyses of GRNs are
key to identify disease mechanisms and possible therapeutic targets for the future
(Hase et al., 2013). In the prospect, well-validated, context-specific, personalized
GRNs will be essential to move from more traditional medicine towards precision
medicine (see figure 1.1 for a better clarification), which will provide treatment or
preventive measures that will be effective for patients based on their specific genetic,
environmental, and lifestyle characteristics (Van Der Wijst et al., 2018).

In the last decades, innovations in experimental methods have enabled large
scale studies of GRNs and can reveal the mechanisms that underlie them (Karlebach
and Shamir, 2008). Specifically, GRNs can be constructed from gene expression data
sets that implicitly contain gene regulation information in specific conditions (e.g.,
disease-specific, tissue-specific, or drug-specific GRNs) (Yu et al., 2013). However,
inferring GRNs from high-throughput expression data is a fundamental but chal-
lenging task in computational systems biology (Madhamshettiwar et al., 2012).

1.1.2 GRNs in the systems biology context

The recent advances in omics technology, combined with computational analysis to
form an emerging approach named systems biology, holds great promise owing to
its capacity to extract valuable information from a large amount of data (Park, K. H.
Lee, et al., 2007). In ‘systems biology’, one aims to model the physiology of living
systems as a whole rather than as a collection of single biological entities (Hecker
et al., 2009). The development of molecular profiling techniques nowadays enables
the high-throughput and affordable acquisition of large omics data sets, such as for
transcriptomics, proteomics and metabolomics (Serin et al., 2016). While substantial
efforts are being made to generate large omics data sets, there is a growing need to
develop platforms to integrate these data and derive models describing biological
interactions (Serin et al., 2016). This is because such system-level approach can offer
insights into how to control and optimize parts of a system while potential side ef-
fects are well addressed (Hecker et al., 2009). Indeed, to gain a better understanding
of the observed complex global behavior and the underlying biological processes, it
is necessary to model the interactions between a large number of components that
make up such a biological system (Hecker et al., 2009). Since GRNs provide informa-
tion that is essential for a global understanding of the logic of gene-gene interactions,
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FIGURE 1.1: Implications of personalized gene regulatory networks
for precision medicine. Depending on an individual’s regulatory
wiring, specific drugs may or may not be effective. Personalized
GRNs will provide guidance for precision medicine in the future. In
this example, GRNs of two hypothetical patients are shown in which
the regulatory wiring between the drug target gene and the key driver
gene is different. a In individual 1, the drug target gene activates the
key driver gene. b In individual 2, the interaction between both genes
is absent. Thus, in individual 1, the drug is effective, whereas in indi-

vidual 2, the drug is ineffective. (Van Der Wijst et al., 2018)
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inference of such networks has been one of the key challenges in system biology (Y.
Wang et al., 2018).

Plants are fascinating and complex organisms. A comprehensive understanding
of the organization, function and evolution of plant genes is essential to disentangle
important biological processes and to advance crop engineering and breeding strate-
gies. The ultimate aim in deciphering complex biological processes is the discovery
of causal genes and regulatory mechanisms controlling these processes (Serin et al.,
2016). Such networks can be utilized to identify target genes for both knockout and
over-expression for the increased production of desired products such as biomass
and resilience against pathogens. That is because the impact of genetic abnormality
can spread through regulatory interactions in GRNs and alter the activity of other
genes that do not have any genetic defects (Hase et al., 2013). In this context, ran-
dom mutagenic technique without a full understanding of underlying regulatory
mechanisms can lead to unwanted changes in physiology and growth retardation.
In contrast, system-wide transcriptome analysis can reveal not only several target
genes but also important regulatory circuits to increase the yield of products (Park,
S. Y. Lee, et al., 2008). A transcription factor-based genetic engineering technique,
for instance, has been proposed for crop improvement due to the fact that transcrip-
tion factors (TFs) are master regulators of cellular processes (Century, Reuber, and
Ratcliffe, 2008). However, expression levels of genes are the result of interactions
between different biological processes and TFs usually regulate the expression of
many downstream genes; hence, mutating TFs without taking into account their
global effects on the system might cause unwanted phenotypes (Century, Reuber,
and Ratcliffe, 2008).

Recently, systems biology has gained much success in modeling GRNs of uni-
cellular organisms such as Escherichia coli (Gama-Castro et al., 2008). Moreover, sys-
tematic integration of DNA-binding data with genome-wide mRNA and miRNA
expression data allowed determining key-regulatory properties in the GRN that con-
trols early stages of flower development in Arabidopsis thaliana, including specifica-
tion of floral whorls, and organ differentiation and growth (D. Chen et al., 2018).
Additionally, in another project named Drosophila Model Organism Encyclopedia
of DNA Elements (modENCODE) (Roy et al., 2010), network inference of a multi-
cellular eukaryotic organism is shown to be feasible.

Typically, GRN inference methods primarily use gene expression data derived
from microarrays or high-throughput sequencing (RNA-seq) technologies to iden-
tify a correlation between a pair of genes based on a significant interaction signal.
However, it should be emphasized that high-throughput techniques are generating
massive data sets to elucidate the behavior and interaction of thousands of genes
across diverse conditions. Obviously, we cannot describe complex cellular systems
by only focusing on one single control mechanism measured by a single experimen-
tal technique. GRNs reverse engineered from heterogeneous data sets are; hence,
essential for explaining cellular response under various perturbations, though this
is very challenging. This is because assembling expression data is no trivial task due
to negative batch effects caused by even small differences in experimental prepara-
tion or the specific platform and analysis procedure used. Moreover, a single ex-
pression study is limited by small sample size (typically tens of thousands of probes
are investigated in only tens or hundreds of biological samples (Ramasamy et al.,
2008)), resulting in network inference algorithms’ sensitivity to outliers. Thus, com-
bining multiple experimental studies is also able to significantly increase the statis-
tical power of network inference algorithms. Such data integration leverages de-
pendencies that can be confidently uncovered thanks to the multitude of surveyed
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conditions, but leads to context-agnostic wiring diagrams (Y. Wang et al., 2018).

1.1.3 Why GRNs for Chlamydomonas reinhardtii

Recently, there has been increased attention on algae, mostly due to their potential
commercial applications in biofuels and nutritional supplements (R. L. Chang et al.,
2011). The reason is because microalgal cells, characterized by high photosynthetic
efficiency and rapid cell division, are an excellent source of neutral lipids as poten-
tial fuel stocks (Goncalves et al., 2016). The unicellular green algae Chlamydomonas
reinhardtii is a well-known model organism used to investigate numerous biological
processes, such as photosynthesis, starch metabolism, etc. (Siaut et al., 2011). Recent
studies and literature on the species have recommended that it is a very important
cell factory as well. For instance, it is presented in (Siaut et al., 2011) that high oil
yields can be gained by blocking the starch synthesis. Moreover, approximately
235mg ethanol can be produced for every 1.0g of algal biomass i.e. a volume of
ethanol equivalent to 24% of the biomass (Choi, M. T. Nguyen, and Sim, 2010). The
very compelling results in (Kong et al., 2010), where C. reinhardtii was cultured in
wastewater to not only produce bio-fuel but also remove nitrogen and phosphorus
from wastewater, illustrate another potential application of the organism.

Although microalgae, such as C. reinhardtii, are highly promising cell factories
for renewable biofuels, there is still an urgent need of a conceptual framework to
make micro algal biofuels economically competitive (Chisti, 2007). Indeed a better
understanding of the metabolic and regulatory networks can provide insights for
increased TAG synthesis, with fewer drawbacks than for existing algal cells (Schaap
et al., 2014). Indeed, microalgal cells naturally produce both desirable and unde-
sirable metabolites; hence, novel target pathways for product formation should be
amplified whereas biosynthetic pathways for byproducts should be removed or at-
tenuated simultaneously (Park, S. Y. Lee, et al., 2008).

Thanks to the availability of its genome, a massive amount of transcriptomic data
has been produced for C. reinhardtii. Unfortunately, a GRN underpinning its cellular
processes with biotechnological interest has not been addressed. Above all, despite
previous successes, system-level studies of C. reinhardtii in order to both enhance
desired phenotype and reduce unwanted side effects for cost-effective bio-products
are in high demand. To this end (Romero-campero et al., 2016) develop a first gene
co-expression network and an associated web-based software tool that integrates
RNA-seq data available for the C. reinhardtii transcriptome. It should be emphasized
that constructing co-expression networks is generally straightforward. For instance,
in the gene co-expression networks (GCNs), a node is a gene, and an edge is drawn
between gene A and B if the correlation coefficient between these two genes is above
a threshold. The main difference between GRNs and GCNs is GCNs treat TF and
non-TF genes similarly whereas GRN involves sophisticated reverse-engineering al-
gorithms that operate on TFs differently (Gupta and Pereira, 2019). The objective of
the thesis; therefore, aims at delivering a first global-scale GRN of C. reinhardtii, un-
derpinning it’s responses to numerous stress conditions, from it’s massive amount
of transcriptomic data.

1.1.4 Data availability for reconstructing GRN of C. reinhardtii

Advances in microarray and, more recently, next-generation sequencing technolo-
gies provide a wealth of data for GRN inference (Madhamshettiwar et al., 2012),
leading to the development of a community infrastructure for sharing data such as
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NCBI Gene Expression Omnibus (Ron Edgar, Domrachev, and Lash, 2002), ArrayEx-
press (Brazma et al., 2003) or InSilicoDB (Taminau, Meganck, et al., 2012). The orig-
inal goals of these databases was to make the data available to other researchers for
independent analysis and, where appropriate, integration with their own data (Hei-
der, 2013). Microarray is a well-established, cost-effective, high-throughput tech-
nology able to simultaneously measure the expression levels of thousands of genes
and hereby offers an efficient way to generate a snapshot of the entire transcrip-
tome (Larsen et al., 2014). It is a revolutionary tool for identifying genes or path-
ways whose expression changes in response to specific perturbations (C. Chen et al.,
2011). Not surprisingly, transcriptome analysis by microarray technology has be-
come a routine tool in many research areas ranging from basic cell biology to clinical
research (Heider, 2013). Over time, different types and generations of microarrays
have been produced by several manufacturers resulting in several hundred thou-
sand microarray samples clustered by different species, manufacturers and chip gen-
erations (Heider, 2013). The integrative analysis of multiple microarray gene expres-
sion (MAGE) data sets has been acknowledged to be a crucial approach for extract-
ing the maximum relevant biological information (Lazar et al., 2013). It should be
noted that; however, those databases above still largely contain microarray data sets
because they are relatively cheap and the pipeline of analysis is highly standardized.

Microarray data for C. reinhardtii is rich and can be easily found at NCBI Gene
Expression Omnibus (figure 1.2). However, a big challenge lines on the fact that
most of the microarray data has not been well annotated. One option is reannotat-
ing data by identifying which probes represent a given gene within and across the
data sets using the BLAST algorithm (Ramasamy et al., 2008). Nevertheless, this
is only possible when all probe sequences are provided for all platforms, which is
not always a case for C. reinhardtii. Additionally, probe annotation and mapping
is not a trivial task. For example, on the Affymetrix GeneChip U95A, 11% of the
probes are non-specific and 9% of the probes are mismatched to the genome (Miao
et al., 2011). Moreover, studies using the microarray technologies are only able to
cover different subsets of all genes predicted for C. reinhardtii and the overlapping
between these subsets are insignificant. That is to say even though there is a large
number of microarray studies for C. reinhardtii, the question of how to integrate the
data is fundamental but very challenging.

FIGURE 1.2: C. reinhardtii’s microarray data
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In recent years, RNA-Seq is a developed approach to transcriptome profiling that
uses next-generation high-throughput sequencing technologies. Moreover, RNA-
Seq has proven to be a powerful tool for whole transcriptome profiling with en-
hanced sensitivity and enhanced specificity (Serin et al., 2016) over the microarrays.
For example, it is shown that RNA-seq outperforms microarray (93% versus 75%)
in DEG verification as assessed by quantitative PCR, with the gain mainly due to its
improved accuracy for low-abundance transcripts (Megherbi et al., 2014). Another
study also suggests that when using standard microarray and RNA-Seq protocols,
RNA-Seq provides better estimates of absolute transcript levels (Y. Li et al., 2009).
Consequently, RNA-seq is replacing cDNA microarrays as the dominant technology
because it offers reduced cost, increased sensitivity, ability to quantify splice vari-
ants and perform mutation analyses, improved quantification at the transcript level,
identification of novel transcripts, and improved reproducibility (Lachmann et al.,
2018).

On the other hand, publicly available RNA-seq data is currently provided mostly
in raw form, a significant barrier for global and integrative retrospective analyses
(Lachmann et al., 2018). Furthermore like other high-throughput sequencing tech-
nologies, RNA-Seq faces several informatics challenges, i.e. the lack of standard-
ization of pipelines using the RNA-seq technology (Z. Wang, Gerstein, and Snyder,
2009). Once these obstacles are overcome, it is clear that RNA-seq will become the
predominant tool for expression analysis (Wan et al., 2015).

