
Frontiers in Plant Science | www.frontiersin

Edited by:
Sebastien Christian Carpentier,

Bioversity International
(Belgium), Belgium

Reviewed by:
Urs Schmidhalter,

Technical University of
Munich, Germany

Fred Baret,
INRA UMR Environnement

Méditerranéen et Modélisation des
Agro-Hydrosystèmes, France

*Correspondence:
Sébastien Dandrifosse

Sebastien.Dandrifosse@uliege.be

Specialty section:
This article was submitted to

Plant Breeding,
a section of the journal

Frontiers in Plant Science

Received: 30 November 2018
Accepted: 22 January 2020

Published: 18 February 2020

Citation:
Dandrifosse S, Bouvry A, Leemans V,

Dumont B and Mercatoris B (2020)
Imaging Wheat Canopy Through
Stereo Vision: Overcoming the
Challenges of the Laboratory

to Field Transition for
Morphological Features Extraction.

Front. Plant Sci. 11:96.
doi: 10.3389/fpls.2020.00096

ORIGINAL RESEARCH
published: 18 February 2020
doi: 10.3389/fpls.2020.00096
Imaging Wheat Canopy Through
Stereo Vision: Overcoming the
Challenges of the Laboratory to Field
Transition for Morphological
Features Extraction
Sébastien Dandrifosse1*, Arnaud Bouvry1, Vincent Leemans1, Benjamin Dumont2

and Benoît Mercatoris1

1 Biosystems Dynamics and Exchanges, TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, University of
Liège, Gembloux, Belgium, 2 Plant Sciences, TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, University of
Liège, Gembloux, Belgium

Stereo vision is a 3D imaging method that allows quick measurement of plant architecture.
Historically, the method has mainly been developed in controlled conditions. This study
identified several challenges to adapt the method to natural field conditions and propose
solutions. The plant traits studied were leaf area, mean leaf angle, leaf angle distribution,
and canopy height. The experiment took place in a winter wheat, Triticum aestivum L.,
field dedicated to fertilization trials at Gembloux (Belgium). Images were acquired thanks
to two nadir cameras. A machine learning algorithm using RGB and HSV color spaces is
proposed to perform soil-plant segmentation robust to light conditions. The matching
between images of the two cameras and the leaf area computation was improved if the
number of pixels in the image of a scene was binned from 2560 × 2048 to 1280 × 1024
pixels, for a distance of 1 m between the cameras and the canopy. Height descriptors
such as median or 95th percentile of plant heights were useful to precisely compare the
development of different canopies. Mean spike top height was measured with an accuracy
of 97.1 %. The measurement of leaf area was affected by overlaps between leaves so that
a calibration curve was necessary. The leaf area estimation presented a root mean square
error (RMSE) of 0.37. The impact of wind on the variability of leaf area measurement was
inferior to 3% except at the stem elongation stage. Mean leaf angles ranging from 53° to
62° were computed for the whole growing season. For each acquisition date during the
vegetative stages, the variability of mean angle measurement was inferior to 1.5% which
underpins that the method is precise.

Keywords: wheat, stereo vision, crop phenotyping, canopy height, leaf area index, mean tilt angle, leaf angle distribution
Abbreviations: CMOS, Complementary Metal Oxide Semiconductor - Camera sensor; HSV, Hue Saturation Value - Color
space; LAI, Leaf Area Index - Plant trait; LiDAR, Light Detection And Ranging - Active 3D sensor; MTA, Mean Tilt Angle -
Plant trait; RGB, Red Green Blue - Color space; RMSE, Root Mean Square Error - Indicator of regression quality; ROI, Region
Of Interest - Area of interest on an image; SGBM, Semi-Global Block Matching - Stereo matching algorithm; SVM, Support
Vector Machine – Classifier.

.org February 2020 | Volume 11 | Article 961

https://www.frontiersin.org/article/10.3389/fpls.2020.00096/full
https://www.frontiersin.org/article/10.3389/fpls.2020.00096/full
https://www.frontiersin.org/article/10.3389/fpls.2020.00096/full
https://www.frontiersin.org/article/10.3389/fpls.2020.00096/full
https://www.frontiersin.org/article/10.3389/fpls.2020.00096/full
https://loop.frontiersin.org/people/650713
https://loop.frontiersin.org/people/613162
https://loop.frontiersin.org/people/650766
https://www.frontiersin.org/journals/plant-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles
http://creativecommons.org/licenses/by/4.0/
mailto:Sebastien.Dandrifosse@uliege.be
https://doi.org/10.3389/fpls.2020.00096
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2020.00096
https://www.frontiersin.org/journals/plant-science
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2020.00096&domain=pdf&date_stamp=2020-02-18


Dandrifosse et al. Wheat Canopy Through Stereo Vision
INTRODUCTION

To overcome the double challenge to increase crop yield while
limiting inputs, the development of high-throughput non-
destructive phenotyping methods has emerged as a hot
research topic. Many advancements have been made for
indoor high-throughput set-ups (Perez-Sanz et al., 2017),
whereas natural conditions such as wind or the variability of
sunlight pose challenges for outdoor image acquisition and
related treatment. In the field, the extraction of plant traits
from a canopy structure also remains a complex task due to
organ overlapping, especially for dense crops such as cereals. The
development of robust methods to automatically measure
morphological plant traits in field conditions is still required
(Gibbs et al., 2017).

This paper focuses on the measurement of four
morphological traits of great agronomic interest. (i) Leaf Area
Index (LAI), which is the area of one side of leaves above one
square meter of ground, expresses the photosynthetically active
area. This parameter is also relevant to scale up the gas exchanges
from leaf to canopy level (Bréda, 2003). As an indicator of crop
development, it can help to manage nitrogen inputs. (ii) Mean
tilt angle (MTA) is the average angle between the leaf segments
and the horizontal ground. (iii) Leaf angle distribution (LAD) is
the statistical distribution of leaf face angles. LAD and MTA
condition light interception. The knowledge of LAD is useful for
some methods aiming at estimating LAI based on gap fraction,
which is the fraction of soil observed in a viewing direction,
determined thanks to segmented 2D images or transmittance
measurements (Weiss et al., 2004). In addition, LAD is a key trait
to identify wheat varieties (Yanli et al., 2007). (iv) Finally, canopy
height is an indicator of the risk of lodging and can be a criterion
to discriminate weeds and crops (Piron et al., 2009). Moreover,
height can provide information on yield because stressed plants
can be shorter (Constantino et al., 2015).

