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ABSTRACT 

The dynamic behavior of bladed disks in resonance crossing 

has been intensively investigated in the community of 

turbomachinery, addressing the attention to (1) the transient-

type response that appear when the resonance is crossed with a 

finite sweep rate and (2) the localization of the vibration in the 

disk due to the blade mistuning. In real conditions, the two 

mentioned effects coexist and can interact in a complex manner. 

This paper investigates the problem by means of analytic 

solutions obtained through asymptotic expansions, as well as 

numerical simulations. The mechanical system is assumed as 

simple as possible: a 2-dof linear system defined through the 

three parameters: damping ratio , frequency mistuning , rotor 

acceleration  . The analytic solutions are calculated through 

the multiple-scale method. 

 

NOMENCLATURE 
A response amplitude 
 angle of the mistuning pattern 
ℂ set of complex numbers 
K, M  mistuning amplitude for K and M 
t,   partial derivative with respect to t and  
 mistuning amplitude 
EO engine order 
f force complex amplitude 
f force vector 
 phase angle between TW responses  

( ) ( ),c s

r r    standing-wave modes 
i imaginary unit 
I identity matrix 
k blade stiffness 
kc blade coupling stiffness 
K stiffness matrix 

 reduced chirp rate 
r system eigenvalues 
m complex mistuning parameter 
M mass matrix 
N number of blades 
QS quasi steady 
r harmonic index 
ℝ set of real numbers 

r   traveling-wave modes 
SW standing wave 
t time 
 slow time scale 
TW traveling wave 
u blade displacement vector 
r natural frequencies 
   average natural frequency of mistuned system 
 rotor speed 
x1, x2 SW coordinates 
 damping 
y1, y2 TW coordinates 
Y, Y1, Y2 TW amplitudes after time shift 

Superscript 

   temporal derivative 
T transpose 
* Hermintian transpose 

Subscript 

QS quantity related to QS regime 
tuned quantity related to the tuned system 
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INTRODUCTION 

The dynamic behavior of bladed disks in resonance crossing 

has been intensively investigated in the community of 

turbomachinery. In particular, the attention has been addressed 

towards two issues: (1) the transient-type response that appear 

when the resonance is crossed with a finite sweep rate and (2) 

the localization of the vibration in the disk due to the blade 

mistuning. 

The transient effects produce a reduction of the maximum 

amplitude of the response and shift (upwards in run-up) the 

rotor speed at which the maximum response appears. 

Coherently with the common intuition, the reduction of the 

maximum amplitude of vibration is proportional to the rotor 

acceleration, e.g. [1-5]. 

Blade mistuning produces the increment of the dynamic 

response of some blades when the disk is excited with a 

resonant or quasi-resonant force. On this matter the literature is 

vast and a wide list of references can be found for example in 

[6] and in the recent monography [7]. Some analytical 

formulations developed in the quasi-steady regime, i.e. 

disregarding the transient effects due to the rotor acceleration, 

show that the increment of dynamic amplification compared to 

the tuned case is a function of the mistuning level and damping 

[8], as well as the number of active modes involved in the disk 

response [9]. 

In real conditions, the two mentioned effects coexist and can 

interact in a complex manner, e.g. [3]. In particular, it was 

observed that the reduction of the dynamic response that is 

expected in resonant crossing due to the transient effects may 

vanish when dealing with mistuned disks [10]. For some 

systems it was even observed a weak over-amplification 

compared to the quasi-steady prediction, which appears quite 

counterintuitive. This phenomenon has been called Transient 

Amplitude Amplification of Mistuned Systems (TAMS) and has 

been investigated both numerically as well as experimentally 

[11-13]. 

This paper investigates the TAMS by means of analytic 

solutions obtained through asymptotic expansions, as well as 

numerical simulations. The problem is studied working on the 

simplest possible bladed disk model able to produce TAMS, 

namely, a 2-dof linear system defined through the three 

parameters: damping ratio , frequency mistuning , rotor 

acceleration  . The dynamic response is calculated using the 

multiple-scale method. The differential equation governing the 

evolution of the complex envelope are derived both for the case 

of tuned and mistunes disks. The analytic solutions demonstrate 

that the problem is governed by two parameters 2/   and /.  