Public data repositories, such as the Sequence Read Archive (SRA) (Barrett et al.,
2013), host > 50,000 human RNA-seq samples and it is estimated that these repos-
itories are likely to double in size every 18 month (Collado-Torres et al., 2017). To
address this growing presence of RNA-seq data, a large-scale integration of RNA-
seq-based expression data is of great importance. However, it is worth mentioning
that combining these data sets from different resources requires uniform alignment,
quantification, and removal of batch effects, and several recent efforts have com-
bined such uniformly processed bulk RNA-seq data sets in large repositories (Van
Der Wijst et al., 2018).

Over the last few years most of studies for C. reinhardtii use RNA-seq technology,
proving a rich compendium for system studying of it’s large-scale GRN. A first at-
tempt of utilizing such RNA-seq data can be found in the work of (Romero-campero
et al., 2016). The authors collected more than 287 GigaBytes of information pro-
duced by seven different studies to construct a first gene co-expression network and
an associated web-based software tool for C. reinhardtii. Nevertheless, the volume
of data collected accounts for only a small part of all RNA-seq data could be found
from SRA repository. Additionally, the problem of batch effects accompanied with
integrating transcriptomics data is not well addressed.

1.2 Contributions

1.2.1 Meta-analysis for inferring GRNs from numerous gene expression
datasets

In the thesis, we have proposed and evaluated various meta-analysis methods in
the context of inferring GRN from multiple transcriptomic data sets (Ngoc C Pham,
Haibe-Kains, et al., 2017). All the methods are then integrated in a new version of
the R/Bioconductor minet package (Ngoc C Pham and P. E. Meyer, 2019). For the
new version, the users can simply provide a list of gene expression datasets and their
preference meta-analysis method for inferring a meta GRN.
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1.2.2 CregNET - a first GRN of C. reinhardtii

Additionally, a main part of the thesis is the creation of CregNET - a first GRN of
C. reinhardtii from various RNA-Seq datasets. To archive that we also propose a
pipeline for collecting and pre-processing RNA-Seq data ofC. reinhardtii from NCBA
SRA. It should be noted that this pipeline can be extended for other model organisms
as well. Experiment results then strongly suggest that CregNET outperforms the
current co-expression network ChlamyNET in term of stability and predictive power
for new GO discovery.

1.2.3 Publications

Here, we present a selection of the papers produced during the Ph.D. either as a first
author or as a collaborator:

Articles

Pham, Ngoc C, Benjamin Haibe-Kains, et al. (2017). “Study of Meta-analysis strate-
gies for network inference using information-theoretic approaches”. In: BioData
mining 10.1, p. 15.

Pham, Ngoc C and Patrick E Meyer (2019). “Minet version 4.0: meta-analysis meth-
ods to infer gene regulatory network from multiple data sets.” In: To be submitted
in BMC Bioinformatics.

Pham, Ngoc C, Manuel Noll, and Patrick E Meyer (2019). “CregNET: Meta-analysis
of Chlamydomonas reinhardtii gene regulatory network.” In: To be submitted in Molec-
ular Systems Biology.

Books

Bellot, Pau, Philippe Salembier, et al. (2019b). Unsupervised GRN Ensemble. Springer,
pp. 283–302.

1.3 Outline

The next chapter we explain why integrative analysis is important and how we
can apply the technique for integrating transcriptomic data. In chapter 3 we will
present the state-of-the-art MI-based data-merging approaches as well as our pro-
posed MI-based meta-analysis methods for reverse engineering meta GRNs. In the
fourth chapter we evaluate the methods with in silico and biological setups. Chapter
5 presents a pipeline for collecting, constructing and validating CregNET. Finally,
the sixth chapter presents the conclusions of this thesis.
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Chapter 2

Data-merging and meta-analysis
for integrating transcriptomic data

Integrating multiple data sets is an inexpensive way to provide increased statistical
power and thus help to gain valuable insights of the systems under study. This
chapter provider an overview of the two most common approaches to infer GRNs
from multiple data sets namely data-merging and meta-analysis.

2.1 Why integrative analysis?

Reverse engineering of GRNs remains a challenging task in systems biology. This
is in part due to the large amount of experimental noise and the large number of
genes relative to the small sets of conditions in gene expression of the data (Banf
and Rhee, 2017). Since a single data set has typically a small sample size (usually
less than 200 observations) and suffers from potential experimental biases, classical
reverse engineering algorithms, which relies only on a standalone data set, show their
limits in unraveling reliably the underlying interactions. It has been known for a
long time that the small number of biological samples used per experimental study
is a bottleneck in genomic analysis (Taminau, Lazar, et al., 2014). A clear applica-
tion, where this limitation has been pointed out, is the prediction of disease outcome
where thousands of samples are needed to generate robust gene/protein signatures
(Lazar et al., 2013).

By contrast, integrative analysis of multiple studies is able to increase signifi-
cantly the statistical power and thus is becoming a standard procedure in modern
computational biology (Kugler et al., 2011). Another important beneficial aspect
which naturally derives from developing and using integrative analysis tools is re-
lated to the cost of transcriptomics experiments. Recycling and reusing public avail-
able data would also considerably reduce the overall costs of experiments (Lazar
et al., 2013). Additionally a different subset of biological information is captured by
each data set. As a result integrating diverse biological data can improve functional
description. Obviously, this is a relatively easy and inexpensive way of gaining new
biological insights since it makes comprehensive use of already available data accu-
mulated through the years by various groups all over the world (Taminau, Lazar,
et al., 2014). For this reason, heterogeneous data integration methods have emerged
to construct more reliable eukaryotic GRNs (Banf and Rhee, 2017). Nevertheless, the
question of how to integrate data consistently and efficiently raises new challenges
(Taminau, Meganck, et al., 2012).

Such integrative analysis could be performed in two ways: by data merging
(DM), which is analyzing all the raw data coming from different studies with simi-
lar biological questions together (Bevilacqua et al., 2011) or by meta-analysis which
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is the statistical analysis of a large collection of results from individual studies for
the purpose of combining their findings to reach a common result (see figure 2.1 for
more details).

FIGURE 2.1: DM and MA for inferring GRNs from multiple data sets.

2.2 Data-merging (DM)

The DM approaches merge samples from different studies in a unique data set, on
which subsequent analyses are performed. The main idea relies on integrating dif-
ferent studies in order to increase the sample size and thus increases the statistical
power. Indeed, as more and more data sets are available on public repositories,
merging different data sets appears as a simple solution to improve the relevance
of the biological information extracted (Renard and Absil, 2017). Typically, the first
transformation applied to expression data, referred to as normalization and summa-
rization, removes non-biological variability between arrays and extracts gene level
expression from probe intensities, respectively (Bevilacqua et al., 2011). Neverthe-
less, combining or merging data from different MAGE experiments for integrative
analysis suffers from non-biological experimental variation or "batch effects" and it
is still a challenging and difficult problem to be solved in computational biology
(Lazar et al., 2013). In fact, the use of different chip types or platforms, and pro-
cedures in different research groups performed by different people introduce the
statistical biases hindering downstream analysis (Leek, Scharpf, et al., 2010).

Batch effects are sub-groups of measurements that have qualitatively different
behavior across conditions and are unrelated to the biological or scientific variables
in a study (Leek, Scharpf, et al., 2010). For example, batch effects may occur if a
subset of experiments was run on Monday and another set on Tuesday, if two tech-
nicians were responsible for different subsets of the experiments or if two different
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lots of reagents, chips or instruments were used (Leek, Scharpf, et al., 2010). Some
of the most common factors that can contribute to the generation of batch effects
are pointed out by (Luo et al., 2010), namely chip type/platform, sites/laboratories,
storage/shipment conditions, RNA isolation, etc.

Although a carefully designed experimental process can limit the impact of such
effects, some are often unavoidable due to the large sample size requirements and
potentially lengthy time required to complete a study (Stein et al., 2015; Renard and
Absil, 2017). When combining data sets from different experiments, batch effects are
carried over and therefore it is inappropriate to combine data sets without adjusting
for batch effects (Bevilacqua et al., 2011) as this can confound true biological signals
and lead to misinterpretation of the data (Larsen et al., 2014). Consequently it is
important to identify and remove such effects before performing any downstream
analysis.

In the work of (Heider, 2013) (see Figure 2.2) the authors introduced a procedure
of 7 distinct steps to combine raw gene expression data sets in order to remove batch
effects and generate a combined "ExpressionSet" object for downstream analysis. In
the next subsection, various methods for batch-effect removal will be discussed.

2.2.1 Methods for batch effect removal

It has been acknowledged that batch effects is the main source of variation between
different MAGE data sets (Lazar et al., 2013). The main issue is that batch effects
introduce a new source of signal into the data that can be confused with the signal an
analyst is looking for (Leek, 2014). Over the last few years, different approaches have
been proposed to detect and remove batch effects from microarray data. However, it
should be noted that over-adjusting can be more damaging, especially in the context
of prediction tasks where the phenotype to predict is unequally distributed among
the batches (Renard and Absil, 2017). Normalization is a data analysis technique that
adjusts global properties of measurements for individual samples so that they can
be more appropriately compared. Including a normalization step is now standard
in data analysis of gene expression experiments (Leek, Scharpf, et al., 2010).

Batch Mean-Centering - BMC

In Sims et al., 2008 a simple normalization method based on mean centering, which
is similar to z-score normalization, is applied for merging breast cancer data sets.
This method transforms data by subtracting the mean of each gene over all samples
(per batch) from its observed expression value, such that the mean for each gene
becomes zero.

x̂k
ij = xk

ij − x̄k
i (2.1)

Gene standardization

Similarly, the z-score normalization (Cheadle et al., 2003) transforms all genes to
have 0 mean and standard deviation σ of 1 by subtracting the mean x̄i and dividing
by the σi of each gene over all samples within a batch (Lazar et al., 2013).

x̂k
ij =

xk
ij − x̄k

i

σk
i

(2.2)
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Quantile normalization

More complicated methods like the quantile normalization is widely used as pre-
processing technique to remove technical noise presented in the microarray data
generated by Affymetrix GeneChip platform (Qiu, H. Wu, and Hu, 2013). The mo-
tivaiton is that the quantile normalization makes the empirical distribution of gene
expressions pooled from each array to be the same (Qiu, H. Wu, and Hu, 2013). To
illustrate, scaling gene counts by a quantile of the gene-count distribution (Bullard et
al., 2010) is used by (Romero-campero et al., 2016) to construct a gene co-expression
network for C. reinhardtii using RNA-seq data.

Robust multi-array average - RMA

In another work the robust multi-array average (RMA) was adopted by (Henríquez-
Valencia et al., 2018) in order to produce a sulfate co-expression network of Ara-
bidopsis. Furthermore, (Van Parys et al., 2014) exploit the robust multiarray average
method combined with quantile normalized to combine 45 series of experiments to
produce an abiotic stress GRN of Arabidopsis.

Nevertheless, the normalization steps are ineffective in removing the batch ef-
fects, especially when combining data from different platforms (Lazar et al., 2013).
This happens because the normalization steps take into account only few sources
of batch effects unlike the more specialized methods for batch effect removal (Lazar
et al., 2013). Fore instance, normalization methods only adjust the intensities at the
global and they are not designed to remove artifacts presented only on a subset of
probes or genes (Kocher et al., 2011). The same conclusion is also drawn by (Luo
et al., 2010), in which significant batch effects still exist even after normalization
for the majority of the data sets. In order to address the bottleneck of combining
trancriptomics data sets, the system-level comparisons of normalization and batch
effect removal algorithms have been performed over the last few years. For instance
(Kocher et al., 2011) investigated and compared three common quantile normaliza-
tion approaches, namely quantile normalization at average β value (QNβ), two step
quantile normalization at probe signals (lumi) and quantile normalization of A and
B signal separately (ABnorm). Interestingly, it was shown that normalization can re-
duce part but not all batch effects. Therefore, Empirical Bayes (EB) batch correction
introduced by (Johnson, C. Li, and Rabinovic, 2007) along with normalization was
recommended for effective batch effect removal.

COMBAT method

In (Johnson, C. Li, and Rabinovic, 2007) COMBAT, also known as Empirical Bayes
(EB) method, is a method using estimations for the Location-Scale (LS) parameters
(mean and variance) for each gene. COMBAT assumed that gene expression values
of gene i in sample j in each batch can be depicted as:

xij = αi + Cβi + γX
i + δX

i ϵX
ij (2.3)

where αi is the real gene expression values for gene i, C is a design matrix for
sample conditions (known covariates), βi is the vector of regression coefficients cor-
responding to C, γX

i and δX
i are the additive and multiplicative batch effects for gene

i respectively and ϵX
ij are noise terms. The noise term are assumed to follow a normal
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distribution with mean zero and variance σ2
i . Then the first step of COMBAT is to

standardize the data using estimates α̃i, β̃i, δ̃X
i and σ̃2

i :

zij =
xij − α̃i − Cβ̃i

σ̃X
i

(2.4)

The batch effects is adjusted as:

x̂ij =
σ̃i

δ̃X∗
i

(zij − γ̃X∗
i ) + α̃i + Cβ̃i (2.5)

with δ̃X∗
i and γ̃X∗

i being estimates of batch effects parameters using equation 2.3
with parametric or nonparametric empirical priors. When using parametric priors
it is assumed that
gammaX

i ∼ N(γX, (τX)2) and (δX
i )

2 ∼ InverseGamma(λX, θX) where δX, (τX)2, λX

and θX are estimated empirically.