The simultaneous and direct measurement of those
morphological traits is conceivable with 3D proximal sensing
techniques. Commonly used 3D acquisition devices are Light
Detection And Ranging (LiDAR), time of flight cameras, mono
and multi-view stereo vision, and structure from motion. LiDAR
sensors scan the scene with lasers to obtain a 3D point cloud.
This technique is widely used and provides precise and dense
canopy models but the sensors are expensive (Li et al., 2014) and
a combination with a RGB camera is required to obtain accurate
color information, although some LiDAR devices provide
intensity of the signal that help identifying green parts. Such a
measurement takes more time than passive measurement and it
is moreover necessary to increase the scanning time to increase
the spatial resolution (Gibbs et al., 2017). As a result, this
technique remains an issue in field conditions due to the wind-
induced motion of leaves. Time of flight cameras illuminate the
scene and compute depths for each pixel according to the time
taken by the light to reach the objects. As the whole scene is
illuminated simultaneously, time of flight cameras solve the
scanning time problem. They are suitable for indoor
measurements but the need of active light diminishes the
performances of image acquisition under strong sunlight
Frontiers in Plant Science | www.frontiersin.org 2
(Kazmi et al., 2012; Perez-Sanz et al., 2017). Binocular stereo
vision relies on two cameras to compute depth by triangulation.
The system is low-cost, simple, compact, allows quick acquisition
and can operate in natural sunlight conditions. Its main
drawbacks are the errors in depth measurement related to poor
stereo matching, the computational requirements for the stereo
matching algorithms and the influence of overlapping leaves.
Multi-view stereo systems help to improve the quality of the depth
map and the management of overlapping parts of the canopy.
Using multiple cameras arranged around the scene of interest is
suitable for indoor environment as realized by Scharr et al. (2017)
and Hui et al. (2018) but is more challenging to implement in the
field. Finally, structure frommotion relies on the displacement of a
single camera to reconstruct the scene. Jay et al. (2014) have
efficiently implemented such system in field conditions to retrieve
crop height and area. Its main drawback compared to stereo vision
is the bigger amount of data to store and process.

As a result, stereo vision appears as a simple and robust way
to study canopy architecture in field conditions. High-
throughput plant phenotyping approaches using stereo vision
have been developed in laboratory by He et al. (2003); Andersen
et al. (2005); Biskup et al. (2007); Lin et al. (2011), and Tilneac
et al. (2012). Only few in-field approaches have been proposed.
Kise and Zhang (2008) used a stereo system for crop rows
detection. Ivanov et al. (1994) applied stereo vision to study
the leaf angle and area in a maize canopy. Müller-Linow et al.
(2015) have tested stereo-imaging on sugar beet in natural
conditions. For cereals, the task is more challenging because of
homogeneous leaves texture and complex canopy architecture
made of thin and long leaves. Leemans et al. (2013) introduced a
method for area and angle computation for winter wheat.

This study aims at developing a proximal stereo vision system
to measure LAI, MTA, LAD, and canopy height of winter wheat
in field conditions. The first goal is to analyze the challenges
encountered to adapt the stereoscopic method from single-pot in
indoor controlled conditions to complex natural canopy and to
propose solutions to these challenges. The second goal is to
compare image-based measurements with manual conventional
measurements and quantify the errors.
MATERIALS AND METHODS

Field Experiment and Data Collection
The experiment took place in a field dedicated to agronomic trials
during the 2018 season, located in Lonzée, Belgium (50° 32' 58' N
and 4° 44' 08'' E). The experiment concerned 64 micro-plots of
1.8 × 6 m planted with winter wheat (Triticum aestivum L.
“Edgar”), sowed with a density of 250 grains/m² on October 13,
2017. The row spacing was 0.14 m. The micro-plots were
fertilized three times (at tillering, stem elongation and flag leaf
stages) with 27 % ammonium nitrate. That nitrogen fertilization
was applied following 11 modalities combining inputs of 0, 30,
60, and 90 kg of nitrogen per hectare in four replicates (see
Supplementary Material for thorough information on
field trial).
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Manual reference measurements were performed to calibrate
and validate vision methods. Tomeasure LAI, leaves were collected
on 0.5 m of a row in 20 of the 64 plots, laminated with transparent
adhesive cover on paper sheets and scanned. May 24, 2018, when
the spikes were not out yet, heights were manually measured at the
insertion of flag leaf for 36 tillers per micro-plot (the plots were
systematically divided into 12 zones in which three tillers were
randomly selected). Insertion of flag leaf was chosen to perform
repeatable height measurements. Such measurements on the tiller
have the advantage to be independent from leaf orientation and
does not necessitate to stretch leaves. The reason of this
measurement before spike heading was to assess the ability of
manual measurements to record plant height at a vegetative stage,
although wheat height is conventionally measured on spikes (Pask
et al., 2012). June 05, heights were manually measured at spike tops
for 36 spikes per micro-plot. No reference measurements for MTA
and LAD were performed in the field because of the curved shape
of leaves. Average wind speed measurements were recorded by a
sonic anemometer from the Lonzée ICOS station (50° 33' 06'' N
and 4° 44' 46'' E) located in a neighboring plot.

Images were acquired in the field at the following dates: April
09, April 11, April 23, April 30, May 02, May 16, May 24, May 30,
and June 05, 2018 under various light conditions with no artificial
shadowing, so that the robustness of imaging methods to natural
light could be tested. At each date, four pairs of images were taken
per micro-plot. The image acquisition platform was designed to
capture nadir frames of the wheat canopy at a distance of about 1
m. The two cameras used to form the stereo vision device were
GO-5000C-USB from JAI group equipped with a 2560 × 2048
CMOS sensor and a RGB Bayer filter. The objectives were Kowa
LM16HC with a focal length of 16 mm. The iris aperture was set
to F2.8 and the focus to 1 m. The baseline (distance between the
centers of the two camera sensors) was 50 mm and optical axes
were parallel. The height of the stereo vision device was adjusted
at each acquisition date to keep a distance of approximately 1 m
between the canopy and the sensors. At this distance, the
footprint of the images was around 0.5 m². The baseline and
the camera height were calibrated to acquire images with an
appropriate spatial resolution combined with large scene to
account for intra-plot variability. The stereo vision device was
calibrated using a 9 × 6 checkerboard (square side of 40 mm) and
Matlab Stereo Camera Calibrator App according to the method
proposed by Zhang (2000). Parameters obtained by calibration
are rotation and translation matrix between the two cameras,
focal lengths, and distortion coefficients. The calibration error
was 0.32 pixels. Images were stored with a color resolution of 12
bits per pixel to take full advantage of the hardware. Additionally
to the field measurements, images of leaves of known area and
inclination were captured in laboratory to investigate the
measurement errors. The target was made of three leaves stuck
on a flat wooden board. To test the area computation, 20
positions of the target were captured. The positions were
generated by combining rotations of the board along the three
perpendicular directions of a 3D space from less than 75° in each
direction, relative to a plane perpendicular to the optical axis of
the cameras. To test the angle measurement, ten positions of the
Frontiers in Plant Science | www.frontiersin.org 3
target were captured. Those positions were generated by tilting
the target from 0 to 75° in one direction.

