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Although the distillation is considered to be the most mature among separation technologies, 

the understanding of the processes occurring within a distillation column is still inadequate 

and consequently represents a significant barrier to the further improvement of equipment 

performance (Adler et al, 1998). In case of packed columns an obvious barrier for 

development of advanced predictive models is an inadequate knowledge of the sources and 

the nature of small scale liquid and gas maldistributions in packed beds. This obstacle could 

be overcome if we could see inside the packed bed during operation, i.e. develop means to 

adequately image the liquid flow in a packed bed. X-ray computed tomography is well suited 

for this purpose, since it is a non intrusive technique which offers the opportunity to unravel 

complex flow textures with a sufficient spatial resolution.  

The purpose of this R&D note is to present results obtained with the structured packing 

installed in a column with internal diameter of 0.6 m, using air/water system at ambient 

conditions. Here, we are mainly concerned with the geometric aspect of the problem. 

 

EXPERIMENTAL 

 

The heart of the experimental set-up is a 2 m high, 0.6 m internal diameter column made of 

polyethylene with a wall thickness of 0.015 m. The corrugated sheet structured packing used 

in this study was Sulzer Mellapak 250 Y made of polypropylene with element/sheet height of 

0.31 m.  The thickness of corrugated sheets is 1.2 mm, the corrugation height is 0.013 m, and 

the corrugation base is 0.026 m.  The upper and lower 50 mm of the sheet are smooth as well 

as the central part. Two sections in between are rippled and contain a regular pattern of circled 

and oval holes with a diameter of 6 mm. The height of installed bed consisting of 4 elements 

of packing  was 1.24 m. Each of these elements consists of two semi cylindrical segments 

tightened together by the wall wiper. Water (up to 0.006 m/sec) was fed at the top using a 

liquid distributor with 106 drip points/m
2
. Air (up to 2 m/sec) was delivered to the bottom of 

the column by a blower.  

 

 

Description of the tomograph 

 

We designed a X-ray tomograph (fig.1)  which rotates around a vertical axis giving scans of 

horizontal sections of a column  (Toye et al.1996). A scan is performed by rotating the source 

and the detectors set continuously at a constant speed over 360°. The rotation is achieved by a 

dc motor which is carefully controlled to avoid excessive mechanical strains at start up. The 

source and the detector bank are fixed on two vertical pillars embedded in a rigid metallic 

structure. They can be moved vertically by two identical helicoidal screws driven by gears 

mounted on an horizontal axe rotated by a single dc motor. Vertical position accuracy is 0.001 

m.The source provides a collimated flat fan beam of 40° aperture and of 1 mm thickness. We 

use a focal area of 0.4×0.4 mm, a current of 4 mA and we operate at 140 kV. The generator  is 

a Baltograph CS160 constant potential which may be operated between  0-160 kV. The 
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detector bank is a 1.7 m long linear array of 1024 photodiodes built by Slumberger. A 0.006 

m lead sheet is fixed at the back of the bank absorbing the direct radiation. The experimental 

set-up is installed in a dedicated radio protected lab covered by a 0.004 m lead sheet. During a 

scan, the detector bank sends 1024 attenuation measures and the angular position every 20 ms 

through a RS422 port. Signals are fed to the ram of a PC. A scan takes around 160 s leading 

to files of about 10 Mb. Cross section images are reconstructed using the linear filtered back 

projection algorithm. The code is parallelized and runs on a four processor Sun450. Images of 

the gas liquid solid distribution over a grid of 1024 x 1024 pixels are obtained with a 

resolution around 1 mm. 

 

  

Procedure 

 

Before starting an experiment a blank is realised to set detectors offsets and gains. This setting 

is valid over a 4 hour period. Reconstructed sections are masked, thresholded and calibrated. 

Masking is used to remove the column wall image. Noise level is estimated considering the 

pixels outside of the mask. A threshold corresponding to 90% of the noise level is applied to 

the image contained inside the mask. The solid content of the section is obtained by assuming 

that the maximum pixel value over different scans corresponds to a pixel totally filled by the 

solid. The dynamic liquid structure is reconstructed by subtracting, before reconstruction, the 

signals corresponding to the drained column from the signals corresponding to the irrigated 

column. In order to quantify the dynamic liquid hold-up, we determined experimentally the 

water adsorption coefficient by scanning water samples of known thickness. Then, we  

computed the ratio of the incident to the transmitted light on the projection signal, without 

reconstructing the image.     

 

RESULTS 

 

Dry packing 

 

Fig. 2A,B,C,D presents binarized images of four dry sections taken at various heights. From 

fig. 2A, which shows a full cross section, it may be clearly seen that a packing element is 

composed of two semi cylindrical segments packed tightly to each other. Figures 2B and 2C, 

which represent a zoom on a square (0.41 m × 0.41 m) portion of the cross sectional area 

taken in the same  packing element but  vertically separated by 0.032 m, indicate variations of 

the geometrical structure. Discontinuities in fig. 2B result from the presence of circular holes 

placed at corrugation ridges. More pronounced discontinuities visible in Fig. 2C result from 

oval holes placed on corrugation sides.  Fig. 2D presents a very orderly pattern obtained at the 

position corresponding to the crossings of corrugation sheets.  On fig. 2B, 2C, 2D the split 

between two cylindrical segments, though still present, is more difficult to distinguish.      

