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Abstract 

The main objective of this study was to estimate the compressive strength of recycled aggregate concrete (RAC) by means of 

Schmidt rebound hammer and core testing. The use of recycled aggregate in concrete has been shown to lead to a decrease in the 

construction cost and it can reduce the burden on the environment by saving natural aggregates. On the other hand, some non-

destructive and semi-destructive techniques, such as Schmidt rebound hammer and core testing, are long-established methods for 

strength estimation of materials. Thus, the present study intended to obtain the compressive strength of RAC using these methods 

and then compare it with the results of 150 mm cube specimens. To achieve this goal, after producing concrete mixes with 70% 

replacement of recycled coarse aggregate, 96 cube specimens and 8 concrete slabs were cast to perform Schmidt rebound 

hammer, core and cube testing. In addition, the combination of the methods was used to obtain correlations between Schmidt 

rebound hammer and core testing. The results demonstrate that a multi-variable equation using these tests’ results can efficiently 

predict the compressive strength of RAC and conventional concrete and is more promising than single-variable equations based 

on the Schmidt rebound hammer test results. 

Keywords: Recycled aggregate, Schmidt rebound hammer, Core testing, Compressive strength of concrete 
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1. Introduction 

The extensive amount of construction and demolition wastes produced has imposed a heavy 

burden on the environment in recent years, and it is estimated that about 67% of total construction 

waste materials in the United States is crushed concrete [1-3]. One of the solutions to prevent this 

serious environmental concern is to recycle waste construction materials and use them in the building 

process again. These construction materials have drawn the attention of researchers to recycled 

aggregate concrete (RAC), having both positive economic and environmental impacts [4-9]. RAC 

has been known as a viable solution in which natural aggregates is replaced with crushed waste. As a 

new concrete mix design, it was proposed by Frondistou-Yannas [10] over 40 years ago, and the 

concept of RAC was subsequently analysed and developed by other researchers. Regarding this, 

Ajdukiewicz and Kliszczewicz [11] assessed the effect of recycled aggregates on the mechanical 

properties of high-performance concrete. They showed that the compressive strength slightly 

increased by replacing natural sand with fine recycled aggregates (0-2 mm). 

Zhang et al. [12] and Zaetang et al. [7] showed that the utilization of recycled aggregate led to a 

decrease in the compressive strength and flowability of concrete. On the other hand, a study by Zhu 

et al. [13] demonstrated that the presence of coarse recycled aggregate in concrete led to an increase 

in slump and that 70% was the optimum replacement level to achieve suitable compressive and 

splitting tensile strengths. Tam et al. [14] reported similar results, where 50% to 70% substitution 

levels of natural aggregate with recycled aggregate improved the compressive strength of concrete. 



 

 

There has always been a need for determining the strength of concrete specimens by means of 

standard test methods in the laboratory. However, some conditions including compaction, curing, 

and bleeding will vary in existing concrete at the building site compared to those in the laboratory. 

So, semi-destructive and non-destructive testing methods have been proposed to realistically 

estimate the in-situ strength of concrete [15-17]. Of all non-destructive testing methods, the 

Schmidt rebound hammer test was first developed by a Swiss engineer in the late 1940s [18]. The 

device of this test is cheap, portable and easy to operate and its components include hammer, 

plunger, outer body, and spring. As indicated in Fig. 1, the plunger is pressed forcefully and 

steadily against the concrete at right angles to its surface. After moving the spring-loaded mass 

from its locked position, the scale index, known as the rebound number, can be read, while the 

hammer is still in the test position. This number is dependent on the energy accumulated in the 

spring and in the mass used [18, 19]. The feasibility of the Schmidt rebound hammer test was 

evaluated by Kolek [20], where it was suggested to use it in two types of application, namely 

precast works and building sites. Victor [21] showed that the rebound numbers of concrete 

incorporating coarse limestone aggregate were found to be 7 points lower than those of concrete 

incorporating coarse gravel aggregate, which led to 7 MPa difference in compressive strength of 

concrete. According to the results of Greene [22], the rebound numbers of lightweight concrete 

varied remarkably. In addition, there was a difference between the rebound numbers of two 

concrete samples incorporating the same aggregate from different sources as reported by Grieb 



 

 

[23]. However, the rebound numbers at different locations of a plain concrete member were found 

to be close to each other as observed recently by Xu and Li [24]. 

