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Abstract 
 

Food waste is currently a major problem since it is estimated that about one third of the food 

produced in the world is discarded before it is consumed. The reasons for these food losses and waste 

are varied and one cause is the bacterial spoilage, rendering foods unacceptable for consumption. The 

study of the dynamics of bacterial spoilage populations and the prediction of their dynamics would 

therefore be interesting to better understand and anticipate this phenomenon. This research focused on 

the study of predictive models for spoilage bacteria of fresh meat and meat products, considered as 

highly perishable foodstuffs. The two working matrices were pork minced meat and white pudding, 

considering variations in storage conditions (temperature and packaging). 

The first chapter of this thesis provides a general overview of bacterial spoilage of meat and 

meat products, as well as factors that may promote or limit its development. The different techniques 

used in this study to characterize and modelize the dynamics of spoilage microbiota are also described.  

This research was then divided into four main areas that are discussed in the other chapters: (1) 

describing the spoilage bacterial microbiota naturally present in the matrices studied; (2) characterizing 

the spoilage bacteria of interest for these products; (3) developing and validating predictive models with 

one or more bacteria; (4) and studying the metabolome of minced meat inoculated by spoilage 

microorganisms of interest.  

These studies have demonstrated the interest of combining results from classical microbiology 

and 16S rDNA-based metagenetic to monitor and predict the dynamics of spoilage microbiota. For the 

white pudding, the bacteria of interest were Brochothrix thermosphacta, 

Carnobacterium maltaromaticum, Lactobacillus spp. (Lb. fuchuensis, Lb. graminis, 

Lb. oligofermentans), Lactococcus lactis, Leuconostoc mesenteroides, Pseudomonas psychrophila, 

Pseudomonas sp., Psychrobacter spp. (Psy. okhotskensis, Psy. urativorans), Raoultella terrigena and 

Serratia sp. For minced pork samples they were B. thermosphacta, Lb. algidus, Lc. piscium, 

Leuconostoc spp. (Ln. inhae, Ln. gelidum), Photobacterium spp. (Ph. kishitanii, Ph. phosphoreum) and 

Pseudomonas spp. (Ps. fragi, Ps. fluorescens, Ps. psychrophila). The type of packaging and storage 
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temperature have a significant effect on the different dynamics, as well as the food companies and the 

production batches analyzed.  

Some of these bacteria of interest were then inoculated on sterile and non-sterile matrices, stored 

at different temperatures and packaging. The growth parameters to each bacterium were collected: 

maximum growth rate, lag time, minimum and maximum bacterial populations, time to reach the 

stationary phase, time to reach the spoilage threshold, minimum growth temperature, etc. Packaging 

seems to have the greatest impact on the maximum growth rate, itself having the greatest influence on 

the microbiological shelf life of the foods studied.  

Based on these data, good adjustments were obtained for the growth simulations, but 

overestimations were often observed. The same observations could be made by comparing the 

simulations performed on the white pudding with those available from software (ComBase and 

Sym'Previus). For minced pork, the data obtained allowed the development of three species interaction 

models based on the Lotka-Volterra (prey-predator model) and the modified Jameson models. The 

simulations obtained were validated by monitoring the spoilage microbiota of naturally contaminated 

pork minced meat matrices. The modified Jameson model obtained the best adjustments, although the 

prey-predator approach seems to be an interesting interaction model for complex microbiota. However, 

these proposals for models with three or more spoilage bacteria need to be validated by more 

experimental repetitions.  

Finally, metabolomic analyses (1H-NMR), in collaboration with CIRM-CHU, were performed 

in order to monitor the metabolites produced by inoculated bacteria in sterile minced pork samples. The 

dynamics of the metabolome for sterile non-inoculated matrices was also monitored. The different 

metabolomic patterns and metabolites produced were highlighted according to the inoculated bacteria 

and the food packaging. Moreover, the storage temperature seems to have the lowest impact on the 

metabolome.  

Development of predictive models based on data obtained by multi-omics analyses, combined 

with classical microbiology, provide an interesting approach. Further research on the development of 

complex models integrating the dynamics of two or more spoilage bacteria, interacting with each other 

and with the natural microbiota of foodstuffs, will be also an important step for better understanding and 

anticipating the bacterial spoilage of perishable foodstuffs. 
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Résumé 
 

Le gaspillage alimentaire est actuellement un problème majeur puisqu’il est estimé 

qu’environ un tiers de la nourriture produite dans le monde est jetée avant d’être consommée. Les 

raisons de ce gaspillage sont variées, et l’une des causes est l’altération bactérienne des denrées 

alimentaires, rendant celles-ci inacceptables à la consommation. L’étude de la dynamique des 

populations microbienne altérantes et la prédiction de leur évolution permettrait donc de mieux 

comprendre et d’anticiper ce phénomène. La présente recherche s’est intéressée à l’étude de modèles 

prédictifs dans le cadre de l’altération bactérienne de viandes fraîches et de produits à base de viande, 

considérés comme des matrices alimentaires très périssables. Les deux matrices de travail étudiées 

ont été la viande hachée de porc et le boudin blanc, en tenant compte des variations des conditions 

de stockage (température et conditionnement). 

Le premier chapitre de cette thèse brosse un aperçu général concernant l’altération 

bactérienne des viandes et des produits à base de viande, ainsi que des facteurs pouvant favoriser ou 

limiter son développement. Les différentes techniques utilisées dans cette étude pour caractériser et 

modéliser les dynamiques des microbiotes altérantes sont également décrites.  

Cette recherche a ensuite été divisée en quatre axes principaux qui sont abordés dans les 

autres chapitres : (1) la description du microbiote bactérien altérant naturellement présent dans les 

matrices étudiées ; (2) la caractérisation des bactéries altérantes d’intérêt pour ces produits ; (3) le 

développement et la validation de modèles prédictifs à une ou plusieurs bactéries ; (4) et l’étude du 

métabolome de la viande hachée inoculée par des bactéries altérantes d’intérêt.  

Ces études ont démontré l’intérêt de combiner les résultats issus de la microbiologie classique 

et de la métagénétique basée sur l’ADNr 16S afin de suivre et de prédire la dynamique des 

microbiotes altérants. Pour le boudin blanc, les bactéries d’intérêt étaient Brochothrix thermosphacta, 

Carnobacterium maltaromaticum, Lactobacillus spp. (Lb. fuchuensis, Lb. graminis, 

Lb. oligofermentans), Lactococcus lactis, Leuconostoc mesenteroides, Pseudomonas psychrophila, 

Pseudomonas sp., Psychrobacter spp. (Psy. okhotskensis, Psy. urativorans), Raoultella terrigena et 

Serratia sp. et, pour la viande hachée de porc, étaient B. thermosphacta,  Lb. algidus, Lc. piscium, 
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Leuconostoc spp. (Ln. inhae, Ln. gelidum), Photobacterium spp. (Ph. kishitanii, Ph. phosphoreum) 

et Pseudomonas spp. (Ps. fragi, Ps. fluorescens, Ps. psychrophila). Le type de conditionnement et la 

température de stockage ont eu un effet significatif sur les différentes dynamiques, ainsi que 

l’entreprise et le lot de production analysé.  

Certaines de ces bactéries d’intérêt ont ensuite été inoculées sur des matrices alimentaires 

stériles et non stériles, stockées sous différentes températures et sous différents conditionnements. 

Les paramètres de croissance propres à chaque bactérie ont pu ainsi être collectés : taux de croissance 

maximal, temps de latence, populations bactériennes minimales et maximales, temps pour atteindre 

la phase stationnaire, temps pour atteindre le seuil d’altération, température minimale de croissance, 

etc. Le conditionnement semble avoir eu le plus d’impact sur le taux de croissance maximal, lui-

même ayant eu le plus d’influence sur la durée de vie microbiologique des aliments étudiés.  

De bons ajustements ont été obtenus pour les simulations de croissance réalisées sur base de 

ces données mais des surestimations ont souvent été observées. Ce même constat a pu être fait en 

comparant les simulations réalisées sur le boudin blanc à celles issues de logiciels de modélisation 

existants (ComBase et de Sym’Previus). Pour la viande hachée de porc, les données ainsi obtenues 

ont permis le développement de modèles d’interactions à trois espèces, basé sur les modèles de Lotka-

Volterra (modèle proie-prédateur) et de Jameson modifié. Les simulations obtenues ont été validées 

par le suivi du microbiote altérant de matrices de viande hachée de porc naturellement contaminées. 

Le modèle modifié de Jameson a obtenu les meilleurs ajustements, même si l’approche proie-

prédateur constitue un modèle d’interaction intéressant pour les microbiotes complexes. Toutefois, 

ces propositions de modèles à trois bactéries altérantes nécessitent d’être validées ultérieurement par 

plus de répétitions expérimentales.  

Enfin, des analyses de métabolomique (RMN-1H), en collaboration avec le CIRM-CHU, ont 

permis le suivi du métabolisme de certaines bactéries d’intérêts inoculées dans des échantillons de 

viande hachée de porc stériles, le suivi de l’évolution du métabolome de matrices stériles non 

inoculées ayant également été réalisée. Les différents patterns métaboliques et les métabolites 

produits ont pu être mis en évidence en fonction de la bactérie inoculée et du conditionnement. La 

température de stockage semble avoir eu le moins d’impact sur le métabolome.  

Le développement de modèles prédictifs basés sur des données issues d’analyses multi-

omiques, en association avec la microbiologie classique, est une approche intéressante. Des 

recherches ultérieures sur le développement de modèles complexes intégrant l’évolution de trois ou 

plus de trois bactéries altérantes, en interaction entre elles et avec le microbiote naturel des denrées 

alimentaires, constitueront également une démarche importante pour mieux comprendre et anticiper 

l’altération bactérienne des denrées alimentaires périssables. 
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In recent years, food losses and waste (FLW) become one of the major challenges for a 

sustainable food system. FLW can occur throughout the food chain, from production to household 

consumption, and represent an important economic, ecological, social and ethical challenge for our 

society. Globally, one third of food production is lost or wasted annually (Corrado et al., 2019; den 

Besten et al., 2017; Food and Agriculture Organization, 2011; Laso et al., 2018; Schumann and Schmid, 

2018), representing around 1.3 billion tonnes of food products wasted every year in the world 

(Ishangulyyev et al., 2019; Pinter et al., 2014; Vanham et al., 2015). It is estimated that developed 

countries contribute to 56% of the world FLW (Ishangulyyev et al., 2019). In Belgium, the annual food 

loss (FL) is estimated around 3.6 million tonnes (De Boeck et al., 2017). These amounts are very 

important, especially when taken into account that malnutrition and hunger affect nearly a billion people 

worldwide (Food and Agriculture Organization, 2011; Laso et al., 2018). Moreover, FLW are a source 

of major environmental impacts (Henchion et al., 2014; Laso et al., 2018; Shafiee-Jood and Cai, 2016; 

Thornton, 2010; Xue et al., 2017), responsible for around 170 million tonnes of CO2-equivalent of 

greenhouse gases productions in Europe (AFSCA, 2018; Parlement Européen Actualité, 2017). It is the 

equivalent of an economic cost of about 750 billion USD, which equals the GDP of Turkey (Xue et al., 

2017). In European Union, this incurs a loss of 143 billion euros each year (Tonini et al., 2018). As a 

result, international institutions, as well in many European countries, want to increase efforts in better 

understanding this phenomenon (Corrado and Sala, 2018). In 2018, the European Parliament adopted 

new measures to reduce waste in the European Union by 50%. Since 2015, the Walloon Government 

adopted the REGAL action plan, which aims to reduce FLW by 30% between 2015 and 2025. 

These FLW have many causes (De Boeck et al., 2017), as  food safety issues or inadequate 

market systems (Muth et al., 2019), and also food spoilage (Ishangulyyev et al., 2019). The general 

requirements of food law (Regulation (EC) No 178/2002 of the European Parliament) indicated that 

food shall not be placed on the market if it is unsafe, but also that food shall be deemed to be unsafe if 

it is considered to be (i) injurious to health and/or (ii) unfit for human consumption for reasons of 

contamination, whether by extraneous matter or otherwise, or through putrefaction, deterioration or 

decay. To reduce the amount of FLW, prevention is very important (De Boeck et al., 2017). To perform 

this, the implementation of food safety (based on HACCP principles) and quality management systems 

for food producers to systematically control production processes is really important (den Besten et al., 
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2017; Nychas et al., 2008). Predictive microbiology can also be used along with the HACCP system in 

order to prevent FLW. For perishable products, improving the performance of storage facilities, and so 

decrease food quality degradation, can be strategic for FLW reduction (Neff et al., 2017; Shafiee-Jood 

and Cai, 2016).  
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Chapter 1 involves a thorough review of the scientific literature.  

 

This chapter is divided into six sections.  

The first sections introduce the food losses and waste, and the food matrices studied in this 

research. They include a general overview of pork meat and meat products.  

Others sections present bacterial spoilage, associated ecosystems and their metabolic pathways, 

as well as factors influencing the shelf life of these food products. The microbiological and metabolomic 

analysis used in this research, and also predictive microbiology, will also be included.  

The last section is dedicated to the highlights concerning all points described above.  
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1.1. Food losses and waste 

 

A worldwide major problem  
 

As mentioned above, FLW are a worldwide major concern (Alexander et al., 2017; Betz et al., 

2015; Corrado et al., 2019; Dal’Magro and Talamini, 2019; Muth et al., 2019; Salihoglu et al., 2018; 

Schmidt, 2019; Sheahan and Barrett, 2017). FLW are defined by the Food and Agriculture Organization 

(2011) as: “any food intended for human consumption which, at any stage of the food chain, is lost, 

discarded and/or degraded.” But distinctions between the terms “food losses” (FL) and “food waste” are 

sometimes made in the literature (Ishangulyyev et al., 2019; Xue et al., 2017). Considering the definition 

of FLW established by the Committee on World Food Security (2014), FL can occur at any stage of the 

food chain before consumption (e.g. production, handling, storage and processing steps). Whatever the 

reason, FL correspond to a decrease in the quantity or quality of foodstuffs that were originally intended 

for human consumption. On the other hand, food waste can only occur at the distribution, marketing and 

consumption stages. Food waste corresponds to food that has been thrown away, spoiled for any reason 

or kept beyond its expiry date.  

In Europe, FLW represent 20% of food production, with a mean of 88 billion tonnes of food 

wasted every year (Food and Agriculture Organization, 2011; Pagliaccia et al., 2016; Tonini et al., 2018; 

Zhang et al., 2018a) of which about 47 million tonnes are related to the consumer level (Food and 

Agriculture Organization, 2011). A European citizen discards on average 123 [55-190] kg of food every 

year (Barone et al., 2019; Philippidis et al., 2019; Vanham et al., 2015), and this amount reaches up to 

345 kg for a resident of Belgium (Figure 1) (AFSCA, 2018; Food and Agriculture Organization, 2011). 

In the European Union, sectors contribute differently to FLW: 53% is from households, 19% from food 

processing, 12% from food services, 11% from primary production, and 5% from wholesale and retail 

sales (Parlement Européen Actualité, 2017; Schmidt, 2019). Most studies have identified that the highest 

proportion of wasted food types is the most perishable food items, like bakery products, fruits and 

vegetables. In the food supply chains of industrialized regions, meat and meat products represent 20% 

of FLW, that also mainly occurs at the consumption level (Food and Agriculture Organization, 2011). 

However, studies estimate that 30% (Scott and Andersson, 2015) to 80% (Vanham et al., 2015) of these 

losses are considered avoidable or possibly avoidable, representing edible food not consumed (Tonini 

et al., 2018).  

For these reasons, reducing and preventing FLW are a major concern. To do this, it is important 

to better understand and predict FLW phenomena, including food spoilage.  
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Figure 1. Food waste per country and per capita (expressed in kg) estimated in 2010 (AFSCA, 2018). 
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1.2.  Food matrices studied in this research 

 

Belgian minced pork and white pudding 
 
Two types of pork meat matrix were selected for this research because they are considered as 

highly perishable foods, and therefore likely to be spoiled and thus could be lost or wasted (Doulgeraki 

et al., 2012; Ercolini et al., 2006): minced meat1 and white pudding, a typical Belgian meat product2. 

Moreover, as discussed in the next section, pork meat and meat products account for a major part of 

Belgian consumption.  

Minced pork (MP) samples were provided by local small and medium-sized Belgian 

manufacturers on the day of the production. According to the recipe, MP is composed of 100% minced 

pork (70% lean, 30% fat); no salt, spices, additives, eggs or sugar are added. On the day of the 

production, the water activity of this product was 0.98 ± 0.02 and the pH value was 5.80 ± 0.05 (n = 12).   

White pudding (WP) were also received from Belgian manufacturers the day following their 

production. According to the recipe, 10 kg of white pudding is composed of minced pork (8 kg), milk 

(2 L), salt (200 g), maize and wheat starches (130 g), pepper (25 g), spices (10 g), emulsifier (E450)3 

and taste enhancer (E621)4, the rest de up with pork guts. The water activity of this product was 0.98 ± 

0.02 and the pH value was 6.00 ± 0.20 (n = 4). 

                                                   

1 According to Regulation (EC) No 853/2004 of the European parliament and of the council of 29 April 2004 

laying down specific hygiene rules for food of animal origins, “minced meat” means boned meat that has been 

minced into fragments and contains less than 1% salt.  
2 According to Regulation (EC) No 853/2004 of the European parliament and of the council of 29 April 2004 

laying down specific hygiene rules for food of animal origins, “meat products” means processed products resulting 

from the processing of meat or from the further processing of such processed products, so that the cut surface 

shows that the product no longer has the characteristics of fresh meat.  
3 Diphosphates (Regulation (EC) No 1333/2008 of the European parliament and of the council of 16 December 

2008 on food additives).  
4 Monosodium glutamate (Regulation (EC) No 1333/2008 of the European parliament and of the council of 16 

December 2008 on food additives).  
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1.3. Pork meat and meat products 

 

You can eat all of the pig except the squeal 
 
As described in the previous section, two types of Belgian pork meat matrices were selected in 

this research: minced pork and white pudding. Their physicochemical characteristics make them good 

candidates for studying bacterial spoilage mechanisms. Moreover, pork meat matrices are widely 

consumed throughout the world, and represent a large part of production and consumption in Belgium.  

 

1.3.1. Worldwide meat production and consumption  

 

Globally, meat production and consumption have a clear upward trend (Figure 2). In the past 

50 years the consumption of poultry and pig meats has largely increased, whereas the total amount of 

beef consumed has been relatively stable.  
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Figure 2. Meat consumption trends since 1961, represented by totals for group of eight European countries 

(Germany, France, Italy, Spain, United Kingdom, Netherlands, Hungary and Finland): (A) total meat 

(expressed in tons), and (B) per capita consumptions (Food and Agriculture Organization, 2019). 

 

Considering pork meat, the main exporters are the EU, NAFTA and South America, and the 

main importers are China, Japan and Russia (Figure 3). In the United States and Canada, pork 

production continues to increase. In Brazil, production has decreased slightly due to economic 

difficulties, while Russia continues to develop its production and had begun exporting. In the EU, 

production is still at a high level, but may be very different between countries. 
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Figure 3. World production of pork meat and meat products (intra-EU and intra-NAFTA trade not included): 

(A) world flows in 2017 (expressed in thousands of tons), (B) exportation and (C) importation flows for the 

main countries concerned (expressed in thousands of tons) (IFIP, 2018).  

 
 
Since 2005, pig production in the EU-28 has increased by 12% (expressed in tons), with 

alternating increases and decreases. In 2016, pig meat production was 23.9 million tonnes (Table 1). 

Since 2017 it has stabilized at 23.6 million tons (IFIP, 2018). 
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Table 1. Worldwide pig herd and pig production, expressed in million, in 2016 for the EU-28 (IFIP, 2018). 

 Pig herd 
(per animal) 

Pig production 
(tons) 

Worldwide total 968.0 113.3 
Asia 573.6 62.9 

China 435.0 53.0 
Vietnam 29.1 2.7 

Philippines 12.2 1.5 
Japan 9.3 1.3 

Taiwan 5.4 0.8 
South Korea 10.4 1.3 

Europe 187.0 28.1 
EU-28 147.2 23.9 
Russia 21.9 2.9 

Ukraine 6.8 0.8 
North and Central America 96.2 14.6 

USA 71.5 11.2 
Canada 13.9 2.2 
Mexico 10.7 1.2 

South America 69.1 5.8 
Brazil 39.2 3.7 

Africa 36.6 5.8 
Oceania 5.4 0.5 

Australia 2.3 0.4 
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1.3.2. Belgian pork production and consumption 

 

Until 2007, pig meat production in Belgium remained relatively stable (Table 2).  

 

Table 2. Pig farms in the EU (expressed per 1000 livestock animals) (IFIP, 2018). 

Countries Years Evolution between 
2017 and 2007 (%) 2017 2007 

Spain 29971 26061 +15.0 
Germany 27578 27113 +1.7 
France 13097 14969 -12.5 
Denmark 12382 13170 -2.6 
Netherlands 12296 11710 +5.0 
Poland 11908 17621 -32.4 
Italy 8571 9273 -7.6 
Belgium 6108 6200 -1.5 
United Kingdom 4713 4671 +0.9 
Romania 4406 6565 +32.9 
Hungary 2870 3871 -25.9 
Austria 2820 3286 -14.2 
Portugal 2165 1978 +9.5 
Ireland 1616 1500 +7.7 
Czech Republic 1532 2662 -42.5 
Sweden 1382 1728 -20.0 
Croatia 1121 1348 -16.9 
Finland 1108 1427 -22.3 
Greece 744 1038 -28.3 
Slovakia 614 952 -35.5 
Lithuania 612 923 -33.7 
Bulgaria 593 889 -33.2 
Cyprus 350 467 -25.1 
Latvia 312 414 -22.6 
Estonia 289 375 -22.8 
Slovenia 257 543 -52.6 
Luxembourg 91 86 +5.3 
Malta 34 77 -55.8 

 

The number of pig keepers has decreased steadily since the 1980s, both in Wallonia and in 

Flanders. But with a much higher labor/land ratio than in Wallonia, Flanders has developed horticulture 

and pig and poultry breeding. In 2007, Wallonia had 907 pig keepers (10,025 in 1980) compared to 

6,069 in Flanders (31,753 in 1980). Currently, Wallonia holds only 5.5% of the national pig meat 

production capacity, compared to 94.5% for Flanders. Production is mainly found in Hainaut (39%), 

Liège (32%) and Namur (17%). This strong disparity between regions is reflected in the capacity for 

self-sufficiency through local production: Flanders has a self-sufficiency rate of around 340% and 

Wallonia only 25%. This means that about half of the pork produced in Belgium finds a commercial 

outlet in export markets (Apaq-W, 2018).  
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It should also be noted that pig meat remains the meat most consumed by Belgian citizens, 

representing 49% of all meat consumed in Belgium. Apparent consumption5 was 50.2 kg in 2013 and 

40.0 kg in 2017 (Figure 4) (Apaq-W, 2018; Meat Information Cell, 2016). 

 

 
Figure 4. Pork meat consumption for European countries in 2017 (expressed in kg per capita) (IFIP, 2018). 

 

1.3.3. Nutritional aspects of minced meat and white pudding 

 

Pork meat and meat products have interesting nutritional values and are considered to be 

excellent source of nutritious proteins, essential amino acids, zinc, heme-iron and bioavailable vitamins, 

with a low carbohydrate content (Bohrer, 2017; Engstrom et al., 1997; Fernandez-Ginés et al., 2005; 

Lawrence, 2013; McAfee et al., 2010; O’Neil et al., 2012; Pellet and Young, 1990; Pereira and Vicente, 

2013; Stabler and Allen, 2004; Web and O’Neill, 2008; Williams, 2007; Wood et al., 2008). Even 

though meat quality can be influenced by several factors, the protein content and vitamins and minerals 

available are generally consistent (Biesalski, 2005). The nutritional composition of the two matrices 

studied in this research is presented in Table 3.  

                                                   

5 In the absence of actual consumption data, apparent consumption is calculated from the supply balances, by 

adding meat production and imports and subtracting meat exports, expressed per year and per capita (without 

distinction between pig meat, minced meat, meat preparations and meat products).   
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However, it is important to note that several studies have recently highlighted the adverse health 

effects associated with meat consumption (Alshahrani et al., 2019; Aune et al., 2008; Cross et al., 2007; 

Grosso et al., 2017; Micha et al., 2010; Wolk, 2017; Zelber-Sagi et al., 2018).  

 

Table 3. Nutritional composition (amount per 100 g) of minced pork and white pudding (USDA, 2019; 

Ciqual, 2017).  

 Pork meat (minced) White pudding 
Calories (kcal) 218.00 250.00 
Fat (g) 16.00 20.30 

Saturates (g) 5.10 10.10 
Mono-unsaturated (g) 4.09 7.80 
Polyunsaturated (g) 0.88 1.99 

Cholesterol (mg) 68.00 70.10 
Carbohydrate (g) 0.24 15.29 
Protein (g) 17.99 7.14 
Salt (g) 0.12 1.80 
Vitamin B12 (µg) 0.73 0.30 
Phosphorus (mg) 161.00 59.20 
Iron (mg) 0.88 2.57 
Zinc (mg) 1.91 0.76 
Selenium (µg) 10.90 8.44 

 

1.3.4. Microbial ecology of pork meat and meat products 

 

The bacterial microbiota of foods is diverse and determined by the environment in which the 

living animals are raised. Carcass muscles can be considered as almost sterile. But contamination can 

occur during the evisceration and skinning stages, as well as during the cutting and/or processing stages 

by skin, respiratory and digestive tracts of animals, air, water, equipment surfaces, slaughterhouse 

environment, ingredients and cross-contaminated people, utensils and equipment (Brightwell et al., 

2007; Gill and McGinnis, 2000; Gill and McGinnis, 2003; Mills et al., 2014; Nychas et al., 2008). 

Therefore, the bacterial species that are currently described in meat and meat products are frequently 

found in the soil, water and microbiota of animals. Total aerobic microbial load in pig carcasses 

generally ranges from 2.0 to 5.0 log CFU/cm2 (Gill et al., 2000; Van Ba et al., 2019). Stellato et al. 

(2016) showed that the main microbiota of slaughterhouse samples include Acinetobacter spp., 

Brochothrix spp., Pseudomonas spp., Psychrobacter spp. and Streptococcus spp. Mills et al. (2018) also 

showed that lamb carcasses are contaminated by Carnobacterium spp., provided by the processing 

environment. Samapundo et al. (2019) have made the same observations for Belgian chicken cuts.  

Pork meat is considered as highly perishable, with a high water content, a near-neutral pH and 

important nutrients available for bacterial growth, and thus for food spoilage (Doulgeraki et al., 2012; 

Ercolini et al., 2006; Gram et al., 2002; Liu et al., 2006). As discussed before, spoilage bacteria are 

responsible for FLW. However, these bacteria are less studied than pathogenic bacteria for the two 

selected matrices. Therefore, this research only focused on spoilage bacteria. 
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1.4. Meat spoilage 

 

Spoiled or not spoiled: that’s the question 
 

Food spoilage is the result of many changes affecting the food and leading to the recognition of 

unacceptable sensory features by the consumer (Ercolini et al., 2006; Gram et al., 2002). Spoilage 

involves biological, physical and chemical activities that triggers product deterioration (Casaburi et al., 

2015; Jääskeläinen et al., 2016; Mansur et al., 2019). The spoilage of meat and meat products can be 

caused in four ways: (i) microbiological growth (bacteria, yeast and mold); (ii) enzymatic activities 

(lipases and proteases); (iii) chemical reactions (browning and oxidation); and (iv) physical changes 

(e.g. by freezing, drying, high pressure, etc.) (Dave and Ghaly, 2011; Ercolini et al., 2006; Papuc et al., 

2017; Schumann and Schmid, 2018). Food spoilage is mainly caused by growth of microorganisms, 

especially by bacteria (Del Blanco et al., 2017; Liu et al., 2006; Nychas et al., 2008; Stellato et al., 2017; 

Tsigarida et al., 2003; Zhang et al., 2019). Bacterial food spoilage can result in off-odor, color or texture 

defects due to the synthesis of molecules through various pathways (catabolism of proteins, 

carbohydrate and lipids present in meat), and thus renders products unsuitable for human consumption 

(Ercolini et al., 2006). As a nutrient-rich medium, with protein, lipids, minerals and vitamins, meat and 

meat products enables microorganisms to grow and consequently to express many metabolic functions 

(Casaburi et al., 2015; Iulietto et al., 2015).  

It is really important to be able to correlate food spoilage with the bacterial communities of these 

products because organoleptic changes may vary according to the microbial association involved in this 

phenomenon (Ercolini et al., 2006). However, it is sometimes difficult to establish a direct link between 

a given deterioration phenomenon and one or more specific species. Moreover, not all the members of 

this microbiota contribute to food spoilage. Several studies have established that spoilage is caused only 

by a dominant fraction of the initial microbial association (Doulgeraki et al., 2012; Nychas et al., 2008), 

designated as Specific(/Ephemeral) Spoilage Organisms (S(E)SOs) (Benson et al., 2014; Chenoll et al., 

2007; Gram et al., 2002; Huis in’t Veld, 1996; Jorgensen et al., 2000; Koutsoumanis et al., 2008; 

Pennacchia et al., 2011; Zotta et al., 2019). First described by Mossel and Ingram (1955), SSOs can 

dominate the microbiota, reaching a high population density and thus producing several spoilage 

metabolites (Mansur et al., 2019; Wang et al., 2016b). Therefore, as discussed by De Filippis et al. 

(2013), the concept of a succession of spoilage-related microbial groups is very important, and many 

studies have been performed to investigate the dynamics and changes of the meat microbiota during 

storage.  
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1.4.1. Main spoilage effects  

 

Spoilage effects are variable, from slime formation to color, odor, flavor or textural changes. 

These phenomena largely depend on the bacteria involved, influencing factors and available nutrients 

(Dainty et al., 1996; Iulietto et al., 2015; Nychas et al., 2008). Glucose is the first substrate preferentially 

metabolized by spoilage bacteria, especially by obligate aerobic species, such as Pseudomonas spp., and 

facultative anaerobic microorganisms (Koutsoumanis et al., 2008). When the diffusion gradient of 

glucose is not sufficient for spoilage communities, or when glucose reserves are depleted, lactate is the 

next energy source under aerobic and anaerobic conditions. Then, free amino acids, sugars and proteins 

are degraded, contributing to organoleptic changes through the release of volatile metabolites (Ercolini 

et al., 2006). Some of these spoilage effects and their synthetic mechanisms are developed in the 

subsections below and are summarized in Table 4.  

 

1.4.1.1. Discoloration  

 

The color of meat, especially red meat, is an important criterion of quality for consumers. Some 

bacterial species are well known to specifically affect the color by microbial discoloration and/or 

pigments production. Discoloration generally appears when the bacterial communities reach counts of 

between 7.5 and 8.0 log CFU/g (Iulietto et al., 2015). 

Microbial discoloration occurs when the muscle pigment, myoglobin, is converted into green 

sulfmyoglobin by bacterial production of hydrogen sulfide. The production of hydrogen sulfide, derived 

from cysteine, is dependent on the availability of glucose and oxygen. Sulfmyoglobin seems not to be 

formed in anaerobic conditions (Borch et al., 1996).  
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Table 4. Example of some spoilage effects on meat and meat products.  
General 
spoilage effect Bacteria involved Underlying mechanisms References 

Discoloration C. viridans Green discoloration in vacuum packaged 
by production of hydrogen peroxide. 

Holley et al., 2002; 
Peirson et al., 2003b; 

Lactic acid bacteria (LAB) Greening/graying by production of 
dihydrosulfide or hydrogen peroxide.  

Borch et al., 1996; 
Peirson et al., 2003a; 

Lb. sakei,  
H. alvei and 
Sh. putrefaciens 

Green sulfmyoglobin formation.  Borch et al., 1996; 
Vihavainen and 
Björkroth, 2007; 

Leuconostoc spp., 
Ln. gelidum 

Greening by oxidizing 
nitrosomyochromogen.  

Nychas et al., 2008; 
Vihavainen and 
Björkroth, 2007; 

Pseudomonas spp.  Production of a variety of pigments (blue, 
green, yellow, black and white).  
Yellow fluorescent pigments of 
Ps. fluorescens is produced by a 
siderophore for utilization of iron in meat.  
Blue-pigmentation, especially in dairy 
products and mozzarella cheese, due to a 
genetic cluster of all blue-pigmenting 
strains (“blue branch”). 

Andreani et al., 2014; 
Andreani et al., 2015; 
Cornelis, 2010;  
Martin et al., 2011; 
Nogarol et al., 2013; 

W. viridescens Greening by oxidizing 
nitrosomyochromogen.  

Duskova et al., 2013; 

 
Off-odors and 
off-flavors 

 
B. thermosphacta 

 
Butter/rancid, sour/pungent and/or 
cheese/fermented off-odors.  

 
Jaffrès et al., 2011; 
Joffraud et al., 2001; 
Stohr et al., 2001; 

LAB Sour and acid aroma, produced in VP and 
MAP.  

Borch et al., 1996; 
Casaburi et al., 2015; 
Jääskeläinen et al., 2016; 
Pin et al., 2012; 

Lactobacillus spp., 
Enterobacteriaceae, 
B. thermosphacta 

Cheesy odor due to the production of 
acetoin, diacetyl and 3-methylbutanol 
(carbohydrate metabolism). 

Borch et al., 1996; 
Casaburi et al., 2015; 

Ln. gasicomitatum Buttery off-odor by production of 
diacetyl and acetoin.  

Chaillou et al., 2005; 
Rimaux et al., 2011; 

Ph. phosphoreum Fishy, urine and ammonia-like off-odors 
by trimethylamine production. 

Dalgaard, 1995; 

Pseudomonas spp., 
Enterobacteriaceae 

Sulfuric odor by the production of 
hydrogen sulfide and dimethyl sulfide 
(sulfur catabolism). 

Borch et al., 1996; 
Casaburi et al., 2015; 

Ps. fragi Rancid flavors by metabolisms of 
triglycerides. 

Cleto et al., 2012; 

 
Gas production 

 
B. thermosphacta 

 
Production of CO2. 

 
Koutsoumanis et al., 
2008; 

Clostridium spp., 
Enterobacteriaceae,  

Production of H2 and CO2 in VP beef. Borch et al., 1996; 
Brightwell et al., 2007; 
Mills et al., 2015; 

LAB CO2 production reported in VP pork and 
beef. 

Borch et al., 1996;  
Iulietto et al., 2015; 
Koutsoumanis et al., 
2008;  
Yang et al., 2014; 

 
Slime formation 
and textural 
changes 

 
Lactobacillus spp., 
Lb. sakei; Leuconostoc spp.  

 
Often observed in vacuum packed and 
cooked meat products by extracellular 
production (glucan production). 

 
Iulietto et al., 2015;  
Notararigo et al., 2013;  
Nychas et al., 2008; 

Pseudomonas spp., 
Enterococcus spp., 
Brochothrix spp., 

Slime formation. Nychas et al., 2008; 

W. viridescens Greenish slime formation.  Björkroth and Korkeala, 
1997;  
Duskova et al., 2013; 
Nychas et al., 2008 
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1.4.1.2. Off-odors and off-flavors 

 

Off-odors and off-flavors are linked to the production of volatile organic compounds (VOCs), 

such as sulfur compounds, ketones, aldehydes, volatile fatty acids, esters, alcohols, ammonia and other 

metabolites, when free amino acids, fatty acids and sugars are used as source of energy for bacterial 

communities (Ercolini et al., 2006; Estevez et al., 2003; Lovestead and Bruno, 2010; Nychas et al., 

2008; Rivas-Canedo et al., 2009). Some of these VOCs commonly identified during storage of meat and 

meat products are summarized in Table 5 and can be associated to specific aroma (Figure 5). Unpleasant 

odors generally become perceptible when total bacterial count reaches 7.0-7.5 log CFU/g (Iulietto et al., 

2015). However, the volatilome (the volatile fraction of the microbial catabolites) is a complex 

association of molecules that can be considered as pleasant or unpleasant by different people. The 

spoilage-associated microorganisms have already been reviewed for meat by Casaburi et al. (2015) and 

Mansur et al. (2019), and for MP by Del Blanco et al. (2017) and Zareian et al. (2018).  