Distance-weighted discrimination - DWD

Distance-weighted discrimination (DWD) (Benito et al., 2004) is among other pop-
ular methods for batch effects removal. DWD starts by searching for the optimal
hyperplane w × x + b = 0 separating samples from the different batches, with w the
normal vector of the hyperplane. Next DWD remove bias by projecting the direc-
tion of the normal vector to this hyperplane by calculating the mean distance from
all samples in each batch to the hyperplane (d̄X) and then subtracting the normal
vector to this plane multiplied by the corresponding mean distance.

x̂ij = xij − d̄Xwi (2.6)

2.2.2 Evaluations of batch effects removal methods and tools for batch
effects removal

In (C. Chen et al., 2011) the authors evaluated six methods for adjusting microar-
ray data for batch effects namely ComBat, Ratio_G, SVA, DWD, and PAMR using
multiple measures of precision, accuracy and overall performance. ComBat, an Em-
pirical Bayes method, outperformed the other five methods by most metrics. Also
it can robustly manage high-dimensional data when sample sizes are small. In an-
other work, (Larsen et al., 2014) further demonstrated how ComBat are suitable to
successfully overcome systematic technical variations in order to unmask essential
biological signals. Recently, a modification to ComBat called M-ComBat that cen-
ters data to the location and scale of a pre-determined, "gold-standard" batch was
proposed by (Stein et al., 2015).

(Heider, 2013) provides the virtualArray software package to combine raw data
sets, generating a combined "ExpressionSet" object and allowing further manipu-
lation and analysis in R and other software. Interestingly, there are seven imple-
mented methods to adjust for batch effects in the data namely quantile discretiza-
tion (Warnat, Eils, and Brors, 2005), normal discretization normalization (Martinez,
N. Pasquier, and C. Pasquier, 2008), gene quantile normalization (X. Q. Xia et al.,
2009), median rank scores (Warnat, Eils, and Brors, 2005), quantile normalization
(B. M. Bolstad et al., 2003), empirical Bayes methods (COMBAT) and mean center-
ing (BMC).
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In another work (Taminau, Meganck, et al., 2012) presents the inSilicoMerging
R/Bioconductor package, which combines several of the most used methods to
remove the unwanted batch effects to combine data sets in an intuitive and user-
friendly manner, namely BMC , COMBAT, DWD, GENENORM (Z-score standard-
ization), and XPN (Cross-Platform Normalization).

Recently, (Leek, 2014) has developed a version of the SVA approach specifically
created for count data or FPKMs (Fragments Per Kilobase Of Exon Per Million Frag-
ments Mapped) from sequencing experiments based on appropriate data transfor-
mation.

2.3 Meta-analysis (MA)

2.3.1 What is MA?

In the mean time, MA of gene expression data sets is increasingly performed to help
identify robust molecular signatures and to gain insights into underlying biological
processes (J. Xia, Gill, and Hancock, 2015). In contrast to DM, in MA the results of
individual studies (e.g., values, ranks, classification accuracy, etc.) are combined at
the interpretative level. The main idea is combining data sets directly can be dif-
ficult because of inherent biases, i.e. batch effects, in the data that are not always
removed with normalization (Steele and Tucker, 2008) or even with batch effect re-
moval algorithms. In MA based approaches, it is assumed that if a result is found
as being significant for a big number of individual studies, it will be significant for
the particular problem the studies have been designed for. Moreover, if a finding
is not significant in some studies, it could still be significant after meta-analysis if it
appears as being significant in a big enough number of other individual studies, as
the evidence will accumulate for this particular finding (Lazar et al., 2013).

Several strategies have been proposed in order to perform meta-analysis on gene
expression data. For instance, a meta-analysis of public gene expression data and
clinical data was conducted by using the concept of "coexpression" modules to re-
veal various results of previous gene expression studies in breast cancer (Wirapati
et al., 2008; Desmedt et al., 2008). Moreover (Hong et al., 2006) developed a Biocon-
ductor package named RankProd that allow researchers to do meta-analysis under
two experimental microarray conditions to identify differentially expressed genes.
However, when data sets containing few samples are studied, it is hard to derive
rigorous inference upon the results issued from their analysis (Lazar et al., 2013).
A direct consequence of combining the results issued from the analysis of data sets
containing few samples is the fact that the statistical hypothesis tests used to make
decisions using MAGE data are prone to high false-negative rates (Lazar et al., 2013).
While the problem of detecting differential expressed genes across several studies
has been intensively studied, it is, however, not yet the case when it comes to con-
structing GRNs.

2.3.2 MA for inferring GRNs

Recently “ensemble” methods of merging GRNs from different datasets, i.e. by
weighting gene-gene interactions according to their average rank in each network
(Marbach et al., 2012), have emerged as an alternative to the “data merging” ap-
proach. This approach rooted in the “wisdoms of crowds” concept, which was first
introduced in the DREAM5 challenge and then further developed by (Hase et al.,
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2013) with the TopkNet algorithms to produce consensus networks. Indeed, integra-
tion of 29 gene regulatory network inference methods in yeast and E. coli generated
an ensemble prediction that outperformed all of the individual methods (Marbach et
al., 2012). The consensus-based approach was afterwards increasingly applied to re-
verse engineering GRNs from multiple data sets. For instance, by integrating four dif-
ferent network inference methods, a recent study predicted an ensemble gene regu-
latory network in Arabidopsis (Van Parys et al., 2014). In addition, miRsig, an online
tool for analysis and visualization of the disease-specific signature/core miRNA-
miRNA interactions has been developed (Nalluri et al., 2017) using the consensus-
based approach. Moreover, in the work of (Hansen et al., 2018) ensemble gene func-
tion predictions are also performed by integrating 10 co-function networks.

2.4 Data-merging or meta-analysis?

While MA methods implicitly take into account batch effects, DM require suitable
batch-effect removal algorithms. The first study that try to directly compares the
performances of the two approaches on finding differentially expressed genes can
be found in (Taminau, Lazar, et al., 2014). Six batch effect removal methods were
selected: NONE (no batch effect removal), BMC, COMBAT, DWD, and XPN for DM
approach. However, for MA approach only the method of taking intersection of
DEG lists estimated from each study is considered for comparisons with those DM
methods. Interestingly, this study concludes that both approaches achieve compa-
rable results. Moreover, (Silberberg et al., 2016) compared MA and DM methods in
the context of retrieving gene-gene interactions in compendia of microarray studies,
containing biological data with 11 studies on Escherichia coli, 7 studies on Yeast and
synthetic data simulated across different networks, levels of systematic bias, number
of considered studies and number of samples. It shows that batch effects should be
carefully taken into account when retrieving gene-gene interactions, and researchers
can adopt either a DM or MA approach depending on the specific application.
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FIGURE 2.2: Distinct steps performed by virtualArray for remov-
ing batch effects when combining gene expression data sets (Heider,

2013).
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Chapter 3

MI-based data-merging and
meta-analysis

GRNs are typically represented as directed graphs in which nodes represent genes
(for example, encoding a transcription factor or its target gene), and edges their reg-
ulatory interaction as Figure 3.1.

FIGURE 3.1: An example of a GRN representing the interaction be-
tween three genes, involving both direct regulation (gene 2 by gene 1)
and combinatorial regulation via complex formation (gene 3 by genes

1 and 2). Image from Sanguinetti et al., 2019.

The identification of large-scale GRN has been a difficult and hot topic of system
biology in recent years Yang et al., 2018. Network inference, which is the recon-
struction of biological networks from high-throughput data, can provide valuable
information about the regulation of gene expression in cells De Smet and Marchal,
2010. Various computational models have been developed for regulatory network
analysis. A straightforward approach for performing integrative analysis of multiple
studies is combining all data sets together and then analyzing the merged dataset.
These method, named “data merging” and denoted here with the letter (D), were
widely used in Wolfgang Huber et al., 2002; Belcastro et al., 2011; Adler et al., 2009
to reconstruct large-scale GRNs because of their simplicity. However, since high di-
mensional data often suffers from unwanted biases, a variety of techniques can be
used to correct for these non-biological variations. We present in the following two
classical scaling methods typically used to assemble data sets, and several widely-
used batch-effect-removal methods.
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In this work, we also introduce a new meta-analysis strategy to build consensus
networks. The new strategy consists in aggregating matrices of pairwise mutual
information with each being estimated from a gene expression dataset to produce
a meta-matrix, from which a GRN is inferred using classical information-theoretic
network inference algorithms.

3.0.1 Gene co-expression network (GCN)

A gene co-expression network (GCN) is an undirected graph with each node rep-
resenting a gene, and a pair of nodes being connected with an edge if there is a
significant co-expression relationship between them. To construct a GCN typically a
two step approach is followed (Figure 3.2): calculating co-expression measure and
selecting significance threshold. In the first step, a co-expression measure is selected
(i.e. the absolute value of Pearson correlation coefficient) and a similarity score is
calculated for all pairs of genes using this measure. Then when a threshold is deter-
mined all gene pairs which have a similarity score higher than the selected threshold
are connected by an edge in the network.

FIGURE 3.2: The two general steps for constructing a gene co-
expression network. Image from Wikipedia

GRNs are of biological interest since co-expressed genes are controlled by the
same transcriptional regulatory program, functionally related, or members of the
same pathway or protein complex (Weirauch, 2011). Nevertheless, the direction and
type of co-expression relationships can not be found in GCNs. Compared to a GRN,
a GCN does not attempt to infer the causality relationships between genes and in
a GCN the edges represent only a correlation or dependency relationship among
genes (De Smet and Marchal, 2010).
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3.1 Gene regulatory network (GRN) State-of-the-art

Innovations in experimental methods have enabled large-scale studies of gene regu-
latory networks and can reveal the mechanisms that underlie them (Karlebach and
Shamir, 2008). Computational methods to infer GRNs typically combine evidence
across different conditions to infer context-agnostic networks (Y. Wang et al., 2018).
Therefore a spectrum of methods to construct GRNs from only gene expression data
have been developed, counting on the relation between expression of TFs and ex-
pression of their target genes. In recent years, many methods that infer GRNs based
on gene expression alone have been proposed. Early methods inferred regulatory
relationships using mutual information between the expression levels of gene pairs
(Y. Wang et al., 2018).

It should be stressed that state-of-the-art tools for network inference use specific
assumptions and simplifications (i.e. linearity, independence or normality) to deal
with the underdetermination, and these influence the inferences. As a result the final
inferred network varies between tools and can be highly complementary (De Smet
and Marchal, 2010).

Each network-inference algorithm generates a confidence score for a link be-
tween two genes from expression data and assumes that a predicted link with higher
confidence score is more reliable. These algorithms can be classified into several cat-
egories (Marbach et al., 2012), such as: regression-based, pairwise similarity (mutual
information, correlation, etc.), Bayesian networks or even ensemble approaches (that
combine several different approaches). For instance, in regression models based
methods regulators are inferred for each target gene. Thus, for every gene g, denot-
ing by xgi its expression level in sample i, one need to solve the regression problem
(Sanguinetti et al., 2019):

xgi = ∑
j ̸=g

wjxij + ϵi

with ϵi the bias, and wj the weight associated with the network edge between
gene j and gene g. This is the main idea for some algorithms like TIGRESS (Haury
et al., 2012), LASSO (Omranian, J. M. Eloundou-Mbebi, et al., 2016), etc. GENIE3
(Huynh-Thu, Irrthum, et al., 2010) also follow this strategy, but replacing linear re-
gression with an ensemble of regression trees. In the other category, Bayesian net-
works (BN) use genetic data as prior information with multiple testing and greedy
search steps (Vignes et al., 2011). However their efficiency and accuracy in dealing
with high dimensional transcriptomic data sets is still very limited (Vignes et al.,
2011). Among those, mutual information (MI) based algorithms, such as CLR (Faith
et al., 2007), ARACNE (Margolin et al., 2006), MRNET (P. E. Meyer, Kontos, and
Bontempi, 2007; P. E. Meyer, Lafitte, and Bontempi, 2008) and so on, gather more
and more attention owing to their capability to deal with up to several thousands of
variables in the presence of a limited number of samples (P. E. Meyer, Lafitte, and
Bontempi, 2008).

3.1.1 MI-based mehthods

Generally, MI-based algorithms start by estimating a pairwise mutual information
(i.e. a non-linear dependency measure) between all pairs of genes, resulting in a
mutual information matrix (MIM). Afterwards, indirect interactions are eliminated
from the MIM by the different approaches and subsequently a GRN is inferred.
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Mutual information (MI) is a non-linear measure of dependency between two
variables (genes) X and Y, defined as follow

I(X, Y) = ∑
x∈X,y∈Y

p(x, y)log
p(x, y)

p(x)p(y)
(3.1)

where p(x, y) is the joint probability distribution of X and Y, and p(x) and p(y) are
the marginal probability distributions of X and Y, respectively.

MI can also be defined in terms of entropy as:

I(X, Y) = H(X) + H(Y)− H(X, Y) (3.2)

Figure 3.3 shows a simple example for calculating mutual information between
two random variables (genes) using Equation 3.2. It should be noted that for us-
ing Equation 3.2 each mutual information calculus demands the estimation of three
entropy terms. Interestingly, in (P. E. Meyer, Lafitte, and Bontempi, 2008) the au-
thors presented four fastest and most used entropy estimators (i.e. empirical, Miller-
Madow, Schurmann-Grassberger and shrink) for estimating MI. The four estimators
were also implemented and made available by the authors in the minet Bioconduc-
tor package (P. E. Meyer, Lafitte, and Bontempi, 2008). It should be noted that as
MI is a symmetric measure, MI-based network inference algorithms are not capable
of deriving the direction of the gene-gene interactions. This dependency measure
has been used for reconstructing networks by several methods such as Relevance
network (Butte and Kohane, 2000), CLR faith2007large, ARACNE (Margolin et al.,
2006) or MRNET (P. E. Meyer, Kontos, and Bontempi, 2007; P. E. Meyer, Lafitte, and
Bontempi, 2008).