Among the semi-destructive tests on concrete, the core testing method can be employed at the 

building site to obtain drilled core specimens using a rotary cutting tool with diamond bits, and 

reliably assess the on-site strength of concrete elements. In this test, the measured strength of 

cylindrical core specimens can be affected by some factors including the direction of drilling, 

length to diameter (L/D) ratio of core, and the presence of reinforcement in concrete [18]. For 

most practical in-situ testing, the diameter of core specimen has been proposed between 100-150 

mm, and it is recommended by ASTM-C42-77 [25] that the L/D ratio of core is close to 2 to 

reduce uncertainties of correction factors. According to ASTM-C42-77 [25] and BS 1881 [26], 

the results of compressive strength for a L/D ratio below 1.75 should be modified using some 

correction factors, as presented in Table 1. As per a study by Sharma et al. [27] on different L/D 

ratios of drilled core specimens, by changing the L/D ratio, the results of 50 mm core specimens 

were affected more than those of 75 mm core specimens. Meanwhile, the measured strength of 

concrete increased with decreasing L/D ratio. Similar results were reported by Madandoust and 

Alizadeh [28], where the effects of diameter, concrete strength level, drilling direction, and L/D 

ratio on the compressive strength of concrete were detected. They also concluded that the 

correction factors of L/D ratios for low strength drilled core specimens were found to be close to 

those of BS1881, while for high strength drilled core specimens these factors were close to those 



 

 

of ASTM C 42. Gaynor [29] demonstrated that the presence of reinforcement in concrete led to a 

decrease in compressive strength of drilled cores between 4 and 18 MPa. In addition, Loo et al. 

[30] showed that the effect of reinforcement on core testing results decreased by decreasing the 

L/D ratio of drilled core specimens. Furthermore, they showed that the effect of reinforcement 

ratio up to 4% on the strength of drilled core specimens with L/D ratio of 1 was negligible. 

Some studies have been performed to assess the effects of recycled aggregate on the 

properties of concrete in laboratory. In addition, a limited number of studies have been 

conducted to predict in-situ strength of RAC by means of reliable non-destructive and semi-

destructive testing methods. Concerning this, the effect of crushed bricks aggregates on 

mechanical properties of concrete was evaluated by Debieb and Kenai [31], where there was a 

good correlation among the compressive strength estimated by the ultrasonic pulse velocity test, 

Schmidt rebound hammer and the compression destructive test. Al-Mufti and Fried [32] 

measured the early age strength and the surface hardness of RAC using non-destructive testing 

methods. The results showed the similar behavior with age between RAC and normal concrete 

by means of ultrasonic pulse velocity test and Schmidt rebound hammer. Mukharjee and Bari 

[33] assessed the effects of Nano-Silica on the properties of RAC using the ultrasonic pulse 

velocity test and Schmidt rebound hammer. They showed that the properties of RAC were similar 

to those observed in natural aggregate concrete incorporating 3% of Nano-Silica. For further 

investigation, the present study is an effort to realistically estimate the in-situ strength of 



 

 

concrete made with 70% coarse recycled aggregate using Schmidt rebound hammer and core 

testing. To achieve this goal, cores were extracted from slab samples to prepare cylindrical 

specimens, where different diameters and L/D ratios of core specimens were tested at 11 and 28 

days. In addition, cubic specimens were cast and prepared and tested with the Schmidt rebound 

hammer at 11, 28, 42 and 90 days. Since the curing regimes can affect the mechanical properties 

of concrete materials [34-37], plain concrete slabs and cubic specimens were cured under both 

wet and dry conditions. The results of Schmidt rebound hammer and core testing were compared 

with those of standard cube tests. In addition, a two-variable equation was proposed between 

Schmidt rebound hammer and core testing to realistically estimate the compressive strength of 

conventional concrete and RAC under both wet and dry curing conditions. 