IDEALIZED DISK MODEL 

In order to analyze the nature of the TAMS, we consider a 

mechanical system that, remaining as simple as possible, retains 

the important features of a bladed disk. To this purpose, we start 

from an idealized bladed disc composed by N blades modeled 

as s-dof systems. The equation of motion has the form 

  Mu Ku f   (1) 

where M and K are the mass and stiffness matrices, 

respectively, Nu  is the displacement vector and Nf is 

the external force. The damping term is assumed to be small 

and will be introduced later.  

Tuned case 

If the disk is cyclic symmetric, M and K are circulant matrices, 

i.e. they have the structure [7] 

 

c c

c c

c

c

c c

k k k

k k k

k

k k

k k k

 
 
 
 
 
 
 
 

K  (2) 

Under this condition, the vibration modes have harmonic 

shape, i.e. their jth components are in the form [7] 
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where r is called harmonic index and floor() is the rounding 

towards -. For the cases r = 0 and r = N/2 (if N is even), the 

eigenvector r
(s) does not exists. In the other cases, the 

eigenvectors r
(c) and r

(s) share the same eigenvalue r = r
2. 

The force f is assumed as a traveling wave (TW) excitation, 

whose frequency changes linearly in time. It represents an 

Engine Order component of a synchronous excitation during a 

constant-acceleration run-up or run-down. For reasons that will 

be clear afterwards, it is convenient to represent the force using 

the complex-valued notation 

 
21

i
2e

r t

r f


f   (4) 

where f is the force complex amplitude, the index r is here 

interpreted as EO,   is the rotor acceleration, referred to as 

chirp rate, and r is a vector whose components r,j are given 

as 
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2 i

,

1
e 1, ,

j
r

N
r j j N

N
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Comparing Eq. (3) and Eq. (5), it can be deduced from the 

Euler’s identity that 
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Since the vectors r and -r are given by two independent 

linear combinations of eigenvectors sharing the same 
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eigenvalues, then they are eigenvectors as well. Due to their 

nature, r
(c) and r

(s) are called Standing Wave (SW) modes, 

while r and -r are called Traveling Wave (TW) modes. 

Let us assume that the blade motion is entirely described by 

the mode pair with harmonic index r, i.e.: 

 
          

    

1 2

1 2

Re

Re

c s

r r

r r

t x t x t

y t y t

 

 

u  

 
 (7) 

where the extraction of the real part is required due to the 

choice of using a complex-valued force in Eq. (4), thus xj and yj 

are complex valued as well. 

The equations of motion projected on the SW modes read 
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in which a viscous dissipation has been added and parametrized 

by the modal damping ratio , assumed equal for both the 

modes. 

The two Eqs. (8) are identical and are excited by equal 

forces with 90-degree phase shift. Besides, also the real and 

imaginary parts of both x1 and x2 have the same amplitude and 

90-degree phase shift.  

If the equations of motion are projected on the TW modes, 

they assume the form 
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where the superscript * represents the Hermitian transpose. Also 

in this case the two equation of motion are identical, however 

the force appears only in the first equation, corresponding to the 

mode having the same whirl direction of the considered force. 

The relationship between SW and TW coordinates can be 

deduced by substituting Eqs. (6) into Eqs. (7) 

 1 2 1 2

1 2

i i
;

2 2

x x x x
y y

 
    (10) 

The assumption of having only two active modes is 

obviously a simplification with respect to the general case. 

However, it represents the realistic situation in which mistuning 

is small and the natural frequencies are well isolated. 

Mistuning 

Blade mistuning modifies the shape of the matrices M and 

K and, as a consequence, destroys the regular structure of 

eigenvalues and eigenvectors that have been described above 

[7]. 