FIGURE 3.3: Estimation of MI between two random variables. Image
from Chaitankar et al., 2010

3.1.2 Relevance network

The approach constructs a GRN where a pair of genes Xi, Xj is linked by an edge if
the mutual information I(Xi; Xj) is larger than a given threshold I0. The complexity
of the method is O(n2) since we need to consider all possible pairwise interactions
within the network.
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3.1.3 CLR Algorithm

The CLR method (The Context Likelihood or Relatedness network) is similar to the
relevance network but applies an adaptive background correction step to eliminate
false correlations and indirect influences (Faith et al., 2007). CLR creates an edge
between each pair of genes i and j if the combined z-score of the mutual information
between them (Figure 3.4) is above a given threshold, where the combined z-score is
defined as:

zij =
√

z2
i + z2

j with zi = max(0,
Iij − µIi

σIi

) (3.3)

in which, µIi and σIi are the mean and standard deviation of the empirical distribu-
tion of the mutual information of gene i.

This step removes many of the false correlations in the network by eliminating
"promiscuous" cases, where one transcription factor weakly co-varies with a large
numbers of genes, or one gene weakly co-varies with many transcription factors
(Faith et al., 2007). The complexity of CLR is O(n2) given the computed MIM.

FIGURE 3.4: A schema of the CLR algorithm. The z-score of each
regulatory interaction depends on the distribution of MI scores for
all possible regulators of the target gene (zi) and on the distribution
of MI scores for all possible targets of the regulator gene (zj). Image

from Faith et al., 2007

3.1.4 ARACNE

The Algorithm for the Reconstruction of Accurate Cellular Networks (ARACNE)
(Margolin et al., 2006) relies on the "Data Processing Inequality" (DPI) which re-
moves the edge with the weakest mutual information, in every triplet of genes. For
instance, if gene X1 interact with gene X3 through gene X2, then

I(X1; X3) ≤ min(I(X1; X2), I(X2; X3))

Given a threshold I0 ARACNE assigns to each pair of nodes a weight equal to
the MI and then all edges that I(Xi; Xj) < I0 are removed. Afterwards, for each
triplet the weakest edge is considered as an indirect interaction and is removed if
the difference between the two lowest weights is above a threshold W0. ARACNE’s
complexity is therefore O(n3) as all triplets of genes are considered.
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3.1.5 MRNET

The Minimum Redundancy NETworks (MRNET) (P. E. Meyer, Lafitte, and Bon-
tempi, 2008) method reconstructs a network using the feature selection technique
known as Minimum Redundancy Maximum Relevance (MRMR) for every random
variable Xi ∈ X (Ding and Peng, 2005). The idea consists in performing a series of
supervised MRMR gene selection procedures where each gene in turn plays the role
of the target output (P. E. Meyer, Lafitte, and Bontempi, 2008). In order to select the
predictor for a variable Xj the MRMR methods ranks a set XSj ∈ X \ Xj of the predic-
tor variables according to the difference between the mutual information of Xi ∈ XSj

with Xj (the relevance) and the average mutual information with the selected vari-
ables in XSj (the redundancy) (P. Meyer et al., 2010). The rationale is that variables
with redundant information to the most relevant variables are indirect links. Then
the MRNET infer a GRN using a forward selection strategy, which leads to subset
selection that is strongly conditioned by the first selected variables.

Using these three information-theoretic network inference techniques, which are
available from the Bioconductor Minet package, we will evaluate the performance
of the three meta-analysis approaches depicted in figure 3.5.

3.2 Batch effects and batch effects removal methods

In the “data merging” (DM) approach, data sets are integrated at the expression level
into a unique dataset, from which GRNs are inferred (Wolfgang Huber et al., 2002;
Belcastro et al., 2011; Adler et al., 2009). In the next subsections we detail three DM
methods that are commonly used in the literature.

3.2.1 Normalization: BMC batch mean-centering (D1) and gene standard-
ization z-score (D2)

The two normalization methods explained in the previous chapter, namely BMC
batch mean-centering (called D1 in the thesis) (Sims et al., 2008) and gene standard-
ization z-score (called D2) (Cheadle et al., 2003) will be compared with other meta-
analysis methods for reconstructing GRNs.

3.2.2 Batch effects removal with COMBAT (D3)

Gene expression data sets mostly come from different platforms and laboratories,
causing the so-called batch effects. It is now known that unwanted noise and un-
modeled artifacts such as batch effects can dramatically reduce the accuracy of sta-
tistical inference in genomic experiments (Leek, 2014). Consequently, batch removal
methods, like COMBAT (also known as Empirical Bayes) (Johnson, C. Li, and Rabi-
novic, 2007), is often used to detect and remove this inevitable variation. COMBAT,
which was shown to outperform other commonly used batch removal methods in
some specific scenarios (C. Chen et al., 2011; Bevilacqua et al., 2011), uses estima-
tions for the LS (location-scale) parameters (e.x. mean and variance) for each gene
independently (Lazar et al., 2013). The gene, afterwards, is adjusted to meet the esti-
mated model. In this thesis, combining data sets using the COMBAT algorithm will
be included for comparison and referred as method D3.
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FIGURE 3.5: Meta-network strategies: Data Merging, Network En-
semble or Matrices of Coexpression based Aggregation.

3.3 Networks ensemble - N methods

As we presented in the previous subsection, one of the difficulties of the data-merging
methods is how to handle the batch effects. Consequently, “networks ensemble”
method (denoted with the letter (N) in the thesis) has been proposed as an alterna-
tive approach. In fact, by combining topologies of networks rather than data sets we
are able to avoid dealing with batch effects implicitly. This method first constructs
every single transcriptional networks independently before combining them to pro-
duce a so-called community network (Marbach et al., 2012).
Let eij be the edge between gene i and gene j in network n and sn(eij) be the weight of
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the edge. In the next subsections, we discuss three viable combinations of network
transformation and aggregation.

3.3.1 RankSum method (N1)

Combining networks can consists in two distinct steps: transformation and aggre-
gation (Bellot Pujalte et al., 2015). Indeed, before assembling networks, a network
transformation step can be performed because it is common to observe networks
that exhibit different distribution of edge weights (Bellot Pujalte et al., 2015). In this
approach we replace the weight sn(eij) in the network n by its rank rn(eij) as such
the most weighted edge gets the highest rank.

The RanSum method, which was introduced in (Marbach et al., 2012), is based
on rank averaging: the final rank of the edge across N networks is computed by:

r(eij) =
N

∑
n=1

rn(eij) (3.4)

3.3.2 Internal quality control index (N2)

In (Kang et al., 2012), six quantitative quality control measures have been proposed
for the inclusion/exclusion of gene expression studies used for the meta-analysis.
Among these measures, the internal quality control index will be included in this
thesis, as method N2 for assembling networks. Let the similarity between two stud-
ies m and n be defined as

rmn = spcor((tn(eij); 1 ≤ i ≤ j ≤ G), (tm(eij); 1 ≤ i ≤ j ≤ G)) (3.5)

In which rmn is the Spearmans rank correlation of the pairwise correlation structure
between study m and n and G represents the total number of genes in the studies.
The dissimilarity (or distance) between study m and n is defined as dmn = (1 −
rmn)/2. For a given study k, a weight -wk will be granted as the fraction between the
sum of distances between study k - D∗

k to all other studies and the sum of pairwise
distances between all studies excluding the study k - D#

k :

wk =
D∗

k
D#

k
(3.6)

with

D∗
k = {dkn}1≤n≤N;n ̸=k and D#

k = {dmn}1≤m ̸=n≤N;m ̸=k;n ̸=k (3.7)

Afterwards, the weights over all studies are normalized such that the sum of
all the weights is equal to 1. In the next step the weight of the edge between two
variables (genes) X and Y is aggregated by the following equation:

êIQC(X; Y) =

N
∑

k=1
wktk(eXY)

N
∑

k=1
wk

(3.8)
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3.3.3 Median method (N3)

In (Hase et al., 2013) the median value was introduced for aggregating consensus
networks. This method assigns the median value among N values representing the
confidence score of a specific edge in N different networks.

aM(eij) = median{t1(eij), ..., tN(eij)} (3.9)

3.4 Matrices of coexpression based aggregation approaches -
M methods

Our new category of meta-analysis approaches (denoted with the letter (M) in this
thesis) aggregates mutual information matrices rather than data or networks. The
idea behind assembling pairwise matrices is that, although expression data typi-
cally shows high variability due to differences in technology, samples, labels, etc.,
pairwise dependency measures between genes should be much less variant (i.e.
dependent variables, such as a regulating variable and its regulated counterpart,
should remain dependent in every platform/experiment/dataset even if ranges of
values differ greatly). Thus, to infer a network from various expression data, our ap-
proach consists in combining mutual information matrices (MIMs) estimated inde-
pendently from each dataset. Then a GRN network is inferred from the aggregated
MIMs. In the following subsections, we will demonstrate three feasible methods to
assemble matrices of pairwise measure.

3.4.1 Random-effects model (M1)

It should be noted that the problem of combining MIMs across multiple data sets
can be framed in the context of a meta-analysis of correlation coefficients (K. Wang,
Narayanan, Zhong, Tompa, Eric E Schadt, et al., 2009). Hunter and Schmidt (F. L.
Schmidt and Hunter, 2014) introduced a single random-effects method based on
untransformed correlation coefficients, at which data sets are weighted simply by
the sample sizes on which each effect size (the estimated MIM) is based. Our first
weighting schema (method M1), described by equation 3.10, utilizes this random-
effects method, but using MI instead of correlations.

ÎRE(X; Y) =

N
∑

k=1
nk I(Xk; Yk)

N
∑

k=1
nk

(3.10)

where I(Xk; Yk) is the MI between two variable Xk and Yk in the study k and nk is the
number of samples of study k.

The idea is simply that effect sizes based on large samples will be more precise
than those based on small samples.

3.4.2 Internal quality control index (M2)

Here, the internal quality control index measure was used again with some minor
modifications. First, the similarity between two studies m and n was defined as

rmn = spcor((Imij; 1 ≤ i ≤ j ≤ G), (Inij; 1 ≤ i ≤ j ≤ G)) (3.11)
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Then, the MI between two variables (genes) X and Y is aggregated by the following
equation:

ÎIQC(X; Y) =

N
∑

k=1
wk I(Xk; Yk)

N
∑

k=1
wk

(3.12)

3.4.3 Median method (M3)

One of the major issue of M1 is that the quality of data sets used in meta-analysis
is not explicitly taken into account. Indeed, inclusion of poor quality data sets is
likely to weaken statistical power (Kang et al., 2012). Thus, an alternative schema for
combining MIMs across heterogeneous studies namely method M3 can be proposed.
Method M3 is explained by formula 3.13, in which the aggregated MI of a gene pair
X and Y is the median value of all MI values between them across all studies.

ÎM(X, Y) = median(I(X1, Y1), I(X2, Y2), ...I(XN , YN)) (3.13)

A summary of all the methods is presented in Table 3.1. In the next chapter we
present both in silico and biological experiments to evaluate the performance of the
methods.

TABLE 3.1: Summary of meta-analysis methods used in the thesis

Method Description

D1 Data Merging BMC
D2 Data Merging z-score
D3 Data Merging COMBAT
N1 Network Ensemble RankSum
N2 Network Ensemble Internal Quality Control Index
N3 Network Ensemble Median
M1 Matrices of Coexpression Aggregation Random-effects
M2 Matrices of Coexpression Aggregation IQCI
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Chapter 4

Evaluation of methods with in
silico and biological setups

The ultimate aim of the thesis is constructing a GRN for Chlamydomonas reinhardtii.
And to this end we first need to evaluate the performance of the nine presented
methods in Chapter 3 under different contexts. The best method then is selected in
order to produce the CregNET.

4.1 Data

4.1.1 Simulated data sets

There are two tasks one needs to consider in order to validate networks: 1) defining
a "gold standard" - which is a set of true regulations describing the underlying inter-
action network, 2) selecting quantitative measures to statistically assess the quality
of inferred networks. Typically, the first task is addressed by collecting well-known
regulations mined from literature with strong supporting evidences. However, those
regulations just cover a small part of the underlying network and therefore cannot
be an ideal reference network to thoroughly compare methods. Hence the latter
approach is often completed by in-silico experiments.

In the work, in silico benchmarks are selected from every one of the 4 biolog-
ical networks and artificially generated data sets coming from the Netbenchmark
Bioconductor package (Bellot, Olsen, et al., 2015). The selected data sets are gener-
ated by two simulators namely GNW and SynTReN. The GNW simulator generates
network structures by extracting parts of known real GRN structures from E. coli
capturing several of their important structural properties while the SynTReN simu-
lator generates the underlying networks by selecting sub-networks from E. coli and
Yeast organisms (Bellot, Olsen, et al., 2015). The characteristics of the 4 biological
networks are presented in more detail in Table 4.1.