 

Table 5. Most commonly identified VOCs during storage of meat and meat products.  

Compound Off-odor descriptor Metabolic 
pathway Responsible bacteria Storage 

condition References 

A
lc

oh
ol

s 

3-Methyl-1-butanol Fermented, alcoholic, 
etherical  

Breakdown of 
proteins and 
amines acids, 
reduction of 
ketones, and 
aldehydes 
derived from 
lipid 
peroxidation 

B. thermosphacta, 
Carnobacterium spp., 
C. maltaromaticum, 
C. divergens, 
Lb. curvatus, 
Lb. sakei,  
Lc. lactis, 
Pseudomonas spp., 
Ps. fragi, 
Ps. fluorescens, 
S. proteamaculans, 
S. liquefaciens,  

Air, VP, 
MAP 

Casaburi et al., 2011; 
Casaburi et al., 2014;  
Casaburi et al., 2015; 
Ercolini et al., 2009; 
Ercolini et al., 2010a; 
Faustman  et al., 
2010;  
Hernandez-Macedo, 
2012;  
Jääskeläinen et al., 
2013 ;  
Mansur et al., 2019; 
Smit et al., 2009 ; 
Tsigarida et al., 2003 

1-Octen-3-ol Earthy  
2-Ethyl-1-hexanol  
Butanol Fruity 
Heptanol Fruity  
1-Hexanol Fruity 
3-Phenoxy-1-propanol  
2,3-Butanediol Creamy/buttery, and fruity  
Ethanol  
2-Hexen-1ol  
1-Octanol  
2-Octen-1-ol  
2-Nonen-1-ol  
2-Methyl-1-dodecanol  
2-Ethyl-1-decanol  
2-Butoxy-ethanol  
1-Heptenol-1-butoxy-2-
propanol  

1-Pentanol                

A
ld

eh
yd

es
 

Hexanal 
Acidic, fatty flavors, rancid 
aroma 

Triglycerides 
hydrolysis, 
oxidation of 
unsaturated 
fatty acids, 
lipid 
autooxidation 

B. thermosphacta,  
Carnobacterium spp., 
C. maltaromaticum, 
Enterobacteriaceae, 
Ln. gasicomitatum, 
Pseudomonas spp., 
Ps. fragi, 
Ps. fluorescens,  
S. proteamaculans,  

Air and 
VP  

Calkins and Hodgen, 
2007;  
Casaburi et al., 2011;  
Casaburi et al., 2014;  
Ercolini et al., 2009; 
Ercolini et al., 2010a; 
Hernandez-Macedo, 
2012;  
Jääskeläinen et al., 
2013;  
Mansur et al., 2019 

Nonanal 
Benzaldehyde 
3-methylbutanal 
2-Methylbutanal  
Octanal  
Nonanal  
Heptanal  
2-Methylpropanol  
Dimethyl disulfide 

 Dimethyl trisulfide 
Methyl thioacetate 
Carbon disulfide  
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Table 5 (continued). 

Compound Off-odor descriptor Metabolic 
pathway Responsible bacteria Storage 

condition References 

K
et

on
es

 

Acetoin Cheesy odor, 
buttery/creamy flavor 

Lipolysis, 
microbial 
alkane 
degradation, 
dehydrogenati
on of 
secondary 
alcohols 

B. thermosphacta,  
Carnobacterium spp., 
C. maltaromaticum, 
Enterobacteriaceae, 
Leuconostoc spp., 
Ln. gasicomitatum, 
Pseudomonas spp., 
Ps. fragi,  
S. proteamaculans 

Air, VP, 
MAP 

Casaburi et al., 2014;  
Casaburi et al., 2015;  
Del Blanco et al., 2017;  
Ercolini et al., 2009; 
Ercolini et al., 2010a;  
Jääskeläinen et al., 2013;  
Jääskeläinen et al., 2016;  
La Storia et al., 2012; 
Mansur et al., 2019 ;  
Pin et al., 2002;  
Tsigarida et al., 2003 

Diacetyl  
2-Butanone Acetone-like ethereal, 

fruity  
3,3-dimethylbutan-2-one  
3-Octanone  
2-Heptanone  
2-Nonanone  
3-hydroxypentan-2one  

Es
te

rs
 

Ethyl acetate 

Fruity/ethereal off-
flavor 

Microbial 
esterase 
activity 
(esterification 
of alcohols and 
carbohydrates) 

B. thermosphacta, 
Carnobacterium spp., 
C. maltaromaticum, 
Pseudomonas spp., 
Ps. fragi, 
S. proteamaculans 

More 
frequently 
in aerobic 
conditions 

Dainty and Mackey, 1992; 
Ercolini et al., 2009; 
Ercolini et al., 2010a; 
Mansur et al., 2019; 
Toldra, 1998;  
Tsigarida et al., 2003 

Ethyl butanoate 
Ethyl-3-methylbutanoate 
Ethylheptanoate 
Ethyloctanoate 
Ethylhexanoate 
Ethyldecanoate 
Ethylidene diacetate  

 

      

 

      

V
ol

at
ile

 fa
tty

 a
ci

ds
 Acetic acid  Hydrolysis of 

triglycerides 
and 
phospholipids, 
amino acid 
degradation, or 
oxidation of 
ketones, esters 
and aldehydes 

B. thermosphacta, 
Carnobacterium spp., 
C. maltaromaticum, 
Lactobacillus spp., 
Lb. curvatus,  
Lb. sakei, 
Lc. piscium, 
Leuconostoc spp., 
Pseudomonas spp. 

Air, VP 
and MAP 

Casaburi et al., 2011;  
Casaburi et al., 2014;  
Casaburi et al., 2015; 
Jääskeläinen et al., 2013; 
Ferrocino et al., 2013; 
Martin et al., 2007; 
Nychas et al., 2008; 
Tsigarida et al., 2003 

Butanoic acid  
Formic acid  
Hexanoic acid  
2-Methyl butanoic acid Acid/Roquefort 

cheese. 
Rancid/acid/cheesy/b
utter and fruity 

3-Methyl butanoic acid 

              

Su
lfu

r c
om

po
un

ds
 Dimethyl sulfide 

Sulfurous/cooked 
onion 

Degradation of 
sulfur-
containing 
amino acids 
(methionine 
and cysteine) 

C. maltaromaticum, 
Pseudomonas spp., 
Ps. fragi,  
S. proteamaculans 

Air and 
VP 

Ercolini et al., 2009; 
Ercolini et al., 2010a; 
Mansur et al., 2019; 
Nowak and Czyzowska, 
2011;  
Tsigarida et al., 2003; 
Yvon and Rijnen, 2001 

Dimethyl disulfide 
Dimethyl trisulfide 
Methyl thioacetate 

Carbon disulfide  
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Figure 5. Schematic representation of meat spoilage aroma in meat during chill storage in air and in VP. 

Each odors descriptor, on the left side, are reported according to the corresponding VOCs, on the right side 

(Casaburi et al., 2015). 

 

1.4.1.3. Gas production  

 

Proteolysis caused by anaerobic microorganisms, especially in vacuum packaged (VP) meats, 

can lead to the accumulation of a large amount of gases, like hydrogen and carbon dioxide for example. 

Clostridium spp., in particular Cl. estertheticum and Cl. gasigenes, are often responsible for the “blown 

pack defect” due to a carbon dioxide production (Iulietto et al., 2015). But, depending on the nature of 

the gas that is produced and on the bacterial species responsible for it, this phenomenon may be 

associated with the production of off-odors.  
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1.4.1.4. Texture defects and slime formation 

 

 Consumers are also very sensitive to the visual aspect of meat and meat products. Slime 

production is generally associated with the bacterial polysaccharide polymers of lactic acid bacteria 

(LAB) group bacteria extending from the meat surface (Iulietto et al., 2015; Notararigo et al., 2013). 

This effect can be very important because it can lead to the production of biofilms that would modify 

interactions between resident species. 

 

1.4.1.5. Biogenic amines production 

 

 The enzymatic decarboxylation of amino acids, or the transamination of aldehydes and ketones, 

by bacteria results in the formation and accumulation of biogenic amines (BAs) (Jastrzebska et al., 2016; 

Li et al., 2014). BAs are reported in various foods including meat, fish, cheese and wine (Kim et al., 

2009; Stadnik and Dolatowski, 2010). They are nitrogenous compounds with an aromatic, aliphatic or 

heterocyclic structure (Papageorgiou et al., 2018). The most important BAs found in foods are b-

phenylethylamine, cadaverine, histamine, putrescine, spermidine, spermine, tyramine and tryptamine 

(Cheng et al., 2016). They can have health implications, such as allergic reactions, but also contribute 

to spoilage due to their putrid aroma (Rodriguez et al., 2014; Stanborough et al., 2017). But since BA 

production is linked to bacterial activity, the level of BAs can therefore be reduced by measures such as 

approapriate packaging and storage temperature, for example (Doeun et al., 2017; Li et al., 2014; Nadon 

et al., 2001).  

In spoiled pork meat, cadaverine, histamine, putrescine, tyramine, spermidine and spermine are 

the most frequently found BAs (Custodio et al., 2018; Del Rio et al., 2019; Min et al., 2004; Ngapo and 

Vachon, 2017; Papavergou et al., 2012). It has been reported that Enterobacteriaceae, LAB, 

Pseudomonas spp. and Photobacterium spp., especially Ph. phosphoreum and Ph. iliopiscarium, 

produce these BAs (Bover-Cid et al., 2003; Connil et al., 2002a; Connil et al., 2002b; Dalgaard et al., 

2006; Hilgarth et al., 2018a; Jastrzebska et al., 2016; Kanki et al., 2007; Latorre-Moratala et al., 2012; 

Lavizzari et al., 2010; Remenant et al., 2015). Different strains of B. thermosphacta are also able to 

produce cadaverine, histamine, tyramine, tryptamine and putrescine (Casaburi et al., 2014; Nowak and 

Czyzowska, 2011; Paleologos et al., 2004; Stanborough et al., 2017). However, amino acid 

decarboxylase genes are not found in all strains of this species (Emborg et al., 2005; Stanborough et al., 

2017). C. divergens is also described as a tyramine producer (Curiel et al., 2011).  

On the other hand, several studies have highlighted the possibility of using BAs as indicators of 

meat quality during storage (Balamatsia et al., 2006; Hernandez-Jover et al., 1996; Kaniou et al., 2001; 

Lazaro et al., 2015; Rokka et al., 2004). Therefore, as proposed by Cheng et al. (2016), the sum of these 

compounds can be used as an index of pork meat quality and freshness. Li et al. (2014) also showed that 

putrescine and cadaverine can be used as spoilage indicators of chilled pork.  
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1.4.2. Influencing factors  

 

Different spoilage-related species and strains can colonize the meat surface through adsorption 

and attachment by glycocalyx formation on the meat surface (Chung et al., 1989; Ercolini et al., 2006). 

These steps depend on intrinsic, extrinsic (Table 6) and implicit factors, as they can be used in hurdle 

technology to extend the shelf life of food products (Del Blanco et al., 2017; Jääskeläinen et al., 2016; 

Koutsoumanis and Nychas, 2000; Mansur et al., 2019; Nychas et al., 2008; Tsigarida et al., 2003; Zhao 

et al., 2015). Some intrinsic and extrinsic factors were considered in the experimental studies and 

predictive models of this research, and so are developed in the subsections below.   

 

Table 6. Influencing factors on microbial growth.  

Factors Examples References 
Intrinsic Type of animal (bovine, porcine),  

Physiological status of the animal at slaughter,  
Breed and feed diet,  
Age of animal at time of slaughter,  
Physical and chemical composition of the food matrices,  
Water activity,  
pH,  
Meat surface morphology, 
Nutrient availability,  
Initial microbiota,  
Presence and development of other bacteria,  
Bioprotective cultures,  
Natural antimicrobial substances, … 

Argyri et al., 2015;  
Blixt and Borch, 2002; 
Casaburi et al., 2015;  
Dave and Ghaly, 2011;  
Del Blanco et al., 2017; 
Dolan et al., 2019; 
Doulgeraki et al., 2012; 
Ercolini et al., 2006;  
Iulietto et al., 2015; 
Kalschne et al., 2014; 
Koutsoumanis et al., 2006; 
Lambert et al., 1991; 
Mcdonald and Sun, 1999; 
Nychas et al., 2008 

  
Extrinsic  Handling environment,  

Quality management system, 
Spread of contamination into slaughterhouses,  
Temperature, humidity and packaging system (gas composition 
and ratio) of storage, …  

 

1.4.2.1. Intrinsic factors 

  

 Meat composition is an important factor concerning the growth and survival of microorganisms. 

Meat and meat products are protein- and lipid-rich foods, with variable amounts of minerals and 

vitamins (Papuc et al., 2017).  

 The postmortem pH of meat is also an essential factor for microbial growth (Mills et al., 2014). 

pH is determined by the amount of lactic acid produced from glycogen during anaerobic glycolysis, 

reaching around 5.4-5.8 in muscle after slaughter. It is well known that a high pH favors bacterial growth 

(Aymerich et al., 2002; Iulietto et al., 2015; Wang et al., 2017). In contrast, Enterobacteriaceae and 

B. thermosphacta are inhibited by pH values lower than 5.8, while for Shewanella putrefaciens 

inhibition occurs at pH vaues < 6.0. But LAB growth seems not to be affected by pH (Mills et al., 2014).  
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 Moreover, water activity (aw), defined as the amount of water available for microbial growth, is 

also important for bacterial growth (Iulietto et al., 2015; Mills et al., 2014). Bacteria tend to grow at an 

aw ranging from 0.75 to 1.00, whereas yeast and molds, more tolerant to higher osmotic pressures than 

bacteria, may grow slowly at an aw of 0.62 (Aymerich et al., 2002; Gram et al., 2002; Iulietto et al., 

2015). 

 

1.4.2.2. Extrinsic factors 

 

Temperature and packaging are among the most important parameters that determine the 

development of microbial communities, and hence are taken into account to extend the shelf life of meat 

products (Table 7) (Ahmed et al., 2017; Del Blanco et al., 2017; Fang et al., 2017; Ghaani et al., 2016; 

Holman et al., 2018; Jääskeläinen et al., 2016; Kerry et al., 2006; Liu et al., 2006; Mansur et al., 2019; 

McMillin, 2017; Pereira de Abreu et al., 2012; Pexara et al., 2002; Realini and Marcos, 2014). Spoilage 

microbiota in pork meat stored under different packaging and temperatures conditions have also been 

widely studied (Borch et al., 1996; Brightwell et al., 2009; Diez et al., 2008; Dougeraki et al., 2010; 

Fontana et al., 2006; Jeremiah et al., 1995; Jeremiah and Gibson, 1997; Jiang et al., 2010; Koutsoumanis 

et al., 2008; Labadie, 1999; Mano et al., 2000; Sakala et al., 2002; Sorheim et al., 1999).  

 

Table 7. Spoilage microbiota associated to different packaging conditions.  
Packaging conditions Associated spoilage microbiota References 
Aerobic (air) Acinetobacter spp., Brochothrix spp.,  

B. thermosphacta, Carnobacterium spp.,  
Enterobacteriaceae, Flavobacterium spp.,  
LAB (Lactobacillus spp., 
Leuconostoc spp.), Micrococcus spp.,  
Moraxella spp., Pseudomonas spp.,  
Psychrobacter spp.,  
Staphylococcus spp. 

Cantoni et al., 2000; Casaburi et al., 2015; 
Castellano et al., 2004;  
Doulgeraki et al., 2012; Ercolini et al., 2006; 
Gram et al., 2002; Iulietto et al., 2015; 
Jääskeläinen et al., 2016; Labadie, 1999; 
Mills et al., 2014; Nychas et al., 2008; 
Remenant et al., 2015;  
Rossaint et al., 2015;  
Russo et al., 2006; Tsigarida et al., 2000  

MAP (not specified) B. thermosphacta, Carnobacterium spp.,  
Enterobacteriaceae, LAB 
(Lactobacillus spp., Leuconostoc spp.),  
Pseudomonas spp.,  
Serratia spp.  

Holman et al., 2018; Iulietto et al., 2015; 
Casaburi et al., 2015; Castellano et al., 2004; 
Labadie, 1999; Tsigarida et al., 2000; 
Cantoni et al., 2000; Casaburi et al., 2015;  
Ercolini et al., 2006; Remenant et al., 2015; 
Russo et al., 2006; Mills et al., 2014 

MAP (< 50% CO2, with O2) B. thermosphacta, LAB 
 

Nychas et al., 2008 

MAP (> 50% CO2, with O2) B. thermosphacta, Enterobacteriaceae,  
LAB 
 

Nychas et al., 2008 

VP B. thermosphacta, Carnobacterium spp.,  
Clostridium spp., LAB (Lactobacillus spp., 
Leuconostoc spp.), Pseudomonas spp., 
Sh. putrefaciens 

Cantoni et al., 2000; Casaburi et al., 2015; 
Castellano et al., 2004; Ercolini et al., 2006; 
Gram et al., 2002; Labadie, 1999;  
Mills et al., 2014; Nychas et al., 2008; 
Remenant et al., 2015; Russo et al., 2006; 
Tsigarida et al., 2000; Russo et al., 2006  

 

Bacteria are classified into four categories according to their temperature range for growth: 

thermophilic, mesophilic, psychrophilic and psychrotrophs (Table 8). As mentioned in many studies, it 



Chapter 1  Introduction 

   30 

can be considered that most of the identified bacteria isolated from refrigerated meats are commonly 

psychrophilic, also known as cold-resistant bacteria. This concerns Gram-positive bacteria including 

Arthrobacter, Bacillus, Brochothrix, Clostridium, Corynebacterium, Lactobacillus, Microbacterium 

and Streptococcus, and Gram-negative bacteria such as Aeromonas, Enterobacteriaceae, Pseudomonas, 

Psychrobacter and Serratia (Doulgeraki et al., 2012; Hantsiszacharov and Halpern, 2007; Iulietto et al., 

2015; Moretro et al., 2016; Pennacchia et al., 2011; Rodrigues et al., 2009). At these low temperatures, 

psychrotolerant communities are responsible for off-odors, discoloration and slime production (Del 

Blanco et al., 2017; Gram et al., 2002; Wang et al., 2017; Zhang et al., 2019), due to the production of 

thermally stable lipases and proteases (Wei et al., 2019).   

 

Table 8. Classification of spoilage bacteria according to their temperature ranges for growth. Tmin, minimal 

temperature for growth; Topt, optimal temperature for growth; Tmax, maximal temperature for growth. Based 

on Bowman et al., 1997; Hilgarth et al., 2017; Russell et al., 1990; Zhang et al., 2015.  

Type Tmin (°C) Topt (°C) Tmax (°C) 
thermophilic 30 to 40 55 to 60 60 to 90 
Mesophilic 5 to 10 25 to 40 44 to 50 
Psychrotroph -2 to 5 20 to 35 30 to 40 
Psychrophilic -18 to -10 10 to 15 18 to 20 

 

Food packaging, with several combinations of gaseous atmospheres, also has a significant 

impact on the spoilage microbiome (Figure 6) and so can be used as an effective method for extending 

the shelf life of meat (Blickstad and Molin, 1983; Borch, 1996; Dalcanton et al., 2013; Daniloski et al., 

2019; Del Blanco et al., 2017; Kaur et al., 2017; Kiermeier et al., 2013; Lopusiewicz et al., 2018; 

Madival et al., 2009; Poyatos-Racionero et al., 2018; Rossaint et al., 2015; Sibande et al., 2016; Yost 

and Nattress, 2002). The characteristics of food packaging materials are also important to provide or not 

a barrier to the exchange of gases between the pack and the external atmosphere (Ercolini et al., 2006; 

Kurek et al., 2012; Toyonaga et al., 2016). Modified atmosphere packaging (MAP) and vacuum 

packaging (VP) are the most commonly used types of packaging (Jääskeläinen et al., 2016).  
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Figure 6. Occurrence of spoilage bacteria in meat according to the packaging storage condition (in air (A), 

in vacuum packaging (VP), in modified atmosphere packaging (MAP)) (Pothakos et al., 2015).  

 

MAP consists of gas mixtures containing variable O2 and CO2 concentrations in order to inhibit 

the different spoilage-related bacteria, and is often associated with the use of low temperatures during 

storage (Ercolini et al., 2006). Gill and Tan (1979) reported greater inhibition of pseudomonads by 

carbon dioxide at 3°C rather than at 5°C. The lower inhibitory effect at a higher temperature is probably 

due to the limited formation of carbonic acid and dissociation to H+ and HCO3
-, by a lesser degree of 

dissolution in the aqueous phase of the products (Lambert et al., 1991). A high initial bacterial density 

can also result in an increased probability of more resistant microorganisms more resistant to the 

antibacterial effect of the gaseous atmosphere (Koutsoumanis et al., 2008). Carbon dioxide has a 

bacteriostatic effect for aerobic spoilage, thus allowing the growth of LAB (e.g. Lactobacillus spp. and 

Leuconostoc spp.) as spoilers (Arvanitoyannis and Stratakos, 2012; Devlieghere et al., 2001; Ercolini et 

al., 2006; Iulietto et al., 2015; Meredith et al., 2014; Yost and Nattress, 2002). Carbon dioxide 

concentrations up to 10% have been found to inhibit the growth of most Pseudomonas species (Rouger 

et al., 2018). 

In meat stored under high oxygen and/or aerobically, aerobic or facultative aerobic Gram-

negative bacteria can dominate the microbiota, especially Pseudomonas spp. (Doulgeraki et al., 2012; 

Koutsoumanis et al., 2006; Lambropoulu et al., 1996; Liu et al., 2006). However, facultative anaerobic 
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or anaerobic Gram-positive microbiota with less spoilage potential, such as B. thermosphacta and LAB 

(such as Leuconostoc and Lactobacillus), can occur under the association of low oxygen availability and 

carbon dioxide (Dolan et al., 2019; Ercolini et al., 2011; Gram et al., 2002; Jääskeläinen et al., 2016; 

Koutsoumanis et al., 2008; Jääskeläinen et al., 2016).  

 VP is also of interest to extend the shelf life of meat and meat products by preventing the growth 

of oxygen-requiring spoilage bacteria (Borch et al., 1996; Chen et al., 2012; Mansur et al., 2019). By 

respiratory activity, the residual oxygen at the meat surface-package interface is then converted to 

carbon dioxide (Mills et al., 2014). In addition, studies have demonstrated that Lactobacillus spp., 

Pseudomonas spp. and Carnobacterium spp. are the dominant bacteria in VP chilled pork (Jiang et al., 

2010; Li et al., 2006; Zhao et al., 2015). Interestingly,  Enterobacteriaceae are not always present as 

major spoilage bacteria in this kind of packaging. It has also been demonstrated that Lactobacillus may 

produce lactic acid in VP meat, which inhibits the growth of other families (Blixt and Borch, 2002). 

Wang et al. (2016a) have recently reported that 100% CO2 packaging seems to be more effective against 

spoilage bacterial communities than VP.  

 

1.4.2.3. Implicit and interaction factors 

 

 The factors described above can have synergistic or antagonistic effects on the spoilage 

microbiome and its dynamics. Moreover, spoilage microbiota can interact with each other (biotic 

interactions) and with the meat substrate (abiotic interactions) (Tsigarida et al., 2003; Zhang et al., 

2015). These factors can be classified according to their beneficial or detrimental effects such as, for 

example, antagonism caused by the competition for iron, the change in profile of a bacterium by the 

nutrients supplied by another microorganism, bacterial communication, etc. (Gram et al., 2002). Some 

of these interactions will be presented in the discussion section, as they will be of great interest for the 

development of predictive models.   
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1.5. Main pork meat spoilage communities and their 
metabolic pathways 

 

A synthetic review 
 

The microbial ecology of meat and meat products (Borch et al., 1996; Chaillou et al., 2015; 

Drosinos and Board, 1995; Hilgarth et al., 2017; Jääskeläinen et al., 2016; Mansur et al., 2019; Miks-

Krajnik et al., 2016; Nychas et al., 1991; Nychas et al., 2008; Stoops et al., 2015; Vester Laurtisen et 

al., 2019; Zhang et al., 2019), as well as that of pork meat (Benson et al., 2014; Del Blanco et al., 2017; 

Geeraerts et al., 2017; Koutsoumanis et al., 2008; Li et al., 2019a; Mann et al., 2016; Peruzy et al., 

2019a; Zhao et al., 2015) is well described in the scientific literature. According to the storage 

conditions, pork meat communities can vary but Acinetobacter spp., Aeromonas spp., Brochothrix spp., 

Clostridium spp., cold-tolerant Enterobaceriaceae, Enterococcus spp., Flavobacterium spp., LAB (such 

as Lactobacillus spp., Lactococcus spp., Leuconostoc spp., Carnobacterium spp., etc.), 

Micrococcus spp., Moraxella spp., Pseudomonas spp., Psychrobacter spp., Rahnella spp., 

Staphylococcus spp. and Weissella spp. are frequently described (Casaburi et al., 2015; De Filippis et 

al., 2013; Doulgeraki et al., 2012; Godziszewka et al., 2017; Koort et al., 2005 ; Liu et al., 2006 ; 

Pennacchia et al., 2009; Pennacchia et al., 2011; Pothakos et al., 2014; Stellato et al., 2016). Other 

recent scientific publications also described the microbial spoilage communities of pork meat and meat 

products by culture-dependent and -independent methods (Table 9). Spoilage generally occurs when 

SSOs grow to unacceptable levels, determined as between 7.0 log (Jääskeläinen et al., 2016; 

Koutsoumanis et al., 2008; Nychas et al., 2008; Pothakos et al., 2014; Reid et al., 2017; Spanu et al., 

2018; Stoops et al., 2015; Zhao et al., 2015) and 8.0 log CFU/g (Chaillou et al., 2015; Fall et al., 2012; 

Nychas et al., 2008; Pothakos et al., 2014; Reid et al., 2017). Their sensory spoilage potential depends 

on their ability to produce metabolites such as aldehydes, ketones, esters, alcohols, organic acids, amines 

and sulphur compounds (Jääskeläinen et al., 2016).  

A synthetic description of common spoilage bacteria described on pork meat and meat products, 

including their spoilage activity, is presented in the subsections below. Lastly, a short paragraph is also 

dedicated to spoilage by yeasts and molds.  
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Table 9. Some examples of recent scientific literature about the most potentially dominant spoilage bacteria 

represented in pork meat and meat products analyzed by culture-dependent and -independent techniques.  

Samples Packaging 
condition Analysis Dominant bacteria References 

Minced pork 
obtained 
from 
butchers’ 
shops and 
supermarkets 

 

Aerobic conditions, 
at 4 ± 2°C. 

Microbial counts on plate 
count agar, cetrimide 
Fucidin cephaloridine agar 
(CFC), CFC pseudomonas 
supplement, streptomycin 
thallous acetate actidione 
agar (STAA) with STAA 
supplement.  
 

Pseudomonas spp., 
B. thermosphacta and LAB. 

Andritsos et al., 
2012 

Pork 
musculature 
scrapings 

During veterinary 
inspection at 
slaughterhouse. 

16S rRNA gene 
sequencing based on V1-
V2 region. 

Aeromonas spp., 
Brochothrix spp. and 
Pseudomonas spp. 

Mann et al., 
2016 

 
Industrial 
pork raw 
sausages 

 
Modified 
atmosphere (30% 
CO2 – 70% O2), at 
7°C. 

 
16S rRNA gene 
sequencing based on V3 
region. 

 
Lactobacilliaceae and 
Listeriaceae, mostly ascribed 
to Lactobacillus and 
Brochothrix genera, 
respectively. 

 
Raimondi et al., 
2018 

 
Minced pork 
samples 

 
Aerobic conditions, 
at 4°C. 

 
16S rRNA gene 
sequencing based on V3-
V4 region. 

 
Pseudomonas spp. (Ps. fragi, 
Ps. galenii, Ps. proteolytica), 
B. thermosphacta, 
Carnobacterium spp., 
Lc. lactis, Lb. sakei, 
Ln. gelidum and 
Ln. mesenteroides are the most 
common genera. 
Weissella spp., 
Debaryomyces spp., 
Escherichia coli, 
Rahnella spp., S. liquefaciens, 
and S. proteamaculans are 
also detected. 

 
Peruzy et al., 
2019a 

 
Fresh pork-
pieces 
samples 

 
Aerobic conditions, 
at 4°C. 

 
16S rRNA gene 
sequencing based on V3-
V4 region. 

 
Dominant genera after 5 days 
of storage: Pseudomonas, 
Photobacterium and 
Acinetobacter.  

 
Li et al., 2019a 

 

1.5.1. Metabolic activity 

 

In all packaging conditions, glucose, and other compounds from the glycolytic pathway, are the 

first substrates used by most spoilage bacteria described in pork meat (Casaburi et al., 2015; Del Blanco 

et al., 2017) and have been found to be the precursors of many off-odors compounds (VOCs) such as 

acetoin, diacetyl, acetic acid, iso-butyric acid, iso-valeric acid, 2-methylbutyric acid, 3-methylbutanol, 

2 methylpropanol and ethanol (Nychas et al., 1998; Tsigarida et al., 2003). When glucose is depleted, 

spoilage bacteria produce undesirable VOCs by catabolism of other substrates such as lactate, gluconate, 

glucose-6-phosphate, pyruvate, propionate, formate, ethanol, acetate, amino acids, nucleotides and urea 

(Table 10) (Byun et al., 2003; Mills et al., 2014; Nychas et al., 2008). These compounds have been 
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associated with changes in pH and the production of volatile sulfur compounds during storage in aerobic 

conditions (Byun et al., 2003; Skandamis and Nychas, 2001). Lactate is also a source of energy for meat 

spoilage bacteria such as LAB, B. thermosphacta and Pseudomonas spp. (Nychas et al., 2008). It has 

been demonstrated that the concentration of glucose and lactate can affect the type and rate of spoilage, 

as they seem to be the principal precursors of the microbial metabolites that are responsible for off-odors 

(Casaburi et al., 2015).  

 

Table 10. Substrates used by meat spoilage bacteria during growth under different packaging conditions. The 

number reported indicated the order of substrate utilization. A, B. thermosphacta; B, Enterobacteriaceae; C, 

LAB; D, Pseudomonas spp. According to studies of Casaburi et al. (2015) and Nychas et al. (2008).  

Substrates Aerobic  Anaerobic 
A B C D  A B C D 

Glucose 1 1 1 1  1 1 1 1 
Glucose-6-phosphate 2 2 2 2  2 2 2 2 
Lactic acid 3 3  3      
Pyruvic acid    4     3 
Gluconic acid    5     3 
Gluconate-6-phosphate    6     3 
Acetic acid         3 
Amino acids 4 4  7   3 3 3 
Ribose 5         
Glycerol 6         

 

Although many bacterial genome sequences are now available, few spoilage bacteria isolated 

from pork meat have been studied at a genomic level. Remenant et al. (2015) have summarized the 

available genome sequences of bacterial spoilers, and other publications have also described the genome 

sequence of meat and seafood spoilers (Chaillou et al., 2005; Illikoud et al., 2018; Mei et al., 2012; 

Paoli et al., 2017; Poirier et al., 2018a; Reichler et al., 2019; Singha et al., 2017; Stanborough et al., 

2017; Yanzhen et al., 2016). Also, the Japanese Kyoto Encyclopedia of Genes and Genomes (KEGG) 

resource (https://www.kegg.jp/kegg/) procures various tools to investigate data issued from genomics 

and in particular from metabolomic pathways deduced from genome content (Liu et al., 2019a; Wu et 

al., 2017).  

 

1.5.2. Common Gram-positive spoilage bacteria found in pork meat and meat products 

 

Brochothrix spp. and LAB such as Carnobacterium spp., Lactobacillus spp. and 

Leuconostoc spp. are found in a variety of environmental habitats, including vegetable, meat, fish and 

milk products (Iskandar et al., 2017; Klaenhammer et al., 2005). They are important competitors in a 

variety of chilled meats stored under VP and MAP conditions (Ercolini et al., 2006; Lucquin et al., 

2012; Vihavainen and Björkroth, 2009; Zotta et al., 2018). LAB have interesting processing 

characteristics (Fadda et al., 2010; Najjari et al., 2016; Stefanovic et al., 2017; Teusink and Molenaar, 
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2017) and health effects (Notararigo et al., 2013) and can be used as bioprotective microorganisms 

(Chaillou et al., 2014; Comi et al., 2015; Ghanbari et al., 2013; Siedler et al., 2019). The antagonistic 

and inhibitory properties of LAB for pathogenic and spoilage bacteria are due to different factors: (i) 

competition for nutrients, (ii) production of one or more antimicrobial peptides, such as bacteriocins, 

(iii) organic acid production, and (iv) production of hydrogen peroxide (Andreevskaya et al., 2018; 

Bartkiene et al., 2019; Ghanbari et al., 2013; Hilgarth et al., 2018b; Saraoui et al., 2016). Several 

antimicrobial compounds are produced by LAB against spoilage bacteria (Figure 7) but the most 

important are lactic and acetic acids which can act in different ways (Figure 8) (Siedler et al., 2019).  

 

 
Figure 7. Antimicrobial compounds produced by LAB (Siedler et al., 2019).  
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Figure 8. Some inhibitory mechanisms of antimicrobial compounds produced by LAB (Siedler et al., 2019). 

 

However LAB are also linked to food spoilage (Hemme and Foucaud-Scheunemann, 2004; 

Iskandar et al., 2017; Iulietto et al., 2015; Klaenhammer et al., 2005), although the intra-species 

variation of LAB strains to cause spoilage has been recognized (Pothakos et al., 2015). LAB are oxygen-

tolerant anaerobes which grow readily in the absence of oxygen and are not inhibited by carbon dioxide. 

Their spoilage effects generally occur at 8.0 log CFU/g (Mills et al., 2014). These microorganisms can 

be responsible for discoloration (Jääskeläinen et al., 2016; Vihavainen and Björkroth, 2007) or 

production of off-odor compounds (Casaburi et al., 2015). Lactate is the main end-product from glucose 

metabolism by LAB, in both in aerobic and anaerobic conditions (Del Blanco et al., 2017). Although 

some LAB can use amino acids to support their growth when the glucose concentration is low, the 

majority of these bacteria seem not to be able to use substrates other than lactate (Labadie, 1999; Nychas 

et al., 2008). According to their end-products of glucose fermentation LAB are classified as obligate 

homofermenters, producing only lactic acid, or as heterofermenters, producing a range of other end-

products (Gänzle, 2015; Iulietto et al., 2015). Obligate and facultative heterofermentative LAB occur 

frequently in meat and meat products (Casaburi et al., 2015).  

 

Lactobacillus spp., especially Lb. sakei, Lb. curvatus, Lb. algidus, Lb. fuchuensis, Lb. graminis 

and Lb. oligofermentans, are associated with the spoilage of meat (Audenaert et al., 2010; Jiang et al., 

2010; Kato et al., 2000; Raimondi et al., 2018; Sanders et al., 2015; Stoops et al., 2015). With over 212 

species described among LAB, Lactobacillus is a non-motile, facultative anaerobic, homo- or 

heterofermentative and catalase-negative bacterium unless heme is available (Abriouel et al., 2015; 

Chaillou et al., 2005).  

