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CCS CONCEPTS
• Social and professional topics → CS1; • Theory of com-

putation → Algorithm design techniques.

1 MOTIVATION THAT DRIVES THE
DISSERTATION RESEARCH

At the University of Liège, the CS1 course has been using, for

a couple of years, a programming methodology that consists in

determining an informal Loop Invariant prior to any code writing

and to use it to deduce the code instructions. This informal Loop

Invariant is a graphical representation that depicts key information

that will eventually be used to actually write the code. As such, the

Graphical Loop Invariant represents a strategy to solve the prob-

lem and is used to support thoughts on the code. Although being

informal, this drawing must at least detail variables, constant(s),

and data structures manipulated by the program; the constrains on

them; the relationships they may share, and that are conserved all

over the iterations. It should also express, in a general way, what

has been already computed by the program after a certain number

of loop iterations. While this methodology has been used for a long

time, it was never properly assessed, especially in the context of

a CS1 course. The main goal of the research is, on one hand, to

study the efficiency of the methodology as a way to teach program-

ming in a CS1 course and, on the other hand, to develop tools that

will support the teaching of the Graphical Loop Invariant based

programming by complementing the other course materials.

Until now, we have already developed a program (called Café)

to automatically test students’ programs. Café takes into account

the Graphical Loop Invariant that was used to build the program

code. It also provides student with feedback and feedforward in-

formation. We also developed a web application (called Gli) that

enable students to draw easily Graphical Loop Invariant and obtain

feedback about their drawing. We collected various data from both

tools usage.

2 LITERATURE REVIEW
Loop Invariant. While there is an abundant literature on Loop

Invariants for code correctness and on automatic generation of Loop

Invariants (e.g., [6, 7, 12, 16, 17, 30–32]), their usage for building

the code has attracted little attention from the research community.

With respect to Loop Invariant based programming (i.e., the Loop

Invariant applied in a constructive approach), the seminal work has
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been proposed by Dijkstra [10], followed by Meyer [23], Gries [15],

and Morgan [24]. As such, the program construction becomes a

form of problem-solving, and the various control structures are

problem-solving techniques. Those works proposed Loop Invariant

as logical assertion.

Tam [34] suggests to introduce students to Loop Invariant as

early as possible in their cursus. Tam describes several examples

of code construction based on informal Loop Invariants expressed

in natural language. Astrachan [1] is probably the closest to our

work as he suggests the use of Graphical Loop Invariants in the

context of CS1/CS2 courses. However, his approach is incomplete

as the suggested drawing lack of completeness (e.g., objects manip-

ulated, such as arrays, are not named according to code variables),

might lead to confusion (e.g., variables positions in the drawing

are somewhat unclear), and the drawing is not explicitly manipu-

lated to derive particular situations (e.g., code prior and after the

loop). Finally, Back [3, 4] proposed nested diagrams (a kind of state

charts) representing, at the same time, the Loop Invariant and the

code. However, in such a situation, Loop Invariants are expressed

as logical assertions, possibly leading to difficulties to students with

a low mathematical and abstraction background. To the best of our

knowledge, none of these works evaluate the reception, by students,

of a programming methodology based on Loop Invariant.

Following Furia et al. [13] classification, the Graphical Loop

Invariant falls within the scope of essential (i.e., a Loop Invariant

defining what has already been achieved so far) and bounding Loop

Invariant (i.e., variables are bounded by, e.g., an array limits).

More generally speaking, Graphical Loop Invariant based pro-

gramming falls within the scope ofmetacognition [22], as it provides
a problem-solving strategy and self-reflection on where one is in

the problem-solving process. As such, Graphical Loop Invariant

based programming can be related to three problem-solving stages

introduced by Loksa et al. [21], i.e., search for solutions, evaluate a po-
tential solution, and implement a solution. Also, writing a Graphical

Loop Invariant prior to coding should help students in understand-

ing the problem to be solved [8]. This actual impact of the Graphical

Loop Invariant on problem understanding will be studied in future

works

Automatic Programs Assessing Tools. Many automated system

for providing feedback to programming exercices were already

proposed (e.g., [5, 9, 11, 18, 20, 26, 27]). Most of them apply test-

based feedback, i.e., student’s code is corrected through unit testing

(except UNLOCK [5] that tackles the problem solving skills in gen-

eral, not just coding skills). WebCAT [11] even makes students

write their own tests too. Kumar’s Problets [18] enables step by

step code execution as part of feedback. More advanced automatic

feedback has been proposed by Singh et al. [33] by providing, to

students, a numerical value (the number of required changes) and

the suggestion(s) on how to correct the mistake(s).
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With respect to metacognition, Café is an automated assessment

tool increasing metacognitive awareness [29], as it relies on Graph-

ical Loop Invariant for building the code to solve programming

activities. However, future work should reveal to what extend Café

really helps in improving students’ performance.

3 HYPOTHESIS AND KEY IDEAS
As the Graphical Loop Invariant is concerned, we believe that a

graphical approach is simpler to understand for CS1 students [14,

25, 28]. Moreover, a Graphical Loop Invariant can be used to derive

the code of a program, like a formal Loop Invariant [10], but it only

needs graphical transformations of the Graphical Loop Invariant

to deduce, e.g., variables initialization, Loop Condition, etc. This

methodology needs a regular exercices [2] to be mastered. Due to

human resources constrains, these exercises have to be automati-

cally corrected, suggesting to develop tools to ease the teaching of

the Graphical Loop Invariant based programming.

4 RESEARCH APPROACH AND METHOD
Café. Café [19] stands for “Automatic Correction and Feedback for

Students” (the acronym in French means “Coffee”). This is a system

for assessing student’s programs providing them feedback and feed-

forward (what could be done to improve their solution) information.

Café differs from previous programs automatic assessing system

by allowing students to submit both their code and the Graphical

Loop Invariant upon which it was written. Café performs tests to

detect if the Graphical Loop Invariant and the code are matching.

Gli. Gli (standing for Graphical Loop Invariant) is a web appli-

cation that enables to draw Graphical Loop Invariant easily. The

application is able to check whether there are missing elements in

the drawing and to precisely indicate what is missing. Of course, it

cannot check if a drawing is suited for solving a particular problem

but it can give students early feedback on their drawing and help

them to enhance their Graphical Loop Invariants quality, hence

preventing eventually code conception mistakes. The drawing can

also be manipulated to derive particular situations, easing so the

code construction.

Data Collection Methodology. Our studies are conducted in accor-

dance to the 3 P’s framework [35] that recommends to consistently

assess learners’ experience by gathering and meshing three types

of data: Participation data, performance data and perception data.

We collected data over the last seven Academic Years.
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