Depth Mapping by Stereo Vision
Exploiting the overlaps between left and right images to compute
depth required several steps. Firstly, the rectification process
consisted in aligning images so that a same point of the scene
appeared at the same y-coordinate in the two images. This was
performed by Bouguet's algorithm thanks to the calibration
parameters of the system (Bradski and Kaehler, 2008). This
rectification algorithm also relies on calibration parameters to
account for radial lens distortion. The rectified images were
converted to grayscale. In order to reduce the effect of noise on
ulterior 3D computations, the grayscale image size was reduced
to 1280 × 1024 pixels by averaging the pixel values on each 2 × 2
square. The second main step was the stereo matching which
consisted in finding corresponding pixels in right and left images.
The difference of x-coordinate of corresponding pixels gave the
disparity between pixels. Stereo matching was performed with
the Semi-Global Block Matching algorithm (SGBM) proposed by
Hirschm (2007). The principle is to detect corresponding pixels
by means of similar neighborhoods. The two most important
parameters are the matching window size, which is the size of a
side of investigated neighborhoods, and the disparity range,
which corresponds to the maximal possible disparity. Matching
window sizes of 5, 9, 15, and 19 pixels were tested. A window size
of 15 is the default value, while 5 is the minimum value. The two
other values were chosen to test other configurations, one
between the default and the minimum value (9) and the other
greater than the default value (19). Disparity range was
automatically adjusted for each image pair if disparities peaked
at the maximum allowed value. The disparity estimation was also
controlled by post filtering based on minimum uniqueness value,
set to 5, to remove false matches (Bradski and Kaehler, 2008).
The complex texture of images acquired in natural conditions
resulted in incomplete disparity maps which were filled by the
method proposed by Yun (2012). This method performs
interpolation only if reliable information is available in the
neighborhood. The last step consists in computing depths,
which are inversely proportional to disparities. For each pixel
in the left frame of a pair of stereo images, considered as the
reference, the depth to the camera is given by

Z =
b f
d

where b is the baseline (m), f is the focal length (pixel), d is the
disparity (pixel), and Z is the distance (m) between the observed
object and the camera, commonly referred to as depth. The result
of this whole step of image processing is a depth map, showing
distances between objects in the scene and the cameras. As
presented in Figure 1, depth resolution depends on depth.

Image Segmentation by Color Processing
All image treatments were realized with Matlab R2016a. Images
acquired before spike emergence stage, May 24, were separated
into two classes: soil and leaves. The segmentation method was
February 2020 | Volume 11 | Article 96
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based on a support vector machine (SVM) classifier trained with
the components of RGB and HSV color spaces. According to
Hamuda et al. (2017), the addition of the HSV color space helps to
obtain a segmentationmore robust to natural light conditions. The
use of machine learning helps to deal with complex situations
containing enlightened and shadowed canopy elements. To train
and evaluate the classifier, 10000 pixels were selected in a set of
images representative of the different acquisition dates and
conditions. The selected pixels were split so that 70% were
dedicated to training and 30 % to validation. The last step of the
process consisted in median filtering with a window of 5 × 5 pixels
to remove segmentation noise on the resulting binary image.
Frontiers in Plant Science | www.frontiersin.org 4
Images acquired at flowering stage, June 05, contains spikes and
were segmented into three classes: soil, leaves, and spikes. SVM
providing binary outputs, three classifiers were combined according
to the “Error Correcting Output Codes” principle (Dietterich and
Bakiri, 1994). Moreover, color information is not sufficient to
distinguish spikes at their early development stages because they
are as green as leaves. For this reason, in addition of RGB and HSV
components, height and texture predictors have also been used to
train the SVM. Texture predictors of a pixel are (i) the average of
pixels intensities over a 7 × 7 square centered on the considered
pixel and (ii) the average of the squared differences of intensities
between each pixel and the central pixel of the neighborhood. These
parameters aim at taking into account the differences between the
grainy texture of spikes and the smooth texture of leaves. To be
independent of the camera-ground distance, the considered height
predictor for each pixel was the difference between the 95th
percentile of heights and the height of this pixel. To train and
evaluate the classifier, 5000 pixels were selected with 70 % dedicated
to training and 30 % to validation.

Canopy Height Estimation
To extract only depth of plant objects, the segmentation mask
was applied on the depth map. Ground-wheat distances (plant
heights) were computed on the basis of this plant depth map.
Plant heights are simply the difference between camera-wheat
and camera-ground distances. The canopy height can be
estimated by different descriptors such as the median, the 75th
percentile, the 95th percentile, and the standard deviation of the
ground-wheat distance. Figures 2 and 3 show the image
treatment pipeline from color images to height maps of
plant elements.