Since we are interested in exploring simple systems, we 

assume that the blade vibration can be still represented by two 

vibration modes that retain the harmonic structure of the tuned 

disk. This happens rigorously if the two considered modes are 

isolated and the mistuning pattern has a harmonic shape with 

harmonic index 2r, i.e. the system matrices are updated as [9]: 
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where K and M are complex-valued constants representing the 

amplitude of the mistuning and diag() constructs a diagonal 

matrix from a vector. This result is actually obtained even when 

the mistuning pattern does not follow the mentioned condition, 

but, simply, when it is very small. 

As an effect of the mistuning, the double eigenvalue r splits 

into two separate eigenvalues 2

,1 ,1r r    and 2

,2 ,2r r  . Due to 

this circumstance, the TW vectors r and -r are not vibration 

modes of the system. Besides, the SW modes defined by Eq. (3)

are modified as [14]: 
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  (12) 

where the angle  depends on the constants K and M and is 

referred to as mode clocking. 

The equations of motion in terms of SW coordinates are a 

simple update of Eqs. (8), i.e., 
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where 
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The relationship between the SW amplitudes and the TW 

amplitudes can be obtained by substituting Eqs. (12) into Eqs. 

(7). It yields: 
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The manipulation of Eqs. (13) according to Eqs. (15) 

provides the equations of motion in terms of TW coordinates 

as: 
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It can be observed that, while the equations in term of SW 
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coordinates remain decoupled, the equations in terms of TW 

coordinates become coupled due to terms that scale with the 

mistuning amplitude. 

For a systematic analysis of the problem, Eqs. (16) are non-

dimensionalized introducing the scaling 
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Besides, the harmonic index r is set equal to 1 without 

introducing any conceptual restriction. After these 

modifications, the equations of become: 
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QUASI-STEADY RESPONSE OF A TUNED SYSTEM 

If the system is tuned (i.e. =0) and if the chirp rate   is 

very small (to be quantified next), the system response can be 

obtained as the steady-state response due to a harmonic load of 

frequency t   , i.e.: 
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where only y1 shows a resonance at =1, while y2 remains 

( )  and can be neglected. The solution is readily available 

in the form: 
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showing that, for  ≪ 1, the maximum amplitude appears at 

1/t    and is equal to 1 

 max 1QS tunedA A     (21) 

Figure 1 shows the response of a bladed disk with Nb = 6 

blades and  = 310-3. The amplitude |A| is reported together 

with the displacement uj of the individual blades. It can be 

observed that all the blades share the same envelope, but vibrate 

with a different phase angle. 

 
Figure 1. Quasi-steady response of a tuned disk. 

TRANSIENT RESPONSE OF A TUNED SYSTEM 

If the sweep velocity   is not very small, transient effects 

during the resonance crossing appear. This situation is typical of 

the resonance crossing of rotors during run-up or run-down. The 

effects are (1) a shift of the amplification peak towards high 

frequencies for run-up and low frequencies for run-down; (2) 

reduction of the peak height; (3) increment of the peak width; 

(4) amplitude modulation after the resonance crossing due to 

the beating of the transient free-decaying response with the 

forced response (e.g. [1-5]). 

The equation of motion is obtained from Eq. (18) by letting 

=0 and reads 
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  (22) 

Likewise for Eq. (19), y2 is not excited by the load and can 

be disregarded. Besides, it is convenient to first shift the time to 

the vicinity of the resonance as t ← t – t0, with 0 1/t   . With 

this substitution, the equation of motion becomes: 
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t
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The first exponential term in the forcing gives a constant 

phase change on the solution, and can be removed by 

introducing the variable 
i/ 2

1 ey Y  . After this substitution, the 

equation of motion becomes:  
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The small damping 1  and chirp rate 1  produce a 

slow time modulation of the solution that can be captured using 

a multiple scales method (see, e.g. [15-16]). To this purpose, it 

is necessary to formalize the relative smallness of the two 

parameters by letting, without loss of generality,    and 
q   where 0 1 ,   1 and 0q  .     
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The solution is expanded using two time scales 1t  and 

t   

    0 1, ,Y Y t Y t       (26) 

And, inserted into Eq. (25), equating terms with the same power 

of , gives: 
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The solution at the leading order is directly available and 

reads 

  0 ie tY A    (28) 

where the amplitude A(τ) is a function of the slow time scale 

and will be determined with a secularity condition. As far as the 

order 1 is concerned, it must be noted that the governing 

equation should not depend explicitly on the small parameter . 
It is therefore necessary to re-write the right-hand side of Eq. 