TABLE 4.1: Networks used in the paper

Network Name Topology Experiments Genes Edges

SynTreN300 S1 E. coli 800 300 468
SynTreN1000 S2 E. coli 1000 1000 4695

GNW1565 G1 E. coli 1565 1565 7264
GNW2000 G2 Yeast 2000 2000 10392

In the following step, each large data set will be split into 6 sub-data sets with
a number of experiments ranging between 30 to 300 (a number chosen randomly in
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order to simulate real case scenario) For example, in Figure 4.3, an original data set
is split into 6 sub-data sets with the following number of samples: 50, 100, 150, 120,
70 and 190. Additionally, two extremely noisy studies are added, both with a large
sample size for each (between 280 and 300). Those data sets allow to test the sensitiv-
ity of meta-network methods to data sets that should typically be excluded. Indeed,
a few biological studies dating back to the beginning of the microarray technology
have very little information and are typically excluded from meta-analysis studies.

4.1.2 Saccharomyces cerevisiae

The GRN of the Saccharomyces cerevisiae has been extensively studied (Kim et al.,
2013) and in this work the current version of YeastNet(v3) (Kim et al., 2013) was used
to test the DM and MA methods. Two microarray platforms based on Affymetrix
chip designs GPL2529 and GPL90, which contain the majority of yeast gene expres-
sion profiling data, was targeted. However, we were only interested in gene expres-
sion series with no less than 8 samples. In total, we collected 44 series, which con-
tained a total of 1,344 samples, from Gene Expression Omnibus (GEO) (Ron Edgar,
Domrachev, and Lash, 2002). For gene expression data measured by microarray
techniques, missing values are normally observed and hinder any downstream anal-
ysis . As a result, in the first step of preprocessing data, missing values were imputed
using the KNN (Hastie et al., 2016). Furthermore, if multiple probes match a single
gene, a similar method recommended by (X. Wang, Y. Lin, et al., 2012) was imple-
mented, which is selecting the probe with the highest interquartile range (IQR). That
is because larger IQR represents greater variability (and thus greater information
content) in the data. In (X. Wang, Y. Lin, et al., 2012), two further sequential steps of
gene filtering were then performed. In the first step, genes with very low gene ex-
pression that were identified with small average expression values across majority of
studies were filtered out. Similarly, in the second step, non-informative (small varia-
tion) genes were removed by replacing mean intensity in the first step with standard
deviation. However, in our research all genes that are present across the two plat-
forms named above will remain for further analysis, reflecting the trade-off between
increasing sample size and power versus decreasing the number of genes analyzed
(Turnbull et al., 2012). In total, 5407 genes were retained for the downstream meta-
analysis (covers 92 % of all yeast coding genes). Those genes were afterwards all
log-transformed (base 2).

4.1.3 Escherichia coli

Similarly, Escherichia coli studies were also download from Gene Expression Om-
nibus, but we consider only studies using the Affymetrix E. coli Antisense Genome
Array. Imposing a single microarray platform ensures that all data sets measure
the same probesets (Silberberg et al., 2016). Probesets without annotations were ex-
cluded from the analysis, leaving a total of 4088 probesets, each corresponding to a
specific gene (no gene was measured by multiple probesets) (Silberberg et al., 2016).
Only data sets with no less than 8 samples were retained for downstream analysis.
In total 29 data sets were collected, comprising nearly 900 samples. The latest ver-
sion (version 9.4) of the transcriptional regulation in Escherichia coli K-12 was down-
loaded from RegulonDB (Gama-Castro et al., 2008) and used as the true network for
validation.
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4.1.4 Drosophila

The fruit fly Drosophila melanogaster provides an ideal model organism for the infer-
ence and study of functional regulatory networks in multicellular organisms (Bellot,
Salembier, et al., 2019a). There exists a rich literature about regulatory relationships,
which have resulted in small, but high-quality networks of known regulatory inter-
actions such as REDfly (Bellot, Salembier, et al., 2019a). We have selected the data
used in (Roy et al., 2010), since it provides a Heterogeneous scenario with networks
of the same organism that comes from different kinds of data. There is a total of six
networks that comes from both functional and physical regulatory interactions. For
instance, experimental assays include high-throughput RNA sequencing (RNA-seq),
capturing-small and large RNAs and splice variants and genomic DNA sequencing,
measuring copy-number variation (Roy et al., 2010).

4.2 Evaluation metrics

In order to validate GRNs ones need to decide a suitable metric. A network infer-
ence problem can be seen as unsupervised learning problem where the inference
algorithm acts like a binary classifier: for each pair of genes, the algorithm either
predicts an edge or not depending on the confidence score of the edge (the higher
the score the more certain there is an edge). And since in MI-based network infer-
ence algorithms a threshold is used in order to remove edges with low confidence
score (weights) a confusion matrix can be computed for each value of threshold. For
instance, a positive label predicted by the algorithm is considered either as a true
positive (TP) or as a false positive (FP) depending on whether or not there is a cor-
responding edge in the reference network. Similarly, a negative label is counted as a
true negative (TN) or a false negative (FN) when there is absence or presence of the
corresponding edge in the underlying true network, respectively. Figure 4.1 gives
an example of how the validation of a GRN as a binary classification task works. The
network on the left is the true network, also known as gold standard. The network
on the right is the inferred network. Edges colored in green of the inferred network
are true positives while edges colored in pink are false positives.

A naive approach is thresholding the edges list of the network and calculating
an average accuracy as a measure of the performance of an algorithm. However,
this strategy is often misleading as GRNs are typically very sparse, and thus algo-
rithms constantly predicting the absence of edges gain higher accuracy. Therefore,
given the ground-truth knowledge of the underlying true network, traditional statis-
tical error measures, such as F-score, AUCROC (Area Under the Receiver Operating
Characteristic curve) or AUPR (Area Under the Precision-Recall curve) can be used
to verify the quality of networks at the global-level (Emmert-Streib, Dehmer, and
Haibe-Kains, 2014). Each of these measures is expressed as a single numerical value
that integrates over all predicted interactions (Madhamshettiwar et al., 2012).

4.2.1 ROC curves and AUC

We define the false positive rate as:

FPR =
FP

TN + FP
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FIGURE 4.1: Example of validation of a GRN as a binary classification
task. Image from Bellot Pujalte, 2017

, and the true positive rate as:

TPR =
TP

TP + FN

, which is also known as recall or sensitivity.
A Receiver Operating Characteristic (ROC) curve is defined as the graphical plot

of the TPR versus FPR for different values of the decision threshold by progressively
lowering the threshold (J. Davis and Goadrich, 2006). Figure 4.2 illustrates how to
make a ROC curve. On the left panel a ranked list of edges by weights is outputted
by a GRN network inference algorithm. The true and false edges are colored in yel-
low and red respectively. By progressively changing the threshold we can create the
corresponding ROC curve (in the middle) for the algorithm. The Receiver Operator
Characteristic (ROC) Area Under the Curve (AUC, (Pintea and Moldovan, 2009))
can be then adopted as a global metric of performance for an algorithm. The AUC
is in the range of [0, 1], where one corresponds to perfect rank, 0.5 corresponds to
random ordering. Thus, the closer the AUC is to 1 (and further away from 0.5) the
better the overall performance of the network (Steele and Tucker, 2008).

4.2.2 PR curves and AUPRC

For validating GRNs, ROC curves, however, can present an overly optimistic view
of the performance of an algorithm if there is a large skew in the class distribu-
tion (J. Davis and Goadrich, 2006), which is generally the case in network inference
because of its spareness. Consequently, PR curves, which are often used in informa-
tion retrieval, have been recommended as a preference measure of performance for
GRNs(J. Davis and Goadrich, 2006). Let the precision defined as

p =
TP

TP + FP
,



4.3. Network prediction and validation with simulated data sets 31

FIGURE 4.2: Evaluation of inferred networks with ROC curve and PR
curve. Image from Sanguinetti et al., 2019

is the ability of the algorithm to correctly identify real edges among those classified
as positive and the recall quantify

r =
TP

TP + FN
,

also called true positive rate (TPR) is the fraction of real edges correctly identified.
An ideal algorithm will then have precision 1 for arbitrary recall between 0 and

1. To elucidate the effectiveness of an algorithm in handling the precision/recall
trade-off, a plots of the precision versus recall for different values of the threshold
(PR curves) is needed (see Figure 4.2 for illustration). And similar to the AUC, the
Area Under the Precision Recall Curve (AUPRC, (J. Davis and Goadrich, 2006)) can
be selected as the measure of global performance to summarize precision and re-
call information for varying . Universally the AUPRC is adopted as a measure to
evaluate GRN inference algorithms (Sanguinetti et al., 2019). Thus, in the work, the
AUPRC of each GRN is selected to report for each meta-analysis strategy.

4.3 Network prediction and validation with simulated data
sets

4.3.1 Experimental setup

In order to make the network inference problem more challenging and realistic,
noise and transformations of data are added. In particular, we define three levels
of data-distortion: i) Level 1: An independent lognormal noise call “global” noise,
with intensity between 20 and 50%, is added to the first 6 data sets. The standard
deviation of this noise (σGlobal) is the same for the whole data set and is a percent-
age (κg%) of the mean variance of all the genes in the data set(σ̄g). It is defined as
follows: σGlobal;κg% = σ̄g

U(0.8κ,1.2κ)
100 . ii) Level 2: In addition to the global noise, a nor-

mally distributed “local” noise with intensity also ranging between 20 and 50%, is
added. This is an additive Gaussian noise with zero mean and a standard devia-
tion (σLocal(g)) that is around a percentage (κ%) of the gene standard deviation (σg).
Therefore, the Signal-to-Noise-Ratio(SNR) of each gene is similar. The local noise
standard deviation can be formulated as follows: σLocal(g);κ% = σg

U(0.8κ,1.2κ)
100 where

U(a, b) is a uniform distribution between a and b. iii) Level 3: In addition to the
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FIGURE 4.3: Framework for data collection, network prediction and
validation

two previous noises, each sub-data set can be transformed using a randomly chosen
non-linear transformation such as x2 or log(x). This random data transformation is
not really meant to be realistic but rather to allow us to better assess the behaviour
of each meta-method when faced with extreme distortion. It is worth emphasizing
that the two non-informative studies remain unchanged across all experiments. A
flowchart of this process is illustrated in figure 4.3.

The schema for network prediction and validation is also illustrated in figure4.3.
Initially, all methods (three D, M and N, totaling nine) are used to construct a consen-
sus GRN from the split data sets. All methods are assessed on 12 challenges (three
levels of distortion for four data sets). Finally, the process is repeated for the three
information-theoretic inference methods, hence totalling 36 challenges. This is done
to make sure that our analysis is not method specific. The AUPR for each GRN is
then selected to report for all methods in each challenge of the study.

Due to the randomization of various experimental parameters (noise intensity,
number of samples), 10 repetitions are made. Finally, the average of the ten AUPR
values, for each method on each challenge, is presented. Furthermore, in order to see
how significantly better is the best method, a p-value using a Wilcoxon test (Cuzick,
1985) and adjusted, using a Bonferroni correction (Benjamini and Hochberg, 1995),
between each approach and the best one is computed.

4.3.2 Experimental results

In this section, we present the experimental results of all presented methods for re-
constructing GRNs from multiple expression data sets (Table 4.2). For the D family
of methods, it can be observed that normalization using z-score transformation (D2)
is better than BMC (D1). This conclusion is true for all three network inference al-
gorithms used in this paper, namely MRNET, ARACNE and CLR. Another striking
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FIGURE 4.4: PR-Curves of method D3, N1, N3 and M1 on dataset S1
at level 1 of data distortion

feature is that batch effect removal methods like COMBAT (D3) is able to increase
significantly the robustness of network inference algorithms. The results reinforce
the idea that normalization alone can not remove batch effects, and therefore the
removal of batch effects is essential when merging data sets. In the case of method
N, N2 and N3 outperform N1 when MRNET or CLR used. However, in the case of
using ARACNE, N1 is as good as N2 while poor results are observed for N3.

Interestingly, we can clearly observe that N2 outperforms all three D methods
suggesting that assembling networks is better than merging data sets. This could
be explained by the fact that gene expression values are very dissimilar in various
experiments due to our simulated batch effects (i.e. data sets with different global
and local noise). However, the particular combination CLR - D3 offers an exception
to this observation. It also should be noted that assembling mutual information
matrices (M methods) surpasses the two other well-known strategies (D and N) for
all data sets under every different levels of distortion, in particular for MRNET (see
figure 4.4 and figure 4.5) and CLR. Experimental results also show that MRNET
benefits the most from meta-analysis and CLR appears to be the most robust. This
suggests that while CLR might be a better strategy for analysing individual data sets,
MRNET might be a better choice when multiple data sets are available. Although
ARACNE appears to be much worse than the two other techniques, that is mainly
due to a bad recall (though not visible with AUPR numbers, its precision remains
quite competitive). Finally, in the M family of methods, it appears that combining
MIM using random effect model (M1) is better than the two other strategies, the
internal quality control index (M2) and the median method (M3).