LAI and MTA Estimation by Global
Delaunay Triangulation
The computation of LAI and MTA was based on geometric
operations. Using the stereo calibration parameters and the
FIGURE 2 | Processing pipeline.
FIGURE 1 | Depth resolution versus depth for two image sizes used in this
study.
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height mapping, a 3D point cloud was generated for each image
pair. The coordinate system of the point cloud was centered on
the left camera and the z-axis was parallel to the optical axis of
the system. The xy-plane of the system was theoretically parallel
to the ground. The 3D point cloud was converted to a 3D mesh
by means of a Delaunay triangulation. This process identified
each point of the newly generated mesh as a vertex, and created
associations between neighboring points in the form of edges.
The resulting mesh was made of triangular faces formed by these
vertices and edges. A size criterion was used to delete unnatural
giant triangles, formed by neighbor points belonging to different
leaves. Considering a triangular face with vertices ABC, the area
was computed as half of the module of the cross product of two
edges of the considered face, and reads

Atriangle =
‖ AB
�!� AC

�! ‖
2

The total plant area Aplant was the sum of the areas of the
individual triangles. The soil area below these plants was
computed as follows

Asoil =
ZW �PS�Aimage

fm

where ZW is the average camera-wheat distance (m), PS is the
size of a pixel side on the sensor (5×10-6m), fm is the focal length
(m) and Aimage is the area of the image (pixel). Finally, the LAI
was the ratio between Aplant and Asoil. The tilt of each triangle was
defined by

qtriangle = acos
AB
�!� AC

�!� �
z

‖ AB
�!� AC

�! ‖
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MTA was computed as the average tilt of the vegetative
triangles over a stereo image without regard to the orientation
of the triangles. The assumption was made that all triangle
azimuths were equiprobable, which is verified for many crop
canopies (Weiss et al., 2004).

MTA and LAD Estimation by Local Fitting
Another method is proposed to provide an estimation of LAD in
addition to MTA, one that would present greater robustness to
noise and incompleteness in the 3D frames. An autonomous
algorithm was developed to systematically select regions of
interest (ROIs) in images, as opposed to other practices
consisting of interactive selection of ROIs by human
intervention (Biskup et al., 2007). Such manual operations are
rendered virtually impossible in this study by the abundance of
images in the dataset and the abundance of leaves in each image
(Figure 4). The original approach is based on the sampling of
non-overlapping leaf zones for which the height of each pixel can
be computed. Leaves edges are identified by means of an edge
detection Canny filter so as to avoid a zone covering different
leaves. A first iteration is performed by selecting leaf zones of
30 × 30 pixels, corresponding to approximately 70mm² for 2560 ×
2048 pixel images. The algorithm searches for non-overlapping
ROIs satisfying strict quality criteria: all pixels have to present a
plausible height value and the zone cannot contain any detected
edge. If the number of zones satisfying all these criteria is too
small, the algorithm starts over the process by searching for
smaller zones such as 20 × 20 pixels and finally 10 × 10 pixels.
For each ROI, a plane is adjusted on the associated point cloud
and the tilt angle of this local leaf face is deduced from the normal
to the plane. MTA is computed as the average of the tilt angles of
the sampled ROI over a stereo 3D frame. LAD is obtained by
recording the frequencies of those tilt angles for 5° classes.
FIGURE 3 | RGB image, segmented image (soil is blue, leaves are green and spikes are red), and height map for soil-leaves image (May 24) and soil-leaves-spikes
image (June 05).
February 2020 | Volume 11 | Article 96

https://www.frontiersin.org/journals/plant-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


Dandrifosse et al. Wheat Canopy Through Stereo Vision
RESULTS AND DISCUSSION

The Stereo Matching Algorithm
Stereo matching is a challenging task. The projections of an
object on two different optical planes are not necessarily
represented by the same number of pixels. This results in
incomplete pixel-to-pixel matching for depth computation.
Visual occlusions can also prevent full depth mapping of
stereo-images.

The SGBM algorithm was firstly assessed on the Middlebury
dataset, which contains reference images provided with dense
disparity maps (Scharstein and Szeliski, 2002; Scharstein and
Szeliski, 2003; Scharstein and Pal, 2007). The cones and teddy
reference images were firstly considered due to their complex
scenes with contrasted objects. The stereo matching was
performed with errors of 7,4 % for cones image and 9,5 % for
teddy image. For less complex reference images, the error
significantly decreased to 2 %. Finally, the algorithm was tested
on Aloe reference image that is the most representative image of
vegetation and led to an error of 8,4 %. It is noticed that this error
represents the number of pixels for which disparities differ from
at least one pixel. It means that disparities differing from one
pixel contributed to the error, with the same weight as a more
important error. In comparison with the literature (Scharstein
and Szeliski, 2002) and more particularly with an optimized
stereo matching algorithm leading to errors of 2.9 % and 7 % for
cones and teddy images respectively (Li et al., 2017), the
performances of the SGBM algorithm on the Middlebury
dataset were considered as sufficient.

Secondly, stereo matching performances were evaluated for
the specific case of winter wheat canopy by studying the effects of
image size, pixel color resolution, disparity map filling, and
matching window size on images acquired at four dates
(Figures 5 and 6). Since no reference maps were available for
the canopy images, an indicator based on the plausible height
percentage was introduced to assess the matching quality. This
Frontiers in Plant Science | www.frontiersin.org 6
indicator expresses the proportion of plant pixels for which the
computed height value ranges between the ground and 0.6 m
below the stereoscopic device, even though this height value may
be inaccurate. This choice is based on the hypothesis that the
highest plants may have been found 0.6 m below the cameras,
considering that the average camera-wheat distance was
approximately one meter but that some plants were taller than
the average canopy level. As shown in Figures 5 and 6, this
sensitivity analysis revealed that the best stereo matching
performances are obtained for an image size of 1280 × 1024
pixels with a color resolution of 12 bits. Moreover, the
computation time to extract the disparity map was roughly ten
times higher for 2560 × 2048 pixels images than for 1280 × 1024
pixel images. The absolute value of the computation time
depends on the hardware. As an order of magnitude, the
average time to compute a disparity map for 1280 × 1024 pixel
images was around 0.8 seconds on a Windows computer with a
2.8 GHz Intel Core I5-4200H processor. This computation time
was not significantly influenced by color resolution. Applying an
interpolation-based filling algorithm helped to complete the
disparity map. This step does not necessarily bring reliability
to the results but is required to compute traits such as leaf surface
where a dense 3D point cloud is crucial to properly adjust a
mesh. On the contrary, a dense 3D point cloud is not compulsory
to extract canopy height and map filling becomes accessory.
Regarding the matching window size, little effect was observed
for 12-bit images. Overall, a window size of 15 pixels provided
the best results regardless of the image size. For 8-bit images, the
choice of a proper matching window size was more decisive. The
optimum for wheat images was found for a size of 9 pixels. It is
noted that the stereo matching variability increased at the last
two dates. As more images were acquired at those dates to take
into account the multiplication of fertilization practices, the
acquisition was spanned over a longer period which could
explain more variability in the matching due to varying
illumination conditions.
FIGURE 4 | Local fitting of leaf surface: (left) sampled leaf zones, (right) fitted plane on the point cloud associated to a leaf zone.
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Effect of Direct Sunlight on Matching
Commonly used stereo matching algorithms present a Lambertian
constraint which specifies that the intensity of the projection of
each point in an image must be independent of the angle with
which the camera observes this point (Devernay, 1997). In the
field, direct sunlight combined with reflection properties of leaves
cause the non-respect of this constraint. As a result, pixel
Frontiers in Plant Science | www.frontiersin.org 7
intensities of same points of the scene can be different in the two
images of the stereoscopic device. This causes trouble for stereo
matching in some zones exposed to direct sunlight, as illustrated in
Figure 7. Moreover, such a light can reduce visible leaf texture
(Müller-Linow et al., 2015). For these reasons, cloudy conditions
better suit to image acquisition. A solution to increase robustness
to sunlight would consist in improving the stereo matching
FIGURE 5 | Stereo matching performance for 12-bit images.
FIGURE 6 | Stereo matching performance for 8-bit images.
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algorithm by transforming the intensities of pixel neighborhoods
in the matching process by means of the census transform (Zabih
and Woodfill, 1994). Another possibility would be to avoid direct
sunlight by using a shadowing device. This latter option has not
been implemented for this study because the goal was to test an
acquisition device as compact and polyvalent as possible.