 

Fig. 1. Schematic illustration of the operation of the Schmidt rebound hammer [19] 

 



 

 

Table 1. Correction factors to modify the compressive strength of drilled core specimens 

Correction factors  
L/D 

BS1881 ASTM C42-77 

0.97 0.98 1.75 

0.92 0.96 1.5 

0.87 0.93 1.25 

0.8 0.87 1 

 

2. Experimental program 

2.1. Materials 

The chemical composition of Type II Portland cement, with a density of 3.2 g/cmଷ and 

surface area of 2900 cmଶ/g, is shown in Table 2. Crushed gravel was used as coarse aggregate, 

with a density of 2.65 g/cmଷ and water absorption of 1.1%. Natural river sand, with a density of 

2.72 g/cmଷ and water absorption of 5.1%, was used. The size grading curves are indicated in Fig. 

2, where the coarse recycled aggregate, with a nominal size of 5-20 mm, was obtained from 

crushed concrete to produce RAC. A superplasticizer of polycarboxylic ether-type from the 

Feroplast Company was used in order to obtain the intended concrete workability [38-41]. 

Table 2. Chemical composition of the Portland cement 

Cement (%) XRF 
21.54 SiO2 

4.85 Al2O3 

1.55 Fe2O3 

64.86 CaO 

1.55 MgO 

2.43 SO3 

1.15 LOI 



 

 

 

Fig. 2. Aggregates’ size distribution. 

2.2. Mix proportioning 

In this study, two concrete mix designs were considered as in Table 3. Mix A is the control 

mix made with coarse natural aggregate, and Mix B is defined as RAC, where the coarse natural 

aggregate was replaced at 70% with coarse recycled aggregate to achieve an optimum mix 

design as proposed by Zhu et al. [13] and Tam et al. [14]. The effective water-binder ratio was 

0.4 for all mixes. All aggregates were used in the saturated surface-dry condition to prevent 

further water absorption. 

For mix preparation, first, the sand, coarse natural and recycled aggregates were mixed for 30 

s at normal speed. Then, half of the tap water was added into the mixer and mixing went on for 1 

min. Thereafter, cement was added and mixed for one more minute. Then, the remaining water 
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and superplasticizer were introduced in the mixer, and mixing went on for 3 min. Finally, 15 cm 

cubes and 100×100×30 cm concrete slabs were cast to estimate the compressive strength of 

concrete using Schmidt rebound hammer, core, and cube testing. 

Table 3. Mixes composition 

Recycled coarse 
aggregate (kg/݉ଷ) 

Coarse aggregate 
(kg/݉ଷ) 

Fine aggregate 
(kg/݉ଷ) 

Cement 
(kg/݉ଷ) 

Water 
(L/m3) 

Mix ID 

- 703.84 154.76 400 160 Mix A 
492.9 210.94 154.76 400 160 Mix B 

 

2.3. Sample preparation 

The compressive strength cube test was conducted under both wet and dry curing conditions at 

11, 28, 42 and 90 days. At each age and curing condition, six concrete specimens were cast and 

tested. So, the results of cube testing were the average of 6 15 cm cubic specimens, and the total 

number of cubes was 96. Before testing in the compression testing machine, two sides of each 

cubic specimen were tested with the Schmidt rebound hammer and the result of each test was the 

average of 12 rebound numbers. Therefore, the total number of rebound numbers was 192 under 

both wet and dry curing conditions at 11, 28, 42 and 90 days. In this study, a manual Type N 

hammer was used and the test procedure was based on the recommendations given by ASTM 

C805 [42]. To securely clamp the cube specimens to the compression testing machine and 

perform the Schmidt rebound hammer test, a minor load was applied to the cube specimens from 

two sides using clamp jaws. 



