Hepatitis E virus genotype 3 subtype dependent clinical outcomes in Belgium 2010–2018

Michael Peeters1, Thomas De Somer2, Sofieke Klamer3, Frederik Neven4, Jean-Pierre Delwaide5, Peter Stärek6, Philippe Willems7, Stéphane De Maeght8, Christophe Moreno9, Marc Van Hool10, Isabelle Colle1,11,12, Christophe Van Steenkiste1,13, Filip Janssens14, Jos Van Acker15, Astrid Marot16, Emmanuel Botoiu17, Marijke Reynders18, Chantal De Galovy19, Luc Lasser20, Matthias Steverlynck21, Jeroen Maus22, Wim Verlinden23, Anja Geerts24, Marie Gallant25, Van Outryve Steven26, Hendrik Reynaert27, Jean-Pierre Mulak28, Jochen Deaceaestacker29, Vanessa Suin30, Sergio Negrin-Dastis30,Jan Boys31, Jochen Nijs32, Juul Boes33, Steven Van Gucht34, Thomas Vanwolleghem35, Sciensoa, National Reference Centre of Hepatitis Viruses, Viral Diseases, Infectious Diseases in Humans, Brussels, Belgium; 2University Hospital Antwerp, Gastroenterology & Hepatology, Antwerp, Belgium; 3Sciensoa, Epidemiology of Infectious Diseases, Brussels, Belgium; 4University Hospitals KU Leuven, Gastroenterology & Hepatology, Leuven, Belgium; 5University Hospital Liege, Gastroenterology & Hepatology, Liege, Belgium; 6Cliniques Universitaires Saint-Luc (CUSI), Gastroenterology & Hepatology, Brussels, Belgium; 7GZA Hospitals, Clinical Laboratory, Wilrijk, Belgium; 8CH Jolimont, Gastroenterology & Hepatology, Haine Saint Paul, Belgium; 9Cliniques universitaires de Bruxelles, Department of Gastroenterology, Brussels, Belgium; 10Clinique Saint-Luc, Gastroenterology & Hepatology, Bouge, Belgium; 11A.S.Z. Aalst, Gastroenterology & Hepatology, Aalst, Belgium; 12Chent University, Ghent, Belgium; 13Maria Middelares Hospital, Gastroenterology & Hepatology, Ghent, Belgium; 14Jessa ziekenhuis, Gastroenterology & Hepatology, Hasselt, Belgium; 15AZ Sint-Lucas, Clinical Microbiology, Ghent, Belgium; 16CHU UCL Namur, Université Catholique de Louvain, Gastroenterology & Hepatology, Yvoir, Belgium; 17Institute of Tropical Medicine, Antwerp, Belgium; 18AZ Sint-Jan Brugge-Oostende N°2, Medical Microbiology, Laboratory Medicine, Brugge, Belgium; 19Hopitaux IRIS Sud, Department of Gastroenterology, Brussels, Belgium; 20CHU Brugmann, Gastroenterology & Hepatology, Brussels, Belgium; 21CHM Mousscron, Department of Gastroenterology, Mousscron, Belgium; 22ZNA Middelheim, Gastroenterology & Hepatology, Antwerp, Belgium; 23AZ Nikolaas Hospital, Gastroenterology & Hepatology, Sint-Niklaas, Belgium; 24CHU St.-Luc Hospital, Gastroenterology, Ghent, Belgium; 25Jan Yperman Ziekenhuis, Gastroenterology & Hepatology, Ieper, Belgium; 26GZA Sint Vincentius, Antwerp, Belgium; 27University Hospital UZ Brussels, Gastroenterology & Hepatology, Brussels, Belgium; 28CHU Saint-Pierre, Gastroenterology & Hepatology, Brussels, Belgium; 29AZ Delta, Roeselare, Belgium; 30Grand Hospital de Charleroi, Gastroenterology & Hepatology, Charleroi, Belgium; 31Sint-Jan Roeselare, Department of Gastroenterology, Tielt, Belgium; 32Sint-Trudo Ziekenhuis, Department of Gastroenterology, Sint-Truiden, Belgium; 33AZ Turnhout, Campus Sint-Jozef, Turnhout, Belgium Email: Michael.Peeters@scisenso.be

Background and Aims: Except for immunosuppression, male gender, age >50 and chronic liver disease, no correlations with clinical outcomes of a Hepatitis E Virus (HEV) genotype (gt) 3 infection have been identified. In Belgium, diagnosis of HEV is centralized at the National Reference Center (NRC) for Viral Hepatitis, Sciensoa. We analyzed virological factors and clinical outcomes in a nationwide cohort of HEV patients.