(27) by choosing 2qt t    so that the parameter  
disappears. Substituting  = t indicates that it is necessary to 

choose  = q and  +  = 2, so that the governing equation at the 

order  reads 
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To prevent the presence of secular terms, to assure that Y1 is 

finite, it is necessary to force to zero the resonant terms present 

at the RHS. If q ≠ 2 this condition leads to the equation 

 0A A     (30) 

which, with the initial condition A  0 at   −∞, only admits 

the trivial solution A = 0. In order to find a non-trivial solution, 

it must be set q = 2, thus the secularity condition reads: 

 
21

i
2e

dA
A

d




    (31) 

The general solution of this linear problem can be written as 
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where the constant C can be set to zero to select the solution 

that verifies A  0 as   −∞. Moreover, the Faddeeva 

function [17] 
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allows to finally express the envelope A() in the form 
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  (34) 

which gives a much more straightforward way to compute the 

response. 

This result provides a method to calculate the transient 

response of the system, but also indicates that the right scaling 

for the chirp rate is obtained by choosing 2  . This 

suggests that 2/   is the correct parameter that should be 

employed to represent the chirp rate, as it was already deduced 

in [4] on the basis of different arguments. 

Figure 2 shows the transient response of a tuned disk with 

Nb = 6,  = 310-3 and  = 10. The blade response uj and the TW 

coordinate y1 are obtained by numerical integration of Eqs. (22) 

and (7), while the envelope A is calculated by the asymptotic 

solution (34). It can be observed that, likewise in the QS case, 

the vibration of all the blades share the same envelope, which is 

very well approximated by the asymptotic solution, even for the 

considered case with relatively high chirp rate. It can be 

appreciated that the maximum response amplitude is below the 

maximum QS response AQS-tuned. This fact is general and can be 

proved analytically by multiplying Eq. (31) by A* and adding 

the complex conjugate of the equation to obtain the energy 

equation 
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As the maximum amplitude appears for d|A|/d = 0, 

therefore: 
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Then, using the complex variable 
2i 2eB A   and its real 

and imaginary parts B = x + iy, Eq. (36) simplifies to 

 2 2x y x    (37) 

which corresponds to a circumference in the complex plane 

with maximum distance to the origin equal to 1, and, thus 

 2 2 1A B x y      (38) 

Figure 3 shows the maximum response uj as a function of , 

calculated by numerical integration of Eq. (23) for different 

values of the damping  ranging between 10-3, 10-2, compared 

with the maximum amplitude provided by the asymptotic 

solution. The perfect matching of the results confirms that the 

asymptotic solution is accurate in a very wide range of  and 
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that the system response does not depend on the   and  

separately, but only jointly through . 

 

Figure 2. Transient response of a tuned system; uj and y1 

calculated by numerical integration; A calculated by asymptotic 

expansion. 

 

Figure 3. Maximum amplitude of vibration as a function of 

 calculated by numerical integration (dots) with 8 values of  

in the range [10-3, 10-2] and asymptotic solution (solid line). 

QUASI-STEADY RESPONSE OF A MISTUNED 

SYSTEM 

When mistuning is present, the equations of motion in terms 

of TW coordinates become coupled and also y2, which is not 

directly forced, plays a role in the response. If the chirp rate is 

very small, the response of Eq. (18) approaches its steady-state 

and can be written in the form 

 
1 1 i

2 2

e t
y A

y A

   
   

   
  (39) 

where t   , and the amplitudes A1 and A2 can be obtained 

by manipulating the system FRF. For , 1  , it yields 

 
 

 

2

1 4 3 2 2 2 2

i

2 4 3 2 2 2 2

2 i 2i 1

4i 2 1 2 4i 2 1

4 ie

4i 2 1 2 4i 2 1

A

A


 