 

 

On the other hand, four concrete slabs were cast and cured under each curing condition to drill 

core specimens at 11 and 28 days, where 2" and 4" core diameters with L/D ratios of 1 and 2 were 

considered. At each age and curing condition, seven cylindrical specimens were drilled and tested. 

So, each result of core testing was the average of 7 cylindrical specimens, and the total number of 

drilled cores was 224. It is noteworthy that both slabs and cubes were compacted using concrete 

vibrating table to achieve a similar compaction. This vibrating method was helpful as well to 

prevent the generation of difference between concrete properties at low and high depths of slabs. 

Since the strength of the core specimens can be affected by the location of the drilling and the 

results of drilled cores in the corner zone can be lower than those in the central zone of a slab, a 

minimum distance of 150 mm was considered between the hollow core and the slab edges to 

reduce the effect of location of the drilling on the strength of core specimens. 

3. Results and discussion 

3.1. Slump 

In this study, the slump of concrete control mix (Mix A) and RAC (Mix B) was equal to 78 

mm and 69 mm, respectively. The slump of RAC in this study was nearly within the range of the 

results given by Ferreira et al. [43], where the slump of concrete with different substitution levels 

of recycled aggregate was 80 ± 10 mm. In addition, the slump value of 60 mm was obtained by 

Adnan et al. [44] for concrete with the water-binder ratio of 0.4 and 75% incorporation of coarse 



 

 

recycled aggregate. In this study, the results showed that the slump of control mix (Mix A) was 

about 13% higher than that of RAC (Mix B). This could be due to the fact that the coarse 

recycled aggregate, obtained from crushed concrete, was more angular and rough-textured 

compared to coarse natural aggregate, although there was no significant difference between the 

slump values of Mixes A and B, because both recycled and natural aggregates were used in the 

saturated surface-dry condition to prevent further water absorption. So, the amount of free water 

in Mix B was nearly the same in Mix A as expected. 

3.2. Cube compressive strength 

Fig. 3 shows the cube compressive strength of the control mix (Mix A) and RAC (Mix B) with 

70% incorporation of coarse recycled aggregate under wet and dry curing conditions at 11, 28, 28, 

42 and 90 days. According to the experimental results, the cube compressive strength of the control 

mix and RAC under wet curing conditions was in the range of 24.7-40.2 MPa and 14.8-27.9 MPa, 

respectively. The corresponding values of the control mix and RAC under dry curing conditions 

were in the range of 18.2-29.7 MPa and 11-20.6 MPa, respectively. In the study of Wang et al. 

[45], the 28-day cube compressive strength of RAC with 75% incorporation of coarse recycled 

aggregate was 26 MPa under wet curing conditions. This value in the present study, 23.6 MPa, had 

less than 10% difference. In addition, the compressive strength of concrete under wet curing 

conditions was on average about 35% higher than that under dry curing conditions. So, as 



 

 

expected, the curing regimes affect the compressive strength of concrete specimens [46-51] and the 

difference between wet and dry curing conditions can go up to 50% as reported by Mamola and 

Zaniewski [52]. Under wet curing conditions, the cube compressive strength of the control 

concrete was on average about 47.6% greater than that of RAC. Nearly the same difference was 

observed under dry curing conditions. The increase in cube compressive strength, particularly for 

RAC specimens, was higher at early ages than that at older ages. Regarding this, as revealed by 

Belin et al. [53] and Zhang et al. [12], the surface of recycled aggregate is more porous compared 

to that of coarse natural aggregate, and the former can somewhat absorb more water in concrete, 

leading to a decrease of the hydration process. Therefore, the poor interlock between recycled 

aggregates and cement paste is inevitable, particularly at older ages. 

 
Fig. 3. Cube compressive strength of the control mix (Mix A) and RAC (Mix B) under wet and dry curing conditions 
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The mid-values of standard deviation (SD) of the control mix and RAC under wet curing 

conditions were 2.1 MPa and 1.45 MPa, respectively. The corresponding mid-values under dry 

curing conditions were 2.5 MPa and 1.9 MPa, respectively. So, there was no significant 

difference between the SD values under wet and dry curing conditions. 

