Deep learning to detect CBC before the merger

Grégory Baltus

with Jean-René Cudell

Virgo week January 2020

Goals and motivations

Detection of CBC before the merger using deep learning algorithm

- Useful for multi-messenger astronomy
- Einstein telescope

Why deep learning?

- Faster than matched filtering
- SNR from matched filtering is low for seconds of inspiral
- Computationally cheap (after training)

Neural network

Based on *PHYSICAL REVIEW D 97, 044039 (2018)* by E. A. Huerta and D. George

- 3 layers of convolution (with pool layers)
- 2 layers of fully-connected
- Softmax layer
- Input vector of size 40960 (10 seconds of inspiral)
- Output size : 1 (between 0 and 1)

Output is [0.9, 1.0] => if GW : success Output is [0.0, 0.1] => if no GW : success Output]0.1, 0.9[=> failure

Generation of waveforms and Gaussian noise

- Generate waveform using pyCBC
- Select 10 seconds of the inspiral
- Select 1 second of the merger (calculate the SNR)
- Generate colored Gaussian noise

Calculation of the SNR

Training on different datasets

Whitened strain: INPUT for neural network

- Generate different datasets focused on small ranges of SNR
- ~ 3000 whitened curves in each dataset
- Half with a GW
- Half only pure noise

Training on different datasets

Mass 1 and 2 vary from 1 $\rm M_{\odot}$ to 5 $\rm M_{\odot}$ with a step of 0.1 $\rm M_{\odot}$

Results 1: inspiral

Efficiency of the neural network as a function of the SNR

Mean iSNR (inspiral): 4

Mean mSNR (merger): 14

Results 2: merger + inspiral

Efficiency of the neural network as a function of the SNR

Inspire/merger vs pure inspiral

Why neural network are better with pure inspiral than whith inspiral/merger at the same SNR?

Conclusion

Convolutional networks are able to detect 10 seconds of inspiral into Gaussian noise, even if the iSNR is very low.

Work in progress

Thanks for your attention