The genus Lactococcus is also mainly encountered in chilled meat and seafood products, 

especially Lc. lactis, Lc. piscium, Lc. plantarum and Lc. raffinolactis (Pothakos et al., 2014; Rahkila et 
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al., 2012). Facultative anaerobic, psychrophilic, homofermentative, non-motile, catalase- and oxidase-

negative microorganisms, Lactococcus spp. are able to growth under VP and MAP (Saraoui et al., 2016). 

Moreover, Lc. piscium is considered as potentially bioprotective for seafood products, limiting the 

growth of B. thermosphacta and S. proteamaculans (Marché et al., 2017).  

Among species of the genus Leuconostoc, Ln. gelidum, Ln. carnosum, Ln. mesenteroides and 

Ln. gasicomitatum are the spoilers most frequently described in refrigerated meat (Jääskeläinen et al., 

2013; Jääskeläinen et al., 2015; Johansson et al., 2011; Lyhs et al., 2004; Pothakos et al., 2015; Yang 

et al., 2009). Leuconostoc spp. are heterofermentative LAB, using lactose and citrate to produce acetate, 

ethanol, lactic acid and carbon dioxide (Cicotello et al., 2018). Ln. gasicomitatum can respire under 

high-oxygen MAP due to the production of cytochromes, thus increasing its growth rate and giving it a 

competitive advantage for growth (Jääskeläinen et al., 2016). Some strains of Leuconostoc spp. can also 

produce bacteriocins against pathogenic and spoilage bacteria (Hemme and Foucaud-Scheunemann, 

2004).  

Spoilers in various food matrices (Bohaychuk and Greer, 2003; Liang et al., 2012; Papadopoulu 

et al., 2012; Rattanasomboon et al., 1999; Russo et al., 2006; Samelis et al., 2000), Brochothrix spp. are 

the dominant microbiota in meat and seafood products stored under aerobic and anaerobic conditions 

(Illikoud et al., 2019a). Belonging to the family Listeriaceae, B. thermosphacta and B. campestris are 

the two main non-pathogenic species (Stanborough et al., 2017). B. thermosphacta is a psychrophilic, 

non-motile, halophilic, non-sporulating and rod-shaped bacterium. A facultative anaerobe, it is able to 

grow within a wide range of temperatures (Argyri et al., 2015; Odeyemi et al., 2018b; Pin et al., 2002). 

Production of off-odors is mainly due to the production of acetoin and diacetyl (Ercolini et al., 2006; 

Illikoud et al., 2018) and becomes perceptible at around 8.0 log CFU/g (Casaburi et al., 2014). Under 

high oxygen conditions, this bacterium can be considered as heterofermentative, with production of 

acetoin, while it shifts to homofermentative metabolism under low oxygen conditions and glucose 

availability, with the production of lactate (Casaburi et al., 2015; Labadie, 1999). In anaerobic 

conditions, B. thermosphacta preferentially uses glucose as substrate, while it consumes ribose, glycerol 

and amino acids in air packaging (Illikoud et al., 2019a; Nychas et al., 2008). However, studies 

concerning the proteolytic and lipolytic activities of B. thermosphacta are sometimes ambiguous (Braun 

and Sutherland, 2003). Labadie (1999) and Papadopoulu et al. (2019) reported non-proteolytic activity, 

while that is not the case for other strains. Indeed, despite their widespread occurrence within spoiling 

species, metabolic activity is not well known (Illikoud et al., 2018). Studies have recently shown that 

its spoilage ability is both strain- and environmental-dependent (Illikoud et al., 2019a), but also depends 

on the type of food matrix (Illikoud et al., 2019b).  

Carnobacterium spp. are also frequently described in beef, poultry and pork meat (Pothakos et 

al., 2015). The genus Carnobacterium consists of 11 species, with C. maltaromaticum and C. divergens 

being the two most important (Afzal et al., 2010). They are non-motile LAB, found particularly in VP 

and MAP (Casaburi et al., 2015; Laursen et al., 2005; Vasilopoulos et al., 2008; Zhang et al., 2018c). 
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C. maltaromaticum strains present high inter-strains variability, but this bacterium is adapted to multiple 

and diverse environments, probably due to its larger genome size (3.7 Mbp) (Cailliez-Grimal et al., 

2013; Leisner et al., 2007) and the presence of genes involved in the metabolism of branched-chain 

amino acids (Liu et al., 2008) and lactose (Iskandar et al., 2016). Moreover, C. maltaromaticum is able 

to grow at low temperature (below 0°C), high pH (superior to 9.5) and in the presence of up to 8% NaCl 

(Iskandar et al., 2017). Its spoilage effect on meat and meat products seems to be less than that of other 

spoilage bacteria (Zhang et al., 2018c). Indeed, C. maltaromaticum is described as a bioprotective 

species (Odeyemi et al., 2018b) due to its potential to produce bacteriocins against pathogenic bacteria, 

especially Listeria monocytogenes (Leisner et al., 2007), and spoilage bacteria (Spanu et al., 2018).  

 

1.5.3. Common Gram-negative spoilage bacteria found in pork meat and meat products 

 

Rarely reported in meat, Photobacterium spp. are well-known spoilage bacteria of seafood 

products in all packaging conditions (Fuertes-Perez et al., 2019; Remenant et al., 2015). However, some 

studies have found Ph. phosphoreum in pork and beef meats (Nieminen et al., 2016; Pennacchia et al., 

2011; Stoops et al., 2015). Recently, Hilgarth et al. (2018a) showed that Photobacterium spp. are an 

underestimated spoiler of meat and Fuertes-Perez et al. (2019) have confirmed this observation. 

Photobacterium spp. are bioluminescent, psychrotolerant, motile and halophilic bacteria, with a high 

tolerance for CO2 concentrations (Gram and Huss, 1996; Odeyemi et al., 2018b). Ph. kishitanii seems 

to be closely related to Ph. phosphoreum and Ph. iliopiscarium (Ast et al., 2007).  

Moreover, Pseudomonas fragi, Ps. fluorescens, Ps. lundesis and Ps. putida are the most 

important taxa described in many foodstuffs (raw fish, ready-to-eat vegetables, dairy products) 

(Andreani et al., 2015; Caldera and Franzetti, 2014; Shen et al., 2015), as well as in meat and meat 

products stored in chilled and aerobic conditions (Casaburi et al., 2015; Del Blanco et al., 2017; Ercolini 

et al., 2010b; Iulietto et al., 2015; Jääskeläinen et al., 2016; Koutsoumanis et al., 2008; Labadie, 1999; 

Mohareb et al., 2015; Nychas et al., 2008; Remenant et al., 2015). The genus Pseudomonas includes 

obligatory aerobic rod-shaped, motile, mesophilic and psychrophilic, non-fermentative and oxidase 

positive species (Decimo et al., 2014; Odeyemi et al., 2018b; Peix et al., 2009; Wickramasinghe et al., 

2019), with simple nutritional requirements (Anzai et al., 2000; Frapolli et al., 2007). The 

pseudomonads have a highly proteolytic activity, preferentially metabolizing glucose and nitrogenous 

compounds, such as amino acids (Ercolini et al., 2006; Iulietto et al., 2015; Wickramasinghe et al., 

2019). However, because of their high iron requirement for growth, Pseudomonas spp. have a 

siderophore-mediated iron uptake system, but that is not the case for all strains. For example, Ps. fragi 

is considered to be a non-siderophore-producing species (Cornelis, 2010; Liu et al., 2017; Stanborough 

et al., 2018a). Spoilage activity is generally detected at a concentration of 7.0-8.0 log CFU/g, and is 

caused by the production of many VOCs responsible for off-odors (Casaburi et al., 2015; Del Blanco et 

al., 2017; Ghali et al., 2010; Iulietto et al., 2015; Nychas et al., 2008), and by discoloration produced 
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by colored or fluorescent pigments (Andreani et al., 2014). Ps. fluorescens and Ps. putida are pigmented 

species, which is not the case for Ps. fragi (Wickramasinghe et al., 2019). Since 2010, the “blue 

mozzarella cheese events” which occur in Europe have led to the investigation of the blue pigment 

phenotype of Ps. fluorescens (Andreani et al., 2015; Kumar et al., 2019). Pseudomonas spp. can also 

produce thermoresistant extracellular enzymes, such as proteases, lipases and lecithinases (Andreani et 

al., 2014; Arslan et al., 2011; De Jonghe et al., 2011; Dogan and Boot, 2003; Liu et al., 2007; Marchand 

et al., 2009; Mellor et al., 2011; Quigley et al., 2013; Stanborough et al., 2018b), as well as biofilms on 

food and equipment (Kerekes et al., 2013; Rossi et al., 2016; Wang et al., 2018b) by production of 

extracellular polysaccharides which give them an advantage over competitors (Hibbing et al., 2010; 

Nadell et al., 2016; Wickramasinghe et al., 2019). Nevertheless, Wang et al. (2018a, 2018c) showed 

that MAP seems to inhibits the spoilage activity of Pseudomonas spp. by decreasing metabolism and 

extracellular proteolytic activity. These observations were not supported by Hilgarth et al. (2019), who 

showed that Pseudomonas spp. appear to be well adapted to grow on meat stored under MAP conditions.  

Moreover, Shewanella spp. is a genus closely related to Pseudomonas spp., which contributes 

significantly to bacterial food spoilage (Iulietto et al., 2015). S. putrefaciens is one of the most 

predominant spoilers in chilled-stored meat, especially under VP (Doulgeraki et al., 2012).  

Psychrotolerant and halotolerant, Psychrobacter is described in seafood products, but also in 

fresh or salted meat (Moretro and Langsrud, 2017). It is a psychrophilic Gram-negative bacterium, non-

motile, oxidase-positive, rod-shaped, aerobic and osmotolerant (Odeyemi et al., 2018b). 

 Finally, Serratia spp., Enterobacter spp., Pantoea spp., Proteus spp. and Hafnia spp. also often 

contribute to food spoilage (Ercolini et al., 2006). Enterobacteriaceae can metabolize amino acids to 

off-odor volatile compounds, such as foul-smelling diamines and sulfuric compounds (Remenant et al., 

2015). Enterobacteriaceae are facultative anaerobes which metabolize glucose preferentially and then 

utilize amino acids for producing amines and dimethyl sulfide (Mills et al., 2014). Cold-tolerant 

Enterobacteriaceae such as Hafnia alvei, S. liquefaciens and Enterobacter agglomerans occur  under 

aerobically conditions. But in terms of numbers they do not contribute significantly to the microbial 

associations for the spoilage of meat and meat products, and have been considered as indicators of food 

safety (Nychas et al., 2008).  

 

1.5.4. Spoilage yeasts and molds 

 

Filamentous fungi (commonly called “molds”) and yeasts are responsible for about 5% of all 

FLW in developed countries (Snyder and Worobo, 2018; Snyder et al., 2019). However, they contribute 

only a small proportion of the natural microbiota of foods.  

The dominant yeast species on meat include Candida, Cryptococcus, Debaryomyces, Pichia, 

Rhodotorula and Saccharomyces (Kabisch et al., 2016). Moreover, Nagy et al. (2014) and Kabisch et 

al. (2013) have recently isolated Yarrowia (Y. porcina and Y. bubula) and Kazachstania psychrophila, 



Chapter 1  Introduction 

   41 

respectively, from meats. For molds, it mainly concerns Penicillium and Aspergillus, especially in cured 

products (Bernardi et al., 2019; Perrone et al., 2019).  

Mainly present in an air environment, they can disperse easily and contaminate the surfaces of 

meat and meat products (Dijksterhuis, 2019). Also, they are psychrotolerant and grow at low storage 

temperature (Kabisch et al., 2016), at water activities below 0.85 and under anaerobic conditions (Rico-

Munoz et al., 2019). Food spoilage by yeasts and molds, occurring at 5.0-6.0 log CFU/g, is mainly due 

to the production of extracellular proteases and is characterized by discoloration, off-odors and off-

flavors (dairy, buttery, fruity and putrid odors), swelling and slime formation (Hernandez et al., 2018).  
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1.6. Analytical tools 

 

To a deeper understanding of bacterial food spoilage 
 

To gain a deeper understanding of the dynamics of bacterial food spoilage, microbial challenge 

testing (MCT) and microbial aging testing (MAT) were applied in this research.  

In MCT, products are inoculated by one or more bacteria at a certain level to observe their 

dynamics and/or their spoilage activity, for example. Products are either naturally contaminated or 

sterile. In MAT, naturally contaminated products are stored, and the naturally present microbiota is 

followed during shelf life. In both cases, food products are then stored under different storage conditions, 

in order to reflect or not the different storage conditions of commercialized products (Notermans and 

in’t Veld, 1994; Rouger et al., 2017; Spanu et al., 2014). The specific storage lifetime applied in MCT 

and MAT corresponds to the period during which a product is expected to remain safe and at an 

appreciable quality, or for a longer period of time to observe the bacterial dynamics (Mills et al., 2014).  

Different tools are available to monitor and predict the dynamics of microbial communities. In 

this research, classical plate counting, 16S rRNA gene sequencing, and proton nuclear magnetic 

resonance (1H-NMR)-based metabolomic and predictive microbiology were used. In this section, a brief 

description of these techniques is presented.  

 

1.6.1. Culture-dependent and -independent methods  

 

Cultural methodologies using different culture media are mainly used to study bacterial 

ecosystems. However, some studies have shown that these techniques do not necessarily provide reliable 

information, due to the selectivity of the culture medium, incubation conditions and some viable but non 

culturable (VBNC) microorganisms (Duthoit et al., 2003; Justé et al., 2008). Therefore, molecular 

methods are interesting tools to analyze diversity within bacterial communities (Aguiar-Pulido et al., 

2016; De Filippis et al., 2018; Franzosa et al., 2015; Hameed et al., 2018; Hugerth and Andersson, 2017; 

Jung et al., 2011; Menezes et al., 2020), alone or in association with other culture-dependent and -

independent methods. Zhao et al. (2015) have already characterized bacterial and fungal changes by 

using 16S rDNA and 18S rDNA gene amplicon sequencing in combination to classical plate counts, in 

chilled VP pork during storage. Jaffrès et al. (2009) and Martin-Platero et al. (2008) also showed the 

interest of a polyphasic approach for other food matrices by combining cultural and non-cultural 

methods.  
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Not all culture-dependent and -independent methods are presented in this section: several review 

publications are available on the subject (Giraffa and Neviani,  2001; Hameed et al., 2018; Jany and 

Barbier, 2008; Justé et al., 2008; Vargas-Albores et al., 2018; Ziyaina et al., 2020). The research 

presented in this thesis only involved combining plate counts, 16s rRNA gene sequencing and PCR 

analyses. The use of culture-independent methods to characterize microbial communities has increased 

in recent years due to their practical benefits. As the isolation step of culture-dependent methods 

introduces biases because some species are unable to grow under the selected experimental conditions, 

culture-independent methods are based on the direct analysis of deoxyribonucleic acid (DNA) or 

ribonucleic acid (RNA), without any culturing step, to study the total diversity of food samples (Jany 

and Barbier, 2008; Zapka et al., 2017). Most of these methods use polymerase chain reaction (PCR) 

amplification of total DNA with universal (non-discriminative) primers to amplify all target sequences 

of a given population (Jany and Barbier, 2008; Justé et al., 2008; Su et al., 2012; Ziyaina et al., 2020). 

The increasing interest of culture-independent methods, namely those based on DNA sequencing, has 

been driven by advances in sequencing technologies and bioinformatic analysis tools, and also by a 

reduction in the cost of conducting such studies (Zapka et al., 2017). Methodologies based on detection 

and/or quantification of microbial DNA are characterized by faster analysis than conventional culture-

based methods, higher sensitivity and specificity, and are able to provide reproductible results dealing 

with quantitative and qualitative compositions of a microbial community, even for the sub-dominant 

populations (Giraffa and Neviani, 2001; Postollec et al., 2011; Ziyaina et al., 2020). More particularly, 

real-time quantitative PCR (qPCR) is considered as a method of choice for the detection and 

quantification of microorganisms (Postollec et al., 2011).  

Due to its high degree of conservation among bacteria and archaea domains, the 16S rRNA gene 

has been an excellent genetic marker for studying bacterial phylogeny and taxonomy (Cocolin et al., 

2013; Vargas-Albores et al., 2018). One important advantage of the use of these two genes is that large 

sequence data-bases are available. On the other hand, the rRNA operon that codes for the 16S rRNA is 

frequently found as multi-copies, from 1 to 15 in bacteria (Cocolin et al., 2013; Vargas-Albores et al., 

2018). These multi-copies often result in multi-signals, which complicate the analysis. The rpoB gene, 

encoding for the β-subunit of the RNA polymerase, has been proposed as an alternative (Cocolin et al., 

2013). Moreover, PCR-based assays all suffer from amplification biases, as presentend in the review of 

Pollock et al. (2018). Indeed, any form of contamination of the sample, by even trace amounts of DNA, 

can produce misleading results (Ziyaina et al., 2020). Appropriate primer selection is also essential, but 

it must be noted that a perfect universal primer set does not exist for community profiling (Cocolin et 

al., 2013). Other biases could also come from inaccurate PCR amplification, such as preferential 

annealing to particular primer pairs or an incidence of chimeric PCR products with increasing numbers 

of PCR cycles, undetection of some genotypes due to low species abundance in the substrate, low species 

availability due to insufficient homogenization of the matrix, inadequate cell lysis that prevents release 

of nucleic acids, inhibition of PCR amplification, etc. (Jany and Barbier, 2008). Moreover, sampling 



Chapter 1  Introduction 

   45 

procedure and sample size rely on standard procedures in order to assess the microbial communities in 

a given environment and to compare different analyses. After sampling, sample treatment is the next 

crucial step and the choice for aerobic or anaerobic storage, washing, freezing or refrigeration 

procedures must be controlled (Justé et al., 2008). In addition, DNA-based techniques have sometimes 

been criticized because they do not distinguish living from dead cells. Some chemicals, such as 

propidium monoazide (PMA), could be used to differentiate between viable and non-viable organisms. 

Alternatively, RNA can be used as a target instead of DNA, in combination with reverse transcriptase 

PCR (RT-PCR). Since RNA is less stable than DNA, RNA will be degraded more quickly in dead 

organisms and could provide data on microbial activity by estimate transcript amounts (Justé et al., 

2008; Postollec et al., 2011). 

 

1.6.2. Metabolomic analysis   

 

Other “omics” methods can be associated with these techniques in multi-omics approaches 

(Bergholz et al., 2014; Jääskeläinen et al., 2019; Kim et al., 2020) such as, for example, metabolomics 

(Remenant et al., 2015). Not all omics methods will be described in this section because only 

metabolomics was used in the present report. 

Metabolomics is the qualitative and quantitative analysis of low molecular mass (< 1500 Da) 

metabolites (called the “metabolome”) in complex biological samples (Verpoorte et al., 2008). First 

used in the fields of plant science and toxicology (Fiehn, 2002), metabolomics has recently emerged in 

food science (“foodomics”) (Cevallos-Cevallos et al., 2009; Cifuentes, 2009; Marcone et al., 2013). This 

approach is very useful for addressing problems associated with food quality, authenticity (Lytou et al., 

2019; Trivedi et al., 2016) and geographical origin assessments (Cubero-Leon et al., 2014; Locci et al., 

2011), and also to describe metabolomic patterns linked to process and storage conditions (Consonni 

and Cagliani, 2010).  

Nuclear magnetic resonance (NMR) is one of the most common approaches, with mass 

spectrometry (MS), used to analyze a metabolome because it is possible to obtain qualitative and 

quantitative information for a wide range of chemical metabolites (Trimigno et al., 2015). Moreover, 

this technique is available for solid and liquid samples, and is rapid, non-destructive and relatively 

affordable method (Mozzi et al., 2013). However, NMR has low sensitivity compared to MS (Rochfort, 

2005).  

Spectra are generally given by information of 1H, 13C and/or 2D-NMR analyses (Verpoorte et al., 

2008), but high-resolution 1H-NMR spectroscopy is mainly used (Mannina et al., 2011). Several studies 

have focused on metabolomic analysis by 1H-NMR in foods (Table 11), but few of them have used this 

techniques in meat and meat products, especially in the context of food spoilage (Zhang et al., 2018d). 

In recent examples, Graham et al. (2010) have identified amino acid changes during different ageing 

periods of beef samples, Jung et al. (2010) have differentiated the geographical origin of beef samples, 
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Castejon et al. (2015) have analyzed the quality of beef meat exudate, Garcia-Garcia et al. (2018) have 

shown the interest of metabolomics to detect metabolites and compositional changes during different 

drying processes of fermented sausage and Yang et al. (2019) have studied the metabolomic profiles 

and taste of stewed pork hock in soy.  

 

Table 11. Some example of studies that have used 1H-NMR in foods.  

Study objective Food matrix Reference 
Metabolite changes during fermentation.  Traditional Korean salted seafood 

(saeu-jeot) 
Jung et al. (2013) 

Study of the ripening process. Fiore Sardo cheese Piras et al. (2013) 
Evaluation of freshness. Mussels Aru et al. (2016) 
Analyses of postharvest senescence. Banana Yuan et al. (2017) 
Characterization of bacterial and yeast 
metabolome. 

Fermentation starter (Fen-Daqu) Li et al. (2018b) 

Study of spoilage development during chilled 
storage. 

Yellowfin tuna and salmon Jääskeläinen et al. (2019) 

 

Therefore, describing and characterizing the dynamics of bacterial spoilage in MP and WP by a 

multi-omics approach is an interesting subject, owing to the fact that these two matrices were never 

characterized with this method. In addition, predictive microbiology can be used to analyze the data 

obtained.  

 

1.6.3. Predictive models  

 

Predictive modeling, a sub-discipline of food microbiology, is also an interesting tool (Membré 

and Boué, 2018; Messens et al., 2018), especially associated with analytical methods (Cocolin et al., 

2018; den Besten et al., 2018). Indeed, from available observations on the growth, survival or 

inactivation of bacteria, and depending on environmental factors, it is possible to predict the behaviour 

of the same microorganisms under various conditions (Equation 1).  

! = #(%, ') (1) 

Where y is the output of the model, f is a mathematical function or equation, x are the input variables 

(also called factors), and f are parameters estimated from the experimental data.  

According to this, predictive microbiology assumes that the responses of bacterial populations to 

identical environmental conditions are reproducible, and so the dynamics of the microbial population 

always follows the same profile if the conditions are favorable to growth (Figure 9). 
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Figure 9. Growth curves of bacterial culture with its different phases: lag-time period (1), acceleration phase 

(2), exponential period (3), deceleration (4), stationary phase (5), decay phases (6, 7) (Buchanan, 1918).  

 

Primary, secondary and tertiary models are then used to modelize the behavior of microorganisms 

(Figure 10).  

 

 
Figure 10. Steps for the development of predictive models (Fakruddin et al., 2011).  

 

Primary models aim to reproduce the dynamics of the concentration of microorganisms over time 

in a given environment. The main growth parameters are then obtained by adjusting the bacterial curves 

with these models (Figure 11), in order to characterize each type of bacterial growth: lag phase (l), 

maximal bacterial growth (µmax), and initial and maximal bacterial concentration (N0, Nmax). It is assumed 

that 10 to 15 points are needed to better fit bacterial curves. As presented by Cornu et al. (2011) and 

Quinto et al. (2018), a modified generic primary growth model can be written as Equation 2, which 

combines different acceleration and deceleration phases.   
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 is the relative or instantaneous growth rate of the microorganism, Nt is the bacterial 

concentration at time t (log CFU/g), µmax is the maximum growth rate (1/h), a(t) is an adjustment 

function, and f(t) is an inhibition function, defined as Equations 3 and 4: 
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Where LPD is the lag phase duration (hours), and Nmax is the maximal population density (log CFU/g).  

 

 
Figure 11. Growth parameters obtained from bacterial growth curves adjusted by primary models 

(Buchanan, 1918).  

 

Among the primary models, the Baranyi and Roberts (1994) model is one of the most widely 

used and was applied in this study. This growth model is based on a differential equation (exponential 

phase) and completed by two adjustment functions (Equation 5). The first adjustment function describes 

the transition phase between the lag phase and the exponential phase. This function is represented by a 

parameter describing the physiological state of the bacteria, gradually increasing from 0 to 1. The second 

adjustment function describes the inhibition phase between the exponential phase and the stationary 

phase. It is based on the principle of a gradual decrease in nutrients. This inhibition function is based on 

the maximum concentration and a curvature parameter. 

Nt = N0 + µmax x At + ln [1 + 
H4I(µCDE	4	JB)	K)

H4I(*CDEK	*L)
 ] (5)  

Where Nt the bacterial population at any time t (log CFU/g); Nmax and N0, the maximum and initial 

population level, respectively (log CFU/g); µmax, the maximum specific growth rate (1/hour); and At, an 

adjustment function to define the LPD (Equation 6).  
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Where h0 is simply a transformation of the initial conditions.  

 

Predictive microbiology models applied to model mixed cultures and/or microbial interactions 

in foods are also developed. The most two popular models for describing interactions between two 

bacterial populations are the Jameson-effect and the Lotka-Volterra models, which are used in this 

research.  

In 1962, Jameson studied the competitive enrichment of Salmonella spp. and wrote: “When two 

intestinal organisms, which do not mutually interact by colicines or bacteriophage, are inoculated 

together into a liquid medium, each organism normally follows at first a growth pattern similar to that 

which would have followed from a similar inoculum in the same medium in the absence of a competitor. 

Neither organism normally exhibits its awareness, to any appreciable degree, of the other’s presence, 

until the bacterial density of one or other organism has risen to a level near to the molar concentration, 

when both organisms end their rapid multiplication”. In the late 1990s and early 2000s, there were 

numerous observations that many microbial interactions in foods are limited only to a reduction in the 

maximum population density, without any significant effect on the lag time or growth rate, and that the 

minority population decelerates when the majority or the total population count reaches its maximum 

level. On the basis of these observations, Ross et al. (2000) proposed to call this phenomenon the 

“Jameson effect”. Then, Cornu (2001) incorporated the Jameson effect hypothesis into a growth model, 

assuming that the inhibition function is equal for all competitive microbial populations and would result 

from the competition for a common limiting resource. Thus, based on equation 2, an alternative 

deceleration function can be added for modeling the interaction of two bacterial species (Equation 7) 

(Cornu et al., 2011; Mejlholm and Dalgaard, 2007).  

V

)

*W(+)

-*W(+)

-+
= µ

234J(+)
	%	aJ(5)	%	 X1 −	

*W(B)

*CDEW(B)

	Y %	 X1 −	
*Z(B)

*CDEZ(B)

	Y	

)

*Z(+)

-*ZB

-+
= µ

234[(+)
	%	a[(5)	%	 X1 −	

*Z(B)

*CDEZ(B)

	Y %	 X1 −	
*W(B)

*CDEW(B)

	Y	
(7) 

Where N is the cell concentration (log CFU/g) at time t (h), µmax is the maximum specific growth rate 

(1/h), Nmax is the maximum population density (log CFU/g). 

 

Moreover, in the 1920s, the Italian mathematician Vito Volterra proposed a differential equation 

model to describe the population dynamics of two interacting species and its “prey” (the Lotka-Volterra 

model) (Equation 8) (Chauvet et al., 2002).  
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Where y(t) and x(t) are the predator and the prey populations, respectivelly, as functions of time, a is the 

natural growth rate of the prey in the absence of predators, b is the effet of predation on the prey, c is 

the natural death rate of the predator in the absence of prey, and d is the efficiency and propagation rate 

of the predator in the presence of prey.  

Then, based on equation 2, Dens et al. (1999) and Vereecken et al. (2000) proposed to modify the 

deceleration function by including empirical parameters reflecting the degree of interaction between 

microbial species (FAB and FBA) for modelling the interaction of two bacterial species (Equation 9) 

(Cadavez et al., 2019; Cornu et al., 2011; Correia Peres Costa et al., 2019; Liu et al., 2006).  
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F
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Where the parameters FAB and FBA are the coefficients of interaction measuring the effects of one species 

on the other.  

 

Secondary models are then used to describe the influence of extrinsic (storage conditions) and 

intrinsic (food-specific characteristics) factors on primary growth parameters. These models can be 

single-factor, to study the influence of a factor on a variable, or multi-factorial, to study the influence of 

several factors on a variable. Complete factorial plans are preferred if factors have more than two levels 

(Figure 12). Moreover, environmental factors can be modelized according to two different approaches: 

(i) by a simultaneous approach (e.g. polynomial function), or (ii) by individual models, which are then 

combined to describe a global effect (e.g. gamma concept, square root or cardinal models).  

 

 
Figure 12. Example of complete factorial plan for factors with two (A) and three (B) levels. 
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Among the empirical secondary models, reparametrized version of the square root models were 

used to assess the effects of temperature on the growth rates (Equation 10) (Ratkowsky et al., 1982). 

The growth rates were transformed by a square root to stabilize their variances. These models continue 

to be developed to obtain extensions. 

µhij = µklm A
nKndop

nqrsKndop
F
t

(10) 

Where µref is the reference growth rate obtained at Tref  = 20°C (1/hours), T is the temperature (°C) and 

Tmin is the minimal temperature for growth (°C) found in the scientific literature for the studied bacterial 

species.  

 

Validation is also a necessary step, since models must prove their predictive capabilities for 

complex foods.  

 

Finally, tertiary models use expert systems and databases to establish relationships between 

primary and secondary models in an end-user interface (Psomas et al., 2011; Tamplin et al., 2018). As 

presented by Tenenhaus-Aziza and Ellouze (2015), several models are available. In this research, the 

ComBase predictive models software and Sym’Previus were used in experimental studies.  

The ComBase predictive models software (https://www.combase.cc/) is a tertiary online model 

tool based on ComBase data to predict the growth or inactivation of microorganisms for studies of 

quantitative food microbiology. With its database completed by more than 50,000 records, ComBase 

provides predictive models to describe the dynamics (growth and inactivation) of several 

microorganisms in broth media or in different foods (Stavropoulou and Bezirtzoglou, 2019). The 

Predictor is based on the primary model of Baranyi and Roberts (1994) and a polynomial secondary 

model. On the other hand, Sym’Previus (https://symprevius.eu/fr) is a commercially available software 

that simulates the growth and inactivation of pathogens and spoilers in several food matrices in both 

static and dynamic conditions. Deterministic or probabilistic approaches can be used based on the 

software internal experimental data or on users’ data (Tenenhaus-Aziza and Ellouze, 2015). 

Sym’Previus uses the model of Rosso et al. (1996) as the primary model and a cardinal type secondary 

model. However, although the number of models available is constantly increasing, only some of them 

take into account spoilage bacteria in meat and meat products. These kinds of models have been studied 

by da Silva et al. (2018), Dalcanton et al. (2013), Gospavic et al. (2008), Koutsoumanis (2009), 

Kreyenschmidt et al. (2010), Liu et al. (2006), Mataragas et al. (2006) and Zhang et al. (2011). 

Moreover, the majority of the models developed to predict the growth of SSOs in meat and meat 

products are based on the growth of two bacterial species in a food matrix (Giuffrida et al., 2009; 

Vereecken et al., 2000), most often to study the interaction between spoilage and pathogenic bacteria 

(Cornu et al., 2011; Correia Peres Costa et al., 2019; Lebert et al., 2000; Mejlholm and Dalgaard, 2007; 

Pedrozo et al., 2019; Ye et al., 2014).  
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Therefore, it could be interesting to develop a model for two- or more- species, by considering 

the effect of multiple storage conditions and the natural food microbiota on the growth of specific 

spoilage bacteria. In the present manuscript,  primary and secondary models for spoilage bacteria in WP 

and MP samples will be studied in order to explore predictive models with two and three spoilage 

species. In addition, validation steps are proposed for each of these experiments. 
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1.7. Highlights 

 

 
- Food losses and waste are a worldwide major concern, representing annually 20% of the food 

production in Europe, which corresponds to around 345 kg of food wasted every year for a 

Belgian resident.  

- These food losses and waste have many causes including bacterial food spoilage.  

- Pork meat and meat products are widely produced and consumed, in Europe and in Belgium. 

Thus, two food matrices based on pork meat were selected for this research: minced meat and 

white pudding. These products are considered to be highly perishable foods, and therefore likely 

to be spoiled and thus thrown away.  

- Bacterial food spoilage of minced pork has already been described, but that is not the case for 

white pudding. Moreover, bacterial food spoilage is a complex and not fully understood 

mechanism, largely depending on storage conditions, with several effects on food quality.  

- Classical microbiology and metagenetics were mainly used to describe and follow the bacterial 

spoilage microbiota in meat and meat products. These methods could be used in a multi-omics 

approach, in association with metabolomics, in order to provide a more comprehensive analysis 

of the dynamics and metabolism in these products.  

- Predictive microbiology is also an interesting tool to enhance the accuracy of growth predictions 

from microbial data obtained by culture-dependent and -independent methods. However, few 

models consider food spoilage bacteria, especially in models with interaction of two or more 

species.  
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The general objective of this work was to study and predict the dynamics of spoilage microbiota 

in minced pork and white pudding, according to different storage conditions.  

 

The four principal topics of the present research with their specific objectives are presented in 

Figure 13 and are described below.  

 

 
Figure 13. Summary of the objectives of this research work.  

 

The first objective was to study the natural spoilage microbiota of minced pork and white 

pudding samples.  

This topic aimed to describe the natural microbiota of samples according to the food packaging, as for 

food wrap and modified atmosphere, and to describe changes of microbial dynamics according to the 

temperature of storage, as isothermal and dynamics conditions.  
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The second objective was to characterize specific spoilage bacteria dynamics in selected 

food matrices, and use them as inputs in models. 

Three specific objectives were performed in this topic.  

The first was to select specific spoilage bacteria for the two food matrices, according to the previous 

objective.  

The second specific objective was to use inputs of models provided from the combination of culture-

dependent and culture-independent methods, in order to obtain estimate bacterial counts over time and 

storage, for mono-culture and co-culture experiments in samples.  

And the last specific objective was to obtain growth parameters of these input data by fitting primary 

and secondary models (maximal bacterial growth, lag time, maximal and minimal bacterial populations, 

minimal to temperature for growth, time to reach the stationary phase and time to reach the spoilage-

value level).  

 

The third objectif of this research was to develop and validate complex models in minced 

pork and white pudding samples. 

Predictive models are based on B. thermosphacta, Pseudomonas spp. (Ps. fragi and Ps. fluorescens) and 

Ln. gelidum for MP; and on B. thermosphacta, Pseudomonas sp. and Psychrobacter spp. for WP 

samples.  

For minced pork, the specific objective was to develop a three species interaction model, based on Lotka-

Volterra and modified Jameson effect models, for two packaging and three isothermal storage 

temperatures. And also to validate the new approach by naturally contaminated MP samples.  

For white pudding, the specific objective was to develop a one-specie model with taking into account 

the natural microbiota of products, and to compare simulations with some available software;  

 

The last objective was to study the metabolome in minced pork samples. 

This topic aimed to understand the influence on spoilage effects in relation with the inoculated bacteria 

(B. thermosphacta, Pseudomonas spp. and Ln. gelidum) in mono- and co-culture experiments, the 

packaging used, such as food wrap or modified atmosphere, and the temperature of storage, at 4°C, 8°C 

and 12°C.  
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Chapter 3 presents the experimental studies of this research for minced pork and white pudding 

samples. This chapter is divided into 6 scientific publications which correspond to the fourth objectives 

of this research (Figure 14).  

 

 
Figure 14. Summary of the objectives and the related experimental studies of this research work.  

 

Experimental study 1 is dedicated to the description of natural microbiota in minced pork 

samples, and studies 2 and 3 in white pudding (Objective 1).  

Study 4 concerns the combination of culture-dependent and -independent methods in order to 

obtain bacterial dynamics and growth parameters in minced pork, and experimental studies 2 and 3 in 

white pudding (Objective 2).  