3.3. Core testing 

Fig. 4 shows the core strength of the control mix (Mix A) and RAC (Mix B) under wet and dry 

curing conditions at 11 and 28 days. For different L/D ratios, the compressive strength of the 

control core specimens (Mix A) with a diameter of 2" was 39% to 49% higher than that of the 

RAC specimens (Mix B) at different ages. These values were between 42% and 50% for the core 

diameter of 4". The core strength of both the control and RAC specimens increased 32-45% from 

11 days to 28 days.  

To compare the results of core testing with those compressive strength cube test, Khoury et al. 

[54] measured the 28-day compressive strength of conventional concrete. They showed that a 

stress concentration around the core specimens was generated during the coring operation, which 

was associated with damage in the drilled cylindrical specimens and a subsequent decrease in the 

strength of cores up to 20% for diameters less than 100 mm (4"), compared to the compressive 

strength cube tests. This may be the reason why the strength of the control and RAC specimens 

were lower than those of the cubic specimens up to 19% in the present study. 



 

 

As mentioned above, the compressive strength results for an L/D ratio below 1.75 need to be 

corrected using factors, proposed by ASTM-C42-77 [25] and BS 1881 [26]. As shown in Table 1, 

the correction factors for L/D ratios of 1 and 2 are 0.8 and 0.87 respectively. In this study, the ratios 

of core strength between L/D=2 and L/D=1 can be obtained using the results of Fig. 4. These ratios 

were between 0.83 and 0.87, within the range of the correction factors proposed by ASTM-C42-77 

[25] and BS 1881 [26]. Madandoust and Alizadeh [28] revealed that, for wet curing conditions, core 

strengths for a diameter of 4" were 10% to 11% higher than those for a diameter of 2". This range 

was 9-12% in the present study, which is in agreement with Madandoust and Alizadeh [28]. 

As seen in Fig. 4, there was no significant difference between the SD values under wet and 

dry curing conditions, similarly to the standard cube test. The mid-values of SD for 2" and 4" 

core diameters with an L/D ratio of 1 were 1.3 MPa and 1.2 MPa, respectively. The mid-values 

for an L/D ratio of 2 were 1.2 MPa and 1.1 MPa, respectively. According to the results, the mid-

values of SD for a 2" core diameter were 9-18% lower than those for 4" core diameter. This 

shows that the SD values can be affected by the size of the specimens, as reported by 

Madandoust et al. [16], and they have a higher scatter for lower core diameters. 



 

 

 
Fig. 4. Core strength of the control mix (Mix A) and RAC (Mix B) under wet and dry curing conditions 

 
3.3.1. Estimation of in-situ cube strength using core testing results 

Eq. 1 has been proposed by BS1881 [26] for drilled vertically cores, to calculate the estimated 

in-situ cube strength using core testing results, specifically for plain concrete. 
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Where ௖݂ is the estimated in-situ cube compressive strength and 	݂ಽ
ವ
 the measured core 

compressive strength for different L/D ratios. The estimated in-situ cube compressive strength 
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using Eq. 1 and cube compressive strength obtained in this study were compared under wet 

curing conditions as seen in Table 4. 

Table 4. Comparison between the cube compressive strength and the estimated cube compressive strength 

Mix ID 
Age (day) 11 28 

L/D 1 2 1 2 
D 2" 4" 2" 4" 2" 4" 2" 4" 

Mix A 

Cube compressive strength 24.6 24.6 24.6 24.6 32.7 32.7 32.7 32.7 
In-situ cube compressive strength estimated by 

BS1881 26.6 29.1 27.7 31 35 38.7 37.3 41.8 

Difference between cube compressive and 
estimated cube compressive strength (%) 8 18 12 26 7 18 14 28 

Mix B 

Cube compressive strength 14.8 14.8 14.8 14.8 23.6 23.6 23.6 23.6 
In-situ cube compressive strength estimated by 

BS1881 17.8 19.5 19 20.8 24.8 27.2 26.8 29.5 

Difference between cube compressive and 
estimated cube compressive strength (%) 20 31 28 40 5 15 13 25 