Method: Demographic, clinical and biochemical parameters of HEV infections documented at the NRC were collected between 2010–2018. Serum HEV-IgM, -IgG and HEV RNA were determined by ELISA and RT qPCR. HEV was subtyped by Sanger sequencing of an ORF2 fragment. Odds ratios (OR), risk ratios (RR) and 95% confidence intervals (95% CI) were calculated using STATA.

Results: 402 cases were identified. Among 300 cases with clinical data, the median age was 57 years and 69% were males. HEV viremia was detected in 211 patients with an available genotype in 177 HEV gt3 infections largely predominated (93% [165/177]) with subtypes 3c (38% [67/177]) and 3f (44% [78/177]) almost equally represented. The percent of immunocompromised patients (30% vs 16%; OR3c = 2.1 [0.4–4.7] p = 0.045) was higher for patients infected with a virus from the clade of gt3 (achl), compared to a virus from the clade of gt3 (egf), while a similar but non-significant trend was observed for pre-existing liver cirrhosis (9.9% vs 3.4%; OR3c = 3.1 [0.8–12.5]). Patients with a HEV gt3f infection had higher peak values of ALT (mean of 2199 vs 1528 U/L; p = 0.005) and bilirubin (mean of 8.6 vs 4.1 mg/dl; p = 0.001) compared to a HEV gt3c infection. In addition, HEV gt3c infections were treated more often in ambulatory settings, while the percent of patients admitted to the hospital was higher for HEV gt3f cases (36% for 3c; 61% for 3f; RR3f = 1.7 [1.2–2.4] p = 0.003). There were no differences between the subtypes in intensive care unit admissions (5.7%), in hospitalization durations (median of 4.0 weeks), in chronicity (18% vs 14%; RR3f = 0.8 [0.4–2.0]) nor in deaths (1.4% vs 4.8%; RR3f = 3.4 [0.4–30]).

Conclusion: A similar number of HEV gt3c and gt3f infections have been diagnosed in Belgium. Despite more pre-existing comorbidity in patients infected with HEV gt3c, HEV gt3f infections are associated with a more severe disease course according to laboratory values and hospitalization rates. Our nationwide analysis is the first to identify a correlation between HEV gt3 subtype and clinical outcomes.

SAT410 Hepatitis E virus infection in liver transplant recipients in Sweden

miriam karlsson1,2, katari nskoglund3, maria casteda1, marie karlsson1, martin laggåge1, helene norder1,4, institute of biomedicine, sahlgrenska academy, university of gothenburg, department of infectious diseases/virology, gothenburg, sweden; 2region västra götaland, south albvsberg hospital, department of infectious diseases, boras, sweden; 3sahlgrenska university hospital, sahlgrenska academy, university of gothenburg, transplant institute, gothenburg, sweden; 4region västra götaland, south albvsberg hospital, department of clinical microbiology, gothenburg, sweden

email: miriam.ek.karlsson@vgregion.se

Background and Aims: Liver-transplanted patients with acute hepatitis E virus (HEV) infection are at risk developing a chronic infection, which may rapidly progress to severe liver damage if not treated. However, the prevalence of HEV infection after liver transplantation remains largely unclear and likely varies geographically. Thus the aim of this study was to investigate the prevalence of acute and chronic HEV infection among liver transplant recipients in an HEV endemic region.

Method: During 2013–2018, 116 liver-transplant recipients were prospectively enrolled. They were evaluated for anti-HEV IgM and IgG antibodies as well as HEV RNA at the time of liver transplantation, and 6 and 12 months post transplantation. Additionally, medical records were reviewed.

Results: Seven (6%) had detectable HEV RNA, of whom six acquired the infection post-transplantation and one had detectable HEV RNA prior to transplantation. Additionally, 4 (3%) patients had serological markers indicative of HEV infection without detectable HEV RNA. Signs and symptoms of HEV infection were subtle, none were diagnosed in routine clinical care, and none developed a chronic HEV infection. Furthermore 15 patients (13%) had reactive anti-HEV IgG serologies in pre-transplant samples.

Conclusion: A substantial proportion of liver transplant recipients in Sweden are at risk of acquiring acute HEV infection, but surprisingly, no chronic HEV infection were detected in the present study. As HEV infections are often discrete and not diagnosed by current clinical practise, and as ribavirin therapy is available, the introduction of routine prospective HEV RNA screening of liver transplant recipients may be warranted.