  



  



   

           

 

           

  (40) 

Due to the definition of the TW coordinates, the quantity 

|A1+A2| represents the vibration amplitude of the blade 0 and 

depends on the angle of the mistuning pattern . Besides, the 

angle  also controls the relative phase angle between A1 and 

A2, in such a way that it is always possible to select a value of  

for which A1 and A2 are aligned in the complex plane. This 

condition provides the maximum of |A1+A2| and the envelope of 

the blade vibration 

 1 2 1 2maxQSA A A A A


       (41) 

Figure 4 shows the QS response of a disk with Nb=27 

blades, =310-3, =4.410-3. The detail of the figure shows that 

the envelope is reached only by a few blades, while the others 

vibrates with a lower amplitude. 

Figure 5 shows the maximum amplitude of vibration as a 

function of  and . It can be noted that for  / 0 the 

maximum response tends to 1, the QS response of the tuned 

system. The tip of the curve is consistent with the Whitehead’s 

limit (1 2) / 2 . For small levels of mistuning the maximum 

response is determined only by the ratio  / , while when    

their separate influence is visible, though relatively small. 
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Figure 4. Quasi-steady response of a mistuned disk;  

 = 310-3,  = 4.410-3. 

 

Figure 5. Maximum QS response of a mistuned disk. 

TRANSIENT RESPONSE OF A MISTUNED SYSTEM 

Eq. (18) contains the small parameter , beside the two 

parameters  and   already discussed for the tuned case. Like 

in the previous section, we formalize the relative smallness of 

this new parameter by setting iie pm    where |m|  1 and 

0p   is to be determined in order to obtain a distinguish limit. 

Besides, the chirp rate is set to 2   according to the 

findings of the previous section, the time is shifted to the 

resonance condition t ← t – t0, and the resulting constant phase 

is absorbed in the new variables i/(2 )

1 1ey Y   and i/(2 )

2 2ey Y   

to obtain 

 
2

1 1

*

2 2

122 i
i 21

2* 2
2

1 i
2

i 1

1 2i e e2 i
2i 1 0

p

p

p
t

p

Y Ym

Y Ym

m m Y

Ym m








 


 

    
     

    

     
    
       

  (42) 

The solution is then expanded using the two time scales t ~1 

and τ = εt. 

 
 

 

 

 

0 1

1 1 1

0 1

2 2 2

, ,

, ,

Y Y t Y t

Y Y t Y t

 


 

    
      

     
  (43) 

and inserted into Eq. (42) to obtain, equating the terms at the 

same power of : 
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
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





     
      

    

     
    

    

         
          

            

 (44) 

with the following order being 1+p. Since p > 0, the governing 

equation at the leading order is the first of Eqs. (44), whose 

solution can be expressed as 

 
 

 

0
1 i1

0
22

e t
AY

AY





  
   

   
  (45) 

The second of Eqs. (44) cannot be fulfilled unless by the 

trivial solution. For this reason its order p, that is still to be 

defined, cannot be lower than 1. In particular, the lowest value 

of p for which a non-trivial solution is possible is p = 1. Setting 

this value, the two equations in ord(p) and ord(1) combine and 

the next-order problem reads 

 

22 1 1
1i1 11

*2 1 1
22 22

1
i
2 1

2i e
10

ett

t

AmY AY

AmY AY





                                    

 (46) 

The cancellation of the terms proportional to eit to impose 

the secularity condition gives the following system of equations 

for the slow time evolution of the amplitudes A1 and A2 
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21
i

2

211

*

2

e1

1 0

AmA

AmA






      
      

        

  (47) 

The solution of this linear system that verifies A1, A2  0 at 

  −∞ can be expressed in closed form using again the 

Faddeeva function as 

 
1 1

i i

2 2

1 11

ie ie2

A I

A I  

    
    

    
  (48) 

where 

  
21

i
2

1,2

i i 1
e 1 i

2 2 2i
I w m

 


 

  
    

 
  (49) 

and m = |m|ei. The displacement of the blade j = 0 is given by 

the quantity |A1+A2|.  