Moreover, study 4 concerns the development of interaction models in minced pork samples, 

based on previous results described. A comparison between the experimental methods proposed with 

available predictive software, ComBase and Sym’Previus is also presented in study 3 for white pudding 

(Objective 3).  
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Finally, experimental study 5 is about study of the metabolome in minced pork samples, 

according to different storage conditions. This study is still ongoing, as not all the results have yet been 

reported by CIRM-CHU. A provisional and incomplete draft is therefore presented and will be 

completed as the work progresses (Objective 4).  
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Assessment of spoilage bacterial communities in food 
wrap and modified atmospheres-packed minced pork 
samples by 16S rDNA metagenetic analysis
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Abstract 
 

Þ Objective 1. Study the natural microbiota of minced pork 
 

Although several studies have focused on the dynamics of bacterial food community, little is 

known about the variability of production batches and microbial changes that occur during storage. The 

aim of the study was to characterize the microbial spoilage community of MP samples, among different 

food production and storage, using both 16S rRNA gene sequencing and classical microbiology. Three 

batches of samples were obtained from four local Belgian facilities (A, B, C, D) and stored until shelf 

life under food wrap (FW) and MAP (CO2 30%/O2 70%), at constant and dynamic temperature. Analysis 

of 288 samples were performed by 16S rRNA gene sequencing in combination with counts of 

psychrophilic and LAB at 22°C. At the first day of storage, different psychrotolerant counts were 

observed between the four food companies (Kruskal-Wallis test, p-value<0.05). Results shown that 

lowest microbial counts were observed at the first day for industries D and A (4.2±0.4 and 5.6±0.1 log 

CFU/g, respectively), whereas industries B and C showed the highest results (7.5±0.4 and 7.2±0.4 log 

CFU/g). At the end of the shelf life, psychrophilic counts for all food companies was over 7.0 log CFU/g. 

With metagenetic, 48 operational taxonomic unit (OTU) were assigned. At the first day, the genus 

Photobacterium (86.7% and 19.9% for food industries A and C, respectively) and Pseudomonas (38.7% 

and 25.7% for food companies B and D, respectively) were dominant. During the storage, a total of 12 

dominant genera (> 5% in relative abundance) were identified in MAP and 7 in FW. Pseudomonas was 

more present in FW and this genus was potentially replaced by Brochothrix in MAP (two-sided Welch’s 

t-test, p-value<0.05). Also, a high Bray-Curtis dissimilarity in genus relative abundance was observed 

between food companies and batches. Although the bacteria consistently dominated the microbiota in 

our samples are known, results indicated that bacterial diversity needs to be addressed on the level of 

food companies, batches variation and food storage conditions. Present data illustrate that the combined 

approach provides complementary results on microbial dynamics in MP samples, considering batches 

and packaging variations.  
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Introduction 
 

Meat and meat products are highly perishable, with colonization and development of a variety 

of microorganisms, especially bacteria. This is due to complex nutrient-rich environment with chemical 

and physical conditions favorable to bacterial development (Chaillou et al., 2015; Garnier et al., 2017; 

Nychas et al., 2008; Pennacchia et al., 2009). Moreover, minced meat can be contaminated by different 

types of microorganisms from several sources, such as raw materials, equipment, environment and 

handling involved in the production process. Abiotic factors (temperature, gaseous atmosphere, pH, 

NaCl levels, etc.) can also select certain bacteria (Mann et al., 2016; Rouger et al., 2018; Stellato et al., 

2016). However, it is well known that richness and abundance of microbiota present in food products, 

and especially meats, play an important role in the microbial safety and the shelf life of the products 

(Pinu, 2016; Zhao et al., 2015). Microbial growth on meat to unacceptable levels and the various 

metabolic activities contribute to its deterioration by altering the structure, color and flavor of the meat 

(Mann et al., 2016). This leading to a reduction in food quality to the point of not being edible for human 

consumption (Holm et al., 2013; Silbande et al., 2016; Stellato et al., 2016), with alterations in the 

sensorial qualities of the product, particularly the aspect, with discoloration and gas production, and the 

presence of an off-odors and off-flavors (Stoops et al., 2015). Thus, food spoilage is problematic for 

two main reasons: first, it renders food unfit for human consumption and, secondly, it results in 

significant economic losses (Dalcanton et al., 2013; den Besten et al., 2017; Pinter et al., 2014).  

As mentioned by Benson et al. (2014), the microbial population that colonizes and ultimately 

spoils minced pork is highly variable, depending on which groups of microbial taxa the product has been 

exposed to and perhaps even the order in which they are encountered. Using traditional cultivation 

methods, the microbial composition and diversity in fresh meat have been widely investigated (Zhao et 

al., 2015), but it is well known that traditional identification and culture-based methods for pathogens 

or food spoilage microbes are time-consuming (Pinu, 2016). Moreover, ecological studies at the genus-

species level are required because the same storage conditions may affect differently the species in the 

same groups of bacteria (Pennacchia et al., 2011; Stoops et al., 2015), and because not all the members 

of this microbiota contribute to food spoilage. Several studies in meat microbiology have established 

that spoilage is caused only by a dominated fraction of the initial microbial association (Nychas et al., 

2008). These spoilage microorganisms have been designated as Specific Spoilage Organisms (SSOs) 

(Benson et al., 2014; Zotta et al., 2019). Therefore, as discussed by De Filippis et al. (2013), the concept 

of succession of spoilage-related microbial groups is very important, and many studies have been 
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performed to investigate the dynamics and changes of the meat microbiota during storage.   

Developed during the last decades, the next generation sequencing methodologies provide a 

powerful tool to study microbial community structure and composition shifts at different stages of 

ripening, allowing the detection of minor bacterial populations (Riquelme et al., 2015), at variable 

taxonomic depth (Chaillou et al., 2015; Parente et al., 2016; Pothakos et al., 2014). The introduction of 

molecular methods, especially culture-independent approaches, have contributed to the exploration of 

various food microbiota (Galimberti et al., 2015; Garofalo et al., 2017; Parlapani et al., 2018 ; Pinu, 

2016), as for beverages (Elizaquivel et al., 2015), vegetables (Gu et al., 2018; Lee et al., 2017; Liu et 

al., 2019a), and for dairy (Ceugniez et al., 2017; Nalbantoglu et al., 2014; Porcellato et al., 2018; 

Riquelme et al., 2015), seafood (Li et al., 2018; Parlapani et al., 2018; Silbande et al., 2018), and meat 

products (Benson et al., 2014; Carrizosa et al., 2017; Cauchie et al., 2017; Cocolin et al., 2004; Delhalle 

et al., 2016; Greppi et al., 2015; Kaur et al., 2017; Korsak et al., 2017; Mann et al., 2016; Nieminen et 

al., 2012; Pennacchia et al., 2011; Peruzy et al., 2019a; Polka et al., 2015; Stoops et al., 2015; Vester 

Lauritzen et al., 2019 ; Zhao et al., 2015), in order to assess the microbial levels and diversity of food 

and food products (Lee et al., 2017; Nieminen et al., 2012; Pothakos et al., 2014 ; Rouger et al., 2018). 

The interest of this method to characterize the dominant spoilage bacteria in pork meat and meat 

products was also described (Andritsos et al., 2012; Li et al., 2019a; Mann et al., 2016; Peruzy et al., 

2019a; Raimondi et al., 2018).  

In this context, the aim of the present study was to assess the microbial spoilage community and 

dynamics of MP samples, among different conditions of production and food storage, using both 16S 

rRNA gene sequencing and classical microbiology.  
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Material and methods 
 

2.1. Sampling 

 

Fresh MP samples packed with a food wrap film were obtained from four local small and 

medium-sized Belgian manufacturers (food companies A, B, C and D) at the day of the production, 

corresponding to the day of slaughtering. Three batches for each manufacturer were used, with a one-

week interval between sampling (Figure 15).   

According to the recipe MP is composed of 100% minced pork (70% lean, 30% fat), no salt, no 

spices, no additives, no eggs and no sugar are added. At the day of the production, the water activity of 

this product was 0.98 ± 0.02 and the pH value was 5.80 ± 0.05 (n = 12). pH of the homogenized samples 

(5 g in 45 ml of KCl) was measured with a pH meter (Knick 765 Calimatic, Germany). The water activity 

was measured for homogenized samples on the basis of the relative humidity measurement of the air 

balance in the micro enclosure at 25 ± 0.4°C (Thermoconstanter TH200, Novasina, Switzerland).  

MP samples were packed (100 g), in triplicate, in two different types of non-sterile packaging.  

The first packaging concerns a tray (187x137x36, polyester 10 µm, homo-polymer 

polypropylene 50 µm, NutriPack, France) under MAP (CO2 30% / O2 70% ± 0.1%) (Olympia V/G, 

Technovac, Italy) using packaging wrap (PP/EVOH/PP) with random gas measurements (CheckMate 

3, Dansensor, France).  

The second packaging concerns a tray (175x135x22, polystyrene) under FW packing using cling 

film (Clinofilm).  

 

2.2. Food storage 

 

According to the requirements for implementing microbiological tests of chilled perishable and 

highly perishable foodstuffs (AFNOR, NF V01-003, 2010), MP samples were stored during 3 days of 

shelf life under FW, and during 6 days under MAP, at constant and dynamic temperature: at (i) 2°C 

(± 1°C), (ii) 8°C (± 1°C), (iii) 12°C (± 1°C), and (iv) for a third of the shelf life at 2°C and for the rest 

of the shelf life at 8°C (2/8°C ± 1°C), in climatic chambers (Sanyo MIR 254).  

Samples were analyzed at the first day of inoculation (day 0) and at the last day of storage (day 

3 in FW and day 6 in MAP, n=288).  
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Figure 15. Schematic representation of the methods used.  

 

2.3. Plate count enumeration 

 

Twenty-five grams of product were randomly collected from the trays at the surface and at 

depth, without homogenization, and put into a Stomacher bag with a mesh screen liner (80 µm pore 

size) (Biomérieux, Basingstoke, England, ref 80015) under aseptic conditions. Buffered peptone water 

(BPW, 10g/L peptone, 5g/L sodium chloride, #3564684, Bio-Rad, Marnes-la-Coquette, France) (225 

mL) was automatically added to each bag (Dilumat, Biomérieux, Belgium) and the samples were 

homogenized for 2 min in a Stomacher (Bagmixer, Interscience, France). From this primary suspension, 

decimal dilutions in maximum recovery diluent (10 g/L peptone, 8.5 g/L sodium chloride, #CM0733, 
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Oxoid, Hampshire, England) were prepared for microbiological analysis, and 0.1 mL aliquots of the 

appropriate dilutions were plated onto media for each analysis (Spiral plater, DW Scientific, England). 

Total viable counts (TVC) for aerobic psychrophilic bacteria were performed on plate count agar (PCA 

agar, #3544475, Bio-Rad, Marnes-la-Coquette, France), and for LAB on de Man, Rogosa and Sharpe 

(MRS agar, #CM0361, Oxoid, Hampshire, England), after incubation at 22°C (Pothakos et al., 2014) 

for 72 h (model 1535 incubator, Shel Lab, Sheldon Manufacturing. Inc., USA).  

 

2.4. DNA extraction and 16S rRNA gene sequencing 

 

Bacterial DNA was extracted from each primary suspension, previously stored at – 80°C, using 

the DNEasy Blood and Tissue kit (QIAGEN Benelux BV, Antwerp, Belgium) following the 

manufacturer’s recommendations. The resulting DNA extracts were eluted in DNAse/RNAse free water 

and their concentration and purity were evaluated by means of optical density using the NanoDrop ND-

1000 spectrophotometer (Isogen, St-Pieters-Leeuw, Belgium). DNA samples were stored at – 20°C until 

used for 16S rRNA gene sequencing.  

PCR-amplification of the V1-V3 region of the 16S rRNA gene library preparation were 

performed with the following primers (with Illumina overhand adapters), forward (5’-

GAGAGTTTGATYMTGGCTCAG-3’) and reverse (5’-ACCGCGGCTGCTGGCAC-3’). Each PCR 

product was purified with the Agencourt AMPure XP beads kit (Beckman Coulter; Pasadena, CA, USA) 

and submitted to a second PCR round for indexing, using the Nextera XT index primers 1 and 2. 

Thermocycling conditions consisted of a denaturation step of 4 min at 94°C, followed by 25 cycles of 

denaturation (15 sec at 94°C), annealing (45 sec at 56°C) and extension (60 sec at 72°C), with a final 

elongation step (8 min at 72°C). These amplifications were performed on an EP Mastercycler Gradient 

System device (Eppendorf, Hamburg, Germany). The PCR products of approximately 650 nucleotides 

were run on 1% agarose gel electrophoresis and the DNA fragments were plugged out and purified using 

a Wizard SV PCR purification kit (Promega Benelux, Leiden, Netherlands). After purification, PCR 

products were quantified using the Quanti-IT PicoGreen (ThermoFisher Scientific, Waltham, MA, 

USA) and diluted to 10 ng/µL. A final quantification, by quantitative (q)PCR, of each sample in the 

library was performed using the KAPA SYBRÒ FAST qPCR Kit (KapaBiosystems, Wilmington, MA, 

USA) before normalization, pooling and sequencing on a MiSeq sequencer using V3 reagents (Illumina, 

San Diego, CA, USA).  

 

2.5. Bioinformatics analysis 

 

The 16S rRNA gene sequence reads were processed with MOTHUR (Schloss et al., 2009). The 
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quality of all sequence reads was denoised using the Pyronoise algorithm implemented in MOTHUR. 

The sequences were checked for the presence of chimeric amplification using ChimeraSlayer (developed 

by the Broad Institute, http://microbiomeutil.sourceforge.net/#A_CS). The obtained read sets were 

compared to a reference data-set of aligned sequences of the corresponding region derived from the 

SILVA database of full-length rRNA gene sequences (http://www.arb-silva.de/, version v1.2.11) 

implemented in MOTHUR (Cauchie et al., 2017; Pothakos et al., 2014; Pruesse et al., 2012). The final 

reads were clustered into OTUs, using the nearest neighbor algorithm using MOTHUR with a 0.03 

distance unit cut off. A taxonomic identity was attributed to each OTU by comparison to the SILVA 

database, using an 80% homogeneity cut off. As MOTHUR is not dedicated to the taxonomic 

assignment beyond the genus level, all unique sequences for each OTU were compared to the SILVA 

data-set 111, using a BLASTN algorithm. For each OTU, a consensus detailed taxonomic identification 

was given based upon the identity (< 1% mismatch with the aligned sequence) and the metadata 

associated with the best hit (validated bacterial species or not) (Cauchie et al., 2017; Delcenserie et al., 

2014).  

 

2.6. 16S rRNA gene data analysis 

 

A correcting factor for 16S rRNA copy numbers was applied for any taxon i (Equation 11) 

(Kembel et al., 2012; Louca et al., 2018).  

Ai = uv wxy  (11) 

Where Ai is the real abundance of 16S genes from the taxon in the sample, Nk is the number of reads for 

the taxon in the sample k, and Ci is determined by the genomic 16S copy number of that taxon. To obtain 

each gene copy number, Ribosomal RNA Database (rrnDB) (Stoddard et al., 2015) and EzBioCloud 

database (Yoon et al., 2017) were used.  

Then, to compare the relative abundance of OTUs, the number of reads of each taxon were normalized 

(Nri) as described by Chaillou et al. (2015). Reads counts of each taxon i in the sample k were divided 

by a sample-specific scaling factor (Si) (Equation 12) (Fougy et al., 2016; Rouger et al., 2018): 

Nri = zx {vy   (12) 

Where Ai is the real abundance of 16S genes from that taxon obtained with a correcting factor for 16S 

rRNA copy numbers, Sk is the normalization factor associated with sample k.  

The sample-specific scaling factor was calculated by (Equation 13):  

Sk = |v }H
y   (13) 

Where Sk is the sample-specific scaling factor associated with sample k, Tk is the number of total reads 

in the sample k, me is the median value of total reads for all the samples of the dataset. Reads counts of 
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all samples were then transformed into a percentage of each OTU.  

All biosample raw reads were deposited at the National Center for Biotechnology Information (NCBI) 

and are available under de BioProject ID PRJNA551357. The raw data supporting the conclusions of 

this manuscript will be made available by EC to any qualified researcher. 

 

2.7. Statistical analysis 

 

2.7.1. Statistical analysis on microbiological results 

 

Nonparametric statistical tests were used to compare the classical microbiology results between 

samples taken on the day of production and at the end of shelf life for a same temperature. With the help 

of R software (R Core Team, 2016), Kruskal-Wallis test was performed to make a comparison between 

the food industries on a certain day (i.e.; day 0 or day 3) (stats package, kruskal.test function). An 

Analysis of Covariance (ANCOVA) was also performed to evaluate the interactions between the storage 

conditions and the food origin on psychrophilic counts (FactoMineR package, AovSum function). All 

tests were considered as significant for a p-value < 0.05. 

 

2.7.2. Statistical analysis on 16S rRNA gene results 

 

Alpha diversity for each sample was evaluated by richness estimation (Chao1 estimator), 

microbial biodiversity (inverse of the Simpson index, coverage), and the population evenness (Simpson 

evenness) using MOTHUR (version 1.40.5) (http://www.mothur.org) (Riquelme et al., 2015; Zhao et 

al., 2015). Rarefaction curves were calculated for all samples to ensure that sequencing depth was 

sufficient: OTUs identified were plotted as a function of sequences obtained per sample. High diversity 

coverage was achieved with all curves reaching asymptotes from 3000 reads (Figure 16). Using 

Explicet, alpha and beta diversity indices were also calculated with bootstrapped sequencing data 

(http://www.explicet.org) (Mann et al., 2016; Robertson et al., 2013). Beta-diversity was assessed with 

Explicet using the Bray-Curtis index on a 0-1 scale. Using STAMP (v2+) software 

(http://www.kiwi.cs.dal.ca/Software/STAMP), a 2-sided Welch’s t-test was performed on metagenetic 

results and confidence intervals were calculated according to the Newcombe-Wilson method. A 

Principal Component Analysis (PCoA) was also applied to classify and cluster samples according to the 

identified OTUs for the two packaging (Tukey-Kramer test in conjunction with an ANOVA) (Parlapani 

et al., 2018). The differences were considered significant for a corrected p-value less than 0.05 (Parks 

et al., 2014). 
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Figure 16. Rarefaction curves for all samples (food companies A, B, C and D), based on an OTU definition 

of 97% similarity (0.03 16S rRNA distance). 
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Results 
 

3.1. Microbiological analysis 

 

As expected, psychrophilic and lactic aerobic counts increased during the shelf life with 

increasing the temperature (Tables 12 and 13).  

Compared to the TVC values, LAB counts showed highest results for food industries A and D.  

At day 0, different microbiological counts were observed between food companies for TVC 

(Kruskal-Wallis test, H =9.43, p-value = 0.02) and for LAB (Kruskal-Wallis tests, H = 8.90, p-value = 

0.04). The lowest psychrophilic populations were observed for food industries D (4.2 ± 0.4 log CFU/g) 

and A (5.6 ± 0.1 log CFU/g), whereas MP samples from B and C showed the highest results (7.5 ± 0.4 

log CFU/g and 7.2 ± 0.4 log CFU/g, respectively).  

At the end of the shelf life, the natural logarithm of the TVC for all food companies was over 

7.0 log CFU/g. At this time, the Analysis of Covariance revealed also a significant effect of the food 

companies (p-value = 0.00000998) and the temperature of storage (p-value = 0.00000095) on microbial 

total counts. Psychrotolerant counts seemed also to be influenced by the interaction of the food industry 

and the temperature (p-value = 000442), but not by other interactions terms (p-value > 0.05).  
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Table 12. Results of psychrophilic aerobic counts in minced pork samples according to the origin, the food 

packaging and the temperature of storage. Values given as log CFU/g (mean ± SD, n=3) at 2°C, 8°C, 12°C 

and 2/8°C. ° significant Kruskal-Wallis value (p<0.05) with p-value between bracket; *significant Wilcoxon 

value (p<0.05).  

Industries/packaging Day 0 
End of the shelf life 

2°C   8°C   12°C  2/8°C 
FW      
A 5.6 ± 0.1 6.5 ± 0.6 8.3 ± 0.4* 8.3 ± 0.5* 8.3 ± 0.3* 

B 7.5 ± 0.4 7.5 ± 0.4 8.3 ± 0.0* 8.3 ± 0.2* 8.3 ± 0.9* 

C 7.2 ± 0.4 7.3 ± 0.5 7.8 ± 0.0 7.8 ± 0.2 7.6 ± 1.3 
D 4.2 ± 0.4 4.6 ± 0.2 7.2 ± 0.2* 8.3 ± 0.0* 6.6 ± 0.2* 

Kruskal-Wallis test 
 

9.43 (0.02)° 

 
8.74 (0.03)° 

 
9.02 (0.03)° 

 
5.71 (0.13) 

 
9.68 (0.02)° 

 

MAP      
A 5.6 ± 0.1 6.5 ± 0.1* 7.9 ± 0.1* 8.3 ± 0.3* 7.9 ± 0.2* 

B 7.5 ± 0.4 7.9 ± 0.1 8.3 ± 0.0* 8.3 ± 0.0* 8.3 ± 0.0* 

C 7.2 ± 0.4 7.5 ± 0.2 7.6 ± 0.1 8.3 ± 0.1* 7.8 ± 0.6 
D 4.2 ± 0.4 5.2 ± 0.3* 7.9 ± 0.1* 8.1 ± 0.1* 7.2 ± 0.1* 

Kruskal-Wallis test 9.43 (0.02)° 10.39 (0.02)° 9.68 (0.02)° 3.45 (0.33) 8.94 (0.03)° 

 

Table 13. Results of lactic aerobic counts in minced pork samples according to the origin, the food packaging 

and the temperature of storage. Values given as log CFU/g (mean ± SD, n=3) at 2°C, 8°C, 12°C and 2/8°C. 
° significant Kruskal-Wallis value (p<0.05) with p-value between bracket; *significant t-student value 

(p<0.05). 

Industries/packaging Day 0 
End of the shelf life 

2°C   8°C    12°C   2/8°C 
FW      
A 5.2 ± 0.2 6.4 ± 0.4 7.8 ± 0.1* 7.8 ± 0.2* 7.4 ± 0.2* 

B 5.5 ± 0.6 5.5 ± 0.5 7.1 ± 0.3* 7.9 ± 0.2* 6.8 ± 0.4* 

C 5.2 ± 0.7 6.7 ± 0.2* 7.4 ± 0.1* 7.6 ± 0.1* 7.0 ± 0.2* 

D 3.5 ± 0.2 4.4 ± 0.3* 5.9 ± 0.4* 7.5 ± 0.1* 5.1 ± 0.3* 

Kruskal-Wallis test 
 

8.90 (0.04)° 

 
9.15 (0.03)° 

 
9.67 (0.02)° 

 
7.62 (0.05) 

 
8.44 (0.04)° 

 

MAP      
A 5.2 ± 0.2 7.1 ± 0.2* 8.0 ± 0.18* 8.2 ± 0.09* 8.2 ± 0.09* 

B 5.5 ± 0.6 6.6 ± 0.6* 7.8 ± 0.21* 7.7 ± 0.16* 7.8 ± 0.15* 

C 5.2 ± 0.7 7.3 ± 0.2* 7.6 ± 0.06* 7.9 ± 0.09* 7.5 ± 0.07* 

D 3.5 ± 0.2 5.2 ± 0.4* 7.5 ± 0.07* 7.8 ± 0.03* 6.8 ± 0.24* 

Kruskal-Wallis test 8.90 (0.04)° 8.44 (0.04)° 9.05 (0.03)° 8.27 (0.04)° 9.45 (0.02)° 

 

3.2. Carbon dioxide production 

 

As shown in Figure 17, carbon dioxide values increased with highest temperatures, except for 

the food companies C and D which showed relatively stable measurements. Results at 2/8°C are not 

shown in this paper.  
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Figure 17. Box plots show the carbon dioxide measurements at the end of the shelf life, for the four food 

companies (A, B, C and D) at (A) 2°C, (B) 8°C, and (C) 12°C. The boxes represent the interquartile range 

between the first (Q1) and the third (Q3) quartiles; the vertical black line insides the box is the median 

obtained from the three batches analyzed by food industries; the two dotted line is the difference of 25% 

below the Q1 or above the Q3. The presence of stars indicated that samples deviated significantly from the 

carbon dioxide value at day 0 (30.0 ± 0.1%).    

 

3.3. Alpha diversity of bacteria with 16S rDNA amplicon sequencing 

 

Over 4,200 reads per sample were generated with 16S rDNA amplicon pyrosequencing. In total, 

48 mains OTUs were assigned. The number of OTUs, the bacterial diversity, richness estimators and 

coverage are presented in Supplementary Material (Tables 14, 15 and 16). The highest number of 

identified species was encountered for the food industries C and D.  
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Table 14. Alpha diversity from metagenetic analysis at day 0. Food companies (A, B, C, D), with three 

batches each (1, 2, 3).  

Samples 
No. of 

OTUs 

Coverage 

(%) 
Inv. Simpson Chao richness Simpson evenness 

 

A1 8 99.98 1.33 8.00 0.17 

A2 7 99.98 1.12 7.00 0.16 

A3 6 99.98 1.25 6.00 0.21 

B1 3 98.96 1.84 3.00 0.61 

B2 5 98.86 1.30 5.00 0.26 

B3 5 98.95 2.32 5.00 0.46 

C1 8 97.80 2.18 8.50 0.27 

C2 9 97.62 5.86 9.50 0.65 

C3 4 98.98 1.29 4.00 0.32 

D1 5 100.00 1.45 5.00 0.29 

D2 11 94.06 4.80 26.00 0.44 

D3 15 93.00 4.90 36.00 0.33 
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Table 15. Alpha diversity from metagenetic analysis at the end of the shelf life in FW. Food companies (A, 

B, C, D), three batches each (1, 2, 3). At different temperature of storage: 2°C (a), for a third of the shelf life 

at 2°C and for the rest of the shelf life at 8°C (b), 8°C (c), and 12°C (d). 

Samples No. of OTUs Coverage (%) Inv. Simpson Chao richness Simpson evenness 

 

A1 a 8 100.00 3.18 8.00 0.40 
A1 b 7 100.00 2.35 7.00 0.34 
A1 c 8 100.00 1.98 8.00 0.25 
A1 d 8 100.00 1.13 7.00 0.24 
A2 a 7 99.95 1.23 7.50 0.18 
A2 b 8 99.98 1.88 8.00 0.23 
A2 c 7 100.00 2.33 7.00 0.33 
A2 d 9 100.00 2.25 9.00 0.25 
A3 a 5 99.98 1.05 5.00 0.21 
A3 b 7 99.98 1.21 7.00 0.17 
A3 c 6 100.00 1.36 6.00 0.23 
A3 d 7 99.95 2.67 8.00 0.38 
B1 a 3 98.95 2.06 3.00 0.69 
B1 b 3 98.95 1.94 3.00 0.65 
B1 c 4 97.98 2.01 5.00 0.50 
B1 d 4 98.96 2.15 4.00 0.54 
B2 a 3 100.00 2.68 3.00 0.89 
B2 b 4 100.00 2.56 4.00 0.64 
B2 c 7 97.78 3.00 8.00 0.43 
B2 d 5 100.00 2.02 5.00 0.40 
B3 a 3 100.00 1.26 3.00 0.42 
B3 b 4 98.81 1.59 4.00 0.40 
B3 c 6 97.80 1.85 6.50 0.31 
B3 d 4 98.85 1.13 4.00 0.28 
C1 a 3 98.96 1.14 3.00 0.38 
C1 b 3 97.89 1.04 4.00 0.35 
C1 c 3 97.94 1.04 4.00 0.35 
C1 d 4 98.96 1.36 4.00 0.34 
C2 a 7 95.60 1.50 13.00 0.21 
C2 b 6 97.62 1.22 6.25 0.20 
C2 c 5 96.47 1.13 6.50 0.23 
C2 d 8 97.96 2.23 9.00 0.28 
C3 a 3 97.85 1.04 4.00 0.35 
C3 b 4 98.94 1.17 4.00 0.29 
C3 c 4 97.87 1.14 5.00 0.29 
C3 d 9 95.70 2.55 11.00 0.28 
D1 a 5 97.85 1.38 6.00 0.28 
D1 b 4 96.59 1.07 7.00 0.27 
D1 c 5 97.80 1.29 5.50 0.26 
D1 d 11 95.74 3.30 13.00 0.30 
D2 a 4 97.85 2.00 5.00 0.50 
D2 b 3 100.00 1.85 3.00 0.62 
D2 c 4 100.00 1.59 4.00 0.40 
D2 d 5 98.96 1.87 5.00 0.37 
D3 a 7 95.79 2.59 13.00 0.37 
D3 b 4 98.98 1.59 4.00 0.40 
D3 c 4 100.00 1.59 4.00 0.40 
D3 d 5 98.90 1.72 5.00 0.34 
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Table 16. Alpha diversity from metagenetic analysis at the end of the shelf life in MAP. A, B, C and D, food 

companies; three batches each (1, 2, 3). At different temperature of storage: 2°C (a), for a third of the shelf 

life at 2°C and for the rest of the shelf life at 8°C (b), 8°C (c), and 12°C (d). 

Samples No. of OTUs Coverage (%) Inv. Simpson Chao richness Simpson evenness 

 

A1 a 8 100.00 2.52 8.00 0.32 
A1 b 6 100.00 1.92 6.00 0.32 
A1 c 9 100.00 1.74 9.00 0.19 
A1 d 8 99.98 2.61 8.00 0.33 
A2 a 8 100.00 1.25 8.00 0.16 
A2 b 9 99.95 1.94 10.00 0.22 
A2 c 8 100.00 2.55 8.00 0.32 
A2 d 9 99.98 2.17 9.00 0.24 
A3 a 7 100.00 1.40 7.00 0.20 
A3 b 7 99.95 1.11 8.00 0.16 
A3 c 7 100.00 1.09 7.00 0.16 
A3 d 6 99.98 1.37 6.00 0.23 
B1 a 4 97.85 1.42 5.00 0.35 
B1 b 4 97.87 1.14 5.00 0.29 
B1 c 7 97.98 1.27 7.25 0.18 
B1 d 5 97.92 1.14 5.33 0.23 
B2 a 6 98.91 2.89 6.00 0.48 
B2 b 5 98.90 2.10 5.00 0.42 
B2 c 5 100.00 2.56 5.00 0.51 
B2 d 7 97.96 2.08 7.33 0.30 
B3 a 5 98.98 2.53 5.00 0.51 
B3 b 5 98.97 2.18 5.00 0.44 
B3 c 6 96.74 2.70 9.00 0.45 
B3 d 9 97.96 3.66 9.50 0.41 
C1 a 4 98.95 1.11 4.00 0.28 
C1 b 4 97.92 2.03 5.00 0.51 
C1 c 4 98.96 1.59 4.00 0.40 
C1 d 5 97.96 2.56 6.00 0.51 
C2 a 5 98.96 3.22 5.00 0.64 
C2 b 8 97.78 4.06 8.33 0.51 
C2 c 5 98.95 1.36 5.00 0.27 
C2 d 3 98.77 1.22 3.00 0.41 
C3 a 2 98.96 1.02 2.00 0.51 
C3 b 3 98.98 1.09 3.00 0.36 
C3 c 3 98.97 1.11 3.00 0.37 
C3 d 10 94.81 4.95 16.00 0.50 
D1 a 4 100.00 1.41 4.00 0.35 
D1 b 5 97.87 1.37 6.00 0.27 
D1 c 6 96.91 1.71 9.00 0.28 
D1 d 4 98.95 1.88 4.00 0.47 
D2 a 7 97.94 2.44 8.00 0.35 
D2 b 5 100.00 1.99 5.00 0.40 
D2 c 5 98.96 1.83 5.00 0.37 
D2 d 5 100.00 1.49 5.00 0.30 
D3 a 4 98.90 1.17 4.00 0.29 
D3 b 4 98.91 1.12 4.00 0.28 
D3 c 4 98.99 1.43 4.00 0.36 
D3 d 8 98.90 2.84 8.00 0.35 
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3.4. Bacterial communities at the family and genus levels 

 

The relative abundance results obtained by metagenetic analysis (expressed in %) in FW and 

MAP at family (Figure 18) and genus (Figure 19) levels (>5%) are represented in cumulated histograms 

for all samples. These data including the relative abundance of sequences are also summarized in 

Supplemental Material (Tables 17, 18 and 19). The taxa representing <5% in relative abundance were 

merged in the category of "Others". “Others” in FW are mainly composed by the genera Bacillus, 

Carnobacterium, Enterococcus, Hafnia, Myroides, Rahnella, Staphylococcus, Serratia, Streptococcus, 

Weissella and Xanthomonas. While it concerns Bacillus, Carnobacterium, Enterococcus, Hafnia, 

Rahnella, Staphylococcus, Streptococcus and Xanthomonas in MAP. Full data on taxa found in high 

(>5%) and low (<5%) frequencies will be made available by EC to any qualified researcher. 

According to Figures 18 and 19, the food companies show a high variability in the distribution 

of read percentages at day 0. At this time, the genus Photobacterium is the most represented for A and 

C (86.7% and 19.9%, respectively), while it concerns the genus Pseudomonas for the industries B and 

D (38.7% and 25.7%, respectively). 

At the end of the shelf life, a total of 12 genera were identified as dominant (taxa representing 

more than 5% in relative abundance) in MAP and only 7 genera in FW. These seven genera are all 

identical to those found in MAP. 

For all samples, the percentage of “unassigned” reads was relatively low (7.1 ± 3.7).  

 

Table 17. Distribution of metagenetic read percentages at genus level for each food companies, at day 0. At 

genus levels, the taxa representing <5% in relative abundance were merged in the category of “Others”.  

Sam
ples 

A
erom

onas 

B
rochothrix 

C
arnobacterium

 

C
hryseobacterium

 

F
usobacterium

 

 Lactococcus  

Leuconostoc 

Photobacterium
 

Pseudom
onas 

R
hodococcus 

O
thers  

A 0.00 1.35 0.00 0.00 0.00 0.00 0.00 86.77 0.00 0.00 11.88 
B 0.00 5.20 0.00 0.00 0.00 0.00 0.00 0.00 38.71 0.00 56.09 
C 0.00 1.76 10.08 0.00 0.00 9.50 6.85 19.98 0.00 0.00 51.84 
D 6.45 6.03 0.00 8.25 13.47 0.00 0.00 0.00 25.67 11.27 28.86 
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Table 18. Distribution of metagenetic read percentages at genus level during cold storage of MP in FW. At 

genus levels, the taxa representing <5% in relative abundance were merged in the category of “Others”. A, 

B, C and D, food companies; three batches each (1, 2, 3). At different storage temperature: 2°C (a), for a 

third of the shelf life at 2°C and for the rest of the shelf life at 8°C (b), 8°C (c), and 12°C (d).  