 
For both the control and RAC specimens, the cube compressive strength was between 16% 

and 22% higher than the estimated in-situ cube compressive strengths, obtained using Eq. 1. This 

difference can be explained by the results of Khoury et al. [54], where they reported that the 

values of cube compressive strength estimated by various standards are different. These 

differences can be due to the fact that not all correction factors of the results of core testing are 

considered by the standards. These factors include the particle size distribution, curing 

conditions, dimensions of core specimens, direction of drilling, and damages generated by the 

coring bit. By considering this, although Eq. 1 considered the direction of drilling and L/D ratio, 

there are other significant factors ignored by BS1881 [26]. This seems to be the reason why there 

was a difference between the cube compressive strength and estimated in-situ cube compressive 

strength in our study. 



 

 

3.4. Schmidt rebound hammer test 

The results obtained in the Schmidt rebound hammer test for the control mix (Mix A) and RAC 

(Mix B) under wet and dry curing conditions at 11, 28, 42 and 90 days are presented in Table 5. 

Table 5. Average values of the rebound number and of its standard deviation 

Mix ID Curing conditions 11 days 28 days 42 days 90 days SD 

Mix A 

Wet 21 - - - +1.8 
-1.5 

Dry 18 - - - +1.5 
-1.6 

Wet - 25 - - +1.4 
-1.6 

Dry - 23 - - +2.1 
-2.1 

Wet - - 27 - +1.6 
-1.5 

Dry - - 26 - +1.4 
-1.5 

Wet - - - 31 +1.9 
-2.3 

Dry - - - 28 +2.5 
-1.6 

Mix B 

Wet 15.5 - - - +1.2 
-1.1 

Dry 12.5 - - - +1.2 
-1.2 

Wet - 22 - - +1.5 
-1.4 

Dry - 19 - - +1.4 
-1.5 

Wet - - 25 - +1.7 
-1.5 

Dry - - 22 - +1.6 
-1.9 

Wet - - - 27.5 +1.4 
-1.6 

Dry - - - 24.5 +1.4 
-1.8 

 
The general trends of the rebound number under both wet and dry curing conditions were similar 

to those observed in the cube compressive strength. As seen in Table 5, the rebound number of the 

control mix and RAC under wet curing conditions was in the ranges 18-28 and 15.5-27.5, 



 

 

respectively. The corresponding values of the control mix and RAC under dry curing conditions were 

in the ranges 21-31 and 12.5-24.5, respectively. As expected, the rebound number of RAC was lower 

than that of the control concrete, due to the porous interfacial zone in the concrete specimens 

generated by the presence of recycled aggregate, based on a study at the microscopic scale by Poon 

et al. [55]. This led to poor interlock between recycled aggregate and cement paste and lower 

compressive strength in the RAC specimens relative to the control concrete specimens. 

The mid-values of SD for the control mix and RAC under wet curing conditions were 1.8 and 

1.4, respectively. The mid-values under dry curing conditions were 1.8 and 1.5, respectively. 

Similarly to what Xu and Li [24] observed, the mid-values of SD for the control mix and RAC 

showed that the rebound number at different locations of cubic concrete specimens were close. 

3.4.1. Comparison of calibration curves 

In Fig. 5, the calibration curves of this study were compared with those of Kaushal [56] for 

conventional concrete under both wet and dry curing conditions. Two exponential equations (single-

variable equations) of ௖݂=10.39݁଴.଴ସ௥ and ௖݂=7.977݁଴.଴ହ௥with high correlation coefficients (ܴଶ) of 

0.92 and 0.97 for wet and dry curing conditions, respectively, were obtained for the control mix (Mix 

A), where r is the rebound number and ௖݂ is the estimated compressive strength. The results showed 

that the estimated compressive strengths of conventional concrete using these two equations were 

close to the compressive strength obtained by Kaushal [56] and that the trends were similar. 