4.3.3 Discussion

In the section, we proposed a framework for evaluating the different strategies for in-
ferring GRNs from multiple expression data sets. To the best of our knowledge, this
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TABLE 4.2: Area under PR-Curves (the higher the better) for 9 meth-
ods on 4 datasets with 3 levels of increasing data-distortion.
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FIGURE 4.5: Boxplots for presented methods using MRNET

is the first systematic evaluation of the two state-of-the-art strategies for the prob-
lem of interest, namely “data merging” and “networks ensemble”. Furthermore,
we presented a new, but promising approach for methods based on coexpression
matrices. Indeed, our set of experiments strongly suggest that assembling matri-
ces of pairwise dependencies is a better strategy for network inference than the two
commonly used ones. However, there exists many different methods of data and
network assembly, as well as experimental conditions that have still to be tested in
order to gain a complete understanding of the problem of meta-network inference.
Moreover, as mentioned earlier, a large amount of under-exploited transcriptome
data of model organisms is now available through public repositories. Thus, the use
of the best strategy to reconstruct large-scale GRNs of these model organisms will
be discussed in the next section.

4.4 Network prediction and validation with biological data
sets

4.4.1 Results

Figure 4.6 demonstrates the AUPR score for all methods applied on different bio-
logical compendia. It could be seen that among D methods, batch effect removal
using COMBAT is as effective as normalization using z-score, except for FlyNET
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FIGURE 4.6: Bar plot of the AUPR scores of nine methods with bio-
logical data

where D3 outperforms D2. In the case of N methods, N1 and N3 are more robust
than N2 while between M methods M1 is the most consistent. However, in terms of
the best performance, the results illustrated in the table are very different from what
we observed from synthetic data. For instance, in synthetic data, M family methods
have better performance compared to those of N methods. However, N1 and N3 are
the two best for EcoliNET and YeastNET while M2 is the best for FlyNET. Although
N3 does not systematically yield the best performance on each and every network,
it is competitive with other methods while preserving the scalability and thus N3
was selected to create the CregNET. Recently ChlamyNET has been presented by
(Romero-campero et al., 2016) as the first co-expression network for C. reinhardtii.
We will compare the performance of our CregNET with that of ChlamyNET in the
next chapter.
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Chapter 5

CregNET

The final goal of the thesis is to build a first GRN named CregNET for the model
organism C. reinhardtii. In this chapter, first we present a pipeline to collect RNA-seq
datasets of C. reinhardtii from Sequence Read Archive (SRA) (Benson et al., 2012).
These are merely raw data and thus in the next step we need to quantify the data to
create inputs for meta-analysis methods. A set of statistics measurement is then in-
troduced to evaluate the performance of CregNET with ChlamyNET(Romero-campero
et al., 2016) - the first co-expression network of C. reinhardtii. Experimental results
strongly suggest that CregNET outperforms ChlamyNET for almost all measure-
ment scores.

5.1 Pipeline

5.1.1 Essential Data Collection

In this study we used RNA-seq data of C. reinhardtii transcriptome publicly available
at the Sequence Read Archive (SRA) (Benson et al., 2012), a database resource at the
National Center for Biotechnology Information (NCBI) that stores more than 500 Ter-
aBases of next-generation sequencing data. It is worth noting that The data within
GEO/SRA is provided mostly in raw sequence form. This shortcoming makes it
difficult to query and integrate this data at a global scale (Lachmann et al., 2018).
To bridge the gap that currently exists between RNA-seq data generation and RNA-
seq data processing, some pipelines have been developed. For example, (Lachmann
et al., 2018) provides users with direct access to the data through a web-based user
interface, while implementing a scalable and cost-effective solution for the raw data
processing task. Furthermore, BioXpress (Wan et al., 2015) is a gene expression and
cancer association database in which the expression levels are mapped to genes us-
ing RNA-seq data obtained from The Cancer Genome Atlas, International Cancer
Genome Consortium, Expression Atlas and publications.

Admittedly, lack of efforts to integrate the expression profiles of C. reinhardtii
genes obtained from RNA-seq prevent us from bettering our knowledge of the reg-
ulatory mechanisms for the organism. Thus, in the work we propose a pipeline for
collecting and prepossessing transcriptomics data from RNA-seq technology for C.
reinhardtii. Our pipeline is similar to (Lachmann et al., 2018) and depicted in Fig-
ure 5.1. Recently, SRAdb package (Zhu et al., 2013) has been developed to provide a
convenient and integrated framework to query and access SRA metadata quickly
and powerfully from within R and Bioconductor. Thus, in the first step of the
pipeline, instead of GEOQuery package (Sean and Meltzer, 2007), we use SRAdb
package for querying all available RNA-seq data associated with C. reinhardtii from
the SRA database. It should be emphasized that when searching for the metadata,
studies with less than 6 samples are not considered for further analysis, resulting in
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FIGURE 5.1: Schematic illustration of alignment pipeline workflow

20 series of 540 samples. The data provides a general overview of the C. reinhardtii
transcriptome in numerous physiologically relevant context (Table 4.1). The data
was then annotated using the available C. reinhardtii transcript version 5.5 down-
loaded from Phytozome (http://www.phytozome.net/) (Neupane et al., 2011), a
web-based platform for green plant genomics.

The next step consists in all raw sequence reads in SRA format are downloaded
using the fastq-dump from SRA Toolkit to detect single or paired reads file. This step
resulted in more than 2.3 TB of raw data collected. Then, the SRA files is converted
into FASTQ format and in case of a paired read file, the data is split into two FASTQ
files.

5.1.2 Quantifying data

RNA-seq remains a great computational challenge: accurately aligning sequencing
reads for inferring gene expression levels (D. C. Wu et al., 2018). The first step in
quantifying transcription levels with RNA-seq is aligning reads, or pseudo-aligning
parts of the read to transcripts. Specifically classical read-alignment tools start by
aligning sequencing reads to a reference genome, at which gene expression levels
can be inferred for the relevant genes. However, even for fast aligners this step can be
time-consuming and computationally intensive (D. C. Wu et al., 2018). Over the last
few years, alignment-free transcript quantification utilizing k-mer-based counting



5.1. Pipeline 39

SRA
Number

Study
No of

samples

DRP002675
RNA-seq for Chlamydomonas tar1-1 mutant 16

DRP003701

Genome-wide response to CO2 deficiency in
Chlamydomonas reinhardtii revealed by RNA-seq

analysis
27

ERP001997
Transcriptional profiling of Chlamydomonas

reinhardtii
49

ERP005811
amit2 8

ERP006242
An evolutionarily conserved DOF-CONSTANS

module controls photoperiodic signaling in plants
8

ERP011956
RNA-Seq analysis of parental (wild type) and dcl3

mutant lines of Chlamydomonas reinhardtii
12

SRP002284
RNA-seq analysis of the transcriptome from Sulfur

Deprivation Chlamydomonas cells
8

SRP003630
Global Changes following N-deprivation in

Chlamydomonas: Illumina sequencing
6

SRP010062

Three acyltransferases and a nitrogen responsive
regulator are implicated in nitrogen

starvation-induced triacylglycerol accumulation in
Chlamydomonas

25

SRP031856

Systems-level analysis of N-starvation induced
modifications of carbon metabolism in a

Chlamydomonas starchless mutant
47

SRP037997
Chlamydomonas reinhardtii experimental evolution 8

SRP040308

Global Changes following N-deprivation and
N-resupply in Chlamydomonas in the cht7 mutant

and the wild-type: Illumina sequencing
24

SRP040659
Analysis of transcriptome of Chlamydomonas upon

ClpP1 depletion and rapamycin treatment
42

SRP044681
Lineage-Specific Chromatin Signatures Reveal a

Master Lipid Switch in Microalgae
142

SRP052618
Transcriptome response of Chlamydomonas

reinhardtii exposed to inorganic or methylmercury
27

SRP058188
UV-B-induced gene expression changes in

Chlamydomonas reinhardtii
8

SRP061735
Chlamydomonas diurnal transcriptome 56

SRP094014
The biosynthesis of nitrous oxide in the green algae

Chlamydomonas reinhardtii
18

SRP094886

Global transcriptome analysis of heterodimeric
homeobox-driven zygote developmental program in

Chlamydomonas reinhardtii
8

SRP103581
Chlamydomonas reinhardtii strain:WT222+

Transcriptome or Gene expression
64

TABLE 5.1: Studies used in the work
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FIGURE 5.2: Overview of Salmon’s method and component. Image
from Patro et al., 2017

algorithms has been introduced (such as Salmon (Patro et al., 2017), Kallisto (Nico-
las L. Bray et al., 2016), etc.) as a novel approach to replace classical aligners. Among
those, Salmon (see Figure5.1) is the k-mer counting software that learns and corrects
sequence-specific and GC biases on-the-fly, in addition to using quasi-mapping for
further improvement in transcript quantification. Therefore, the core component of
the pipeline in the thesis is using Salmon to estimate abundances without aligning
reads, followed by the tximport package (Soneson2016) for assembling estimated
count and offset matrices. This is also a pipeline recommended by (Michael I Love
et al., 2015) for gene-level exploratory analysis and differential expression since the
approach is newer and faster. The advantages of using the transcript abundance
quantifiers in conjunction with tximport to produce gene-level count matrices and
normalizing offsets are: 1) correction of any potential changes in gene length across
samples (e.g., from differential isoform usage); 2) some of these methods are substan-
tially faster and require less memory and disk usage compared to alignment-based
methods; 3) it is possible to avoid discarding those fragments that align to multiple
genes with homologous sequence (Michael I Love et al., 2015). The guideline and
code for collecting and preprocessing the data can be found in Appendix A.

Another point of debate is which unit one should opt for as read counts need
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to be properly normalized to extract meaningful expression estimates (Garber et al.,
2011). Indeed, RNA fragmentation during library construction causes longer tran-
scripts to generate more reads compared to shorter transcripts present at the same
abundance in the sample (Garber et al., 2011) (Fig. 3a). Furthermore, the variability
in the number of reads produced for each run causes fluctuations in the number of
fragments mapped across samples (Garber et al., 2011)

FIGURE 5.3: Methods for the quantification of expression. Image
from Hwang, J. H. Lee, and Bang, 2018

The most commonly used approaches include R/FPKM (reads/fragments per
kilobase per million reads) (Mortazavi et al., 2008) and TPM (transcripts per kilobase
million) (Fig 5.3 a,b). RPKM can be calculated as

RPKMi = 109.
ni

li. ∑i .nj

. The only difference between RPKM and FPKM is that FPKM considers the read
count in one of the aligned mates if paired-end sequencing is performed (Hwang,
J. H. Lee, and Bang, 2018). TPM is a modification of RPKM in which the sum of
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al TPMs in each sample is consistent across samples (Hwang, J. H. Lee, and Bang,
2018)

TPMi = 106.
nj/lj

∑i nj/lj

This approach makes comparisons of mapped reads for each gene easier than PKM
or FPKM based estimates because the sum of normalized reads in each sample is
the same in TPM (Hwang, J. H. Lee, and Bang, 2018). Consequently, the traditional
R/FPKM have been largely superseded by the TPM (Wagner, Kin, and Lynch, 2012)
since the latter is more consistent across libraries (Michael I Love et al., 2015). Re-
gardless, all these units attempt to "correct for" sequencing depth and feature length
and thus do not reflect the influence of these on quantification uncertainty. In or-
der to account for these aspects, most statistical tools for analysis of RNA-seq data
operate instead on the count scale. Most of these tools were designed to be applied
to simple read counts, and the degree to which their performance is affected by us-
ing fractional estimated counts resulting from portioning reads aligning to multiple
transcripts is still an open question. The fact that the most common sequencing
protocols provide reads that are much shorter than the average transcript implies
that the observed read counts depends on a transcripts length as well as on its abun-
dance; thus, simple counts are arguably less accurate measures than TPMs of the true
abundance of RNA molecules from given genes (Michael I Love et al., 2015). The use
of gene counts as input to statistical tools typically assumes that the length of the ex-
pressed part of a gene does not change across samples and thus its impact can be
ignored for differential analysis. Furthermore, it was shown by (Michael I Love et
al., 2015) that 1) gene-level estimation is considerably more accurate than transcript-
level; 2) regardless of the level at which abundance estimation is done, inferences
at the gene level are appealing in terms of robustness, statistical performance and
interpretation; 3) taking advantage of transcript-level abundance estimates when
defining or analyzing gene-level abundances leads to improved differential gene ex-
pression(DGE) results.

5.2 Network validation

Even though high-throughput technologies provides an abundance of biological
data, be it of the realm of genomics, transcriptomics or bibliotomics, it remains a
bioinformatics challenge to meaningfully transform those data into information. We
are finding ourselves at the uprising edge of inferring GRNs for many model organ-
isms. However, their validation is rather straightforward for GRN where extensive
ground-truth values are known, but constitutes a major part of research, if there has
not been any GRN established yet. And this has been the case for C. reinhardtii.

Prominent metabolic pathway databases like KEGG (Kanehisa, Minoru and Goto,
2000) provide only a part of the gold-standard and is outdated in the case for C. rein-
hardtii, as its current gene and protein refer to NCBI (Barrett2013a) version from
2007. In the meantime, many of those genes have been mapped to different genes
and corresponding proteins do not longer exist. From internal communications we
also know that certain pathways provided by KEGG for C. reinhardtii do not exist in
the algae, but have been inferred from orthologs. There are only a few databases for
model organisms like E. coli that provide metabolic or gene networks, which have
been curated by experts. While there exist several repositories for C. reinhardtii, most
prominently Phytozome (Neupane et al., 2011) there exist no GRN for C.reinhardtii so
far. Therefore, it turned out to be a delicate challenge to validate our network. To this
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end, we collected data and information from four sources: the protein-protein inter-
action database STRING (Szklarczyk et al., 2015), the Gene Ontology Consortium
(Ashburner et al., 2000), KEGG (Kanehisa, Minoru and Goto, 2000) and PubMed
(Doms and Schroeder, 2005). Those findings were used to validate our inferred net-
work using methods similar to the modENCODE project (Roy et al., 2010).