The effect of sunlight must be taken into account for the design
of the stereoscopic acquisition system, especially for the baseline
and camera height sizing. For this study, a baseline of 50 mm was
used. For the same distance between the cameras and the plants
(1 m), Li et al. (2017) have shown that a baseline of 80 mm
provides the best compromise between depth accuracy and
mismatch rate. However, their test took place in indoor
conditions. Increasing the baseline could increase the damaging
effect of sunlight in the field since the cameras would observe a
same point with a more important angle difference. Moreover, a
baseline increase induces a reduction of the overlap between the
left and right images. This could be an inconvenient to perceive the
variability among plants in the field. For some applications, a
larger distance could be chosen. This could reduce the effects of
distortion and increase the number of plants captured at one shot.
Nevertheless, the baseline should probably be adapted as its choice
depends on the measurement distance.

Segmentation Robustness to
Light Conditions
In field conditions, the development of a segmentation method
that is robust to environmental conditions (light, wet or dry soil,
shadows, dead leaves on the ground) is a challenge. The proposed
method, based on machine learning and transformation in HSV
components, performed soil-leaves segmentation with an accuracy
of 98.5 % for the validation dataset. By adding depth and texture
information, the method separated soil, leaves and spikes with an
exactitude of 99.8 % on the validation dataset. Such performances
were however overestimated due to pixel saturation. Those pixels
are either ground, leaves, or spikes but, as the intensity values peak,
their classification is impossible without using depth information.
For the sake of properly training the classifier, training zones in
saturated areas have only been selected for the most commonly
saturated class (leaves for the soil-leaves classification and spikes
Frontiers in Plant Science | www.frontiersin.org 8
for the soil-leaves-spikes classification). As a result, badly classified
pixels in saturated zones (e.g. saturated soil pixels classified as
leaves pixels) could not be taken into account to compute the
classification error, leading to an overestimated accuracy.

Based on this consideration, it is suggested to implement an
auto-exposure acquisition algorithm to mitigate image
saturation. Such algorithm would have to reduce the
integration time if the image comprises more than a certain
percentage of saturated pixels. This threshold has to be chosen
carefully in order to keep benefit of the color resolution.
Preliminary tests indicated that a saturation threshold of 3%
remains acceptable for images containing spikes, which are most
susceptible to cause saturation in images.

LAI Measurement: Stair-Step Effect
and Overlapping Leaves
Table 1 shows the results of surface area measurement in
laboratory on three non-curved leaves of known area arranged
in 20 different positions. The random error is the average
difference between the measurements and the mean of the
measurements, expressing the precision. The systematic error,
related to the accuracy, is the average difference between the
measurements and the reference value. Close area values were
found for the 20 positions but the area was systematically
overestimated. This is caused by stair-step faces in the
triangulation process in comparison with the real smooth
surface. This stair-step effect is due (i) to random errors in
depth measurement and (ii) to the resolution of depth
measurement itself, which means that even without random
errors the reconstructed surface would present a stair-step shape.
Indeed, for most plant elements, minimal depth resolution is
close to the distance represented by one pixel (near 0.5 mm for
1280 × 1024 images at 1 m distance between camera and
observed objects). As a result, angles of triangles are either 0°
or superior to 45°, which creates the stair-step effect on the
reconstructed surface. This systematic bias leads to intrinsically
overestimated area measurement. Table 1 presents the effect of
median filtering of depth maps on this phenomenon.

The stair-step effect was more important for 2560 × 2048
than for 1280 × 1024 images as already emphasized by Leemans
FIGURE 7 | Effect of direct sunlight on segmentation and stereo matching for two zones of a same image (May 16). The left part of the image present 9.1 % of
saturated gray-level pixels while the right part only contains 2.2 %.
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et al. (2013) with images of 1280 × 960 and 1024 × 768 pixels. A
minimal image size is however necessary to distinguish plant
details, take into account leaves curvature and thin leaf parts.
The number of pixels to use depends on the distance between the
canopy and the cameras and should be properly chosen.

Stereo LAI measurements in the field were impacted by two
phenomena: (i) the stair-step effect tending to overestimate the
measured area and (ii) overlapping leaves tending to
underestimate the measured area. As a result, absolute
measurement was inaccurate and a calibration curve was
necessary. The best model to directly fit stereo LAI with
manual measurement was an exponential regression
(Figure 8). Similar results were highlighted by Leemans et al.
(2013). Such evolution can be explained by the canopy structure
dynamics. For the first development stages (LAI < 2), a linear
relation would have been more appropriate but as the crop grew
(LAI > 2), the canopy became denser and many leaves
overlapped. As a result of this complex canopy structure, it
appears that the model may lack robustness since it fails to take
into account leaf surfaces of the lower vegetation stratum.
Indeed, stereo vision essentially records the leaf area of the
upper foliage stratum. A suggestion for a further study
implying stereo LAI measurement would be to follow the
dynamics of the area of the upper stratum of a same crop zone
at each stage and integrate it over the whole season. The model
would take into account area of the upper stratum as well as area
of lower leaves previously measured to extract LAI at each stage.
The height information would be useful to distinguish
foliage floors.