 

 

The calibration curves of the control concrete and RAC were compared under both wet and 

dry curing conditions, as seen in Fig. 5. Two exponential equations (single-variable equations) of 

௖݂=6.813݁଴.଴ହ௥ and ௖݂=5.958݁଴.଴ହ௥with high correlation coefficients (ܴଶ) of 0.941 and 0.94 for 

wet and dry curing conditions, respectively, were obtained for RAC (Mix B). Generally, all 

equations for the control concrete and RAC can reliably predict the compressive strength. 

 
Fig. 5. Comparison between the calibration curves of the Schmidt rebound hammer test 

 
3.4.2. Schmidt hammer compressive strength 

As shown in Fig. 6, the values of Schmidt hammer compressive strength were obtained for the 

control concrete and RAC using the equations proposed in Fig. 5. 

Under wet curing conditions, the Schmidt hammer compressive strength of control concrete was 

on average about 44.9% higher than that of RAC. This value under dry curing conditions was found 

fc = 10.39e0.04r
R² = 0.92

fc = 7.977e0.05r
R² = 0.97

fc= 6.813e0.05r
R² = 0.941

fc = 5.958e0.05r
R² = 0.94
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to be 46.1%. Similarly to what was observed in the cube compressive strength, the Schmidt hammer 

compressive strength of RAC under both wet and dry curing conditions remarkably increased at 

early ages, while a moderate increase occurred in most cases at older ages. For instance, the 

compressive strength of RAC under wet curing conditions increased up to 39.1% from 11 to 28 days. 

This increase was equal to 16.7% from 28 to 42 days and thereafter, a 12.2% enhancement was 

obtained from 42 to 90 days. According to microscopic studies by Tam and Tam [57] and Li et al. 

[58] on recycled aggregate, recycled aggregate absorbs water from the mix and over time this trapped 

water can lead to bleeding of concrete. Then, after water evaporation, more porous transition zone is 

generated in the RAC specimen. Therefore, the quality of the bond between recycled aggregate and 

cement paste decreases, leading to the lower Schmidt hammer compressive strength of RAC. 

Another aspect is that the recycled aggregate was used in the saturated surface-dry condition in this 

study to prevent further water absorption. Therefore, at early ages, the trapped water molecules in the 

recycled aggregate were given back to the empty capillary pores to increase the amount of free water 

in the concrete mixes, leading to an increase in the rate of the hydration process. This process led to a 

remarkable increase in compressive strength of concrete at early ages. Over time, the free water in 

concrete mixes evaporated and the remaining water decreased in concrete mixes. So, there was no 

sufficient water to react with the cement particles and complete the hydration process. That is why a 

moderate increase occurred in most cases at older ages. 



 

 

 

Fig. 6. Schmidt hammer compressive strength 

 
3.5. Two-variable equation between Schmidt rebound hammer and core testing 

The results of the control concrete and RAC, obtained by the Schmidt rebound hammer, core 

and cube testing, were used under both wet and dry curing conditions 11 and 28 days to 

determine a reliable two-variable equation to estimate the compressive strength of concrete 

specimens. In Table 6, the results of specimens No. 4 to 8 were randomly selected and used to 

obtain the two-variable equation (Eq. 2) with high correlation coefficient (ܴଶ) of 0.99. 

fୡ= 1.073 C + 0.229 R – 2.755                                                                                                     (2) 

Where fୡ is the estimated compressive strength, C is the drilled core compressive strength 

with L/D ratio of 2, and R is the rebound number. Then, results No. 1 to 3 in Table 6 were 

employed to test the reliability of Eq. 2. It is noteworthy that the drilled core compressive 
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strengths in Table 6 were for the L/D ratio of 2. Table 7 compares the results of the standard 

cube test with those of the Schmidt hammer, core testing, and the two-variable equation, where 

the differences between them are expressed as percentages in parentheses. The differences 

between the standard cube test and the Schmidt hammer test results were 10% at the most and 

increased to 15.5% between the standard cube test and the core testing results, while there was 

less than 5.4% difference between the results of the standard cube test and those of the two-

variable equation. Therefore, it seems that the estimated compressive strength by two-variable 

equation is more reliable than that of either the Schmidt hammer or the core testing. 