5.2.1 ChlamyNET

In Chapter 3 we present what is a gene co-expression network (GCN) and how
to construct a GCN using the correlation to measure the co-expression of a pair
of genes. Recently ChlamyNET has been presented by (Romero-campero et al.,
2016) as the first GCN for C. reinhardtii. Additionally, the authors developed a web-
based tool, ChlamyNET, for the exploration of the Chlamydomonas transcriptome.
ChlamyNET was constructed from 287 GigaBytes of collected RNA-seq data ac-
counting for 50 samples and representing eight different genotypes under diverse
physiological conditions. Moreover, ChlamyNET consists of 9171 genes exhibiting
an overall of 139019 co-expression relationships. It was shown that ChlamyNET ex-
hibits a scale-free and small world topology. Moreover, the authors identified nine
gene clusters that capture the structure of the transcriptome under the analyzed con-
ditions.

Nevertheless, the volume of data collected accounts for only a small part of all
RNA-seq data could be found for C. reinhardtii from SRA repository. More impor-
tantly, the problem of batch effects accompanied with integrating transcriptomics
data is not well addressed by the authors. By comparison, in our study we have
collected 2.3 TB of raw data from 20 different series consisting of 540 samples under
numerous physiological conditions (see Table 5.1) to create CregNET.

5.2.2 Permuted graph

Formally let G = (V, E) be a graph where V = {v1, v2, ..., vn} denotes its node set
and E a subset of V × V representing the edges. The permutation of a graph G is a
swapping of the node set, while preserving the edge sets’ topology. Figure 5.4 shows
an example of permutation graphs of six vertices. Let σ : V → V be a permutation
of V, i.e. σ(v1, v2, ..., vn) = (σ(v1), σ(v2), ..., σ(vn)), where σ(vi) = vj is unique and
all pairs (σ(vi), σ(vj)), i ̸= j are distinct. An edge e = (vi, vj) under a permutation
is denoted by σ(e) = (σ(vi), σ(vj)). Thus, an edge is mapped onto an edge, and
the topological edge structure is preserved, while only the labeling of the nodes is
permuted. We denote the permuted graph by σ(G).

FIGURE 5.4: Example of permutation graphs of six vertices. Image
from Seoud and Mahran, 2012

5.2.3 Network enrichment and scoring

A network scoring function S is any function taking a graph as input and returning
a real value larger or equal to zero. If a higher score reflects a higher valued network,
then the underlying scoring function is called an increasing score, a decreasing score
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otherwise. The enrichment of a graph G wrt. a permutation σ is defined by S(G)
S(σ(G))

for increasing score, and S(σ(G))
S(G)

for a decreasing score. We call a network to be
enriched wrt. σ, if its enrichment score > 1 for an increasing score, and < 1 for a
decreased score.

The underlying idea of an enriched graph is that a good network is "truer" than
its permuted, and somehow randomized, version. This is simply stating that a
graphs score is higher than the score achieved by the graph permuted wrt. σ. On the
other side, a score < 1 tells that the permuted graph is higher valued than the origi-
nal graph. An equivalent meaning is introduced for a decreasing score by reversing
the sign.

Even though a graph is enriched wrt. one permutation σi it might not be enriched
wrt. a permutation σj. However, one expects for a network with good topology that
its score is better than most of its permuted versions. Therefore, the enrichment of a
graph G is defined as

1
|Π| ∑

σϵΠ

S(G)

S(σ(G))
(5.1)

where Π is the set of all possible permutations for G. The enrichment is hence the
averaged enrichment value wrt. all permutations σϵΠ. The number of permutations
for a graph of size n is n! and thus computationally not feasible for large graphs. In
order to get an approximation, we took 100 randomly drawn permutations. In order
to validate the accuracy of our network prediction, we considered the enrichment of
the top − k weighted edges at several percentages of the total network size, where
the size of a network is defined as the number of its edges. However, the network of
CREG-N3 and ChlamyNET have different sizes and provide also a different number
of genes, i.e. ChlamyNET provides 13,446 genes, while our CREG-N3 has 17,441
genes.

In order to compare them consistently, we took the size of the smallest network
as reference, i.e. GREG-N3 with a size of 72,532,463. However, the use of a single
scoring function is prone to be biased towards a certain type of network. Therefore,
it is indispensable to use several scores relying on different aspects of the graph,
which we will treat in the next subsections.

5.2.4 Protein-Protein-Interaction-Network (PPI-network)

A PPI-network is a graph GPPI = (V, E) whose nodes V representing proteins and
edges E representing a form of high specificity established between the correspond-
ing proteins. The STRING database (Szklarczyk et al., 2015) provides a publicly
available PPI-network of C. reinhardtii, containing 4,321,366 interactions of 13,307
proteins taken from all organelles. Each edge e comes with a confidence weight we,
provided by the STRING community. The STRING annotation refers to the current
NCBI annotation , wherefore each protein is uniquely mapped to one gene, and no
gene exhibits any spliced forms. However, since the NCBI annotation dates back to
2007, we subsequently had to map the genes to the current genome annotation v5.5.

If there is a well-established protein-protein interaction in Gk, then the gene-
gene network might have a corresponding gene-gene interaction, and vice versa.
Of course, this is not a 1-1 mapping, however, we assume that a good network infer-
ence will not only have captured the top protein-protein interaction, but weighted
them high too. Therefore, let Gk be the network consisting only of its top − k edges,
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then we define the PPI score by

SPPI(Gk) = |Gk ∩ GPPI | , (5.2)

where the cardinality of the intersection of two graphs G and H is

|G ∩ H| = |{E(G) ∩ E(H) : V(G) ∩ V(H)}| (5.3)

that is the number of edges the two graphs have in common on their shared node
set. This score was computed for ChlamyNET and CREG-N3 for several different k
(see Network enrichment and scoring for the choice of k).

5.2.5 Gene ontology

The Gene Ontology (GO, (Ashburner et al., 2000)) project is a major bioinformatics
initiative to develop a computational representation of our evolving knowledge of
how genes encode biological functions at the molecular, cellular and tissue system
levels. GO provides GO-terms, which are machine readable, describing the func-
tions of specific genes. Using GO-terms for the validation of associated genes un-
derlies the hypothesis that specific inferred gene-gene interactions have many of the
corresponding GO-terms in common. In information retrieval and text mining one
common approach to compare the similarity between two documents is the Jaccard
index. It is defined by

J(A, B) =
|A ∩ B|
|A ∪ B| (5.4)

for two sets A and B, where in our scenario A and B will be the set of GO-terms of
two genes GA and GB. The Jaccard index will be equal to 1 if the common GO-terms
of GA and GB are exactly the union of their GO-terms. If the intersection is empty,
then it will be 0.

We have retrieved 26, 216 GO-terms (3, 593 unique ones) for 7579 genes from
NCBI and computed for each of those gene pairs its Jaccard index, resulting in a
7579 × 7579 gene-gene GO-matrix GGO.

It was found that for each gene 3.45 Go-terms were assigned on average, a more
confluence figuring of the GO-term distribution can be seen in Fig 5.5 Let Gk the
network consisting only of its top − k edges, then we define the GO score by

SGO(Gk) = |Gk ∩ GG0| (5.5)

Similar to the PPI score, the GO score reflects the amount of rediscovered gene-gene
pairs that are meaningful in terms of GO annotation. The higher the Jaccard-index
of two genes, the more plausible that they share a biological function, which should
be reflected by sharing an edge in the network with a high score.

5.2.6 KEGG ontology

In the Kyoto Encyclopedia of Genes and Genomes (KEGG) database (Kanehisa, Mi-
noru and Goto, 2000), molecular-level functions are stored in the KO (KEGG Or-
thology) database and associated with ortholog groups in order to enable extension
of experimental evidence in a specific organism to other organisms. Genome an-
notation in KEGG is an ortholog annotation, assigning KO identifiers (K numbers)
to individual genes in the GENES database. In general KO grouping of functional
orthologs is defined in the context of KEGG molecular networks (KEGG pathway
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FIGURE 5.5: Frequency of GO-terms per gene

maps, BRITE hierarchies and KEGG modules), which are in fact represented as net-
works of nodes identified by K numbers. The fact that functional information is
associated with ortholog groups is a unique aspect of the KEGG resource (Kanehisa,
Minoru and Goto, 2000).

We have extracted 4910 KO-terms (3269 unique ones) for 4907 genes and equiv-
alently to the GO-terms, we used the Jaccard-index to form a 4907 × 4907 gene-gene
matrix. The KO-score is analogously computed to the GO-score

5.2.7 Literature

PUBMED (Doms and Schroeder, 2005), the central repository for references to life
science articles, gives rise to a total number of 2816 abstracts about C. reinhardtii at
the time when the research was conducted. We downloaded all available abstracts
counted for each abstract, including its title, the occurrences of all gene entities, i.e.
symbols, gene names and aliases. The basis of those entities was formed by the
NCBI annotation for Chlamydomonas (e.g. CHLREDRAFT_106571) and the stan-
dard gene symbols, names and aliases. We have neither explored the articles for dif-
ferent genome annotations as jgi|Chlre3|107200 (v3.1), g17.t (v5.3) or Cre01.g000700
(v5.5), which all refer to the same gene, nor did we crawl the articles for protein en-
tities. Exclude ambiguities and handle genes that have been mapped to different
transcript or proteins due to a refined and updated genome annotation, is a research
in its own right.

The standard and widely used annotation resulted in a high dimensional vector
of 13,046 dimensions, reflecting 13,046 distinct and unique gene entities, for each
document. Each gene-gene pair occurring in a document, i.e. two entries not equal
to zero in one of the high dimensional vectors, is considered as a potential gene-gene
interaction.

The frequency of each interaction is counted and stored as weight. We discov-
ered this way 15, 236 interactions, where 70% are singular interactions, i.e. have
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FIGURE 5.6: Gene-Gene interaction found in the literature

been found only once, while there have been also a significant amount of interac-
tions found with a frequency of 34 occurrences. The latter consists mainly of mem-
brane, antiporter or transporter genes, comprising the ATM, MTP and CAX gene
family. The resulting edge-list was transformed into a matrix GLit and compared to
the edges discovered by the network

SLit(Gk) = |Gk ∩ GLit|

5.2.8 Average Shortest Path (ASP)

The power of gene A directly controlling gene B is related to their distance on a
regulatory path. The more distant they are, the less influence A exhibits on B. A
GRN reflects those various influence strengths by being a trade-off between a fully
connected gene-gene network and a too short-ranged dependency network. In par-
ticular, the predicted length of the shortest path between A and B, i.e. the minimal
amount of nodes necessary to reach B from A or vice versa, for two closely regu-
lated genes should be small compared to a randomly assigned graph between them.
Hence, the average shortest path of all genes should be smaller than in a random
graph.

However, a complete gene-gene network (all gene pairs have a shortest path of
exactly 1) has always the smallest average shortest path, namely 1. Nevertheless, if
the inference of a complete gene-gene network is good, then restricting the network
to the top weighted edges should still deliver good results. Contrary to the previ-
ous scores, the ASP-score is a decreasing score and therefore the enrichment can be
computed with

SASP(σ(G))

SASP(G)

where the SASP is defined as the average of all shortest paths on |Gk ∩ GList| i.e. the
intersection with the graph derived from literature.
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5.2.9 PPi-Triangles

FIGURE 5.7: Left : TF-genes in the GRN, Middle : A protein interac-
tion in PPi, Right: Combined triangle of GRN and PPI

A PPi-network reflects specificity between proteins, in particular interactions be-
tween them. An interaction of proteins A and B might be explained by a transcrip-
tion factor regulating the genes corresponding to protein A and B. On the contrary,
an inferred co-regulation of two genes A and B should be reflected by an interaction
of their proteins in the PPi-network. The number of correctly assumed co-regulated
genes in a GRN can be assessed by the number of closed TF-PPi triangles. That is
the completion of GRN edge pairs sharing a TF by an edge from the PPi network
(see Fig 5.7).

We have downloaded the most recent list of TF from the Plant Transcription
Factor Database (Jingchu Luo et al., 2013), consisting of 234 genes comprising tran-
scriptions factors and transcription regulators. They have been transformed into a
TF-gene matrix. Counting the number of TF-PPi triangles means to count the true
checks for every gene pair of the same TF if there is a PPi connection. So, a TF-gene
matrix, where each row contains the genes regulated by a TF, is a suitable represen-
tation. Each gene pair of a TF row has to be checked if they can be completed by a
PPi in the PPi network.

On the other side, as stated before, a PPi has not be present in the GRN, being the
reason that one score the amount of PPis that were rediscovered by the GRN, but the
closed TF-PPi triangles in the average for each TF. This counterbalances a complete
network, where all gene pairs seem to be regulated by a TF.