Sam
ples 

A
cinetobacter 

B
rochothrix 

Lactobacillus 

Lactococcus 

Leuconostoc 

Photobacterium
 

Pseudom
onas 

O
thers 

A1 a 0.77 2.32 0.21 0.00 0.02 78.54 8.63 9.51 
A1 b 5.56 15.66 0.15 0.00 0.08 40.25 32.24 6.06 
A1 c 2.81 58.26 0.27 0.00 0.10 18.56 15.43 4.57 
A1 d 5.43 63.23 0.30 0.33 0.12 1.92 22.30 6.37 
A2 a 0.02 4.24 0.04 0.11 0.00 84.76 4.24 6.59 
A2 b 0.11 8.39 0.07 0.18 0.07 66.04 8.39 16.76 
A2 c 0.00 15.81 0.41 0.11 0.07 22.91 15.81 44.88 
A2 d 0.05 20.33 0.17 0.07 0.07 17.67 20.33 41.30 
A3 a 0.00 1.52 0.56 0.00 0.02 94.94 0.29 2.66 
A3 b 0.00 5.97 1.81 0.18 0.02 87.33 0.71 3.99 
A3 c 0.00 10.55 2.12 0.09 0.00 81.40 1.61 4.23 
A3 d 0.00 16.79 0.29 0.23 0.03 36.72 40.32 5.62 
B1 a 0.34 44.47 0.09 0.04 0.04 0.69 49.57 4.76 
B1 b 0.31 58.73 0.13 0.20 0.33 1.40 34.99 3.90 
B1 c 0.54 59.15 0.07 0.07 0.02 1.32 38.22 0.60 
B1 d 0.62 45.72 0.18 0.13 0.18 2.02 47.33 3.82 
B2 a 0.36 15.70 0.10 0.10 0.36 29.40 42.62 11.37 
B2 b 3.59 22.00 0.25 0.22 0.05 15.03 52.21 6.65 
B2 c 4.49 24.16 0.61 0.08 0.15 11.47 45.33 13.71 
B2 d 1.81 58.23 0.02 0.15 0.05 23.54 3.23 12.96 
B3 a 0.19 2.84 0.11 0.06 0.38 6.15 72.03 18.25 
B3 b 0.49 3.30 0.21 0.15 0.83 15.47 65.25 14.30 
B3 c 1.93 2.56 0.53 0.10 0.99 20.02 63.83 10.03 
B3 d 1.40 2.19 0.24 0.02 0.39 1.77 81.54 12.44 
C1 a 0.06 0.32 4.60 0.06 0.02 90.25 0.58 4.11 
C1 b 0.04 0.42 0.94 0.15 0.06 92.66 0.69 5.04 
C1 c 0.15 0.24 0.76 0.02 0.02 94.96 0.65 3.19 
C1 d 0.02 1.16 82.22 0.07 7.11 6.13 0.31 3.00 
C2 a 0.02 1.05 6.29 6.97 0.33 73.80 0.84 10.71 
C2 b 0.18 1.63 2.49 1.16 0.51 76.34 1.70 16.00 
C2 c 0.02 0.95 0.91 0.81 0.08 80.35 2.04 14.84 
C2 d 0.03 1.06 5.26 2.86 0.31 63.43 17.52 9.53 
C3 a 0.00 0.33 0.06 1.00 0.00 90.86 1.21 6.43 
C3 b 0.00 0.62 0.27 3.74 0.00 86.66 1.98 6.73 
C3 c 0.06 0.22 0.45 4.20 0.13 87.88 0.97 6.08 
C3 d 0.12 1.07 0.92 3.73 0.12 32.10 49.12 12.82 
D1 a 1.46 5.96 0.06 0.13 0.04 6.28 79.14 6.91 
D1 b 0.13 1.43 0.02 0.11 0.04 0.77 85.27 12.22 
D1 c 1.00 7.36 0.04 0.10 0.02 1.58 79.72 10.18 
D1 d 1.01 37.49 3.17 2.24 3.05 6.81 36.19 10.05 
D2 a 34.72 56.00 0.11 0.11 0.13 0.53 1.40 6.99 
D2 b 0.11 2.01 0.06 0.30 0.37 60.81 27.75 8.59 
D2 c 0.02 3.31 0.09 1.52 0.32 72.71 15.76 6.27 
D2 d 0.02 1.69 0.10 15.93 0.80 9.05 68.10 4.30 
D3 a 0.00 0.33 0.06 1.00 0.00 90.96 1.21 6.43 
D3 b 0.00 0.62 0.27 3.74 0.00 86.66 1.98 6.73 
D3 c 0.06 0.22 0.45 4.20 0.13 87.88 0.97 6.08 
D3 d 0.12 1.07 0.92 3.73 0.12 32.10 49.12 12.82 
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Table 19. Distribution of metagenetic read percentages at genus level during cold storage of MP in MAP. At 

genus levels, the taxa representing <5% in relative abundance were merged in the category of “Others”. A, 

B, C and D, food companies; three batches each (1, 2, 3). At different storage temperature: 2°C (a), for a 

third of the shelf life at 2°C and for the rest of the shelf life at 8°C (b), 8°C (c), and 12°C (d). 

Sam
ples 

A
cinetobacter 

B
rochothrix 

E
nterobacter 

Lactobacillus  

Lactococcus 

Leuconostoc 

M
yroides 

Photobacterium
 

Pseudom
onas 

Serratia 

W
eissella  

O
thers  

A1 a 0.21 43.75 0.00 4.93 0.05 1.44 0.00 40.09 3.95 0.00 0.00 5.25 
A1 b 0.08 58.92 0.00 2.06 0.00 0.59 0.00 28.89 0.47 0.00 0.00 8.99 
A1 c 2.30 21.05 0.00 0.97 0.13 0.56 0.00 66.71 0.35 0.00 0.00 7.74 
A1 d 22.06 52.19 0.00 2.02 0.02 1.02 0.00 18.55 0.37 0.00 0.00 3.69 
A2 a 0.00 3.23 0.00 1.74 0.31 0.38 0.00 85.12 0.33 0.00 4.16 4.64 
A2 b 0.02 18.31 0.00 0.17 0.07 3.11 0.00 68.27 0.37 0.00 9.12 0.52 
A2 c 0.00 12.38 0.00 0.43 0.06 12.95 0.00 55.43 0.23 0.00 12.78 5.53 
A2 d 2.40 57.40 0.00 0.42 0.03 1.19 0.00 34.41 0.32 0.00 2.43 1.23 
A3 a 0.00 3.23 0.00 11.52 0.27 1.63 0.00 77.79 0.16 0.00 0.00 5.23 
A3 b 0.00 2.53 0.00 1.60 0.07 0.72 0.00 91.85 0.02 0.00 0.00 3.19 
A3 c 0.00 0.87 0.00 2.79 0.09 0.26 0.00 93.48 0.07 0.00 0.00 2.37 
A3 d 0.00 13.91 0.00 1.25 0.07 0.18 0.00 81.58 0.02 0.00 0.00 2.99 
B1 a 0.04 77.10 0.00 0.00 0.10 0.08 0.00 0.72 14.18 0.02 0.00 6.77 
B1 b 0.13 87.70 0.00 0.15 0.21 0.92 0.00 0.61 3.96 0.10 0.06 5.94 
B1 c 1.56 87.60 0.00 0.65 0.26 1.62 0.00 3.03 1.64 0.73 0.00 2.83 
B1 d 1.98 90.02 0.00 0.41 0.18 0.46 0.00 0.68 1.47 2.20 0.00 2.25 
B2 a 2.63 44.51 0.00 0.60 0.37 0.35 28.26 1.96 13.29 0.22 0.00 7.01 
B2 b 2.57 55.77 0.00 0.30 0.00 0.27 0.05 29.19 2.30 0.99 0.00 8.21 
B2 c 26.03 52.63 0.00 0.48 0.03 0.08 0.14 12.51 1.89 1.80 0.00 3.31 
B2 d 63.24 25.60 0.00 0.27 0.03 0.09 3.38 0.39 2.40 1.99 0.00 0.90 
B3 a 0.03 4.67 0.00 39.74 0.00 46.66 0.00 0.60 5.21 0.00 0.00 2.52 
B3 b 0.05 1.31 0.00 10.99 0.00 62.29 0.00 19.57 2.67 0.08 0.00 2.54 
B3 c 32.16 1.45 0.00 1.18 0.05 11.56 0.00 44.57 0.93 0.35 0.00 7.38 
B3 d 47.49 5.56 0.00 7.06 0.19 13.60 0.00 8.61 2.16 11.25 0.00 1.56 
C1 a 0.04 77.10 0.00 0.00 0.10 0.08 0.00 0.72 14.18 0.02 0.00 6.77 
C1 b 0.13 87.70 0.00 0.15 0.21 0.92 0.00 0.61 3.96 0.10 0.06 5.94 
C1 c 1.56 87.60 0.00 0.65 0.26 1.62 0.00 3.03 1.64 0.73 0.00 2.83 
C1 d 1.98 90.02 0.00 0.41 0.18 0.46 0.00 0.68 1.47 2.20 0.00 2.25 
C2 a 0.06 0.21 0.37 15.56 29.44 42.07 0.00 8.25 0.00 0.03 0.00 2.59 
C2 b 0.00 0.36 1.13 30.15 18.85 27.30 0.00 2.40 0.16 0.58 0.00 9.48 
C2 c 0.03 0.15 0.55 8.96 2.32 2.11 0.00 80.62 0.03 0.10 0.00 4.35 
C2 d 0.03 0.43 0.06 6.76 1.30 0.35 0.00 72.89 0.00 0.00 0.00 17.54 
C3 a 0.00 0.09 0.00 0.42 0.94 0.02 0.00 95.03 0.00 0.00 0.00 3.50 
C3 b 0.00 0.05 0.00 1.12 2.88 0.11 0.00 94.04 0.00 0.00 0.00 1.71 
C3 c 0.00 0.15 0.13 0.69 3.58 0.08 0.00 91.61 0.05 0.00 0.00 3.41 
C3 d 0.81 1.49 8.59 11.51 9.68 0.60 0.00 29.12 0.55 4.75 0.00 24.06 
D1 a 0.40 11.96 0.00 0.15 0.30 0.02 0.00 1.66 80.04 0.30 0.00 3.16 
D1 b 0.05 80.42 0.00 1.19 0.38 8.49 0.00 0.28 4.34 0.00 0.00 3.57 
D1 c 0.05 71.83 0.00 0.19 2.99 0.99 0.00 19.27 1.11 0.00 0.00 2.87 
D1 d 13.51 66.96 0.00 0.20 0.11 0.31 0.00 1.00 13.14 0.02 0.00 4.31 
D2 a 0.20 7.77 0.00 8.68 8.14 60.50 0.00 0.25 0.84 0.00 9.77 2.08 
D2 b 0.05 2.45 0.00 1.53 26.90 62.02 0.00 1.55 0.18 0.00 0.05 5.19 
D2 c 0.00 8.29 0.00 0.26 69.19 16.21 0.00 1.96 0.14 0.00 0.00 3.33 
D2 d 0.00 4.47 0.00 1.94 78.91 7.77 0.00 4.08 0.07 0.00 0.02 2.60 
D3 a 0.13 84.17 0.00 3.04 0.09 2.65 0.00 0.24 1.43 0.02 0.00 7.85 
D3 b 0.09 87.19 0.00 1.12 0.15 1.78 0.00 1.72 0.26 0.02 0.00 7.52 
D3 c 0.15 81.60 0.13 0.40 2.82 1.06 0.00 12.88 0.08 0.03 0.00 0.54 
D3 d 16.00 51.43 2.04 5.61 4.83 0.37 0.00 6.15 1.02 4.32 0.00 7.99 
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Figure 18. Cumulated histograms of the relative abundance (%) of taxa and the dynamics of the bacterial 

community identified by metagenetic at Family levels, during cold storage of minced pork in relation to the 

food packaging and the origin of samples (food companies and batches). (A) food samples analyzed at day 0 

for the four companies (A, B, C and D), (B) storage in FW, (C) storage in MAP. At Family levels, the taxa 

representing <5% in relative abundance were merged in the category of "Others". Legend: batch 1 (B1), batch 

2 (B2), batch 3 (B3), at 2°C (2), at 8°C (8), at 12°C (12), and for a third of the shelf life at 2°C and for the 

rest of the shelf life at 8°C (2/8). 
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Figure 19. Cumulated histograms of the relative abundance (%) of taxa and the dynamics of the bacterial 

communities identified by metagenetic at genus levels, during cold storage of minced pork in relation to the 

food packaging and the origin of samples (food companies and batches). (A) food samples analyzed at day 0 

for the four companies (A, B, C and D), (B) storage in FW, (C) storage in MAP. At genus levels, the taxa 

representing <5% in relative abundance were merged in the category of "Others". Legend: batch 1 (B1), batch 

2 (B2), batch 3 (B3), at 2°C (2), at 8°C (8), at 12°C (12), and for a third of the shelf life at 2°C and for the 

rest of the shelf life at 8°C (2/8). 
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3.5. Effect of the food packaging on the bacterial communities 

 

However, although dominant genera were identified across all samples, the two different types 

of packaging were characterized by different microbiota, with only some genera in common (Figure 

20). At the end of the shelf life, Pseudomonas was more present in FW and this genus was potentially 

replaced by Brochothrix in MAP (Welch’s t-test, p-value<0.05) (Figure 21).  

 

 
Figure 20. Principal component analysis for 16S rRNA gene sequence data in FW and MAP, among different 

origin (food companies and batches) and storage temperatures.  

 

At this time, the major OTUs groups (Figure 22) are therefore different according to the food 

packaging: B. thermosphacta, Lb. algidus, Ph. kishitanii, Ph. phosphoreum, Ps. psychrophila and 

Pseudomonas sp. are dominant in FW. While it concerns Acinetobacter sp., B. thermosphacta, 

Lb. algidus, Lc. piscium, Ln. inhae, Ln. gelidum, Leuconostoc sp., Ph. kishitanii, Ph. phosphoreum and 

Pseudomonas sp. in MAP.  
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Figure 21. Extended bar plot showing the bacterial populations whose mean relative abundance differed 

between FW and MAP at genus scale. The relative abundance and the difference in mean proportions are 

illustrated for the statistically different taxa (p < 0.05).  
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Figure 22. Heatmap of relative read abundance at species level for all samples (expressed in %) among the different storage conditions. Only the most abundant OTUs 

obtained in this study are specially indicated (>1%). Others OTUs are gathered in "Others OTUs". Legend: food companies (A, B, C and D), with three batches each 

(B1, B2, B3), analyzed at the first (0) and the last day of storage. Temperature of storage at 2°C (2), 8°C (8), 12°C (12), and for a third of the shelf life at 2°C and for 

the rest of the shelf life at 8°C (2/8).
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3.6. Variability of the minced pork ecosystem between samples 

 

Genus relative abundance shows a high Bray-Curtis dissimilarity during the storage, and 

between the food companies and batches (Figure 23).  

At day 0, samples showed a high dissimilarity (>70%) with the metadata groupings at the end 

of the shelf life. At this time, the food company A seems not to shared OTUs in common with the three 

others food industries.  

At the end of the shelf life, Bray-Curtis index seems indicating that a relative similarity exists 

for OTUs contained within food companies A and C, and within B and D. This index also indicates a 

relative similarity concerning the temperature of storage, except for the industry D.  

A synthetic view about the Bray-Curtis index between samples according to the food origin and 

storage condition is summarized in Table 20.   

 

 
Figure 23. Global microbial dissimilarity obtained by metagenetic between samples for different conditions 

of storage. The heatmap shows the Bray-Curtis dissimilarity measure based on relative abundance of OTUS 

(genus scale). Values are given in dissimilarity counts (1= 100% dissimilar, 0=0% dissimilar). Legend: 

analysis at day 0 (0), at day 3 (3) and at day 6 (6); food companies (A, B, C and D); three batches each (1, 2, 

3). Temperature of storage: 2°C in FW (a), for a third of the shelf life at 2°C and for the rest of the shelf life 

at 8°C in FW (b), 8°C in FW (c), 12°C in FW (d), 2°C in MAP (e), for a third of the shelf life at 2°C and for 

the rest of the shelf life at 8°C in MAP (f), 8°C in MAP (g), 12°C in MAP (h). 



Chapter 3  Experimental studies 

Study 1. Assessment of spoilage bacterial communities in food wrap and modified atmospheres-packaged minced pork samples 
by 16S rDNA metagenetic analysis. 

   90 

Table 20. Dominant bacteria represented in MP samples according to storage conditions. At species level, 

the taxa representing < 20% in relative abundance were not considered as dominant in this table.  

Food 
companies First day of storage  Last day of storage 

Batch FW MAP 

A Photobacterium sp., 
Ph. phosphoreum 

1 B. thermosphacta, 
Ph. kishitanii, 
Pseudomonas sp. 
 

B. thermosphacta, 
Ph. kishitanii 
 

2 B. thermosphacta,  
Ph. kishitanii, 
Pseudomonas sp.  
 

B. thermosphacta, 
Ph. kishitanii, 
Weissella sp. 
 

3 Ph. phosphoreum, 
Pseudomonas sp.  

Ph. phosphoreum 

B Pseudomonas sp., 
Ps. psychrophila 

1 B. thermosphacta, 
Ps. psychrophila 
 

B. thermosphacta, 
Ps. psychrophila 

2 B. thermosphacta, 
Photobacterium sp., 
Pseudomonas sp. 
 

Acinetobacter sp., 
B. thermosphacta, 
Photobacterium sp.  
 

3 Ph. kishitanii,  
Ph. phosphoreum, 
Pseudomonas sp. 

Acinetobacter sp., 
Lactobacillus sp.,  
Leuconostoc sp., 
Ln. gelidum, 
Photobacterium sp.,  
Ph. kishitanii 

C Photobacterium sp., 
Ph. kishitanii 

1 Lb.algidus, 
Ph. kishitanii 
 

Lb. algidus, 
Ln. carnosum, Ln. inhae,  
Ph. kishitanii 
 

2 Photobacterium sp., 
Ph. kishitanii, 
Pseudomonas sp., 
Ps. phychrophila 
 

Lb. algidus,  
Lc. piscium,  
Ln. inhae,  
Ph. kishitanii 

3 Ph. kishitanii, 
Pseudomonas sp.  

Ph. kishitanii 

D 
Pseudomonas sp., 
Ps. psychrophila, 

Ps. syncyanea 

1 B. thermosphacta, 
Pseudomonas sp., 
 

B. thermosphacta, 
Photobacterium sp.,  
Pseudomonas sp. 
 

2 Acinetobacter sp.,  
B. thermosphacta, 
Photobacterium sp., 
Ps. psychrophila 
 

B. thermosphacta,  
Lc. piscium, 
Ln. gelidum, Ln. inhae 
 

3 Acinetobacter sp.,  
Brochothrix sp.,  
B. thermosphacta, 
Pseudomonas sp., 

B. thermosphacta, 
Ph. kishitanii 
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Discussion 
 

In this study, we investigated the microbial spoilage community and dynamics of MP samples, 

among different conditions of production and food storage, using both 16S rRNA gene sequencing and 

classical microbiology. Indeed, whereas the dynamics of the bacterial community of meat and meat 

products have been studied before, Stoops et al. (2015) reported that little is known about differences in 

microbial changes during storage, and among the variability between the production batches. Meat and 

meat products are highly perishable, with colonization and development of a great variety of 

microorganisms (Chaillou et al., 2015; Garnier et al., 2017; Nychas et al., 2008; Pennacchia et al., 2009; 

Stellato et al., 2016). The product composition (low/high pH, low/high concentration of glucose, water 

activity, …) and the storage conditions (temperature of storage and packaging conditions for example) 

may favor growth of microorganisms, that are responsible for the formation of spoilage (Argyri et al., 

2015; Reid et al., 2017). This can lead to visible growth (slime, colonies), as textural changes, off-odors 

or off-flavors (Casaburi et al., 2014; Chaillou et al., 2015; Del Blanco et al., 2017; Stoops et al., 2015). 

In this context, minced meat is a potentially hazardous food product, vulnerable to bacterial spoilage, 

with a very short shelf life (Geeraerts et al., 2017) due to abundant and diverse substrates for bacterial 

growth and favorable growth conditions (Benson et al., 2014). In our study, the MP samples present a 

high water activity and a near-neutral pH which are in accordance with previous studies on this food 

matrix (Blixt and Borch, 2002; Andritsos et al., 2012).  

The initial contamination of products, and also the initial level of LAB, is also a key factor that 

can influence the spoilage dynamics during storage (De Filippis et al., 2013). In our results, the microbial 

counts of the four manufacturers were quite different and psychrotolerant counts were higher for two 

food industries (Tables 12 and 13). High levels of initial contamination in MP samples were also 

observed by Peruzy et al. (2019a). This difference of the initial bacterial contamination is not in relation 

with the size of the company. These results can be explained by the fact that multiple sources of 

contamination can contribute to the initial composition of the meat microbiota (De Filippis et al., 2013), 

such as at the farm (hygiene practices, the conditions of animal transport, etc.) and at the slaughterhouse 

(automatic level of the process, cleaning practices, etc.). Initial carcass contamination can be also 

environmental, with contamination by tools, machines, and surfaces of slaughter equipment (Mann et 

al., 2016; Moretro and Langsrud, 2017). In addition, subsequent handling of meat in the operations of 

slicing, sectioning, portioning, and transferring in packages can determine further contamination in the 

handling points (Del Blanco et al., 2017).  
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The bacterial count at the end of the shelf life was over 7.0 log CFU/g, indicating that meat had 

probably begun to be deteriorated and would not be suitable for human consumption (Zhao et al., 2015). 

Indeed, it is generally recognized that microbial spoilage of meat occurs when counts reach arbitrary 

level between 7.0 log CFU/g (Nychas et al., 2008; Pothakos et al., 2014; Reid et al., 2017; Spanu et al., 

2018; Stoops et al., 2015) and 8.00 log CFU/g (Chaillou et al., 2015; Fall et al., 2012; Nychas et al., 

2008; Pothakos et al., 2014; Reid et al., 2017). However, these values are only indicative and refer here 

to the total viable count. Food spoilage needs to be assessed to the genus-species level, because 

potentially protective bacteria can also occur in food products.  

As discussed by Del Blanco et al. (2017), common approaches for delaying meat spoilage and 

improving meat shelf life are available, including good hygienic practices and all the storage conditions. 

Among these, low storage temperatures and adequate packaging are considered as the most important 

factors (Koutsoumanis et al., 2006; Andritsos et al., 2012; DeKaur et al., 2017). During the storage at 

2°C, the arbitrary level of 7.0 log CFU/g was sometimes not reached. In addition, it can be observed that 

the microbial kinetics from 2°C to 8°C were quite similar to those at 8°C, as described by Cauchie et al. 

(2017).  

In relation with the food packaging, the most common used in meat and meat products are VP 

and MAP (Caryé et al., 2005; Chaix et al., 2015a; Dalcanton et al., 2013; Koutsoumanis et al., 2008; 

Silbande et al., 2016). In this study, FW and MAP (30% CO2 – 70% O2) packaging are used. The 

composition of modified atmosphere systems can be an effective way to reduce the growth rate of 

spoilage aerobic organisms and modify the microbial ecology of the product. But their effectiveness 

strongly depends on the initial microbial contamination of raw materials, storage temperature, film 

permeability and the carbon dioxide concentration used (20-40% is commonly used to slow microbial 

growth) (Simpson and Carevic, 2004; Rotabakk et al., 2006; Stoops et al., 2015; Guillard et al., 2016; 

Saraiva et al., 2016; Couvert et al., 2017). The carbon dioxide concentration was here theoretically 

sufficient to limit the microbial growth. However, the higher percentage of oxygen can also enhance the 

growth of aerobic microbial communities in our samples. Moreover, some bacteria are able to grow in 

variable food packaging, as Photobacterium which is CO2-tolerant (Dalgaard et al., 1995; Fuertes-Perez 

et al., 2019). Also, in accordance with Stoops et al. (2015), it can be observed a significant production 

of carbon dioxide. This production may be the reflect of the development of bacterial groups belonging 

to LAB, Brochothrix or Enterobacteriaceae (Caryé et al., 2005). As environment of slaughtering and 

processing steps (Stellato et al., 2016), packaging materials can also be a source of contamination 

because they are not sterile in this study. Further studies based on microbial contamination of food trays 

would also be interesting. 

According to this, and based on the study by Stoops et al. (2015), viable counts are not suitable 

to characterize the microbial diversity of food products and to investigate thoroughly shifts in the 
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bacterial communities during storage. Indeed, culture-dependent techniques largely underestimated the 

species richness and abundance. For a more detailed characterization of microbial communities in 

samples, originating from different ecological niches, a sequence-based approach was used, allowing 

identification of OTUs at various taxonomic levels (species, genus or family levels) (Stoops et al., 2015). 

However, without extensive studies involving a large number of samples under different storage 

conditions it will not be possible to determine exactly the bacterial ecosystem and the role of individual 

spoilage species (Pennacchia et al., 2011; Rouger et al., 2018). According to this, we analyzed minced 

meat samples from four different food companies, with three different batches per industries. In addition 

to previous studies based on the microbial description of minced meat samples (Stoops et al., 2015, 

Peruzy et al., 2019a), our study aims to understand and monitor microbial dynamics and variability 

between food companies and food batches, according to different storage conditions.  

In our results, the observed microbial diversity was relatively high, and the most abundant 

bacteria differ among samples. As observed by Stoops et al. (2015) in minced meat samples, an increase 

of microbial counts is coinciding with a decrease in bacterial diversity during storage. At the end of the 

storage period, the major genus taxa are represented by Pseudomonas in FW and Brochothrix in MAP. 

But it can also be observed a high diversity between food companies and batches (Table 18). Our results 

are in accordance with Peruzy et al. (2019a), which also observed a dominance of the genus 

Pseudomonas, Brochothrix and Carnobacterium in MP samples. Moreover, these results are not 

surprising because the microbial populations of refrigerated meat and pork-meat products are mainly 

composed by Pseudomonas spp., cold-tolerant Enterobaceriaceae, LAB (such as Lactobacillus spp., 

Lactococcus spp., Leuconostoc spp., Carnobacterium spp., etc.), B. thermosphacta, Clostridium spp. 

(Casaburi et al., 2014; Del Blanco et al., 2017; Geeraerts et al., 2017; Koort et al., 2005; Liu et al., 2006; 

Nychas et al., 2008; Pennacchia et al., 2009; Pennacchia et al., 2011; Stellato et al., 2016) and Weissella 

spp. (Pothakos et al., 2014; Stellato et al., 2016). Other genera isolated frequently from fresh pork meats 

are Acinetobacter spp., Aeromonas spp., Enterococcus spp. and Moraxella spp. (Mann et al., 2016; Zhao 

et al., 2015). However, these results are not completely in accordance with Stoops et al. (2015) because 

this study mentioned that Lb. algidus and Leuconostoc sp. became the dominant bacteria in minced meat 

samples stored at 5°C under MAP (66% O2, 25% CO2 and 9% N2). These differences can be explained 

by different meat compositions (beef in the study by Stoops et al. (2015) and pork in our study), the 

initial contamination of samples, and the gas mixture used.  

The results also showed the interest of using culture-independent method to better understand 

the changes of food microbiota over time, and in each food companies, according to the storage 

conditions. Indeed, metagenetic approach produce a large amount of data in a very short time (Cocolin 

et al., 2018, den Besten et al., 2018), allowing to interpret and use these data to help agri-food companies 

in their decisions regarding food safety and quality decisions. Moreover, all the OTUs-species described 
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as potentially spoilers in our study are well described in the literature (Table 21), and in MP samples 

(Peruzy et al., 2019a; Stoops et al., 2015). The bacterial species present in our samples are also able to 

grow in meat matrices, and they are potentially responsible of spoilage effects, which can affect color, 

flavor, visual aspect, etc. (Pothakos et al., 2015). Sensory analyses would be interesting in this context, 

but were not performed in this study. Moreover, the enzymatic decarboxylation of amino acids, or the 

transamination of aldehydes and ketones, by bacteria results in the formation and accumulation of BAs 

(Jastrzebska et al., 2016). Biogenic amines (e.g.: b-phenylethylamine, cadaverine, histamine, putrescine, 

spermidine, spermine, tyramine and tryptamine) are reported in various foods including meat, fish, 

cheese and wine (Papageroegiou et al., 2018). They can have health implications, such as allergic 

reactions, but also contribute to spoilage due to their putrid aroma (Stanborough et al., 2017). Therefore, 

as proposed by Cheng et al. (2016), the sum of BAs could be used as an indicator of pork meat quality 

and freshness during storage. Li et al. (2014) also showed that some BAs could be used as spoilage 

indicators of chilled pork. 

However, it is important to add that some bacteria can be considered as protective, such as some 

LAB. As mentioned by Singh et al. (2018), the presence of high LAB communities does not necessarily 

result in quality defect, and their intra-species variation to cause spoilage has already been recognized 

(Pothakos et al., 2015).  

In the present study, we designed a method to collect MP samples in order to explore the 

bacterial communities and diversity among different food origin and storage conditions. Indeed, the 

modification of the composition of the spoilage microbiota during storage is an important factor in 

assessing food quality (Holm et al., 2013). Although the bacteria consistently dominated the microbiota 

of MP samples are known, results indicated that bacterial diversity needs to be addressed on the level of 

food companies and batches variations. As discussed by Rouger et al. (2017), it is important to overcome 

variability to better understand the factors underlying the diversity of spoilage bacterial communities, 

by (i) defining reproducible and reliable experimental conditions to lead to biological interpretation, or 

(ii) to multiplying sampling or experiments to obtain statistical significance of the results (Chaillou et 

al., 2015; Rouger et al., 2017). A seasonal effect on the microbial quality of minced meat has also been 

reported by Andritsos et al. (2012). In this paper, no conclusions about bacterial ecosystems for others 

food companies, or for different times of the year, should be dawn. Further data are so needed to 

determine diversity of spoilage microbiota in MP samples, according to others food industries, sampling 

periods and storage conditions. Also, a comparative evaluation of spoilage-related bacterial species and 

metabolic profiles, with growth parameters of these potentially spoilage bacteria in samples, will be 

studied in another study.  

In conclusion, the combination of both culture-dependent and culture-independent analyses 

enabled us to explore the microbial communities of MP samples under different food origin and storage 
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conditions, as previously described by Stoops et al. (2015). In our study, microbial changes during 

storage were monitored, according to a sampling in four food companies and for several batches. In 

accordance with previous studies we found that Pseudomonas and Brochothrix dominate the community 

at the end of the shelf life in FW and MAP, respectively, together with Photobacterium. The major 

OTUs groups are also often associated with pork meat spoilage in the scientific literature. And these 

results are also in accordance with studies conducted on the microbiota of minced meat by Stoops et al. 

(2015) and Peruzy et al. (2019a). Psychrophilic spoilers dominated the microbiota of our samples, but 

each sample harbored a unique pork meat microbiota, depending on the manufacturing batch and the 

packaging used. The gas mixture and the temperature condition used in this study are probably the most 

important factors implied to the dynamics of the bacterial community. Further researches on the main 

contamination during slaughter production process, such as importance of processing environment, 

procedures and storage conditions, are desirable to provide a complete assessment of the microbiota of 

minced meat and to limit incidents of unexpected spoilage.  
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Table 21. Examples of some microbial species occurring during chilled storage of meat and their potential 

spoilage effects. 
Bacteria Growth conditions Spoilage effects References 
Actinetobacter spp. Especially present in dairy and 

seafood products.  
Low spoilage potential but can 
enhanced the growth of other spoilage 
bacteria by means of quorum sensing.  

Ghasemi-Varnamkhasti et al., 
2018; Hahne et al., 2019; 
Odeyemi et al., 2018a; Pinu, 2016.  

 
Brochothrix spp.  

 
In different gas composition, 
such as under air, modified 
atmosphere and vacuum 
packaging. More tolerant in 
oxygen-depleted and CO2-
enriched environments.  

 
Sour, acid and cheesy odor.  

 
Del Blanco et al., 2017; 
Doulgeraki et al., 2012; Ercolini et 
al., 2011; Koutsoutamis et al., 
2008; Nychas et al., 2008; Mann 
et al., 2016; Mansur et al., 2019; 
Reid et al., 2017; Zhao et al., 
2015.  

 
Carnobacterium spp.  

 
In all types of packaging 
conditions. Predominance in 
low O2 packaging.  

 
Spoilage effect can vary, producing 
volatile molecules with low sensory 
impacts (fruity or fermented odors, …) 

 
Casaburi et al., 2011; Doulgeraki 
et al., 2012 ; Pothakos et al., 2015.  
 

 
Lactobacillus spp.  
(Lb. sakei, 
Lb. fuchuensis, 
Lb. plantarum, 
Lb. curvatus, 
Lb. algidus, 
Lb. oligofermentans, 
…)  

 
In all types of packaging 
conditions. Predominance with 
high concentration of CO2.  

 
Severe acidification, emission of off-
odor compounds and ropy slime. 
However, LAB may produce lactic 
acid, which inhibits the growth of other 
families of bacteria. And some species 
can produce bacteriocins. 

 
Alvarez-Sieiro et al., 2016; 
Dalcanton et al., 2013; Doulgeraki 
et al., 2012; Fadda et al., 2010; 
Kato et al., 2000; Mann et al., 
2016; Mansur et al., 2019; 
Nieminen et al., 2015; Pothakos et 
al., 2015; Stefanovic et al., 2017; 
Woraprayote et al., 2016; Zhao et 
al., 2015. 

 
Lactococcus spp.  

 
In various types of packaging.  

 
Traditionally they have not been 
considered as spoilage 
microorganisms, but the spoilage 
potential of these bacteria is still 
scarcely known.  

 
Dalcanton et al., 2013; Doulgeraki 
et al., 2012; Kato et al., 2000; 
Mann et al., 2016; Mansur et al., 
2019; Pothakos et al., 2014; 
Rahkila et al., 2012; Zhao et al., 
2015.  

 
Leuconostoc spp. 
(Ln. gelidum, 
Ln. carnosum, 
Ln. mesenteroides, …) 

 
Under aerobic, vacuum and 
modified atmosphere 
packaging. Predominance with 
high concentration of O2. 

 
Buttery aroma, formation of slime, 
blowing of packages, green 
discoloration.  

 
Dalcanton et al., 2013; Doulgeraki 
et al., 2012; Kato et al., 2000; 
Mann et al., 2016; Mansur et al., 
2019; Nieminen et al., 2015; 
Pothakos et al., 2015; Zhao et al., 
2015. 

 
Photobacterium spp.  

 
Under air, vacuum and modified 
atmosphere packaging. More 
frequently present in seafood 
products.  

 
Typically not associated with spoilage 
of meat. Responsible for reducing 
TMAO to TMA, off-odor (produce 
volatile organic compounds) and 
biogenic amine formation. The 
mechanism underlying spoilage has 
not been clarified. 

 
Ast et al., 2007; Bjornsdottir-
Butler et al., 2016; Fogarty et al., 
2019; Jääskeläinena et al., 2019; 
Kuuliala et al., 2018; Li et al., 
2019a; Moretro et al., 2016; 
Nieminen et al., 2016.  

 
Pseudomonas spp.  

 
In different gas composition, 
such as under air, modified 
atmosphere and vacuum 
packaging.  
Predominance under aerobic 
low temperature.  
Limitation in the bacterial 
microbiota by the presence of 
CO2 and/or the limitation of O2 
in MAP.  

 
Slime, discoloration, off-odor 
producing.  

 
Andritsos et al., 2012; Del Blanco 
et al., 2017; Doulgeraki et al., 
2012; Ercolini et al., 2011; 
Koutsoumanis et al., 2008; Liu et 
al., 2018; Nychas et al., 2008; 
Mann et al., 2016; Mansur et al., 
2019; Reid et al., 2017; Spanu et 
al., 2018; Zhao et al., 2015.  

 
Weissella spp. 

 
Some can be found in salted and 
fermented foods. Present in 
vacuum packaging.  

 
Greenish appearance. Can plays an 
important role in the fermentation 
process. Some species can produce 
bacteriocins.  