As reference LAI measurements are time-consuming, all data
acquired in 2013 by Leemans et al. and all data acquired in 2018
were used to calibrate the models. A leave-one-out cross-
validation method was applied to estimate the errors of both
models. The drawback of cross-validation is that validation and
calibration data might not be independent. However, the
independent 2013 dataset cannot be used to externally validate
the model developed in this study because the acquisition system
set-up and the algorithms were improved in the meantime.
Despite those differences, the two studies, performed on
different plots, dates, and years provided pretty close results.
The 2018 modifications actually helped to reduce the root mean
square error (RMSE). The higher coefficient of determination
(R²) in 2013 is explained by the measurement of two micro-plots
at early growth stage leading to reference and stereo LAI close
to zero.
Frontiers in Plant Science | www.frontiersin.org 9
Destructive manual LAI measurements were performed on
0.07 m² areas (0.5 m of one crop row, with 0.14 m spacing
between rows) while images represented nearly 0.5 m² zones. As
a result, stereo measurements were more suitable to take into
account intra-plot variability. Manual reference measurements
may have been realized in local spots non representative of the
whole micro-plot. This aspect has to be considered when
assessing the quality of the regression models. As a perspective
for further research, a practical solution to increase the spatial
extent of reference LAI measurements and to accelerate them
would be to exploit the high correlation between leaf weight and
leaf area, as performed by Roth et al. (2018). Finally, as
highlighted by Baret et al. (2010), the definition of the
measured variable is important. The imaging method recorded
the area of all the green elements while only leaves were manually
sampled. Nevertheless, due to the nadir position of the cameras,
few stems were visible on the images and their contribution was
considered negligible. Should the orientation of the acquisition
device change, thus making more stems visible, the considered
variable should rather be the green area index, which takes into
account all the green elements and not only leaves.

The Effect of Wind on LAI Measurement
In field conditions, wind is susceptible to disturb the
measurement, especially by inducing blur in the stereo images
and variability between acquisition sequences. In order to assess
the measurement repeatability, five pairs of images of the same
zones were acquired at 15 seconds of interval. The coefficients of
variation (ratio between mean and standard deviation) for the LAI
TABLE 1 | Accuracy and precision of leaf area measurement determined in
laboratory.

2560 × 2048 pixels 1280 × 1024 pixels

No
filter

Median
5 × 5

Median
10 × 10

No
filter

Median
3 × 3

Median
5 × 5

Area: systematic
error

82.27% 66.17% 48.70% 58.47% 55.88% 51.12%

Area: random
error

7.40% 5.70% 4.40% 4.65% 4.40% 4.34%
FIGURE 8 | Relation between manual reference measurements and LAI
measured by stereo vision for the 2018 data and for the data acquired by
Leemans et al. (2013).
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measurement are presented in Table 2. Overall, the wind-induced
variability was rather small, except on April 23. The average wind
speedmeasured for each date does not allow explaining this higher
variability. Based on visual in-field observations, it is suggested
that the variability depends on the development stage. On April 09
and 11, at tillering, plants were low and hardly impacted by wind.
On April 23, at Zadoks stage 31 (Zadoks et al., 1974), the stems
were erected but the canopy was not dense. Plants organs were
moved by wind which caused variability in LAI measurement.
However, from April 30, the canopy was denser so the impact of
wind on LAImeasurement was diminished. Indeed, canopy flow is
influenced by vertical profile of plant density, canopy height, and
element flexibility, which depend on the development stage
(Cionco, 1972). The conclusion that wind has little effect on the
imaging method is only valid if the two images are acquired
simultaneously, as performed in this experiment. As highlighted
by Kaczmarek (2017), if the acquisition of the two frames is not
simultaneous, even minor wind will highly decrease stereo
matching performances.

MTA and LAD Measurement
MTA measured in laboratory are reported in Table 3. For tilted
surfaces in the images, the stair-step effect does not cause an
important systematic error for the Delaunay triangulation
method because angles of the triangles are favorably averaged,
i.e. the error on all inclination angles gets canceled out. The same
conclusion has been found by Leemans et al. (2013). However,
for a flat horizontal surface (tilt angle = 0°), some triangular faces
are tilted due to depth estimation errors but, as their inclination
is not signed, they cannot compensate for each other to obtain on
average a 0° angle. As a result, the average angle is necessarily
overestimated. To confirm this hypothesis, the error was
computed only for the reference leaves showing an angle
superior to 15°. In this condition, the error significantly
decreased, which indicated that nearly flat surfaces were
sources of important errors. The use of a median filter on the
depth map helped to reduce the stair-step effect. In all cases, the
local fitting method gave better results than the Delaunay
triangulation method. However, this conclusion is limited to
the case of straight leaves without overlaps. For a real canopy, the
Delaunay triangulation method might be more adapted to take
into account leaf curvature and leaf overlaps. Moreover, the
Delaunay triangulation method considers all the pixels while the
local fitting approach only focuses on some zones. In the field,
using 1280 × 1024 images, MTA ranging from 53° to 62° were
recorded for the different acquisition dates and fertilization
practices (Figure 9). The variability of MTA determined by the
Delaunay triangulation method ranged from 0.74% to 1.45% for
Frontiers in Plant Science | www.frontiersin.org
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the different dates, which underpins that the method is precise.
The variability was higher for the local fitting method (Figure 9).

The Delaunay triangulation method seems the most precise to
measure MTA. However, this method failed to provide LAD
(Figure 10). Due to the stair-step effect, triangles were either
horizontal or tilted with an angle superior to 45°. This was not a
problem to measure an average angle but the inclinations of these
triangles could not be used to study the angle distribution of
larger leaf elements. This drawback is corrected by the local
fitting approach. By considering the angles of the planes adjusted
on some leaf faces, it was possible to get a good overview of the
angle distribution of leaf faces. The obtained average LAD was
very similar for the different dates. A potential improvement of
angle measurement would be to find a criterion to record the
azimuth angle of the leaf segments (triangles or fitted planes). It
would allow to verify the assumption that all azimuth angles are
equiprobable for the wheat plots considered. Indeed, for a sugar
beet crop, Müller-Linow et al. (2015) have found that the
azimuth angle distribution of leaves was not uniform. They
also noticed that the preferential orientation of leaves changed
over the season.