Table 6. Results used to obtain and test the two-variable equation 

No. Cube compressive strength (MPa) Drilled core compressive strength (MPa) Rebound number 
1 17.4 14.7 19 
2 14.8 13.9 15.5 
3 32.7 27.9 25 
4 18.2 15.3 18 
5 10.9 10.3 12.5 
6 24.4 20.9 23 
7 24.4 20.7 21 
8 23.6 19.7 22 

 
As mentioned previously, the cube compressive strength was between 16% and 22% above 

the estimated in-situ cube compressive strength using Eq. 1, proposed by BS1881 [26]. On the 

other hand, although some reliable exponential equations were obtained using the Schmidt 

rebound hammer test to estimate the compressive strength as seen in Fig. 5, these equations were 

different for the control concrete and RAC and for the two curing conditions. So, considering the 

fact that the differences between the estimated compressive strength estimated by the two-

variable equation and the cube compressive strength were less than 5.4%, as seen in Table 7, it 



 

 

can be inferred that the this equation can reliably predict the compressive strength of 

conventional concrete and RAC under both wet and dry curing conditions, and it seems to be 

more promising than the exponential equations of the Schmidt rebound hammer test. 

Table 7. Comparisons between measured and estimated in-situ cube strength 

No. Measured cube strength (MPa) Estimated cube strength 
  By Schmidt hammer (MPa) By core test (MPa) By the two-variable equation (MPa) 
1 17.4 15.7(10%) 14.7(15.5%) 16.6(4.6%) 
2 14.8 15.1(2%) 13.9(6%) 15.6(5.4%) 
3 32.7 30.4(7%) 27.9(14.7%) 34.1(4.3%) 

 
4. Conclusion 

In this study, the Schmidt rebound hammer, core and cube testing were used to assess the 

compressive strength of RAC under wet and curing conditions at different ages. The following 

conclusions can be drawn from the experimental investigation: 

 The cube compressive strength of concrete specimens under wet curing conditions was 

on average about 35% higher than that under dry curing conditions. In addition, the 

strength of the control concrete specimens was on average about 47% higher than that of 

the RAC specimens under both wet and dry curing conditions; 

 The core strength of the control concrete and RAC specimens was up to 19% less than 

that of the cubic specimens. Moreover, the 4" diameter strength was between 9-12% 

higher than that of the 2" diameter core; 

 The range of the correction factors for drilled core specimens of the control concrete and 

RAC was between 0.83 and 0.87, which were within the values proposed by ASTM-C42-



 

 

77 and BS 1881. For both the control concrete and RAC specimens, the results showed 

that the cube compressive strength was 16-22% higher than the in-situ cube compressive 

strength estimated using the equation proposed by BS1881; 

 The Schmidt hammer compressive strength of the control concrete was on average about 

44.9% and 46.1% higher than that of RAC under wet and dry curing conditions, respectively; 

 Based on the results of the Schmidt rebound hammer, core and cube testing, the 

compressive strength of RAC under both wet and dry curing conditions remarkably 

increased at early ages, while a moderate increase occurred in most cases at older ages;  

 In core testing, there was no significant difference between the SD values under wet and dry 

curing conditions, similarly to the standard cube test. In addition, the mid-values of SD for 2" 

diameter core were 9-18% less than those for 4" diameter core. In the Schmidt rebound 

hammer test, the rebound number at different locations of cubic specimens was close; 

 According to the data calibrations, for specific situations similar to what was considered 

in this study, the differences between the standard cube test and the Schmidt hammer test 

results increased to 10%, while there was less than 5.4% difference between the results of 

the standard cube test and those of the two-variable equation. Therefore, the two-variable 

equation between Schmidt rebound hammer and core testing reliably estimated the 

compressive strength of conventional concrete and RAC under both wet and dry curing 

conditions at different ages, and it was more promising than the exponential equations of 



 

 

the Schmidt rebound hammer test. 
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