Kariyawasam et al., 2019; Kim et 
al., 2017; Martins et al., 2016; 
Pothakos et al., 2015. 
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Abstract 
 

Þ Objective 1. Study the natural microbiota of white pudding 
 
Þ Objective 2. Characterize specific spoilage bacteria dynamics and 
use them as inputs in models for white pudding 
 

In order to control FLW, monitoring the microbial diversity of food products, during processing 

and storage is important, as studies have highlighted the metabolic activities of some microorganisms 

which can lead to spoilage. Knowledge of this diversity can be greatly improved by using a metagenetic 

approach based on high throughput 16S rRNA gene sequencing, which enables a much higher resolution 

than culture-based methods. Moreover, the Jameson effect, a phenomenon described by Jameson in 

1962, is often used to classify bacterial strains within an ecosystem. According to this, we have studied 

the bacterial microbiota of Belgian WP during storage at different temperatures using culture-dependent 

and -independent methods. The product was inoculated with a mix of dominant strains previously 

isolated from this foodstuff at the end of its shelf life (C. maltaromaticum, Lb. fuchuensis, Lb. graminis, 

Lb. oligofermentans, Lc. lactis, Ln. mesenteroides, R. terrigena and Serratia sp.). Daily during 16 days, 

the absolute abundance of inoculated strain was monitored by combining total count on plate agar and 

metagenetic analysis. The results were confirmed by qPCR analysis. The growth of each species was 

modelled for each temperature conditions, representative of good or bad storage practices. These data 

allowed the bacterial strains subdivision into three classes based on criteria of growth parameters for the 

studied temperature: the “dominant”, the “subdominant” and the “inhibited” bacterial species, according 

to their maximal concentration (Nmax, log CFU/g), growth rate (µmax, 1/h) and time to reach the stationary 

phase (TRSP, days). Thereby, depending on the storage conditions, these data have permitted to follow 

intrinsically the dyanmics of each strain on the bacterial ecosystem of Belgian WP. Interestingly, it has 

shown that the reliability of the Jameson effect can be discussed. For example, at 4°C when Lc. lactis 

and Serratia sp. stopped growth at day 12, at the same time C. maltaromaticum reached its maximal 

concentration and entered its stationary phase. In opposition to this, it can be noticed that in the same 

condition, the “sub-dominant” organisms continued their growth independently of the “dominant” 

species behavior. In this case, the Jameson effect was not illustrated. This pattern is described for all 

storage conditions with the same strain classifications. These results highlighted the importance of 
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combining metagenetic analysis and classical methods, with modeling, to offer a new tool for studying 

the dyanmics of microorganisms present in perishable food within different environmental conditions.



Chapter 3  Experimental studies 

Study 2. The use of 16S rRNA gene metagenetic monitoring of refrigerated food products for understanding the kinetics of 
microbial subpopulations at different storage temperatures: the example of white pudding.  

 101 

 

Introduction 
 

In past years, scientists who study the safety of highly perishable food products have focused 

their work on the detection and the control of pathogenic microorganisms. However, Food Law 

(Regulation (EC) N°178/2002) also integrates all products that are unfit for human consumption because 

of contamination, deterioration, decomposition or rotting into the definition of unsafe food. Around a 

third of all food produced for human consumption on Earth is lost or wasted. In Europe, the losses of 

initial meat production represent 20% and more than half of this occurs at animal production, 

slaughtering, processing and distribution steps (Food and Agriculture Organization, 2011; Kergourlay 

et al., 2015). These data highlight the importance of managing the microbiological quality of food 

products. Indeed, among the reasons for FLW, spoilage by bacteria that contaminate the food matrix 

and are able to develop during transformation steps and storage is a major issue (Lipinski et al., 2013; 

Remenant et al., 2015). For a clear and complete understanding of the mechanisms that lead to the 

spoilage of food products, classical microbiology is not sufficient. Fortunately, molecular technologies 

can elucidate the microbial communities, including the identification and quantification of culturable 

and non-culturable organisms, and can do so at a much higher resolution than was previously possible 

with culture-based methods (Kergourlay et al., 2015; Elizaquível et al., 2015). Many bacterial species 

putatively responsible for food spoilage have been reported, thanks to the development of high 

throughput sequencing methods, that allow for a more detailed and deeper description of bacterial 

species present in food (Benson et al., 2014; Chaillou et al., 2015; Delcenserie et al., 2014; Galimberti 

et al., 2015; Riquelme et al., 2015). These works are mainly limited to the description of the product's 

microbiota during its shelf life. However, spoilage is a complex process, resulting most often from 

incorrect storage temperatures and bacterial functions that are not fully understood. Spoilage is not only 

species and strain dependent, but also the result of interactions between strains. Few studies have 

described the dynamics of a whole microbiota in a food matrix with consideration of the storage 

parameters (Ercolini et al., 2011; Nieminen et al., 2012).  

The present study proposes to follow the dynamics of the main bacterial species present in a 

famous Belgian meat product: the white pudding. For this, we inoculated a mix of strains previously 

isolated from aging tests on the same food matrix. The mix of inoculated strains has been studied in 

challenge tests at different storage temperatures, representative of good or bad practices. The growth of 

the added bacteria has been assessed daily at the same time by combining classical microbiology and 
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16S rRNA metagenetic analysis (Esposito and Kirschberg, 2014) with the goal of obtaining quantitative 

results for each strain and to study their respective kinetics. Quantitative PCR (qPCR) analysis targeted 

on corresponding bacterial genera was used in order to validate the metagenetic approach.  

There are two objectives in this study: the first is to reinforce the importance of combining classical 

microbiology and metagenetic analysis, with modeling, as a new tool to follow the dynamics of 

microorganisms present in perishable food within different environmental conditions. This approach 

can examine the potential for next-generation DNA sequencing methods to elucidate the detailed 

dynamics of microbial population during spoilage. To this end, a combination of metagenetic and 

traditional microbiological methods were used to quantify the microbiota of Belgian WP. The second is 

providing knowledge on the composition and dynamics of the emblematic bacterial species components 

of WP, and shown how it is affected by storage temperature.  
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Material and methods 
 

2.1. Food samples and selection of bacterial strains 

 

The strains used in this study were previously isolated from Belgian WP at the end of their use-

by date, by one Belgian manufacturer (five batches analyzed), after storage for a third of the storage 

period at 4°C and the remaining time at 8°C following the guidelines for implementing microbiological 

durability tests of chilled perishable and highly perishable foodstuffs (NF EN V01-003, 2010). The 

results of these first aging tests are not shown in this paper. Eight of the natural predominant strains 

isolated at the end of the shelf life, represented together more than 50% of the natural microbiota, were 

identified by sequencing of their 16S rRNA genes and used for the challenge-tests: C. maltaromaticum, 

Lb. fuchuensis, Lb. graminis, Lb. oligofermentans, Lc.lactis, Ln. mesenteroides, R. terrigena and 

Serratia sp. For this study, a short 16 days shelf life was evaluated for the Belgian WP.  

Bacterial strains were stored at −80°C in nutrient broth with 30% glycerol as a cryoprotective agent. 

Before use, strains were transferred from the −80°C culture collection to Brain Heart Infusion (BHI) 

broth for C. maltaromaticum, R. terrigena and Serratia sp., and de Man, Rogosa and Sharpe (MRS) 

broth for Lb. fuchuensis, Lb. graminis, Lb. oligofermentans, Lc. lactis and Ln. mesenteroides for 48 h at 

22°C. The cultures were incubated overnight at 4 °C before inoculation.  

 

2.2. Challenge tests 

 

Thirty-three kilograms of white pudding (each 150 g) were received from a Belgian 

manufacturer the day following their production and stored at 4°C (composition: pork meat 64%, milk, 

bread, onions, salt and spices. No sugar was added). The natural microbiota was considered as 

insignificant because these products were inoculated by a concentrate mix of eight bacterial species who 

dominate the initial indigenous microbiota. The surface products were inoculated by soaking for 2 min 

in a bath of sterile water containing a mix of the eight bacterial strains at the same concentrations with 

the goal of reaching an approximatively global concentration of 3 log colony forming units (log CFU/g 

on the product), in duplicate (n = 192). Non-inoculated control samples were soaking for the same time 

in a bath of sterile water only, in duplicate (n = 24). After a drying step of 20 min at 10°C, WP were 

packed (300 g) in a tray (PP/EVOH/PP) under MAP (CO2 30%/N2 70%, Olympia V/G, Technovac, 

Italy) using packaging wrap (polyester 10 µm, homopolymer polypropylene 50 µm, NutriPack, France). 
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According to the shelf life of the product, inoculated samples were stored at different temperatures, 

constant or dynamic: (i) for 16 days at 4°C (4°C), (ii) for 16 days at 8°C (8°C), (iii) for 16 days at 12°C 

(12°C), (iv) for 4 days at 4°C and for 12 days at 8°C (4–8°C), (v) for 4 days at 4°C, followed by a break 

of 4 h at 20°C than 12 days at 4 °C (4/20–4°C), (vi) 4 days at 4°C, followed by a break of 4 h at 20°C 

then 12 days at 8 °C (4/20–8°C). Control samples were only stored at the first day and at day 16.  

 

2.3. Incubation and enumeration by conventional microbiological method 

 

Each day during the 16-day storage period except on day 2, 25 g of product were put into a 

Stomacher bag with a mesh screen liner (80 µm pore size) (bioMérieux, Basingstoke, England, ref 

80015) under aseptic conditions. Physiological water (225 mL) was automatically added to each bag 

(Dilumat, Biomérieux, Belgium) and the samples were homogenized for 2 min in a Stomacher 

(Bagmixer, Interscience, France). From this primary suspension, decimal dilutions in peptone water (1 

g/L peptone, 8.5 g/L sodium chloride) were prepared for microbiological analysis and 0.1 mL aliquots 

of the appropriate dilutions were plated onto media for each analysis in duplicate (Spiral plater, DW 

Scientific, England). A total count was made on Plate Count Agar (PCA) at 22°C for 48 h for the 

psychrophilic aerobic plate count, using the modified method specified by the International Organization 

for Standardization [ISO (2013, ISO 4833-2)]. Graphs were plotted with each of the day time points 

over the 16-day storage period (n = 192). Non-inoculated products were only analyzed at day 1 and day 

16 (n = 24).  

 

2.4. Total DNA extraction 

 

Bacterial DNA was directly extracted from each primary suspension, which had been stored at 

−80°C, using the DNeasy Blood & Tissue DNA Extraction kit (Qiagen, Venlo, Netherlands), following 

the manufacturer's recommendations. The resulting DNA extracts were eluted in DNAse/RNAse free 

water and their concentrations and purity were evaluated by means of optical density using the 

NanoDrop ND-1000 spectrophotometer (Isogen, St-Pieters-Leeuw, Belgium). The quality and quantity 

of the products were confirmed by Picogreen double-stranded DNA (dsDNA) quantitation assay 

(Isogen, St-Pieters- Leeuw, Belgium). DNA samples were stored at −20°C until use for 16S rRNA gene 

pyrosequencing and qPCR analysis.  
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2.5. Bacterial 16S rRNA gene amplification and barcoded pyrosequencing 

 

16S rRNA PCR libraries targeting the V1–V3 hypervariable region were generated. Primers E9-

29 and E514-430 (Brosius et al., 1981), specific for bacteria, were selected for their theoretical ability 

to generate the lowest amplification bias relative to amplification capability among the various bacterial 

phyla (Wang and Qian, 2009). The oligonucleotide design included 454 Life Sciences A or B sequencing 

titanium adapters (Roche Diagnostics, Vilvoorde, Belgium) and multiplex identifiers (MIDs) fused to 

the 5′ end of each primer. The amplification mix contained 5 units (U) of FastStart high fidelity 

polymerase (Roche Diagnostics, Vilvoorde, Belgium), 1× enzyme reaction buffer, 200 µM 

deoxynucleotide triphosphates (dNTPs) (Eurogentec, Liège, Belgium), 0.2 µM of each primer and 100 

ng of genomic DNA in a final volume of 100 µL. Thermocycling conditions consisted of a denaturation 

step of 15 min at 94°C, followed by 25 cycles of 40 s at 94°C, 40 s at 56°C, and 1 min at 72°C, with a 

final elongation step of 7 min at 72°C. These amplifications were performed on an EP Mastercycler 

Gradient System apparatus (Eppendorf, Hamburg, Germany). The PCR products were run on 1% 

agarose gel electrophoresis and the DNA fragments were plugged out and purified using a Wizard SV 

PCR purification kit (Promega Benelux, Leiden, Netherlands). The quality and quantity of the products 

were assessed by Picogreen dsDNA quantitation assay (Isogen, St-Pieters-Leeuw, Belgium). Equal 

amounts of each of the PCR products were pooled and subsequently amplified by emulsion PCR. 

Pyrosequencing was performed with the Illumina sequencer (Illumina, Eindhoven, Netherlands) (2 × 

300 bp). A mean 19,581 of reads per day were analyzed for all temperature conditions.  

 

2.6. Bioinformatics and data analysis 

 

The 16S rRNA gene sequence reads were processed with MOTHUR (Pothakos et al., 2014; 

Schloss et al., 2009). The quality of all sequence reads was denoised using the Pyronoise algorithm 

implemented in MOTHUR. The sequences were checked for the presence of chimeric amplification 

using ChimeraSlayer (developed by the Broad Institute, http://microbiomeutil.sourceforge.net/#A_CS). 

The obtained reads sets were compared to a reference dataset of aligned sequences of the corresponding 

region derived from the SILVA database of full-length rRNA gene sequences (http://www.arb-silva.de/) 

implemented in MOTHUR (Pothakos et al., 2014). The final reads were clustered into OTUs using the 

nearest neighbor algorithm using MOTHUR with a 0.03 distance unit cut off. A taxonomic identity was 

attributed to each OTU by comparison to the SILVA database using an 80% homogeneity cut off. As 

MOTHUR is not dedicated to the taxonomic assignment beyond the genus level, all unique sequences 

for each OTU were compared to the SILVA dataset 111 using a BLASTN algorithm (Delcenserie et al., 

2014; Pothakos et al., 2014). For each OTU, a consensus detailed taxonomic identification was given 
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based upon the identity (<1% mismatch with the aligned sequence) and the metadata associated with the 

best hit (validated bacterial species or not) (Delcenserie et al., 2014; Pothakos et al., 2014).  

 

2.7. Estimate abundance results 

 

The PCA results of the microbiota at 22°C (expressed in log CFU/g) and the relative proportions 

of strains given by metagenetic (expressed in %) were combined in order to obtain estimate counts for 

the strains (in log CFU/g). For this, relative abundance of bacteria obtained by metagenetic results were 

reported over the PCA real value (Equation 14). Indeed, thanks to the plate counts estimates, the 

proportions of the bacterial populations were transformed into concentrations. These results were used 

for statistical and graphical analysis.  

Cbacterial species = (Ctotal microbiota x Preads of bacterial species) / 100 (14)  

Where Cbacterial species is the estimated abundance concentration in the sample (log CFU/g), Ctotal microbiota is 

the bacterial concentration per samples in the PCA analysis (log CFU/g), and Preads of bacterial species is the 

proportion of reads for the bacterial species per sample in the metagenetic analysis (expressed in % of 

the total number reads in the sample).  

 

2.8. qPCR analysis 

 

The primers described in Table 22 were used for real-time PCR assay analysis using the 

Lightcycler 480 system (Roche, Basel, Switzerland). The real-time PCR reaction mixtures were 

combined in a 12 µL final volume containing 6 µL of LC 480 probe master mix (Roche, Basel, Switzer- 

land), 2 µL of template DNA (at 5 ng/µL), 0.25 µL of primer pairs (10 µM each), 0.125 µL of Taqman 

probe (10 µM). The reaction conditions included the initiation step off 10 min at 95°C, followed by 40 

cycles of 15 s at 95°C and 1 min at 60°C. The real-time system is supplied with the Lightcycler 480 

Software version 1.5 using unique Roche algorithms for highly accurate and robust automated data 

analysis. Serial dilutions (106 to 1 copy numbers) of bacterial DNA were used for determining reference 

curves. The arithmetic mean of Cycle Threshold (CT) of the three repetitions was used in order to 

estimate the load of targeted bacterial populations present in the samples.  

 

2.9. Statistical analysis 

 

Using R software, the Analysis of Covariance (ANCOVA) test was used to evaluate if bacterial 

concentrations (log CFU/g) are equal across levels of a categorical independent variable (temperature 

conditions or microbial count method). With relation to temperature conditions, ANCOVA tests were 
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realized using the bacterial growth data (from day 1 to day 16) and the bacterial growth during the 

exponential phase data (from day 4 to day 8). All tests were considered as significant for a p-value < 

0.05.  

 

Table 22. Primers and probes designed for the qPCR tests allowing for the relative proportion of genera 

mainly present in WP to be estimated.  
Target bacterial 

genus 
Target 
gene Primers Sequence 

Lactobacillus Tuf 
Lactobacillus-Tuf-F2 5’-GCYCACGTWGAATAYGAAAC-3’ 
Lactobacillus-Tuf-R2 5’-CGDACTTCCATTTCAACYAAGTC-3’ 
Lactobacillus-Tuf-FAM1 5’-TGTGGCATWGGRCCATCAGTTGC-3’ 

Lactococcus rpoA 
Lactococcus-RecA-F2 5’-GCCGAAATYGATGGYGAAAT-3’ 
Lactococcus-RecA-R2 5’-CAACTTTTTCACGCAATTGGTTG-3’ 
Lactococcus-RecA-FAM4 5’-TGATGTCWCAAGCYATGCGTAAAC-3’ 

Leuconostoc Fus 

Leuconostoc-Fus-F1 5’-TTCTTGTTCCATGAAATCCATTTG-3’ 
Leuconostoc-Fus-R1 5’-GAATACCCACTAGAWCGTACAC-3’ 

Leuconostoc-Fus-FAM1 
5’-
TGTGTTTCACCAATTTTGTGAATTTTACC-
3’ 

Carnobacterium rpoA 
Carnobacterium-rpoA-F1 5’-ATTGGYGTATTACCAGTCGA-3’ 
Carnobacterium-rpoA-R1 5’-AACCATCTGCCCATACATC-3’ 
Carnobacterium-rpoA-FAM1 5’-CGATTTACACCCCAGTTAGTCGT-3’ 
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Results  
 

3.1. Bacterial dynamics by classical microbiological analysis 

 

Figure 24 shows the PCA results from inoculated Belgian WP at different temperatures. The 

bacterial population showed different dynamic changes depending on conditions of storage and 

stabilized between 8.5 and 9.2 log CFU/g. For the non-inoculated products, results were respectively 

inferior to 3 log CFU/g and the same as inoculated products at day 16.  

As expected, the storage temperature had a strong impact on the bacterial dyanmics. A high storage 

temperature is correlated to a high growth rate during exponential phase and a stationary phase more 

rapidly reached. While the break at 20°C for 4 h doesn't seem to have a significant effect on the dyanmics 

of the culturable microbiota, the transition from 4°C to 8°C stimulated the growth of the 

microorganisms. It would be interesting to intrinsically study the effect of temperature conditions on the 

behavior of each strain inside the ecosystem.  

 

 
Figure 24. Enumeration of the total psychrophilic aerobic microorganisms from inoculated white pudding 

stored at different temperatures for 16 days. A solid line after the fourth day represents the transition from 

4 °C to 8 °C for the 4-8 °C condition and the break at 20 °C for 4h for the 4-8 °C, 4/20-4 °C and 4/20-8 °C 

conditions.  
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3.2. Relative abundance results obtained by metagenetic analysis 

 

The distribution of read percentages for the eight major bacterial species for each sample (n = 

768) in constant temperature shows that at day 7 the mix reach more than 70% of total reads in samples 

at 4°C. The same percentage is attained at day 3 both for 8°C and 12°C. The major bacterial species 

concerned C. maltaromaticum at 4°C and Lc. lactis at 12°C. All inoculated samples reached more than 

90% at the end of shelf life product (Table 23) and the natural microbiota of the WP seems to become 

minor in contrast to the inoculated mix of the surface product. For the dynamic temperature condition, 

the same results were observed (Table 24).  

In these two cases, some bacterial strains (R. terrigena and Lb. oligofermentans) were excluded from 

the results for better readability because they were often under the detection level for the metagenetic 

analysis (data not shown).  
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Table 23. Distribution of reads percentages for the six major bacterial species inoculated for each samples conditions obtained by metagenetic analysis during shelf life 

product in constant temperature. Others strains represented the natural microbiota of WP; -, data under the detection limit. 

Bacterial strains/temperature Days 
1 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

4°C                
C. maltaromaticum 1.1 3.2 4.5 11.5 25.8 70.5 86.8 96.7 96.4 93.9 90.7 76.7 65.8 50.4 42.1 
Lc. lactis 0.3 0.2 0.1 0.4 1.2 0.2 0.2 - - - - 0.1 - - - 
Ln. mesenteroides 0.1 0.3 - 0.3 0.5 0.6 1.3 0.3 - 0.6 0.7 1.3 4.2 4.6 12.5 
Lb. graminis 0.2 0.4 1.3 0.5 0.8 1.5 1.8 0.2 - 0.8 0.7 1.9 2.7 3.8 4.3 
Serratia sp. 0.2 0.2 0.7 0.6 0.8 0.8 0.7 0.2 0.1 0.2 0.1 0.1 0.6 0.2 0.5 
Lb. fuchuensis 0.2 0.4 0.6 0.6 1.5 1.9 3.1 0.4 1.1 2.8 4.2 13.6 18.1 35.8 32.3 
Other strains 97.9 95.1 92.8 86.2 69.3 24.5 6.0 2.0 2.5 1.7 3.6 6.3 8.6 5.1 8.2 
                
8°C                
C. maltaromaticum 1.1 33.8 60.4 69.8 75.1 48.8 43.0 18.7 8.4 14.0 7.0 6.7 8.2 8.3 3.4 
Lb. fuchuensis 0.3 2.4 6.5 4.4 4.2 14.8 18.3 36.3 16.2 30.7 10.1 18.2 14.5 11.9 16.6 
Lb. graminis 0.1 1.7 2.4 5.2 4.3 9.8 15.3 10.8 23.1 17.4 50.4 45.6 45.7 39.2 53.7 
Ln. mesenteroides 0.2 2.3 5.9 3.5 2.6 4.3 3.0 3.1 0.5 1.7 2.4 3.0 2.7 4.1 2.3 
Lc. lactis 0.2 1.8 3.1 4.3 4.3 5.0 0.7 0.2 0.7 1.0 0.6 0.9 0.9 0.7 1.2 
Serratia sp. 0.2 1.2 2.6 5.4 3.8 8.0 8.5 19.1 26.1 23.0 15.7 14.9 15.7 26.2 12.4 
Other strains 97.9 56.8 19.1 7.4 5.7 9.3 11.2 11.9 25.1 12.2 13.8 10.6 12.4 9.6 10.4 
                
12°C                
C. maltaromaticum 1.1 8.0 2.7 0.8 0.7 0.7 0.8 1.1 0.8 0.8 1.0 0.4 0.6 0.5 0.6 
Lb. fuchuensis 0.3 83.8 92.0 92.5 88.5 83.1 79.5 65.6 61.7 62.7 43.0 53.1 54.1 46.6 43.8 
Lb. graminis 0.1 1.2 0.8 0.8 2.3 6.4 5.4 12.0 11.5 12.6 33.5 24.8 19.8 33.5 31.4 
Ln. mesenteroides 0.2 1.3 0.4 0.9 0.8 1.2 0.6 1.1 - 2.0 0.9 1.4 1.8 1.4 1.6 
Lc. lactis 0.2 1.7 0.6 0.1 0.5 0.2 0.2 0.1 0.1 0.1 0.2 0.3 0.2 - 0.1 
Serratia sp. 0.2 0.7 0.3 0.4 2.9 4.5 3.7 9.5 14.2 17.1 10.6 13.6 14.7 11.7 12.7 
Other strains 97.9 3.4 3.1 4.3 4.4 4.0 9.8 10.5 11.6 4.7 10.8 6.4 8.8 6.4 9.8 
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Table 24. Distribution of reads percentages for the six major bacterial species inoculated for each samples conditions obtained by metagenetic analysis during shelf life 

product in dynamic temperature. Others strains represented the natural microbiota of WP; -, data under the detection limit. 

Bacterial strains/temperature Days 
1 3 4 5 6 7 8 9 10 11 12 13 14 15 

4-8°C               
C. maltaromaticum 1.1 8.7 2.6 50.4 49.8 89.5 86.3 72.0 48.5 27.0 14.6 15.2 7.3 11.9 
Lc. lactis 0.3 20.2 10.8 4.1 16.0 0.3 0.4 0.4 1.0 2.6 2.3 2.7 2.4 3.6 
Ln. mesenteroides 0.1 1.5 0.5 1.1 4.8 1.2 2.5 3.1 6.8 15.7 46.1 49.5 59.6 41.2 
Lb. graminis 0.2 2.3 0.2 2.0 2.5 1.3 2.2 3.0 - 4.4 3.9 4.1 1.3 4.9 
Serratia sp. 0.2 1.1 0.4 1.3 2.8 0.8 0.7 0.5 1.0 0.6 0.8 1.2 0.1 1.2 
Lb. fuchuensis 0.2 0.9 0.3 1.7 7.3 2.7 4.7 11.3 26.4 36.9 23.4 17.7 11.3 27.0 
Other strains 97.9 65.3 85.1 39.4 16.9 4.1 3.3 9.8 16.3 12.7 8.9 9.8 18.0 10.2 
               
4/20-4°C               
C. maltaromaticum 1.1 3.9 2.8 32.7 29.8 69.8 92.4 80.5 92.7 83.7 68.5 57.9 35.1 29.1 
Lc. lactis 0.3 1.0 2.3 16.9 19.9 - - - - 0.1 0.1 - 0.1 0.1 
Ln. mesenteroides 0.1 0.3 0.3 0.7 4.8 2.5 1.1 4.2 0.3 0.8 2.4 4.8 10.4 12.3 
Lb. graminis 0.2 0.1 0.6 2.4 3.9 1.8 0.8 2.2 - 1.8 2.0 4.6 4.7 4.8 
Serratia sp. 0.2 0.4 0.3 1.7 2.4 1.7 0.5 0.4 0.2 0.1 0.3 0.2 0.7 0.4 
Lb. fuchuensis 0.2 0.2 0.3 1.4 5.6 3.9 2.2 8.8 2.9 5.2 15.1 25.0 37.7 39.6 
Other strains 97.9 94.1 93.5 44.4 33.5 20.4 3.1 3.9 3.8 8.4 11.6 7.5 11.2 13.6 
               
4/20-8°C               
C. maltaromaticum 1.1 2.3 3.0 35.5 38.4 88.0 89.9 56.6 36.7 24.2 12.0 13.0 12.6 9.2 
Lc. lactis 0.3 1.2 0.8 24.4 21.3 0.8 0.2 2.5 9.1 7.4 12.3 11.6 21.1 8.2 
Ln. mesenteroides 0.1 0.1 0.2 1.7 3.1 1.6 1.5 6.4 5.2 20.7 39.3 29.6 29.0 46.4 
Lb. graminis 0.2 0.4 0.9 2.3 2.5 1.4 1.5 3.9 - 5.6 4.4 4.0 4.1 5.2 
Serratia sp. 0.2 0.4 0.3 1.1 2.5 0.8 0.3 0.5 3.8 1.1 1.1 2.9 3.1 0.7 
Lb. fuchuensis 0.é 0.2 0.6 1.6 4.2 1.6 2.3 20.6 29.7 30.3 16.2 25.1 20.7 17.5 
Other strains 97.6 95.5 94.1 33.4 28.0 5.8 4.2 9.5 15.6 10.7 14.8 13.8 9.5 12.8 
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3.3. Combining PCA results and relative abundance to obtain estimate counts 

 

Table 25 shows growth parameters, for each strain, calculated from the combination of the PCA 

counts at 22°C and the relative proportions of strains given by metagenetic (estimate abundance results) 

for constant temperature conditions (at 4°C, 8°C and 12°C). Using R software these parameters were 

obtained by fitting to a primary model of bacterial curves according to the Baranyi equation (Delhalle 

et al., 2012; Ercolini et al., 2011; Zwietering et al., 1990). These parameters give the bacterial 

concentration at day 16 (Nmax, log CFU/g), the maximal bacterial growth rate (µmax, 1/h) and the time to 

reach the stationary phase (TRSP, days).  

These results allowed the bacterial strain subdivision into three classes based on growth parameters for 

each temperature conditions studied. These three classes are respectively called “dominant”, “inhibited” 

and “subdominant” according to their growth parameters and their behavior observed inside the bacterial 

ecosystem. 

The “dominant” bacterial species had three high growth parameters: they have the highest growth rate 

(µmax), maximal concentration (Nmax) between 8 and 9 log CFU/g, and rapidly reached the stationary 

phase during the shelf life of the product.  

The “inhibited” bacterial species had a lesser or equal growth rate but they achieved an inferior Nmax 

value, and stopped their growth at the same time as the “dominant” species.  

The “subdominant” bacterial species are all other bacterial species that continued growth when the 

“dominant” organisms reached the stationary phase, which is the opposite to the “inhibited” bacteria, 

with a generally lesser growth rate than the “dominant” species. They reached the stationary phase lesser 

rapidly but they achieved a high maximal concentration.  

According to the conditions of storage the bacterial ecosystem change: C. maltaromaticum is the 

“dominant” bacteria at 4°C and 8°C, while Lc. lactis dominates at 12°C. Lc. lactis is an “inhibited” and 

a “sub- dominant” bacterial species for conditions at 4°C and 8°C respectively. Lb. graminis is a 

“subdominant” bacterium at 4°C and an “inhibited” specie for the two other conditions. Interestingly, 

Ln. mesenteroides and Lb. fuchuensis were “subdominant” bacteria at all temperatures. On the other 

hand, Serratia sp. is an “inhibited” bacterium at all temperatures.  

Table 26 shows the combination of the PCA counts of the microbiota at 22°C and the relative 

proportions of strains obtained by metagenetic (estimate abundance results) for storage conditions with 

changes of temperature (at 4–8°C, 4/20–4°C and 4/20–8°C). For these situations two parameters were 

studied: the time necessary to attain a 7 log CFU/g threshold of spoilage (days) and the statistical 

difference between conditions of storage by ANCOVA-tests based on the global growth and the growth 

rate during exponential phase.  
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The results of the ANCOVA-tests show that strains have a better bacterial growth at 4–8°C than at 4°C, 

except for C. maltaromaticum that showed a statistically different growth rate only during the 

exponential phase. Consequently, all species reached the 7 log CFU/g threshold earlier at 4-8°C than at 

4°C (Table 26a). For the break of 4 h at 20°C during storage this phenomenon was significantly weaker. 

Indeed, Ln. mesenteroides is the only species which showed a significant statistically effect in the two 

tested parameters of growth rate. The other strains have a better global growth at 4/20–4°C (except for 

C. maltaromaticum) and all species reached the 7 log CFU/g threshold earlier at 4/20–4°C than at 4°C 

(Table 26b). Results shows also that there were no significant statistical changes on the growth 

parameters between the break of 4 h at 20°C and the transition from 4°C to 8°C but Lc. lactis and 

Serratia sp. reached the 7 log CFU/g earlier (Table 26c).  

 

Table 25. Growth parameters of bacterial strains in inoculated WP under constant storage conditions. Nmax, 

bacterial concentration at day 16 (log CFU/g); TRSP, time to reach the stationary phase (days); µmax, maximal 

bacterial growth rate (1/h). Bacterial strains were subdivided into three categorical classes as D, “dominant”; 

S, “subdominant”; and I, “inhibited”.  

Bacteria / temperature Nmax TRSP µmax Class 

4°C     
C. maltaromaticum 8.6 12 0.07 D 

Lb. fuchuensis 8.5 16 0.05 S 
Lb. graminis 7.6 16 0.03 S 

Ln. mesenteroides 8.1 16 0.03 S 
Lc. lactis 4.9 12 0.05 I 

Serratia sp. 6.7 12 0.04 I 

8 °C     

C. maltaromaticum 8.1 8 0.10 D 
Lc. lactis 8.4 10 0.09 S 

Lb. fuchuensis 8.3 10 0.09 S 
Ln. mesenteroides 8.9 10 0.10 S 

Lb. graminis 7.6 8 0.08 I 
Serratia sp. 6.7 8 0.10 I 

12 °C     

Lc. Lactis 8.9 4 0.25 D 
Lb. fuchuensis 8.3 11 0.14 S 

Ln. mesenteroides 8.7 11 0.10 S 
C. maltaromaticum 7.0 4 0.10 I 

Lb. graminis 7.4 4 0.11 I 
Serratia sp. 6.0 4 0.12 I 
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Table 26. Comparison of bacterial strains in inoculated WP subject to storage conditions with changes of 

temperature, according to the time taken to reach a 7.0 log CFU/g threshold and ANCOVA-test based on the 

global growth and the growth rate during exponential phase. (a) 4°C vs. 4-8°C; (b) 4°C vs. 4/20-4°C; (c) 4-

8°C vs. 4/20-8°C. -, data out of range; >, superior value, f, no significant statistical difference; * significant 

statistical difference (p-value < 0.05); ** high significant statistical difference (p-value < 0.01); *** highly 

significant statistical difference (p-value < 0.001).  

Bacterial strains 

7.0 log CFU/g threshold 
(days) ANCOVA-test 

4°C 4-8°C Global 
growth 

Growth rate during exponential 
phase 

a.     
C. maltaromaticum 8 7 f 4-8 > 4** 

Lc. lactis - 11 4-8 > 4*** 4-8 > 4** 
Lb. fuchuensis 12 8 4-8 > 4** 4-8 > 4** 

Lb. graminis 14 9 4-8 > 4** 4-8 > 4** 
Ln. mesenteroides 14 9 4-8 > 4*** 4-8 > 4*** 

Serratia sp. - 12 4-8 > 4** 4-8 > 4** 
b.     
C. maltaromaticum 8 7 f f 

Lc. lactis - - 4/20-4 > 4* - 
Lb. fuchuensis 12 11 4/20-4 > 4* f 

Lb. graminis 14 12 4/20-4 > 4* f 
Ln. mesenteroides 14 12 4/20-4 > 4** 4/20-4 > 4* 

Serratia sp. - - 4/20-4 > 4* f 
c.     
C. maltaromaticum 7 7 f f 

Lc. lactis 11 9 f f 
Lb. fuchuensis 8 8 f f 

Lb. graminis 9 9 f f 
Ln. mesenteroides 9 9 f f 

Serratia sp. 12 11 f f 
 

3.4. Comparison with qPCR results 

 

Figure 25 shows the qPCR counts for four genera at 4 (Fig. 25A), 8 (Fig. 25B)  and 12°C (Fig. 

25C). The comparison between metagenetic results and the LAB genus specific qPCR are summarized 

in Table 27. On average, the population overestimation was equal to 1.1 log CFU/g in qPCR test at 4°C 

for Lactobacillus and Leuconostoc. Indeed, bacterial curves are convergent except for Lactobacillus and 

Leuconostoc at 4°C.  
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Figure 25. qPCR counts from inoculated white pudding stored at 4°C (A), 8°C (B) and 12°C (C).  

 

Table 27. Comparison between qPCR and estimate abundance results (log CFU/g) for days 1, 4, 7, 11 and 

15 with ANCOVA-test. Estimate abundance results: obtained by combination of the PCA results counts at 

22°C and the relative proportions of strains given by metagenetic. >, superior value; f, no significant 

statistical difference; * significant statistical difference (p-value < 0.05); ** very significant statistical 

difference (p-value < 0.01).  

 Carnobacterium Lactobacillus Lactococcus Leuconostoc 
4°C f qPCR > Meta** f qPCR > Meta* 

8°C f f f f 
12°C f f f f 
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Discussion 
 

Based on the primary results given on total count on plate agar, the influence of temperature on 

the development of a whole ecosystem on Belgian WP was observed. The power of metagenetic 

analysis, when added to these basics results, has allowed us to closely follow the dynamics of each strain 

inoculated on the product during its shelf life. In addition, the data have been validated by a qPCR 

analysis where no significant differences were seen for the quantification of the genera studied except 

for Lactobacillus and Leuconostoc at 4°C. These small differences at the beginning of the shelf life can 

be explained by the detection of DNA from dead bacteria naturally present in large quantities on the raw 

meat and resulting from microbial destruction during the manufacturing process. This means that the 

qPCR analysis has detected some DNA fragments from dead organisms that haven't evidently grown on 

plate agar, leading to a weak overestimation of the qPCR results at the beginning of the experiment. 