MTA and LAD were not manually measured in the field. Due
to wind, canopy structure and leaf curvature, a direct manual
measurement is very difficult, time-consuming and unreliable,
hence the interest of automated measurement that relies on small
leaf segment to take into account leaf curvature. As a result, no
reference values were available but MTA values computed by two
different and independent methods were close, suggesting that
both measurements could be relevant. In comparison,
Shibayama and Watanabe (2007) measured MTA between 56°
and 65° for two different wheat varieties using polarized light and
LAI-2000 sensors. Hosoi et al. (2009) measured MTA between
44° and 56° for different dates by using a LiDAR. However, their
leaf segment selection method was not automatic and the
variability of MTA measurement was around 40 %, against 1
% for the proposed method. These comparisons must be put in
perspective. According to Yanli et al. (2007), the angle
distribution widely depends on the wheat variety. Huang et al.
(2006) found similar LAD by using canopy reflectance and
characterized that kind of wheat variety as “erectophile”.
TABLE 2 | Coefficients of variation (CV) of LAI measurements for a same zone
captured at 15 second intervals.

Date April
09

April
11

April
23

April
30

May
02

May
16

CV (%) 0.3 0.6 11.9 3.2 1.8 2.5
Average wind speed
(m/s)

3.8 1.4 4.9 6.7 5.5 5.6
TABLE 3 | Average absolute errors on MTA measurement on reference leaves
with 10 inclinations (ranging from 0 to 75° relative to a plan perpendicular to the
optical axis of the cameras) computed in laboratory for different angle
computation methods and image treatments (pixel binning and median filtering of
the depth map).

2560 × 2048 pixels 1280 × 1024 pixels

No
filter

Median
5 ×5

Median
10 ×10

No
filter

Median
3 ×3

Median
5 ×5

Delaunay
triangles

11.65° 9.09° 6.37° 7.37° 7.12° 6.16°

Local fitting 4.00° 3.98° 3.81° 3.51° 3.46° 3.55°
Delaunay
triangles
angles >15°

7.30° 6.87° 6.31° 4.65° 4.76° 4.41°

Local fitting
angles >15°

4.25° 4.27° 4.20° 3.36° 3.32° 3.42°
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According to deWit (1965), the distribution presented in Figure 10
may rather be classified as “plagiophile” because oblique leaves are
more frequent than vertical leaves.

Comparison of Stereo-Based and Manual
Height Measurements Before and After
Spike Emergence
For data recorded before spike emergence, stereo-based and
manual measurements with a meter stick provided non-
equivalent indicators to describe canopy height. Both present
advantages and inconveniences and should be used for different
purposes. Manual measurements have the advantage that the
operator directly chooses the point of interest (flag leaf tip, spike
tip, last node) which is convenient to study specific vegetative
organs. On the contrary, the image-based height measurement of
specific points is a complex, and sometimes impossible, task due
to the difficulties encountered to automatically detect such points
(e.g: overlapping leaves prevent detection of nodes). For manual
height measurement, numerous repetitions were necessary to
obtain a robust estimation, which can be seen as the main
drawback of this method. On the contrary, the stereo-based
method allows acquiring height descriptors of a zone of several
plants in a simultaneous way. As demonstrated by Cai et al.
(2018), the height map yields complete height distribution which
provides far more information on canopy development than a
manual height measurement. Several statistical descriptors of the
height deduced from the 3D point cloud are proposed in this
Frontiers in Plant Science | www.frontiersin.org 11
study. The suggested descriptors are the median, the 75th
percentile and the 95th percentile of the point heights.
Figure 11 shows the different height descriptors for both types
of measurement. The comparison between the different
fertilization practices revealed that global canopy height
described by stereo vision seems a better indicator of cover
development than the manually determined height of flag leaf
insertion. A final note on height measurement at the vegetative
stage concerns the manual reference method. A meter stick, as
used for this study, is not the only possibility to record crop
height. Using an herbometer (a plate of known weight attached
to a rule), as described by Barmeier et al. (2016), would provide a
weighted plant height. This measurement is considered to be
more representative and objective that a measurement at a
specific point. Moreover, as the herbometer measure a
weighted height on a zone and not height at a point, it could
be better suited to provide a reference for stereo vision. It would
even be possible to design the herbometer with a size similar to
that of the captured zone. A herbometer must however be
adjusted to account for various degrees of stem stiffness,
depending on growth stage or cultivar.

For data recorded after spike emergence, the relevant height
descriptor is the mean height of spike tips both for manual and
imaging methods. For the automatic measurement, the height of
each spike object was the 95th percentile of heights, so that the
mean height of spike tips for one image was the mean of those
95th percentiles. This trait was measured for two blocks of micro-
FIGURE 9 | Comparison between Delaunay triangulation and local fitting methods to estimate MTA in field experiments. Vertical bars indicate the standard deviation
of the MTA estimation for the different images acquired at a same date.
FIGURE 10 | Comparison between Delaunay triangulation and local fitting methods to estimate LAD for images acquired on May 02. The graph shows the
frequency and the standard deviation for each 5° class.
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plots both manually and by stereo vision on June 05 (Figure 12).
By considering the manual measurements as a reference, mean
spike top heights were measured by stereo vision with an
accuracy of 97.1% (RMSE of 0.016 m). For micro-plots of
block 2, manually and automatically measured mean height of
spike tops were close. For block 1, the automatic measurement
systematically underestimated the mean height but the evolution
of height according to the fertilization practices followed the
same trend as for manual determination. The systematic error
was not due to the accuracy of camera-spike distance
measurements but may be due to some other issues such as
saturated leaves badly classified as spikes and the determination
of camera-ground distance. Those issues represent challenges
inherent to field acquisition. As suggested above, a custom auto-
exposure algorithm should help to deal with important image
saturation. The second issue is more challenging. The camera-
ground distance is not constant due to soil surface irregularities
induced for instance by tractor passage. This problem could be
obviously overcome by cumbersome manual measurements
slowing down the image acquisition process. To avoid that, an
estimation of the camera-ground distance can be deduced from
the soil pixels depth. However, for dense and high canopies, the
estimation of ground depth was not reliable due to the lack of
visible soil spots rendering stereo matching troubles. Finally,
because of an imperfect positioning of the acquisition device in
the field, the cameras were not exactly perpendicular to the
ground resulting in non-constant real camera-ground distance
on the stereo image.