5.3 Experimental results

In this section, we present the experimental results of all validation scores explained
above computed for CregNET and ChlamyNET. And in order to validate the robust-
ness of our network, we considered the enrichment of the top − k weighted edges at
several percentages of the total network size.

In Table 5.2 when top 1% of all edges were selected, CREG_N3 outperforms all
the others in term of PPI, GO, KO, Literature and Averaged Shortest Path (ASP)
scores. It is also interesting to note that CREG_N2 is also better than ChalmyNET
with those scores. For PPI-Tri score, CREG_N2 is the top performer followed by
ChamyNET, CREG_M1 and then CREG_N2. A similar pattern is observed in Ta-
ble 5.3 measuring the scores for the top 5% of edges for each network. For instance,
CREG_N3 leads with PPI, GO, KO, Literature and PPI-Tri scores while CREG_N2 is



5.3. Experimental results 49

the best with respect to ASP score. In general, CREG_N3 is the best and CREG_N2
is the second best network.

TABLE 5.2: Top 1%

PPI GO KO Literature PPI-Tri ASP

CREG_M1 1.033058 1.272837 2.851852 2.250000 1.2684910 0.9946715
CREG_N2 1.499628 3.098478 11.970588 4.808824 1.9122458 1.0912617
CREG_N3 1.778624 5.712112 19.584906 8.666667 1.2557466 1.1275794

ChlamyNET 1.005364 1.640209 5.250000 2.794872 1.4653919 1.0214104

A same conclusion can be reached by Table 5.4 when we includes top 10% of all
weighted edges. This time, CREG_N3 is still the best network followed by CREG_N2.
Even though ChlamyNET is better than CREG_M1, it is by far outperformed by
CREG_N3 and CREG_N2.

TABLE 5.3: Top 5%

PPI GO KO Literature PPI-Tri ASP

CREG_M1 1.044536 1.179604 1.973494 1.462985 1.014224 0.9926273
CREG_N2 1.335464 1.713317 3.676115 2.633156 1.5974866 1.0378010
CREG_N3 1.484548 2.402395 5.241573 3.149701 1.7151664 0.8825367

ChlamyNET 1.039675 1.216215 2.120690 1.539602 1.2235342 0.9948883

TABLE 5.4: Top 10%

PPI GO KO Literature PPI-Tri ASP

CREG_M1 1.124379 1.210021 1.627936 1.376795 0.8163115 0.9950922
CREG_N2 1.409908 1.981277 4.841035 3.019938 1.637731 1.0446838
CREG_N3 1.517054 3.081725 8.800000 3.695327 1.669193 1.0468796

ChlamyNET 1.030407 1.310526 2.948473 1.690250 1.152630 0.9970119

In order to have a better view of the performance of CREG_N3 and ChlamyNET
we compare their statistical scores with the variation of number of edges. Fig 5.8
shows that CREG_N3 is approximately 1.5 times better than ChlamyNET. Moreover,
this ratio is higher when less edges are taken into consideration explaining the fact
that CREG_N3 is better recovering the most significant edges. A similar figure for
GO Enrichment is also observed with Fig 5.9 when CREG_N3 is at least 1.5 times
better than ChlamyNET. Moreover Fig 5.10 and Fig 5.11 shows a same pattern when
CREG_N3 is significantly better than ChlamyNET with different variation of top − k
weighted edges.

However, when compared with PPI-Tri Enrichment score in Fig 5.12 CREG_N3 is
still better but only when k is large enough (more than 1% of edges). And it is not ob-
vious by Fig 5.13 when with some specific range of values of k CREG_N3 has a better
scores and vice versa. In conclusion, the figures strongly suggest that CREG_N3 out-
performs ChlamyNET with almost all statistical scores under all different contexts,
i.e. the number of edges considered.
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FIGURE 5.8: Fold change of PPI enrichment score with regard to ran-
dom networks of CREG_N3 and ChlamyNET

FIGURE 5.9: Fold change of GO enrichment score with regard to ran-
dom networks of CREG_N3 and ChlamyNET
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FIGURE 5.10: Fold change of KO enrichment score with regard to
random networks of CREG_N3 and ChlamyNET

FIGURE 5.11: Fold change of Literature enrichment score with regard
to random networks of CREG_N3 and ChlamyNET
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FIGURE 5.12: Fold change of PPI-Triangle enrichment score with re-
gard to random networks of CREG_N3 and ChlamyNET

FIGURE 5.13: Fold change of Average Shortest Path enrichment score
with regard to random network of CREG_N3 and ChlamyNET
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Chapter 6

Conclusions and Future Work

This thesis has been intended to the analysis of various meta-analysis methods for
reverse-engineering GRNs from multiple gene expression datasets. GRNs are of
essential because by better understanding GRNs we could, for example, manipu-
late algae to generate biofuel or alternative foods. Furthermore, from a biomedical
perspective, this enables us to understand causes of diseases in order to design a
suitable drug for a particular disease without side effects accompanied with it. In-
terestingly, the no free lunch theorem, which is said that if an algorithm performs
well on a certain class of problems then it necessarily will perform poorly on the
set of all remaining problems, is seen for all benchmarking methods. For instance,
with in silico data, M family methods have better performance compared to those
of N methods. However, N1 and N3 are the two best for EcoliNET and YeastNET
while M2 is the best for FlyNET. Consequently, N3 which is competitive with the
other methods while preserving the scalability is selected to create CregNET - a first
GRN of C. reinhardtii. Experiment results using various measures suggest that Creg-
NET perform better than ChlamyNET - a first GCN of C. reinhardtii. The main key
explaining for CreNET’s superior is more data. The amount of raw RNA-seq data
we have collected is about 10 times as large as that for ChlamyNET (2.3 TB of 540
samples compared to 287 GB of 50 samples). Secondly, in the thesis we provide a
more systematic and robust meta-analysis method (N3) to address the batch effects
accompanied with transcriptomic data.

6.1 Accomplished work

6.1.1 Propose and Comparing meta-networks

Reverse-engineering of GRNs from multiple studies has been a normal routine in
systems biology since such approach can lead to more accurate results compare to
the traditional approach working with a single study. In this work we presented
different methods namely data merging, networks ensemble and then propose MI-
based meta-analysis to construct GRNs for model organisms from their transcrip-
tome data. First, we evaluate the effectiveness of the collection of methods on In
silico data and then with E. coli , Saccharomyces cerevisiae and Drosophila compendia. To
the best of our knowledge this is the first and thorough analysis of different meta-
analysis approaches for reconstructing GRNs from various gene expression datasets.

6.1.2 Create and Validate CregNET - a first GRN for C. reinhardtii

After comparing different meta-analysis methods, we selected the most consistent
one from the collection to reconstruct a GRN for the model organism Chlamydomonas
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reinhardtii (CregNET). It should be noted that we also provide a pipeline for col-
lecting and pre-processing RNA-Seq data of C. reinhardtii from NCBA SRA. This
pipeline can be extended for other model organisms as well. Experiment results
then strongly suggest that CregNET outperforms the current co-expression network
ChlamyNET in term of stability and predictive power for new GO discovery.

6.2 Future Direction

Apart from regulations at transcription level, there are other molecular levels, such
as metabolites or proteins, which should be included in GRNs to capture the full
complexity of cellular processes. In other words, it is of great important to integrate
different types of networks with GRNs, including protein-protein interactions, mi-
croRNA, RNA binding protein, and metabolic and signaling networks. Additionally,
we merely validate CregNET using some statistics measurements namely PPI, GO,
KO, etc. Therefore for the future work, biological validation is necessary to discover
potential important biological processes.
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Appendix A

Pipeline for collecting and
preprocessing RNA-Seq data of C.
reinhardtii from NCBI SRA



Guideline for collecting and preprocessing RNA-Seq data of C.
reinhardtii from NCBI SRA

1. Preparation

• Packages
• Reference directories

2. Search for all RNA-Seq data of C. reinhardtii
3. Download raw data from NCBI SRA
4. Quantify raw data
5. Transform data to gene count summary

1. Preparation

Packages

suppressMessages(library(GEOquery))
suppressMessages(library(GEOmetadb))
suppressMessages(library(SRAdb))
suppressMessages(library(RCurl)) # for getURL
suppressMessages(library(dplyr)) # manipulating matrices

Reference directories

basedir <- "/home/biosys/Working/doctoral_thesis"

2. SRA search

searchSRA <- function(dir=getwd()) {
# define the sql file
sqlfile = "SRAmetadb.sqlite"
file.info(sqlfile)

# create a connection for later queries
sra_con <- dbConnect(SQLite(), sqlfile)

# cread a query for full text search
rs <- getSRA(search_terms = "Chlamydomonas rna-sequencing",

out_types=c("sra"),
acc_only=F,
sra_con=sra_con)

dim(rs)
head(rs)

1



# filter out the results to retain only studies with at least 6 samples
rsFiltered <- as.data.frame(rs %>%

group_by(study, study_title,
library_strategy, library_source) %>%

select(study, study_title,
library_strategy, library_source) %>%

summarise(NoOfSamples = n()) %>%
filter(NoOfSamples>=6 &

library_strategy=="RNA-Seq" &
library_source=="TRANSCRIPTOMIC"))

# remove Small RNA study
rsFiltered <- rsFiltered[-9, ]

# get all sra files for every study
sra.files <- lapply(rsFiltered[,1],

function(x) listSRAfile(x, sra_con)$run)
names(sra.files) <- rsFiltered[,1]

# disconnect to the database
dbDisconnect(sra_con)

# return sra files
sra.files

}

# now use the above function to
# search for all sra files of Chlamydomonas
rs <- searchSRA()

## `summarise()` regrouping output by 'study', 'study_title', 'library_strategy' (override with `.groups` argument)
rs[0:2]

## $DRP002675
## [1] "DRR021709" "DRR021703" "DRR021713" "DRR021704" "DRR021710" "DRR021707"
## [7] "DRR021706" "DRR021715" "DRR021717" "DRR021702" "DRR021705" "DRR021716"
## [13] "DRR021708" "DRR021711" "DRR021712" "DRR021714"
##
## $DRP003701
## [1] "DRR039907" "DRR039893" "DRR039892" "DRR039903" "DRR039905" "DRR039899"
## [7] "DRR039908" "DRR039896" "DRR039900" "DRR039901" "DRR039906" "DRR039909"
## [13] "DRR039894" "DRR039904" "DRR039898" "DRR039897" "DRR039895" "DRR039902"
## [19] "DRR039913" "DRR039912" "DRR039910" "DRR039911" "DRR039915" "DRR039917"
## [25] "DRR039916" "DRR039918" "DRR039914"

3. Download raw data from NCBI SRA

• SRA provides tools (fastq-dump) to download and covert from SRA format to fastq format that can be
passed in to Salmon

• It is important to use –split-files option since some of the reads in SRA are paired-end reads
• –skip-technical is to retain only biological reads by removing technical reads

2



DownloadSRA <- function (sraFile,
dir=getwd(),
destdir="temp") {

l <- length(sraFile)
setwd(paste(dir, destdir, sep=""))
for (i in 1:l) {

if (file.exists(sraFile[i])) next
command <- paste("mkdir -p ", sraFile[i])
system(command)
setwd(paste(dir, destdir, sraFile[i], sep=""))
command <- paste("prefetch", sraFile[i])
#print(command)
system(command)
command <- paste("fastq-dump --gzip --skip-technical --readids",

"--dumpbase --split-files --clip", sraFile[i])
#print(command)
system(command)
setwd(paste(dir, destdir, sep=""))

}
command <- "rm -f ~/ncbi/public/sra/*"
system(command)

}

4. Quantify raw data

The first step of using Salmon is preparing transcriptome indices

# make index
transcript_fasta <- paste0(basedir, "/Creinhardtii_281_v5.5.transcript.fa")
chlamy_index <- paste0(basedir, "/chlamy_index/")
command <- paste0("salmon index -t ", transcript_fasta, " -i ", chlamy_index )
if (!file.exists(chlamy_index)) {

system(command)
} else {

message(paste0("Index already exists."))
}

## Index already exists.

After that the next step is quantifying

# function to quantify count
QuantSRA <- function (sraFile, sraDir, indexFile="chlamy_index") {

l <- length(sraFile)
for (i in 1:l) {

outDir <- paste0(sraDir, "/", sraFile[i])
inDir <- paste0(sraFile[i], "/")
print(paste0("Processing sample", sraFile[i]))
if (length(list.files(inDir) == 1)) {

command <- paste0("salmon quant -i ", indexFile, " -l A -r ", inDir,
sraFile[i], "_1.fastq.gz -p 8 -o quants/",

3



outDir, "_quant")
} else {

command <- paste0("salmon quant -i ", indexFile, " -l A -1 ", inDir,
sraFile[i], "_1.fastq.gz -2 ", inDir, sraFile[i],
"_2.fastq.gz -p 8 -o quants/", outDir, "_quant")

}
# print(command)
system(command)

}
}

5. Gene count summary

importCountFile <- function(sraName, sraFiles, tx2gene) {
print(paste0("Importing count file for ", sraName))
files <- file.path(paste0(basedir, "/ChlamyGRN"),

"chlamydata",
sraName,
paste0(sraFiles, "_quant"),
"quant.sf")

if (all(file.exists(files))) {
txi.salmon <- tximport(files,

type = "salmon",
tx2gene = tx2gene)

txi.salmon
}

}

4
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