This phenomenon is lesser in metagenetic analysis because of the high variability of strains presents in 

the product at the beginning of the experiment. Later during the challenge-test, this difference between 

the two techniques becomes negligible. Indeed, gradually throughout the experiment, the Lactobacillus 

and Leuconostoc species become a part of the dominant microbiota that leads to a dilution effect of the 

dead bacterial DNA by the living bacteria's DNA.  

The large amount of data provided by the combination of the culture-dependent and culture-

independent techniques has given useful information about the growth of each strain during challenge 

tests. Metagenetic analysis also allows for the assessment of the dynamics of bacterial species within a 

food matrix. It permitted classification of bacterial strains into different categories according to their 

behavior in the ecosystem. The so-called “dominant” bacterial species rapidly reached the stationary 

phase at a concentration of between 8 and 9 log CFU/g while at the same time the “inhibited” strains 

stopped their growth at a lower concentration. This phenomenon was described by Jameson in 1962 and 

recently reviewed by other scientists as follows: “the minority population decelerates when the majority 

or the total population count reaches its maximum” (Ross et al., 2000; Mellefont et al., 2008; Irlinger 

and Mounier, 2009; Cornu et al., 2011). This Jameson effect was clearly observed in our study, for 

example at 4°C (Table 25), when Lc. lactis and Serratia sp. stopped growth at day 12, at the same time 

C. maltaromaticum reached its maximal concentration and entered its stationary phase. In opposition to 

this, it can be noticed that in the same condition, some “sub-dominant” organisms continued their growth 

independently of the “dominant” species behavior. In this case, the Jameson effect was not illustrated. 

This pattern is described for all storage conditions with the same strain classifications (Table 25). This 
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phenomenon was also observed by others scientists and they proposed that the growth of the minority 

population is only partly inhibited after the majority population has reached its stationary phase (Gnanou 

Besse et al., 2006; Cornu et al., 2011). This can be explained by the fact that the minority population is 

only partly affected by the limiting resource and/or inhibiting waste product that led it to stop growing 

(Gnanou Besse et al., 2006; Cornu et al., 2011).  

According to this, the bacterial strain subdivision based on growth parameters can be 

represented as (Table 28):  

If (Nmaxbacterial strain > Nmaxothers) & (µmaxbacterial strain > µmaxothers) & (TRSPbacterial strain < TRSPothers) = 

“dominant” bacterial species.  

If (Nmaxbacterial strain @ Nmaxothers) & (µmaxbacterial strain £ µmaxothers) & (TRSPbacterial strain > TRSPothers) = 

“subdominant” bacterial species.  

If (Nmaxbacterial strain < Nmaxothers) & (µmaxbacterial strain £ µmaxothers) & (TRSPbacterial strain = TRSPothers) = 

“inhibited” bacterial species.  

Where Nmax (bacterial concentration at day 16, log CFU/g), µmax (maximal bacterial growth rate, 1/h) 

and TRSP (time to reach the stationary phase, days) are growth parameters.  

 

Table 28. Bacterial strain subdivision based on growth parameters in three categorical classes: D 

(“dominant”), S (“subdominant”), I (“inhibited”). µmax, maximal bacterial growth rate (1/h); Nmax, bacterial 

concentration at day 16 (log CFU/g); TRSP, time to reach the stationary phase (days).  

Class µmax Nmax TRSP Growth parameters 

D The highest 
Maximal value. 
Between 8 and 9 
log CFU/g 

Rapidly reached 
If (Nmaxbacterial strain > Nmaxothers) & 
(µmaxbacterial strain > µmaxothers) & 
(TRSPbacterial strain < TRSPothers) 

S Generally 
lesser High value 

Continue to growth when 
the D organisms reached 
the stationary phase 

If (Nmaxbacterial strain @ Nmaxothers) & 
(µmaxbacterial strain £ µmaxothers) & 
(TRSPbacterial strain > TRSPothers)  

I Lesser or 
equal Inferior value The same as the D 

organisms 

If (Nmaxbacterial strain < Nmaxothers) & 
(µmaxbacterial strain £ µmaxothers) & 
(TRSPbacterial strain = TRSPothers) 

 

Regarding the “inhibited” strains, hypotheses can be made about inconvenient growth 

temperatures (Tmin) and/or a microbial competition with the rest of the ecosystem. The composition of 

WP seems not to have an effect on strain competiveness. According to scientific literature, Serratia sp. 

has a minimum growth temperature (Tmin) of 0°C (Labadie, 1999) and would normally grow at 4°C. But 

at this temperature, it is classified as an “inhibited” strain. Therefore, the inhibition of the bacterial 

growth of Serratia sp. is probably due to an ecosystem effect. Concerning Lc.lactis, one study set its 

Tmin at 10°C (Labadie, 1999), while in our experiment a normal growth pattern was observed at 8°C, 

allowing its classification in the “sub-dominant” group. In this case, the inhibited development of this 

organism at 4°C is probably due to an ecosystem effect coupled with a temperature effect. Indeed, when 
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Lc. lactis grew at 12°C, it became the dominant microbiota and was more competitive than 

C. maltaromaticum which seems to be more adapted to lower temperatures (Tmin of C. maltaromaticum 

= 0°C, (Casaburi et al., 2011)). For Ln. mesenteroides and Lb. fuchuensis, for which Tmin are respectively 

4°C (Osmanagaoglu and Kiran, 2011) and 2°C (Zwietering et al., 1993), they stayed “subdominant” for 

all the temperature conditions tested. The rest of the ecosystem probably does not affect their growth, 

insofar as they never gained predominance but they were not inhibited either.  

The results of the challenge tests with temperature breaks or changes are consistent with our 

previous observations. Indeed, C. maltaromaticum seems to be more adapted to low temperatures. To 

this end, this bacterium didn't take a great benefit in its growth when the storage temperature moved to 

20°C for 4 h (Table 26). In contrast, the growth parameters of Ln. mesenteroides rose during the 

transition from 4°C to 8°C or with the break of 4 h at 20°C. This is consistent with the fact that its 

optimal growth temperature (Topt) is between 20°C and 35°C (Zwietering et al., 1993, Jin et al., 2012). 

Lc. lactis also has a Topt around 25°C but any improvement of its growth parameters was not observed. 

The hypothesis is made that the break time of 4 h was too short to see a significant effect. In conclusion, 

a break of 4 h at 20°C is prejudicial only if the storage temperature (4°C) is respected during the entire 

life of the product. Moreover, it is commonly admitted that the customer's fridge is rarely at 4°C 

(Lagendijk et al., 2010). By taking account of this fact, the lack of respect for good temperature storage 

(8°C instead of 4°C), particularly in customer's fridges, is more prejudicial than a break of the cold chain 

for up to 4 h. However, an indication about the true temperature in the product during the 4 h of breaking 

time at 20°C would be necessary before making this conclusion. Indeed, the internal temperature of WP 

samples may stay colder than 20°C, due to the thickness of this product, explaining the apparent absence 

of effect or a weak effect.  

In the future, it will be interesting to explore the interactions in the WP ecosystem more deeply. 

Further studies will focus on the comprehension of the mechanisms that force the “inhibited” strains to 

stop their growth in the early stage of the shelf life of the product. Indeed, it is commonly accepted that 

the self-limiting growth process in microbial ecosystem is supposed to be due to (i) the exhaustion of 

one of the essential nutrients, (ii) the accumulation of metabolic waste products which inhibit growth, 

and/or (iii) the lowering of pH due to acid production (Cornu et al., 2011). According to the data already 

obtained, we could suppose that competition for space or nutrient has an effect. The action of a 

bacteriocin is also not excluded and could for example explain the lack of development of some strains 

inoculated into the product: Lb. oligofermentans and R. terrigena. It would also be interesting to know 

the spoilage or biopreservative potential of all the strains inoculated in the Belgian WP in this study. 

Another challenge will be in differentiating the nature of the ecosystem interactions: strain dependent 

or species dependent. Finally, this supply of new information will be a good start for future experiments 
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when it is considered that the natural contamination of a food product is more complex that an 

inoculation of eight bacterial strains from different species.  

Our applications of the 16S rRNA gene-based amplicon sequencing has now extended our view 

of the dynamic behavior of complex microbial populations in Belgian WP, revealing the quantitative 

displacement of taxa that occur during microbial successions. By integrating metagenetic with 

traditional microbiological analysis we have now extended this view of a highly quantitative 

characterization of dynamic changes that occur during refrigerated storage. In addition to the predictive 

microbiology, these data also permit to classify the population dynamics into three major classes, based 

on growth parameters.  

In conclusions, metagenetic analysis offers a new tool for identifying microorganisms present 

in perishable foods and for studying their dynamics within different environmental conditions. The 

information that can be obtained provides a clear picture of the microbial community. Microbiological 

ecology studies have shown that the microbiota of food is much more diverse than the cultivable group 

of bacteria studied by the use of culture media. The use of these new technologies will open a new era 

for modeling and predictive microbiology. In this study, these results provide valuable information for 

discussing about the theory of the Jameson effect. In addition, it will help food business operators to 

have a better view of the quality of their product by differentiating between the spoilage or bioprotective 

microbiota. Moreover, it will provide knowledge on the composition and dynamics of WP and shown 

how it is affected by storage temperature. Indeed, many food manufacturers, government agencies, 

retailers, distribution quality laboratories and researchers use classical culture media without being able 

to precisely identify the bacterial communities present within the food. In the future, new gold standards 

for food quality will need to be developed in order to allow the use of metagenetic as a complementary 

technique for characterizing the bacterial microbiota of products and its use should be considered as a 

technique for quality control, for accurately determining the length of shelf life and for developing new 

food products and/or new storage advices.  
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Abstract 
 

Þ Objective 1. Study the natural microbiota of white pudding 
 
Þ Objective 2. Characterize specific spoilage bacteria dynamics and 
use them as inputs in models for white pudding 
 

The aim of this study was to characterize the microbial spoilage community of Belgian WP 

samples using both culture-dependent and -independent methods in order to gain knowledge on spoilage 

bacteria. Growth models without interaction for three dominant bacteria of these samples were also 

performed under isothermal conditions. The ecology of the naturally contaminated WP was studied by 

classic microbiological plate counting and 16S rDNA amplicon sequencing at several periods during air 

storage at constant temperatures. At the first day, results showed a high variability and the genus 

Pseudomonas was the most represented. During the storage, other genera such as Brochothrix and 

Psychrobacter became dominant. To simulate microbial behavior over the storage, microbiological plate 

counts were then coupled to the metagenetics results in order to obtain bacterial estimations. Based on 

these results, the growth parameters were estimated and used to predict the microbial behavior of 

B. thermosphacta, Pseudomonas spp. and Psychrobacter spp. Three different tools were used to 

perform this: ComBase, Sym’Previus and the growth Baranyi function. All models showed relatively 

good statistical fits, but an overestimation was mainly observed. These results are in accordance with 

some publications in the scientific literature, but further researches are needed to better compare the 

three approaches. Moreover, compared to culture-based methods on selective media and previous 

culture-independent techniques, metagenetic analysis combined with predictive models and classical 

microbiology give interesting information to predict the dynamics of spoilage bacteria. Despite of the 

limited number of experimental datasets, the growth parameters and simulations presented in this study 

are interesting for the example shown, by adding to existing database for spoilage bacteria, and could 

be applied to others foods and food processes. Nevertheless, extensive surveys involving a large number 

of samples and validation data-set are required to provide a proof of concept, and to better predict the 

dynamics of individual microbial species in the spoilage of meat and meat products.  
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Introduction 
 

Emerging as an active area of research in the 1980s, predictive microbiology has become a 

useful tool in microbial shelf life prediction, quality control and risk assessment (Den Besten et al., 

2017; Huang, 2014; Tenenhaus-Aziza and Ellouze, 2015). Predictive microbiology is a research 

discipline of food microbiology that uses mathematical models to describe the dynamics (growth and 

survival) of the populations of microorganisms undergoing complex physical, chemical and biological 

changes in the environment during processing, transportation, distribution and storage of foods 

(Fakruddin et al., 2012; Huang, 2014; Pla et al., 2015). Various models are available to predict the 

effects of temperature, pH, aw, organic acids, modified atmosphere and other factors on microbial growth 

(Li et al., 2017; Martinez-Rios et al., 2016).  

In predictive models, the change in microbial numbers is typically segmented into kinetic 

parameters, including lag time, growth rate (or inactivation rate), and maximum population density 

(Garre et al., 2017; Tamplin, 2018; Tarlak et al., 2018). After generating primary curves over a range 

of environmental conditions relevant to how the model will be applied, kinetic parameters are translated 

into ‘secondary’ models that describe changes in parameters as a function of the environment (e.g. the 

change in growth rate as a function of food storage temperature) (Baranyi and da Silva, 2017; Psomas 

et al., 2011). Then, based on the secondary and primary models, a ‘tertiary’ model is produced, which 

becomes the interface between the model and the end-user, in which environmental values are entered 

that result in estimations of microbial growth. Examples of tertiary model interfaces include Excel 

spreadsheets such as the American Meat Institute's process lethality calculator (http://www.amif.org/), 

and stand-alone software, such as ComBase Predictor 

(http://browser.combase.cc/ComBase_Predictor.aspx?model1⁄41), the USDA Pathogen Modeling 

Program (https://pmp.errc.ars. usda.gov/PMPOnline.aspx)	 (Membré and Lambert, 2008; Tamplin, 

2018), and Sym’Previus (htpps://symprevius.eu/fr) (Tenenhaus-Aziza and Ellouze, 2015). More than 

700 predictive models have been reported with potential applications for food. These are found in 

publications, in stand-alone software, and online. They include models based on microbial 

growth/inactivation in bacteriological media and in specific food matrices (Tamplin, 2018). However, 

the majority of models have been developed for pathogens, while very few ones describe the responses 

of spoilage bacteria (Alfaro et al., 2013; Membré and Lambert, 2008). Moreover, only a few studies 

have described the growth of a whole microbiota in a food matrix with consideration of various storage 

parameters and of species and/or strain dependent interactions (Ercolini et al., 2011; Nieminen et al., 
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2012; Pothakos et al., 2015; Rouger et al., 2018). Even if some models consider the competition between 

pathogens and spoilers, most common predictive microbiology models have been generated to study 

one bacterial specie at various times and temperatures during the storage of foods (Ye et al., 2014). 

Furthermore, most of the data used were derived from conventional microbiological methods, which 

have practical limits compared to modern non-culturable methods giving a more realistic picture of 

microbial community dynamics in food products (Ye et al., 2014). 

Indeed, the microbial diversity in meat and meat products have been widely investigated using 

traditional cultivation methods (Zhao et al., 2015), but it is well known that traditional identification and 

culture-based methods are not sufficient. In the last decades, the introduction of molecular methods, 

mainly culture-independent approaches, have contributed to the exploration of food microbiota and to a 

better description of bacterial species present in food (Benson et al., 2014; Chaillou et al., 2015; 

Galimberti et al., 2015; Riquelme et al., 2015). Among the culture-independent techniques, 16S rDNA 

amplicon sequencing has emerged as a powerful tool for studying the bacterial composition of various 

ecosystems (Elizaquivel et al., 2015; Parente et al., 2016). Nevertheless, only few studies have 

considered whole microbiota in a food matrix with consideration of various storage parameters and of 

species dependent interactions (Ercolini et al., 2011; Nieminen et al., 2012; Pothakos et al., 2014; 

Rouger et al., 2018).  

The objective of this study was to thus provide a description and a prediction of the dynamics 

of bacterial spoilage communities in a typical Belgian meat product by combining metagenetics and 

classic microbiology results with predictive models.  
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Material and methods 
 
2.1. White pudding samples 

 

Fresh WP packed under air with a food wrap film was obtained from a local Belgian 

manufacturer. According to the recipe, ten kg of white pudding is composed of pork minced meat (8 kg), 

milk (2 L), salt (200 g), maize and wheat starches (130 g), pepper (25 g), spices (10 g) and filled in pork 

guts.  

The water activity of this product was 0.98 ± 0.02 and the pH value was 6.00 ± 0.20 (n = 4). pH 

of the homogenized samples (5 g in 45 ml of KCl) was measured with a pH meter (Knick 765 Calimatic, 

Germany). The water activity was measured for homogenized samples on the basis of the relative 

humidity measurement of the air balance in the micro enclosure at 25 ± 0.4°C (Thermoconstanter 

TH200, Novasina, Switzerland).  

 

2.2. Durability studies 

 

Durability studies were performed according to the requirements for implementing 

microbiological tests of chilled perishable and highly perishable foodstuffs (AFNOR, 2010). Naturally 

contaminated WP samples were put (300 g), in triplicate, in a tray (175x135x22mm) under FW (cling 

film). The packaging film used is a common food film with a high permeability for the atmospheric 

gases.  

WP samples were stored during 12 days of shelf life at isothermal temperature of 4°C (± 1°C), 

8°C (± 1°C) and 12°C (± 1°C) in climactic chambers (Sanyo MIR 254).  

At each day of the trials, total viable counts (TVC) and 16S rDNA amplicon sequencing were 

carried out on all the samples. 

 

2.3. Plate count enumeration 

 

Twenty-five grams of product were put into a Stomacher bag with a mesh screen liner (80 µm 

pore size) (Biomérieux, Basingstoke, England, ref 80015) under aseptic conditions. Buffered peptone 

water (BPW, 10 g/L peptone, 5 g/L sodium chloride, #3564684, Bio-Rad, Marnes-la-Coquette, France) 

(225 mL) was automatically added to each bag (Dilumat, Biomérieux, Belgium) and the samples were 
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homogenized for 2 min in a Stomacher (Bagmixer, Interscience, France). From this primary suspension, 

decimal dilutions in maximum recovery diluent (1.0 g/L peptone, 8.5 g/L sodium chloride, #CM0733, 

Oxoid, Hampshire, England) were prepared for microbiological analysis, and 0.1 mL aliquots of the 

appropriate dilutions were plated onto media for each analysis in triplicate (Spiral plater, DW Scientific, 

England). Total viable counts (TVC) for the aerobic psychrophilic microbiota were enumerated on plate 

count agar (PCA agar, #3544475, Bio-Rad, Marnes-la-Coquette, France) after 72 h at 22°C (model 1535 

incubator, Shel Lab, Sheldon Manufacturing. Inc., USA).  

 

2.4. Total DNA extraction 

 

Bacterial DNA was extracted from each primary suspension, previously stored at – 80°C, using 

the DNeasy Blood & Tissue DNA Extraction kit (Qiagen, Venlo, The Netherlands), following the 

manufacturer’s recommendations. The DNA extracts were eluted in DNAse/RNAse free water and their 

concentration and purity were evaluated by optical density using the NanoDrop ND-1000 

spectrophotometer (Isogen, St-Pieters-Leeuw, Belgium). DNA samples were stored at – 20°C until used 

for 16S rRNA amplicon pyrosequencing.  

 

2.5. Bacterial 16S rRNA gene amplification and barcoded pyrosequencing 

 

16S rRNA PCR libraries targeting the V1-V3 hypervariable region were generated. Primers E9-

29 and E514-430 (Brosius et al., 1981), specific for bacteria, were selected for their theoretical ability 

to generate the lowest amplification bias relative to amplification capability among the various bacterial 

phyla (Wang and Qian, 2009). The oligonucleotide design included 454 Life Sciences A or B sequencing 

titanium adapters (Roche Diagnostics, Vilvoorde, Belgium) and multiplex identifiers (MIDs), fused to 

the 5’ end of each primer. The amplification mix contained 5 units (U) of FastStart high fidelity 

polymerase (Roche Diagnostics, Vilvoorde, Belgium), 1 x enzyme reaction buffer, 200 µM 

deoxynucleotide triphosphates (dNTPs) (Eurogentec, Liège, Belgium), 0.2 µM of each primer and 

100 ng of genomic DNA in a final volume of 100 µL. Thermocycling conditions consisted of a 

denaturation step of 4 min at 94°C, followed by 25 cycles of denaturation (15 sec at 94°C), annealing 

(45 s at 56°C) and extension (60 s at 72°C), with a final elongation step (8 min at 72°C). The 

amplifications were performed on an EP Mastercycler Gradient System device (Eppendorf, Hamburg, 

Germany). The PCR products of approximately 650 nucleotides were run on 1% agarose gel 

electrophoresis and the DNA fragments were plugged out and purified using a Wizard SV PCR 

purification kit (Promega Benelux, Leiden, Netherlands). The quality and quantity of the products were 

confirmed by Picogreen double-stranded DNA (dsDNA) quantitation assay (Isogen, St-Pieters-Leeuw, 
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Belgium). Equal amounts of each of the PCR products were pooled and subsequently amplified by 

emulsion PCR. Sequencing was performed using the Roche GS-Junior Genome Sequencer instrument 

(Roche) (2 x 300 bp).  

 

2.6. Bioinformatics analysis 

 

The 16S rRNA gene sequence reads were processed with MOTHUR (Schloss et al., 2009). The 

quality of all sequence reads was denoised using the Pyronoise algorithm implemented in MOTHUR. 

The sequences were checked for the presence of chimeric amplification using ChimeraSlayer (developed 

by the Broad Institute, http://microbiomeutil.sourceforge.net/#A_CS).  

The obtained read sets were compared to a reference data-set of aligned sequences of the 

corresponding region derived from the SILVA database of full-length rRNA gene sequences 

(http://www.arb-silva.de/, version 1.15, 2015) implemented in MOTHUR (Pothakos et al., 2014; 

Pruesse et al., 2007). The final reads were clustered into OTUs, using the nearest neighbor algorithm 

using MOTHUR with a 0.03 distance unit cut off. A taxonomic identity was attributed to each OTU by 

comparison to the SILVA database, using an 80% homogeneity cut off. As MOTHUR is not dedicated 

to the taxonomic assignment beyond the genus level, all unique sequences for each OTU were compared 

to the SILVA data-set 111, using a BLASTN algorithm. For each OTU, a consensus detailed taxonomic 

identification was given based upon the identity (< 1% mismatch with the aligned sequence) and the 

metadata associated with the best hit (validated bacterial species or not) (Delcenserie et al., 2014; 

Pothakos et al., 2014).  

 

2.7. 16S rRNA gene analysis 

 

Alpha diversity was evaluated by richness estimation (Chao1 estimator), microbial biodiversity 

(inverse of the Simpson index, coverage), and the population evenness (Simpson evenness) using 

MOTHUR (version 1.40.5) (http://www.mothur.org) (Riquelme et al., 2015; Zhao et al., 2015). 

Rarefaction curves were calculated for all samples to ensure that sequencing depth was sufficient, OTUs 

identified were plotted as a function of sequences obtained per sample. High diversity coverage was 

achieved with all curves reaching asymptotes from 1000 reads (Figure 26).  

Alpha and beta diversity indices were also calculated with bootstrapped sequencing data using 

Explicet (http://www.explicet.org) (Mann et al., 2016; Robertson et al., 2013). Using Explicet, bacterial 

population dissimilarity was assessed using the Bray-Curtis index on a 0-1 scale.  

A 2-sided Welch’s t-test was performed on metagenetics results and confidence intervals were 

calculated according to the Newcombe-Wilson method using STAMP (v2+) software 
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(http://www.kiwi.cs.dal.ca/Software/STAMP). A Tukey-Kramer test in conjunction with an ANOVA 

was also applied for Principal Component Analysis (PCoA) in order to classify cluster samples 

according to the identified OTUs for the three temperatures. The differences were considered significant 

for a corrected p-value lesser than 0.05 (Parks et al., 2014).  

 

 
Figure 26. Rarefaction curves for samples daily analyzed at 4°C (A), 8°C (B) and 12°C (C), based on an 

OTU definition of 97% similarity (0.03 16S rRNA).  

 

2.8. Bacterial estimations over storage 

 

As described by Kembel et al. (2012) and Louca et al. (2018), correcting factors for 16S rRNA 

copy numbers were applied. To obtain each gene copy number, Ribosomal RNA Database (rrnDB) 

(Stoddard et al., 2015) and EzBioCloud database (Yoon et al., 2017) were used. Reads counts of all 

samples were then transformed into a percentage of each OTU. The percentage of each OTU was finally 

converted as a proportion of the total viable count, obtained by classical microbiological analysis, in 

order to estimate counts for each species (in log10 CFU/g, and expressed as mean ± standard deviation 

(SD)), as described by Cauchie et al. (2017) and Vandeputte et al. (2017). 

Nonparametric statistical tests were used to compare the classical microbiology results from 

samples taken for two different storage temperatures. Analysis of covariance (ANCOVA) test was also 

performed to compare bacterial dynamics at 4, 8 and 12°C. All tests were considered as significant for 
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a p-value < 0.05.  

 

2.9. Bacterial growth parameters 

 

Based on previous results obtained, dominant bacteria were selected in WP samples and only 

these bacteria were then modelized. The primary growth model of Baranyi and Roberts (1994) was used 

to fit the data and estimate the growth parameters: lag phase duration (LPD), initial bacterial 

concentration (N0), maximal bacterial concentration (Nmax) and maximal growth rate (µmax). A 

reparametrized version of the square root secondary model (Ratkowsky et al., 1982) was then used to 

assess the effects of temperature on the growth rates. All fittings were performed using the nlsMicrobio 

package (Baty and Delignette-Muller, 2013) from the open source R software (R Core Team, 2019). 

Extracts of the code in R for primary and secondary fittings are given in Supplemental Material.   

 

2.10. Growth predictions and validation 

 

Simulations were run at 4°C, 8°C and 12°C for each dominant bacterium, using three 

independent software programs: the Baranyi function in R software, ComBase Predictor and 

Sym’Previus. To run the simulations, information about the initial microorganism load (N0), the 

maximum microorganisms load (Nmax), the lag phase duration (LPD), the temperature and the physico-

chemical characteristics (pH, aw) were set to the observed values during the durability studies and 

introduced in the different software. Extracts of the code in R for predictive simulations are given in R-

commands 1. The ANCOVA test was also used to compare validation data-set and each of the 

simulation results. All tests were considered as significant for a p-value < 0.05.  

 
R-commands 1.  
# Packages used #  
require (nlsMicrobio) 
require (lattice) 
require (deSolve) 
require (growthrates) 
# Primary growth fitting #  
baranyi 
data<-data.frame(t=c(0,24,48,72,96,168,288),LOG10N=c(1.49,1.55,1.94,2.45,3.83,6.37,9.16)) 
preview(formula=baranyi,data=data,start=list(lag=48,mumax=0.07,LOG10N0=1.49,LOG10Nmax=9.16)) 
primary<-
nls(formula=baranyi,data=BT4data,start=list(lag=48,mumax=0.07,LOG10N0=1.49,LOG10Nmax=9.16)) 
# Secondary model fitting #  
sqrt<-as.formula("sqrtmumax~sqrt((T>Tmin)*muref*((T-Tmin)/(20-Tmin))^2)") 
secondary<-data.frame(T=c(4,8,12),sqrtmumax=sqrt(c(0.07,0.10,0.24))) 
preview(formula=sqrt,data=secondary,start=list(Tmin=-3.36,muref=0.53)) 
# Growth prediction by Baranyi function #  
baranyi 
time<-c(0,48,96,120,216,288) 
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y<-grow_baranyi(time,c(y0=1.49,mumax=0.05,K=8.51,h0=6.24)) 
y 
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Results  
 

3.1. Classical microbiology 

 

Plate counts according to the temperature of storage are shown in Figure 27. The bacterial 

growth kinetics showed different dynamic changes depending on storage temperature: a high storage 

temperature is correlated to a faster bacterial growth during exponential phase and a shorter lag-time. 

At day 0, the initial bacterial concentration was around 2.90 ± 0.60 log CFU/g. Then, the bacterial 

population showed different dynamic changes depending on temperature, and stabilized between 8.00 

and 9.00 log CFU/g. Significant differences (p < 0.05, ANCOVA test) were observed between the 

bacterial curves at 4°C and 8°C (p-value = 0.0318), and between those at 4°C and 12°C (p-value = 

0.0009). No statistical differences were observed between the bacterial growth curves at 8°C and 12°C 

(p-value = 0.4569).  

 

 
Figure 27. Plate counts for white pudding stored in food wrap packaging at 4°C (squares), 8°C (diamonds) 

and 12°C (triangles). 
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3.2. Bacterial identification with 16S rDNA amplicon sequencing 

 

Over 5,300 reads were generated per sample with pyrosequencing. In total, 14 main OTUs were 

assigned. The number of OTUs, the bacterial diversity, richness estimators and coverage are presented 

in Supplemental Material (Table 29). The highest number of identified species was encountered at 4°C, 

with a brutal decrease observed at 12°C.  

 

Table 29. Alpha diversity from metagenetic analysis. For three temperature of storage at (A) 4°C, (B) 8°C, 

and (C) 12°C. Analysis were performed at different day of storage (day 0, 1, 2, 3, 4, 5, 7, 9 and 12).  

Samples No. Of 
OTUs 

Coverage 
(%) Inv. Simpson Chao richness Simpson 

evenness 
d0 8 100.00 2.07  8 0.26 

A-1 8 100.00 2.14  8 0.27 
A-2 8 100.00 2.04  8 0.25 
A-3 8 100.00 2.03  8 0.25 
A-4 8 100.00 2.41  8 0.30 
A-5 8 100.00 2.80  8 0.35 
A-7 8 100.00 2.05  8 0.26 
A-9 8 100.00 2.19  8 0.27 

A-12 2 100.00 1.88  2 0.94 
B-1 7 100.00 2.18  7 0.31 
B-2 7 100.00 2.12  7 0.30 
B-3 7 100.00 2.12  7 0.30 
B-4 7 100.00 2.70  7 0.39 
B-5 7 100.00 3.99  7 0.57 
B-7 7 100.00 1.27  7 0.18 
B-9 5 99.95 1.71  6 0.34 

B-12 3 99.94 1.96  3 0.65 
C-1 4 100.00 1.95  4 0.49 
C-2 4 100.00 1.91  4 0.48 
C-3 3 100.00 2.01  3 0.67 
C-4 3 100.00 2.04  3 0.68 
C-5 3 100.00 2.00  3 0.67 
C-7 4 99.99 2.52  4 0.63 
C-9 3 99.98 2.00  3 0.67 

C-12 3 100.00 2.00  3 0.67 
 

The relative abundance results obtained by metagenetic analysis (expressed in %) at Family 

(Figure 28) and Genus (Figure 29) levels (>5%) are represented in cumulated histograms for all 

samples. These data including the relative abundance of sequences are also summarized in Supplemental 

Material (Table 30). The taxa representing <5% in relative abundance were merged in the category of 

"Others". “Others” are mainly composed by the genera Acinetobacter, Bacillus, Enterococcus, 

Gibbsiella, Leuconostoc, Staphylococcus, Streptococcus, Pantoae and Pseudoalteromonas. For all 

samples, the percentage of “unassigned” reads was relatively low (4.3 ± 2.8). Full data on taxa found in 
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high (>5%) and low (<5%) frequencies will be made available by the authors to any qualified researcher. 

The observed microbial diversity was relatively high at the first day of storage, with a dominance of 

Pseudomonas (>50%). During storage, an increase of microbial counts is coinciding with a decrease in 

bacterial diversity: it concerns Brochothrix (61.3%, 41.7% and 50.5% at 4°C, 8°C and 12°C, 

respectively) and Psychrobacter (37.0%, 56.2% and 42.2%, respectively).  

 

 
Figure 28. Cumulated histograms of the relative abundance (%) of taxa and the dynamics of the bacterial 

community identified by metagenetics at Family levels, during cold storage of white pudding samples (at 

4°C (A), at 8°C (B) and at 12°C (C)). The taxa representing <1% in relative abundance of sequences are all 

gathered in the group “Others species”. 

 

 
Figure 29. Cumulated histograms of the relative abundance (%) of taxa and the dynamics of the bacterial 

community identified by metagenetics at Genus levels, during cold storage of white pudding samples (at 4°C 

(A), at 8°C (B) and at 12°C (C)). The taxa representing <1% in relative abundance of sequences are all 
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gathered in the group “Others species”. 

 

Table 30. Distribution of metagenetic read percentages at Genus level during storage at three isothermal 

temperature. At Genus levels, the taxa representing <5% in relative abundance were merged in the category 

of “Others”; -*, data under the detection limit. 
Bacterial 
genera / 

temperature 

Days 

0 1 2 3 4 5 7 9 12 

4°C          
Brochothrix  2.40 4.95 1.96 3.84 6.50 16.77 50.32 45.76 61.34 
Klebsiella 1.13 1.86 1.45 1.23 1.12 1.31 0.56 0.70 - * 

Pseudomonas  57.35 60.41 56.78 61.41 52.81 45.94 7.16 2.70 - * 
Psychrobacter  1.35 1.03 1.35 1.06 1.61 3.14 16.51 43.51 37.00 

Rahnella  5.28 5.57 4.41 4.58 5.62 3.16 0.54 0.34 - * 
Raoultella 2.78 2.47 2.60 2.37 2.64 2.21 0.17 0.05 - * 
Serratia  10.34 9.90 10.08 10.87 10.55 6.96 0.69 0.30 - * 

Shewanella  3.78 4.33 4.27 3.76 3.96 3.72 0.59 0.25 - * 
Others  15.59 9.48 17.10 10.87 15.19 16.77 23.47 6.40 1.66 

8°C          
Brochothrix  2.40 3.34 1.11 2.09 6.12 9.39 7.84 28.73 41.71 
Klebsiella 1.13 4.87 4.50 4.96 4.41 4.11 0.30 0.01 - * 

Pseudomonas  57.35 55.88 55.74 57.08 48.30 34.43 2.42 0.12 0.03 
Psychrobacter  1.35 0.94 0.29 1.00 3.85 16.02 86.65 69.68 56.21 

Rahnella  5.28 4.78 6.01 4.94 4.99 3.85 0.11 - * - * 
Raoultella 2.78 - * - * - * - * - * - * - * - * 
Serratia  10.34 10.71 11.68 10.39 12.11 10.86 0.30 - * - * 

Shewanella  3.78 4.32 4.54 4.85 3.75 3.37 0.30 0.01 - * 
Others  15.59 15.16 16.12 14.70 16.49 17.96 2.08 1.44 2.05 

12°C          
Brochothrix  2.40 4.34 6.52 50.24 50.84 51.28 50.20 50.57 50.50 
Klebsiella 1.13 - * - * - * - * - * - * - * - * 

Pseudomonas  57.35 58.30 62.98 - * - * - * 14.92 0.01 0.30 
Psychrobacter  1.35 1.98 2.54 48.21 47.34 36.99 33.63 46.47 42.21 

Rahnella  5.28 - * - * - * - * - * - * - * - * 
Raoultella 2.78 - * - * - * - * - * - * - * - * 
Serratia  10.34 23.11 19.12 0.30 1.16 1.24 0.01 - * - * 

Shewanella  3.78 - * - * - * - * - * - * - * - * 
Others  15.59 12.27 8.84 1.25 0.66 10.49 1.25 2.95 6.99 

 

At species level (Figure 30), the major OTUs concerns Pseudomonas sp. and Ps. psychrophila 

at the first day. While it concerns B. thermosphacta, Psy. okhotskensis and Psy. urativorans at the end 

of the shelf life.  
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Figure 30. Heatmap of relative read abundance at species level for all samples (expressed in %) among 

different storage temperature (at 4°C, 8°C and 12°C). Only the most abundant OTUs obtained in this study 

are specially indicated (>1%). All others OTUs are gathered in “Other OTUs”. 