The average void fraction measured from such images is 88% which is the value provided by 

Sulzer. It fluctuates from section to section, for instance on the section corresponding to fig. 

2C, the void fraction is 90 %.   

The 2D autocorrelation function computed on pixel values is used to extract characteristic 

length from these images (Pratt, 1978). Square images extracted from the cross section are 

zero padded to 512 pixels. After subtraction of the mean and normalization by the standard 

deviation, the Fourier transform of the resulting images are computed. The square of their 

moduli are Fourier inverted then thresholded, leading to a binary image of the 2D 

autocorrelation function like that shown on fig. 3. The periodic structure of the packing 

appears clearly and allows to determine the characteristic length. We obtain d1=29.5 pixel and 
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d2=39.7 pixel or d1=25mm and d2=34mm, i.e. a 12.5mm corrugation height (d1/2) and a 24 

mm corrugation base length (d2×sin(45°)), which is close to the real values (13 and 26mm) 

mentioned earlier.  

A closer look into the dry packing structure was taken by performing 18 scans separated 

vertically by 1mm. These images are assembled in a 3D data set from which we extract a 

small volume for visualization. This volume is smoothed by convolution with a 3 pixel wide 

3D box filter. The smoothing makes isosurface determination easier but leads to an artificial 

increase of the structure thickness. Isosurfaces (surfaces of constant absorption) and isocaps 

(intersection with the planes delimiting the region of interest) are drawn using Matlab5.3 

computing software. Figure 4 represents a 0.018m×0.07m ×0.07m volume extracted from the 

body of a packing element, indicating corrugations with oval holes. The sheets seem to be 

fused at their contact points because their thickness is overestimated by our rather crude 

image processing.      

 

 

Irrigated packing 

 

Figures 5A,B,C,D illustrate the dynamic liquid holdup distribution in the packing. They are 

obtained by superimposing the solid packing image in gray and a thresholded liquid hold-up 

image in blue. Figures 5A and B represent the liquid distribution pattern as observed in a 

cross section of the first and second packing element, rotated to each other by 90
o
, resulting 

from a point source distributor. Figures 5C and 5D represent the same situation for a 

‘uniform’ (106 drip points/m
2
) initial liquid distribution. A slightly thicker blue line indicates 

increased liquid buildup, which occurs at the location corresponding to the split between two 

segments of a packing element. This is the first experimental evidence that this kind of 

structural deviation, causing a discontinuity in the liquid flow, can be considered as a 

potential source of liquid maldistribution. The possible adverse effect on the mass transfer 

efficiency was considered and modeled by Stoter (1993). Obviously, X-ray tomography, by 

taking into account the bed layout, provides experimental evidence essential for development 

and validation of liquid distribution models.  

On figure 6, we superimpose the image of a scan performed through the liquid jets dripping 

from the distributor in blue to the image of the flowing liquid in a section of the first element 

in gray. Some of these jets are not properly reconstructed probably because of their 

fluctuations during the scan. Flowing liquid films or rivulets are detected notwithstanding 

their thickness may be less than the pixel size, however their localization cannot be better than 

the pixel. Flow patterns like those of fig 5, were already obtained experimentally by liquid 

collecting (below the bed) techniques (Hoek et al.,1986) and numerically simulated (Olujic, 

1997). They give access to the liquid maldistribution at small as well as at large scale. For 

instance, we measured a strong increase of dynamic liquid holdup at the interface between 

packing elements. This effect observed by Suess and Spiegel (1992) using the gamma-ray 

technique, led to a modification of structured packing design (Billingham and Lockett., 1998, 

Parkinson et al. 1999). Quantitative results about liquid hold-up will be presented in another 

paper. 

We reconstruct 3D sections of the flowing liquid following the same procedure  used for the 

dry packing. Fig 6A,B,C represent a 3D reconstruction’s of a small portion of the first 

packing element situated around 0.08 m from the top. Fig. 6A shows the dry packing in blue, 

fig 6B the liquid flowing structure within the same volume, using a uniform distributor, in 

aquamarine. Superimposing 6A and 6B, we obtain 6C. To get a vivid picture, we choose a  

volume where the irrigation is poor (which occurs only in the upper part of the first packing 

element). Due to the smoothing process used to draw the isosurfaces, structure thickness is 
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increased. This is especially marked for the liquid structure which grows as thick as the solid. 

Actually, the narrowest smoothing filter we can apply is 3 pixel wide leading nearly 

inevitably to structures of that thickness. Consequently, it is impossible to ascertain on which 

side (front or back) of  the sheet the liquid is flowing. In spite of their relative geometrical 

imprecision these pictures are invaluable in small scale maldistribution investigations.              

  

CONCLUSIONS 

 

X-ray computed tomography is a non intrusive method which provides quantitative 

information on the small as well as on the large scale liquid maldistribution in any section of a 

bed consisting of structured packing, essential for development and validation of rigorous 

predictive models. Very thin flowing liquid structures may be evidenced and visualized using 

common 3D graphic tools. The possibility to locate high liquid hold-up zones might lead to 

design modification of present commercial structured packings.    
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