To conclude, stereo-based height measurement in a complex
canopy offered an easy way to compare global canopy height and
average spike top height of different micro-plots. However, the
absolute height of micro-plots remained uncertain because of
difficulties to automatically get camera-ground distance at each
point of the area of interest. Manual measurements are useful to
Frontiers in Plant Science | www.frontiersin.org 12
measure the height of specific plant elements that would be
difficult to spot on images.

Comparison With Other Proximal
3D Sensors
This section aims at answering the question: which 3D sensor to
choose in order to measure wheat morphological plant traits
such as LAI, foliar angle and plant height, by considering the
literature updated with the results of this study? It focuses on the
sensors that directly measure morphological features, and not on
the sensors that rely on a relation between the architectural traits
and reflectance. Several recent papers already compare the
performances of the most common 3D sensors for high
throughput plant phenotyping (Li et al., 2014; Vázquez-
arellano et al., 2016; Perez-Sanz et al., 2017; Qiu et al., 2018;
Wang et al., 2018). Based on these reviews, stereo vision is
perceived as sensitive to sunlight and poorly adapted for outdoor
imaging. However, this study demonstrates that stereo vision can
be used for acquisition under natural conditions without any
shadowing device and still provide dense depth information. The
same conclusion cannot be drawn for methods that need to
illuminate the scene such as time of flight cameras. To the
knowledge of the authors of this paper, no recent study
supports that a new generation of time of flight cameras would
correct the issue of sensitivity to sunlight. Among the others
methods, multi-view stereo and structure from motion can be
considered as variants of a classic binocular stereo system. They
have the potential to provide better results but necessitate to add
cameras or to increase the number of shots of a same scene.
Those methods should be envisioned instead of binocular stereo
if the configuration of the acquisition platform allows it and if the
amount of data to manage is not an issue.

Ultrasonic sensors are mentioned as a cheap solution to
measure plant height. However, the wheat plants may not have
FIGURE 11 | Comparison of manual and automatic measurements of canopy height for 11 micro-plots (May 24).
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sufficient density to reflect the echoes (Yuan et al., 2018). As a
result, ultrasonic sensors sometimes do not really directly
measure height at a plant surface. Moreover, they do not suit
to reconstruct point cloud and fail to directly provide leaf
inclination or area. To conclude, they should be chosen when
the goal is to record canopy height but not for mapping the
height of different organs or to construct a 3D point cloud.

At the moment, the real competitor of stereo vision for
polyvalent 3D measurements in natural conditions is LiDAR.
An important difference between stereo vision and LiDAR is that
the latter directly provides 3D point clouds while stereo vision
provides 2D height maps that can be converted into point clouds.
Recent studies demonstrate that LiDAR can measure the
morphological traits with performances equivalent or superior
to those presented in this study for stereo vision. Jimenez-berni
et al. (2018) measure height with a RMSE of 0.017 m. Leaf angle
measurements could be obtained from LiDAR point clouds
coupled with RGB image just as for stereo vision point clouds.
Li et al. (2017) measure green area index with a RMSE of 0.22.
However, even if LiDAR is more and more affordable, it remains
costly and has to be coupled with a RGB camera to provide both
morphological and color information. In addition, its use in
outdoor conditions necessitates to deal with wind. To sum up,
stereo vision may be preferred over LiDAR for the applications
that need an inexpensive (around 2,000 euro for two cameras
and objectives), compact (the two spaced cameras and their
objectives form a device of around 0.1 × 0.1 × 0.04 m3) and
polyvalent device that provides both color and morphological
information without the necessity to fuse two sensors of different
nature. Finally, stereo maps offer high spatial resolution while the
spatial resolution of LiDAR measurements is conditioned by the
scanning time and by its footprint.
CONCLUSION

Stereo vision is a cheap, compact, and flexible way to study wheat
canopy architecture in natural conditions. This is a polyvalent
Frontiers in Plant Science | www.frontiersin.org 13
method allowing measurement of morphological traits such as
LAI, MTA, LAD, and canopy or spike height. A stereoscopic
vision system was set up to capture depth and color images of
crop canopy. The acquisition system was calibrated and validated
on winter wheat in an in-field nitrogen fertilization trial offering
contrasting canopy architectures. LAI and MTA were computed
based on a global Delaunay triangulation. It was shown that the
image size might greatly affect the error. Median filtering of depth
map helped to reduce the stair-step effect due to random errors in
depth measurement and limited depth resolution. LAI was
estimated with a cross-validation RMSE of 0.37 based on manual
reference measurements. MTA was accurately estimated by the
triangulation process. An original method based on a local surface
fitting, was developed to properly extract LAD. Regarding the height
measurement, the optical challenges faced to automatically measure
camera-ground distance in dense canopies have been discussed and
spike top height was measured with an accuracy of 97.1%. Overall,
stereo vision provides 3D point clouds that allow precise
comparisons of plots although the determination of absolute
values of agronomic parameters such as LAI or canopy height
might suffer from systematic errors.

Several solutions have been proposed to ease the development of
the method in field conditions. Firstly, a robust segmentation
method based on machine learning using HSV components helps
to manage variable light conditions. Secondly, it has been shown
that image size and color resolution can influence the stereo
matching. A finer 12-bit color resolution was preferred to an 8-bit
acquisition. For a camera-canopy distance of 1 m, 1280 × 1024
images presented better performances for stereo matching and LAI
computation than 2560 × 2048 images. Thirdly, the wind had little
effect on LAI measurement variability, except at stem elongation. It
highlights that the development stage could be more important that
the wind speed itself in terms of wind effect on the canopy. This
observation should however be supported by testing multiple wind
conditions at each stage before drawing a conclusion.

Perspectives are divided into two categories: (i) improving the
stereo vision system and (ii) extracting supplementary traits from
images. To improve the acquisition, a possibility would be to
FIGURE 12 | Comparison between the manual and the automatic measurements of the mean height of spike tops for two blocks of micro-plots (June 05).
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combine more than two cameras to build a multi-ocular system as
proposed by Kaczmarek (2017) on small trees. This would yield
more accurate and dense depth maps and help taking into account
overlapping leaves. Another possibility would be to work with
several pairs of cameras, observing the canopy with contrasting
view angles. Concerning the other perspectives of trait extraction,
the combination of depth, color, and texture information offers the
potential to measure additional plant traits, especially at a smaller
scale. The method could extract the morphology of yield-related
organs such as flag leaves or spikes. It could also provide spike and
seedling densities as well as proxies of tiller number.
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