Figure 6 shows the transient response of a mistuned disk, as 

well as the analytic solution of the envelope. The blade 

displacement uj and the TW coordinates are calculated by 

numerical integration. The envelope is obtained from the 

asymptotic solution, which is extremely accurate. 

 
Figure 6. Transient response of a mistuned disk. 

The computation of the maximum response requires to 

maximize the quantity 

    i

1 2 1 2 1 2

1
ie

2
A A I I I I       (50) 

over τ, κ, |m|, . The maximization over  can be easily 

performed as 

 1 2 1 2 1 2

1 1
max

2 2
A A A I I I I


        (51) 

because the modulus of the sum of the two complex numbers 

(I1+I2) and (I1−I2) will reach its maximum when they are 

aligned. The maximization on the remaining 3 parameters τ, κ, 

|m|, has been performed numerically and the results are shown 

in Figure 7 compared to max(|y1|+|y2|) computed by numerical 

integration of Eqs. (18) for 8 values of damping in the range 

[10-3, 10-2]. The maximum amplification of the transient 

response because of mistuning is always below the maximum 

mistuning amplification for the QS case (Whitehead limit), but, 

on the other hand, for a given chirp rate, κ=fixed, mistuning 

amplification with respect to the tuned transient response can be 

much larger than Withehead's limit. 

 

 
Figure 7. Maximum transient response; y1 and y2 are calculated 

by numerical integration for 8 values of [10-3, 10-2] (thin 

concour lines); A is obtained by the asymptotic solution (thick 

contour lines). 

DISCUSSION 

It has been observed that chirp rate and mistuning plays an 

opposite role on the response amplification in resonance 

crossing. Namely, while the transient effects due to a non-zero 

chirp rate lead to a reduction of the response, mistuning 

produces an increment of the amplitude. However, these two 

phenomena are not decoupled as the ability mistuning in over-

amplifying the resonant response increases as the chirp rate 

increases. This circumstance can be observed in Figure 8 

representing the ratio between the maximum transient response 

of a mistuned system (function of |m| and ) and the maximum 

transient response of tuned system driven with the same chirp 
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rate. It can be observed that the amplification due to mistuning 

is well above the Whitehead’s limit in a very large region of the 

parameter space. 

Figure 9 shows the ratio of the transient response of the 

mistuned system and its QS response. It can be observed that, in 

a relatively narrow region of the parameter space the ratio is 

above unity indicating that, for the same system, the transient 

response is larger than the QS response. 

 
Figure 8. Transient amplification with respect to the tuned disk. 

 

Figure 9. Transient amplification with respect to the QS 

response (TAMS). 

CONCLUSIONS 

When the vibration of a bladed disk is governed by a pair of 

isolated modes, the system can be represented as a 2-dof linear 

oscillator. For this system, we derived asymptotic solutions 

valid both for the tuned and the mistuned case. This result has 

consequences both for the quantitative and qualitative analysis 

of bladed disks in resonance crossing condition. 

From a quantitative point of view, the asymptotic solutions 

enable a fast calculation of the transient response avoiding the 

numerical integration of the equations of motion. 

From a qualitative point of view, the development 

demonstrated that the problem is governed by two non-

dimensional parameters, namely, the reduces chirp rate 
2/   and the mistuning parameter /m  . These two 

parameters provide a proper quantification of the importance of 

transient effects and mistuning, enabling the judgment and the 

comparison of systems under this point of view. 

The asymptotic solutions, as well as the numerical 

simulation showed that the amplification due to mistuning is 

significantly more effective in transient conditions than in QS 

condition.  

This circumstance has two consequences. First, the 

increment of amplitude due to mistuning should be evaluated 

using a transient formulation as the use of the QS increment is 

not on the safe side. Second, the design of mistuned disks in 

resonance crossing should not rely on the beneficial effects of a 

fast resonance crossing. In the most unfavorable case, the 

transient effects can even over-amplify the QS response 

producing an effect that is opposite to the usual one. 
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