 

3.3. Comparison between the food storage conditions 

 

The metagenetic dissimilarity and cluster results obtained for the different storage temperature 

are showed in Figures 31 and 32. The best similarity is observed between OTUs at 4°C and 8°C. During 

the storage period an increase in the dissimilarity was also observed (Figure 33). 
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Figure 31. Microbial community dissimilarity between samples at the first and the last day of storage (at 4°C 

(4), 8°C (8) and 12°C (12)). The heatmap shows the Bray-Curtis dissimilarity measure based on relative 

abundance of OTUS (genus scale). Values are given in dissimilarity counts (1= 100% dissimilar, 0=0% 

dissimilar). 

 

 
Figure 32. Principal component analysis for 16S rRNA gene sequence data for isothermal conditions (T) at 

4, 8, and 12°C.   
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Figure 33. Microbial community dissimilarity between days of samples analysis (at day 0, 1, 2, 3, 4, 5, 7, 9 

and 12). The heatmap shows the Bray-Curtis dissimilarity measure based on relative abundance of OTUS 

(genus scale). Values are given in dissimilarity counts (1 = 100% dissimilar, 0 = 0% dissimilar). 

 

3.4. Growth parameters 

 

For the rest of the study, B. thermosphacta, Pseudomonas sp. and Psychrobacter spp. 

(Psy. urativorans and Psy. okhotskensis) were, therefore, selected as the main spoilers in WP samples 

as they are the dominant population during shelf life in this product, and because these bacteria are well 

described in the literature and in predictive model’s database.  

The duplicates from the durability study were used for growth predictions. On the other hand, 

the third data-set was used to compare predictions and observations for validation purposes.  

As a next step, the metagenetics data were thus combined with the plate counts results (Table 

31) in order to obtain primary and secondary growth parameters (Table 32).  
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Table 31. Bacterial concentrations (log CFU/g) used in the models for B. thermosphacta, Pseudomonas sp. 

and Psychrobacter spp. at 4°C, 8°C and 12°C; -a, no analysis performed.  

Conditions     Time (hours) 
0 24 48 72 96 120 144 168 192 216 240 264 288 

    B. thermosphacta 
4°C 1.49 -a 1.55 1.94 2.45 3.83 -a -a -a 6.37 -a -a 9.16 
8°C 1.49 -a -a 1.94 3.22 4.89 -a 6.82 -a 7.90 -a -a 8.51 
12°C 1.49 1.84 3.43 6.90 -a 8.27 -a -a -a -a -a -a 8.83 

     
Pseudomonas sp. 

4°C 2.53 -a 2.53 -a 2.83 3.75 -a 4.54 -a 4.80 -a -a -a 

8°C 2.53 2.69 -a -a 3.73 -a -a -a -a 5.06 -a -a 5.01 
12°C 2.53 2.77 3.99 4.52 6.55 6.93 -a -a -a -a -a -a -a 

     
Psychrobacter spp. (Psy. urativorans and Psy. okhotskensis) 

4°C 1.22 -a 1.44 -a -a 2.97 -a 4.78 -a 6.04 -a -a 8.43 
8°C 1.22 -a -a -a -a 4.80 -a 6.86 -a 7.59 -a -a 8.38 
12°C 1.22 -a -a 5.92 6.78 7.91 -a 8.61 -a 9.15 -a -a 9.10 
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Table 32. Estimation of the primary and secondary parameters at 4, 8 and 12°C. a bacterial concentration at 

day 0, b bacterial concentration at the end of the shelf life product, c lag phase duration, d maximal bacterial 

growth rate (1/h), e bacterial growth rate of reference (1/h) obtained using a reparametrized version of the 

square root secondary model, f minimal temperature for growth (°C), coefficient of determination (r2) and 

confidence interval of 95% (in square brackets).  

Primary 
parameters of 

growth 
B. thermosphacta Pseudomonas sp. Psychrobacter spp. 

4°C    
N0 (log CFU/g)a 1.49 [1.39-1.59] 2.53 [2.44-2.62] 1.22 [1.21-1.23] 

Nmax (log CFU/g)b 9.16 [9.16-9.16] 4.80 [4.80-4.80] 8.53 [8.53-8.53] 
LPD (h)c 48 [48-50] 66 [65-67] 50 [50-50] 
µmax (1/h)d 0.07 [0.07-0.07] 0.05 [0.05-0.05] 0.07 [0.07-0.07] 

r2  0.99 0.98 0.98 
 

8°C    

N0 (log CFU/g)  1.49 [1.39-1.59] 2.53 [2.44-2.62] 1.22 [1.21-1.23] 
Nmax (log CFU/g)  8.51 [8.51-8.51] 5.01 [5.01-5.70] 8.38 [8.38-8.38] 

LPD (h)  48 [48-50] 40 [40-40] 40 [40-40] 
µmax (1/h)  0.10 [0.10-0.10] 0.07 [0.03-0.07] 0.10 [0.10-0.10] 

r2 0.99 0.98 0.98 
 

12°C    

N0 (log CFU/g)  1.49 [1.39-1.59] 2.53 [2.44-2.62] 1.22 [1.21-1.23] 
Nmax (log CFU/g)  8.83 [8.83-8.83] 6.93 [6.93-6.93] 9.10 [9.10-9.10] 

LPD (h)  24 [24-24] 20 [20-20] 10 [10-10] 
µmax (1/h)  0.24 [0.24-0.24] 0.11 [0.11-0.11] 0.15 [0.15-0.15] 

r2 0.99 0.99 0.99 
Secondary parameters of growth  

µrefe 0.53 [0.53–0.53] 0.25 [0.21-0.25] 0.29 [0.29-0.29] 
r2 0.99 0.99 0.99 

Tminf -3.36 
(33) 

-5.00 
(58, 59) 

-10.00 
(4) 

 

3.5. Growth models and validation step 

 

Table 33 gives an overview of the simulation hypothesis used for the three software. Growth 

predictions for each bacterium are also presented in Tables 34, 35 and 36. For the 3 bacteria concerned 

(B. thermosphacta, Pseudomonas sp. and Psychrobacter spp.), the comparison between the 

observations from the validation data-set given by the three software programs for is presented in 

Figure 34. Psychrobacter spp. could not be modeled in ComBase because the database did not include 

this bacterium.  

A relatively good agreement was obtained between the observations from the validation data-

set and simulations, especially for Pseudomonas sp. Moreover, the predictions of Sym'Previus and 
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Baranyi's model seems often quite similar. But overestimations were frequently observed for 

B. thermosphacta and Psychrobacter spp., at 8°C and 4°C, respectively. On the maximum population 

density, ComBase also showed higher values (approximatively 8.00 log CFU/g) compared to the other 

two software programs.  

 

Table 33. Simulation hypothesis used for the three predictive software programs. -a, not considered in the 

model; -b, calculated by polynomial model of the tool; -c, calculated by model of the tool for a reference at 

8°C; -d, model based on the reparametrized version of the square root secondary model; -e, bacteria not 

available in the ComBase Predictor database.  

Predictive 
software 

Temp. 
(°C) pH aw N0  

(log CFU/g) 
Nmax  

(log CFU/g) 
LPD 
(h) 

µmax  
(1/h) 

Phys. 
state 

B. thermosphacta 
ComBase 4, 8, 12 6.00 0.98 1.49 -a -a -b 5.75x10-7 

Sym’Previus 4, 8, 12 6.00 0.98 1.49 8.51 48c 0.13c -a 

R 4, 8, 12 -a -a 1.49 8.51 48 0.05,0.13,0.23d -a 

 
Pseudomonas sp. 

ComBase 4, 8, 12 6.00 0.98 2.53 -a -a -b 1.58x10-3 

Sym’Previus 4, 8, 12 6.00 0.98 2.53 5.01 40c 0.07c -a 

R 4, 8, 12 -a -a 2.53 5.01 40 0.03,0.07,0.12d -a 

 
Psychrobacter spp. 

ComBase -e -e -e -e -e -e -e -e 
Sym’Previus 4, 8, 12 6.00 0.98 1.22 8.38 40c 0.09c -a 

R 4, 8, 12 -a -a 1.22 8.38 40 0.05,0.09,0.13d -a 
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Table 34. Simulations of bacterial growth using Sym’Previus, ComBase and the Baranyi function for 

B. thermosphacta. These results were compared with validation data-set; -*, significant statistical difference 

by ANCOVA-test (p-value < 0.05) between the validation data-set and each of the predictive simulations;     

-a, no analysis performed.  

Parameters 
(Temperature / hours) 

Simulations of growth Validation data-set ComBase Sym’Previus Baranyi function 
4°C 0 1.52 1.49 1.49 1.49 

 24 -a -a -a -a 
 48 1.52 2.01 1.51 1.82 
 72 -a -a -a -a 
 96 1.53 5.25 1.76 2.67 
 120 1.65 6.77 2.33 3.85 
 144 -a -a -a -a 
 168 -a -a -a -a 
 192 -a -a -a -a 
 216 5.65 8.42 8.71 6.30 
 240 -a -a -a -a 
 264 -a -a -a -a 
 288 7.75 8.45 8.49 8.11 

8°C 0 1.52 1.49* 1.49* 1.49 
 24 -a -a -a -a 
 48 -a -a -a -a 
 72 1.81 8.30* 7.09* 1.81 
 96 3.57 8.44* 8.43* 3.56 
 120 5.63 8.47* 8.50* 4.86 
 144 -a -a -a -a 
 168 7.80 8.48* 8.50* 7.68 
 192 -a -a -a -a 
 216 7.83 8.50* 8.51* 6.46 
 240 -a -a -a -a 
 264 -a -a -a -a 
 288 7.83 8.50* 8.51* 8.53 

12°C 0 1.52 1.49 1.49 1.49 
 24 1.52 4.34 2.03 2.05 
 48 1.87 8.40 8.19 4.63 
 72 4.78 8.49 8.50 6.86 
 96 -a -a -a -a 
 120 7.82 8.50 8.51 7.50 
 144 -a -a -a -a 
 168 -a -a -a -a 
 192 -a -a -a -a 
 216 -a -a -a -a 
 240 -a -a -a -a 
 264 -a -a -a -a 
 288 7.83 8.50 8.51 9.34 
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Table 35. Simulations of bacteria growth using Sym’Previus, ComBase and the Baranyi function for 

Pseudomonas sp.. These results were compared with validation data-set; -*, significant statistical difference 

by ANCOVA-test (p-value < 0.05) between the validation data-set and each of the predictive simulations;   

-a, no analysis performed.  

Parameters 
(Temperature / hours) 

Simulations of growth Validation data-set ComBase Sym’Previus Baranyi function 
4°C 0 2.52 2.53 2.53 2.53 

 24 -a -a -a -a 
 48 2.54 2.65 2.75 2.81 
 72 -a -a -a -a 
 96 2.81 3.92 3.37 3.27 
 120 3.27 4.51 3.82 3.57 
 144 -a -a -a -a 
 168 4.59 4.90 4.57 4.69 
 192 -a -a -a -a 
 216 5.97 4.96 4.89 5.20 
 240 -a -a -a -a 
 264 -a -a -a -a 
 288 -a -a -a -a 

8°C 0 2.52* 2.53 2.53 2.53 
 24 -a -a -a -a 
 48 -a -a -a -a 
 72 -a -a -a -a 
 96 4.29* 4.96 4.91 3.95 
 120 -a -a -a -a 
 144 -a -a -a -a 
 168 -a -a -a -a 
 192 -a -a -a -a 
 216 8.23* 4.99 5.00 4.36 
 240 -a -a -a -a 
 264 -a -a -a -a 
 288 8.26* 5.01 5.01 5.31 

12°C 0 2.52 2.53 2.53 2.53 
 24 2.56 3.47 3.37 2.67 
 48 3.35 4.88 4.77 4.14 
 72 5.07 4.99 4.99 4.68 
 96 6.81 5.01 5.00 6.00 
 120 8.03 5.01 5.01 6.37 
 144 -a -a -a -a 
 168 -a -a -a -a 
 192 -a -a -a -a 
 216 -a -a -a -a 
 240 -a -a -a -a 
 264 -a -a -a -a 
 288 -a -a -a -a 
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Table 36. Simulations of bacterial growth using Sym’Previus, ComBase and the Baranyi function for 

Psychrobacter spp.. These results were compared with validation data-set; -*, significant statistical difference 

by ANCOVA-test (p-value < 0.05) between the validation data-set and each of the predictive simulations;   

-a, bacteria not available in the ComBase Predictor database; -b, no analysis performed.  

Parameters 
(Temperature / hours) 

Simulations of growth Validation data-set ComBase Sym’Previus R software 
4°C 0 -a 1.22* 1.22* 1.22 

 24 -b -b -b -b 
 48 -a 1.83* 1.49* 1.75 
 72 -b -b -b -b 
 96 -b -b -b -b 
 120 -a 5.04* 5.62* 2.49 
 144 -b -b -b -b 
 168 -a 7.19* 7.99* 4.92 
 192 -b -b -b -b 
 216 -a 8.28* 8.34* 5.79 
 240 -b -b -b -b 
 264 -b -b -b -b 
 288 -a 8.37* 8.37* 7.35 

8°C 0 -a 1.22 1.22 1.22 
 24 -b -b -b -b 
 48 -b -b -b -b 
 72 -b -b -b -b 
 96 -b -b -b -b 
 120 -a 8.35 8.34 5.04 
 144 -b -b -b -b 
 168 -a 8.37 8.37 7.18 
 192 -b -b -b -b 
 216 -a 8.37 8.37 7.57 
 240 -b -b -b -b 
 264 -b -b -b -b 
 288 -a 8.37 8.38 8.39 

12°C 0 -a 1.22 1.22 1.22 
 24 -b -b -b -b 
 48 -b -b -b -b 
 72 -a 8.34 8.22 5.77 
 96 -a 8.38 8.37 5.72 
 120 -a 8.38 8.37 8.07 
 144 -b -b -b -b 
 168 -a 8.38 8.38 8.62 
 192 -b -b -b -b 
 216 -a 8.38 8.38 9.11 
 240 -b -b -b -b 
 264 -b -b -b -b 
 288 -a 8.38 8.38 9.50 
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Figure 34. Observed (x) and predicted results (lines) for B. thermosphacta at 4 (A), 8 (B) and 12°C (C), for 

Pseudomonas sp. at 4 (D), 8 (E) and 12°C (F), and for Psychrobacter spp. at 4 (G), 8 (H) and 12°C (I). The 

predicted data obtained by the three software are indicted by lines: ComBase (blue, dotted line), Sym’Previus 

(red, dashed line) and the Baranyi function (green, broken line). 
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Discussion 
 

This experiment aims at following the bacterial growth in Belgian WP stored at isothermal 

conditions under food-wrap packaging.  

At the end of the storage period, the bacterial counts were over 7.0 log CFU/g, indicating, given 

the nature of the dominant bacterial populations, that the product had probably begun to be spoiled and 

would be no longer suitable for human consumption. Indeed, it is generally recognized that microbial 

spoilage of meat occurs when counts reach arbitrary level between 7.0 log CFU/g (Reid et al., 2017; 

Spanu et al., 2018; Stoops et al., 2015; Zhao et al., 2015) and 8.0 log CFU/g (Chaillou et al., 2015; Fall 

et al., 2012; Nychas et al., 2008; Pothakos et al., 2014). Although culturable method is widely used to 

follow the microbial growth in a food matrix, these results are not informative enough alone to describe 

the dynamics of the bacterial communities. Indeed, the microbial diversity in terms of species richness 

and abundance is grossly underestimated by culture-dependent techniques (Stoops et al., 2015). 

Moreover, the problem with studies of the microbiota associated with food spoilage is that many articles 

focused only on one bacterial specie and did not consider the whole bacterial microbiota and their 

dynamics (Rouger et al., 2017). According to this, a sequence-based approach at the genus-species level 

can be used as a supplementary technique to elucidate the detailed dynamics of the microbial population 

during storage, because different species in the same groups of bacteria may be differently affected by 

the same storage conditions. In this study, the metagenetics data were combined with the plate counts 

results, regarding the detected major population (B. thermosphacta, Psychrobacter sp. and 

Pseudomonas sp.) whose is able to cultivate in these conditions. Moreover, association of relative 

abundance results with cell counts is well described in microbiome analysis (Amend et al., 2010; Guo 

et al., 2019). This method was also described by Vandeputte et al. (2017), who associated flow 

cytometric enumeration of microbial cells with sequencing data (relative microbiome profiles, RMP) in 

order to obtain quantitative microbiome profiles (QMP). In this study, QMP allow to investigate 

microbiota variations and to reduce the microbial abundance of the microbiome associated with Crohn’s 

disease. Comparatively with the relative microbiome profiles (RMP), this method enables quantitative 

assessment of microbiota variations, even if all of the current biases of this approach were not addressed. 

Moreover, Vandeputte et al. (2017) also showed that quantitative qPCR (qPCR) and flow cytometric 

enumeration of microbial cells yield comparable abundance profiles. This point is important as we 

validated this method by a qPCR approach in another experimental study (Cauchie et al., 2017). It could 

be so interesting to validate the proposed method by other qPCR or flow cytometric enumerations. 
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However, the inability of differentiation between viable and non-viable cells by culture-independent 

DNA-based methods remains an important drawback, which could result in a significant over-estimation 

of viable species (Scariot et al., 2018; Tantikachornkiat et al., 2016). Systematic biases of processing 

and analysis steps in culture-dependent and -independent methods must also be considered (Louca et 

al., 2018; Pollock et al., 2018; Salter et al., 2014).  

During storage, the major genus in WP samples are represented by Brochothrix, Pseudomonas 

and Psychrobacter. These results are not surprising because the microbial populations of refrigerated 

meat and pork-meat products are mainly composed by Pseudomonas spp., cold-tolerant 

Enterobaceriaceae, LAB (such as Lactobacillus spp., Lactococcus spp., Leuconostoc spp., 

Carnobacterium spp., etc.), B. thermosphacta, Clostridium spp. (Del Blanco et al., 2017; Geeraerts et 

al., 2017; Zhao et al., 2015), Psychrobacter spp. (Casaburi et al., 2015; Ferrocino et al., 2017; Zhang et 

al., 2018b) and Weissella spp. (Stellato et al., 2016). Other genera frequently isolated from fresh pork 

meats are Acinetobacter spp., Aeromonas spp., Enterococcus spp. and Moraxella spp. (Mann et al., 

2016; Zhao et al., 2015). Their abundance and contribution to spoilage are largely influenced by the 

storage conditions (Stoops et al., 2015), like temperature and oxygen availability (Crotta et al., 2016), 

because not all the members of this microbiota contribute to spoilage.  

For the modeling part of the study, only Brochothrix, Pseudomonas and Psychrobacter were 

used in fitting models. These bacteria represented the dominant spoilage bacteria of Belgian WP samples 

according to time and storage temperature. These bacteria are also known to be able to grow in different 

gas compositions (Ercolini et al., 2011; Mann et al., 2016; Mansur et al., 2019; Nychas et al., 2008; 

Reid et al., 2017) and are psychrophilic (Leroi et al., 2012; Martinez-Rios et al., 2016). Under aerobic 

low temperature conditions, the spoilage consortium of bacteria is usually dominated by Pseudomonas 

spp., which triggers slime, discoloration and off-odor producing (Liu et al., 2018; Reid et al., 2017; 

Spanu et al., 2018). Brochothrix spp. (especially B. thermosphacta) seems to be also the most abundant 

bacteria in minced meat (Del Blanco et al., 2017; Koutsoumanis et al., 2008), leading to spoilage of 

meat by a sour, acid and cheesy odor (Fall et al., 2012). Moreover, Psychrobacter is a food spoilage 

bacterium, especially in fermented meat under refrigerated conditions, associated with various spoilage 

compounds (Ferrocino et al., 2017; Zhang et al., 2018b).  

In this study, the growth of each bacteria was assessed daily at the same time, by combining 

classical microbiology and 16S rDNA amplicon sequencing, with the aim to explore the microbial 

community and to obtain quantitative results (Fougy et al., 2016). However, without extensive surveys 

involving a large number of samples it will not be possible to characterize the food spoilage microbiota 

and to study their dynamics (Pennacchia et al., 2011). In further studies, it would be thus interesting to 

study the microbiota diversity by multiply sampling or experiments with the metagenetic approach, by 

tests in different storage conditions (temperature, packaging, …), and by evaluating the interactions 
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between samples during food production, because they can all influence the shelf life of the product 

(Rouger et al., 2017). Models should also include all other bacteria present in our samples. In this paper, 

no conclusions about subdominant bacteria or bacterial ecosystems for other storage conditions should 

be dawn. Further data are so needed to determine and follow spoilage bacterial communities in Belgian 

WP samples, but the method used could be applied for others food and food process. 

In addition to predictive microbiology, these data permitted us to simulate the growth of each 

dominant bacterium. Even if none of the predictive simulations gave an identical microbial curve to the 

validation kinetics obtained by the aging-test, good statistical fits were obtained, showing that the 

approach combining the metagenetics and simulations based on an accurate database is promising. It 

should nevertheless be noticed that an overestimation was sometimes observed. In a worst-case 

assumption, this overestimation could be beneficial to decision makers in a spoilage risk analysis (Crotta 

et al., 2016; Membré and Lambert, 2008). Moreover, these results are in accordance with the study of 

Nyhan et al. (2018) where the calculated growth rates of Listeria spp. were underestimated with 

ComBase Predictor. In contrast, Leroi et al. (2012) demonstrated an overestimation of the maximum 

growth rate for B. thermosphacta in cooked peeled shrimp with the same software. As reported in the 

literature, the best performance factors were mainly observed with R and Sym’Previus (Valerio et al., 

2015). Some hypotheses can explain these differences beside the fact that prediction errors can originate 

from biological and environmental variability, and the inaccuracy of the mathematical models and 

assumptions used (Baranyi and da Silva, 2017). ComBase model doesn’t allow to modulate the Nmax to 

observed lower values, in contrast with the two others. Food matrix and intrinsic parameters may have 

an effect on the bacterial growth. But only ComBase and Sym’Previus software applications consider 

the intrinsic parameters of Belgian WP, such as pH and water activity. That can maybe explain why an 

overestimation is mainly observed. It is possible to add intrinsic parameters in the Baranyi function, but 

more cardinal values about the spoilage microorganisms are needed (Tmin, Tmax, Topt, aw(min), aw(opt), aw(max), 

pHmin, pHopt, pHmax, …). Moreover, growth predictions did not take into account the effect of competitive 

microbiota present in the product and only focused on three targeted species. But, as mentioned in the 

results section, other bacterial species were present. Significant statistical differences between 

simulations and validation data-set are probably due to an interaction between bacterial species, 

compared to the behavior of each individual species in the same food matrix. On this basis, it would be 

worth including microbial interactions between microorganisms to better predict microbial growth or 

inactivation in WP, and in complex food ecosystems (Tenenhaus-Aziza and Ellouze, 2015). In addition, 

the three dominant selected bacteria were in an internal database of ComBase but it was not possible to 

select a precise bacterial species or a type of food matrix. And it is well known that predictions may be 

influenced by the condition of storage and/or the selected bacterial species. Thus, it could be interesting 

to explore the use of metagenetics analysis coupled to predictive models for other food storage 
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conditions (like packaging, temperature, etc.) and for several sampling, to give a better proof of concept 

on the interest to combine these methods. Indeed, data collection in this study is not sufficient enough. 

But the aim was to give a first exploration case in this specific context.  

Finally, the third data-set used as a validation data derive from single repetition. This may also 

explain the differences between predicted and observed values. Further studies are needed to determine 

variability between predictive models, according to several validation data-set.  

Based on all this, this study allows to describe and to follow the spoilage bacterial dynamics of 

Belgian WP samples. Moreover, B. thermosphacta, Pseudomonas sp. and Psychrobacter spp. were used 

as models in three predictive software, showing an interesting example in this case. But further studies 

are needed to demonstrate the interest of combining classical microbiology with metagenetics, and to 

associate these results with predictive modeling. Moreover, further researches on the bacterial 

communities’ dynamics for meat and meat products in different conditions and for multiple samples are 

desirable to provide more complete predictions, and also to better compare the predictive models 

available.  

Compared to culture-based methods on selective media and previous culture-independent 

techniques, metagenetic analysis combined with classical microbiology and predictive models gave 

interesting information. Microbial ecology studies have shown that the microbiota of food is much more 

diverse than that reported by the use of culture media. In this study, microbial changes during storage at 

three isothermal conditions in FW were monitored. In accordance with previous studies we found that 

Pseudomonas, Brochothrix and Psychrobacter dominate the community during storage. The growth 

parameters and models presented in this study are interesting for the example shown, by adding to 

existing database for spoilage bacteria, and could be applied to other foods and food processes. However, 

further researches on the bacterial communities’ dynamics for Belgian WP, during storage in different 

storage conditions and for multiple samples, are important to provide a more complete evaluation of the 

microbial spoilage of WP, and to then use these results in predictive models. Extensive surveys 

involving a large number of samples and validation data-set are also required to provide a proof of 

concept, and to better predict the growth of microbial species in the spoilage of meat and meat products. 
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Abstract 
 

Þ Objective 2. Characterize specific spoilage bacteria dynamics and 
use them as inputs in models for minced pork 
 
Þ Objective 3. Develop and validate complex models for spoilage 
species in minced pork 
 

The aim of this study was to obtain the growth parameters of specific spoilage microorganisms 

previously isolated in MP samples, and to develop a three spoilage species interaction model under 

different storage conditions. Naturally contaminated samples were used to validate this approach by 

considering the effect of the food microbiota. Three groups of bacteria were inoculated on irradiated 

samples, in mono- and in co-culture experiments (n = 1152): B. thermosphacta, Ln. gelidum and 

Pseudomonas spp. (Ps. fluorescens and Ps. fragi). Samples were stored in two food packaging (FW and 

MAP (CO2 30% / O2 70%)) at three isothermal conditions (4°C, 8°C and 12°C). Analysis were carried 

out by using both 16S rRNA gene amplicon sequencing and classical microbiology in order to estimate 

bacterial counts during the storage period. Growth parameters were obtained by fitting primary 

(Baranyi) and secondary (square root) models. The food packaging shows the highest impact on 

bacterial growth rates, which in turn have the strongest influence on the shelf life of food products. 

Based on these results, a three spoilage species interaction model was developed by using the modified 

Jameson-effect model and the Lotka-Volterra (prey-predator) model. The modified Jameson-effect 

model showed slightly better performances, with 40–86% out of the observed counts falling into the 

Acceptable Simulation Zone. It only concerns 14-48% for the prey-predator approach. These results can 

be explained by the fact that the dynamics of experimental and validation datasets seems to follow a 

Jameson behavior. On the other hand, the Lotka-Volterra model is based on complex interaction factors, 

which are included in highly variable intervals. More datasets are probably needed to obtained reliable 

factors, and so better model fittings, especially for three or more spoilage species interaction models. 

Further studies are also needed to better understand the interaction of spoilage bacteria between them 

and in the presence of natural microbiota.  
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Introduction 
 

During production and distribution steps, spoilage of meat and meat products may occur, 

rendering them unacceptable for human food consumption. Spoilage is mainly caused by microbial 

growth, which triggers alterations in the sensorial qualities of the product, with off-odor and off-flavor, 

discoloration, texture changes, etc. (Cauchie et al., 2017; Dalcanton et al., 2013; Den Besten et al., 2017; 

Kreyenschmidt et al., 2010; Pinter et al., 2014; Torngren et al., 2018). It is well known that the initial 

bacterial counts on meat and meat products is highly variable (Benson et al., 2014), but several studies 

have established that only a dominant fraction of the microbiota, designated as SSOs, contributes to 

spoilage (Benson et al., 2014; Kreyenschmidt et al., 2010; Nychas et al., 2008; Pennacchia et al., 2011; 

Zotta et al., 2019). In this context, predictive microbiology can be a helpful tool because the prediction 

of microbial growth, especially SSOs, enables food industries to optimize their production and storage 

managements, and thus reduce their economic losses (Fakruddin et al., 2012; Kreyenschmidt et al., 

2010; Li et al., 2017; Tamplin, 2018).  

During the last years, several models have been developed to predict the growth of SSOs in 

meat and meat products (Dalcanton et al., 2013; Koutsoumanis, 2009; Kreyenschmidt et al., 2010; Liu 

et al., 2006; Mataragas et al., 2006; Mejlholm and Dalgaard, 2013). But the majority of the developed 

models are based on the growth of two bacterial species in a food matrix (Giuffrida et al., 2007; 

Vereecken et al., 2000), most often to study the interaction between spoilage and pathogenic bacteria 

(Cornu et al., 2011; Correia Peres Costa et al., 2019; Giuffrida et al., 2009; Lebert et al., 2000; Mejlholm 

and Dalgaard, 2007; Pedrozo et al., 2019; Ye et al., 2014). Moreover, these models often describe the 

growth of the SSOs depending on the storage temperature (Antunes-Rohling et al., 2019; Dominguez 

and Schaffner, 2007; Gospavic et al., 2008; Kreyenschmidt et al., 2010; Longhi et al., 2013; Psomas et 

al., 2011) or the packaging conditions (Chaix et al., 2015b; Couvert et al., 2019; Devlieghere et al., 

1999; Guillard et al., 2016; Kapetanakou et al., 2019), but do not always consider the interaction of 

these storage conditions for the growth of spoilage bacteria (Augustin and Carlier, 2000; Correia Peres 

Costa et al., 2019; Dalcanton et al., 2018; Kakagianni et al., 2018; Le Marc et al., 2002; Nyhan et al., 

2018; Pinon et al., 2004; Rosso et al., 1995).  

As mentioned by Correia Peres Costa et al., 2019: “interaction models are usually intended to 

quantify how much the growth of one population is reduced by the growth of other populations”. In this 

context two model approaches are generally used to describe the microbial interaction: (i) those based 

on the modified Jameson-effect phenomenon (Cauchie et al., 2017; Cornu et al., 2011; Correia Peres 
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Costa et al., 2019; Jameson, 1962; Ye et al., 2014), and (ii) those based on the predator-prey models 

(Lotka-Volterra equation) (Berlow et al., 2004; Cornu et al., 2011; Correia Peres Costa et al., 2019; 

Dens et al., 1999; Giuffrida et al., 2007; Mounier et al., 2008; Powell et al., 2004; Ye et al., 2014).  

As described by Cornu et al. (2011), the Jameson-effect model assumes that: “(i) many 

microbial interactions in foods limit the maximum population density, without any significant effect on 

the lag time, and (ii) the growth of the minority population is only partly inhibited after the majority 

population count has reached its stationary phase (maximum critical population, MCP, expressed in log 

CFU/g)”. The modified Jameson-effect model makes the hypothesis that there is one single inhibition 

function for both populations, hence both populations are similarly inhibited by the same limiting 

resource, the same waste products and/or by change in pH (Cornu et al., 2011). Recently, Quinto et al. 

(2018) have developed a three-strains model based on the modified Jameson-effect equation for 

inoculated spoilage and pathogenic bacteria in a reconstituted sterile skimmed milk. This study considers 

the effect of two bacteria, Ps. fluorescens and L. innocua, on the bacterial growth of L. monocytogenes. 

But the effect of the natural food microbiota on the growth of specific spoilage bacteria need to be 

studied (Rouger et al., 2017) in order to predict bacterial growth resulting from several interactions 

between three or more spoilage species (Ye et al., 2014). This approach needs to be studied.  

The Lotka-Volterra model can be considered as a prey-predator model that includes competition 

for a common substrate (Cornu et al., 2011). As cited by Chauvet et al. (2002), the Lotka-Volterra model 

for a three species food chain approach can be considered as: “the lowest-level prey x is preyed upon by 

a mid-level species y, which, in turn, is preyed upon by a top-level predator z”. However, this hypothesis 

cannot always be applied in food matrix. Indeed, the growth of a bacterium (BA) presents simultaneously 

with other bacteria in a food matrix (BB and BC) can be affected by three different ways: (i) BA growth 

with a reduced growth rate after that BB and BC reach their maximal population densities (Nmax, expressed 

in log CFU/g), (ii) BA stops growing when BB and BC reach their Nmax, and (iii) BA declines when BB and 

BC reach their Nmax (Cauchie et al., 2017; Correia Peres Costa et al., 2019). It could be so interesting to 

develop a Lotka-Volterra model for a three species approach, by considering the effect of the natural 

food microbiota for the growth of specific spoilage bacteria. Also, this approach is, to the best 

knowledge of the authors, not available in the literature. 

Based on these, the objectives of the present study were (i) to obtain the growth parameters of 

three specific spoilage microorganisms previously isolated in MP samples, according to different storage 

conditions, (ii) to develop a three spoilage species interaction model based on available models, under 

FW and MAP, at isothermal conditions, and (iii) to validate this approach with naturally contaminated 

food samples stored under different storage conditions.  
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Material and methods 
 

2.1. Sampling  

 

Fresh MP samples were obtained from a local Belgian manufacturer at the day of the production, 

corresponding to the day of slaughtering. MP samples were packed by the manufacturer in a 

polypropylene tray under cling film (high film permeability).  

According to the recipe MP is composed of 100% pork mince (70% lean, 30% fat), no salt, no 

spices, no additives, no eggs and no sugar are added.  

At the day of the production, the water activity of the product was 0.98 ± 0.02 and the pH value 

was 5.80 ± 0.05 (n = 12). pH of the homogenized samples (5 g in 45 ml of KCl) was measured with a 

pH meter (Knick 765 Calimatic, Allemagne). The water activity was measured for homogenized 

samples on the basis of the relative humidity measurement of the air balance in the micro enclosure at 

25 ± 0.4°C (Thermoconstanter TH200, Novasina, Switzerland).  

Food samples were then stored at -20°C and irradiated by gamma irradiation (17.5 ± 0.4 kGy) 

at the same temperature (Sterigenics, Fleurus, Belgium) to limit the adverse effects of irradiation at this 

dose (Kim et al., 2002; Ham et al., 2017; Wang et al., 2018d).  

 

2.2. Bacterial strains 

 

As described in the study of Cauchie et al. (2019), three specific spoilage microorganisms were 

previously isolated from different batches of naturally contaminated Belgian MP samples at the end of 

their use-by date. Samples were stored under two packaging (under air and MAP - 30% CO2 - 70% O2) 

and 3 temperature conditions (4°C, 8°C and 12°C). These predominant strains, represented more than 

50% of the natural microbiota, were identified by 16S rRNA sequencing and used for experiments: 

B. thermosphacta (MM008), Ln. gelidum (MM045) Pseudomonas spp. (Ps. fluorescens MM026 and 

Ps. fragi MM014). Ps. fluorescens and Ps. fragi were used together because experiments were carried 

out in an exploratory approach to the proposed method, thus wishing to consider a wide diversity of 

Pseudomonas species most frequently found in MP. 

B. thermosphacta MM008, Ln. gelidum (MM045), Ps. fragi MM014 and Ps. fluorescens 

MM026 were stored at -80°C in nutrient broth with 30% glycerol as a cryoprotective agent. Before use, 

strains were transferred from the -80°C culture collection to Brain Heart Infusion (BHI) broth for 48 h 

at 22°C. The bacterial suspensions were incubated overnight at 4°C before inoculation at stationary 
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phase (7.00 log CFU/mL).  

 

2.3. Inoculation experiments 

 

The three selected bacteria suspensions were inoculated on irradiated MP samples (1% v/w), in 

triplicate, for mono-culture and co-culture experiments with the objective to reach an average 

concentration of 3.0 log colony forming units (log CFU/g on the product). 

Mono-culture experiments were performed by inoculation of individual bacterial strains: 

B. thermosphacta MM008, Pseudomonas spp. (Ps. fluorescens MM026, Ps. fragi MM014, 1:1 ratio), 

and Ln. gelidum MM045.  

Co-culture experiments were performed by inoculation of a mix containing B. thermosphacta 

MM008, Pseudomonas spp. (Ps. fragi MM0014 and Ps. fluorescens MM0026, 1:1 ratio) and 

Ln. gelidum MM045 (1:1:1 ratio). 

Non-inoculated control samples were homogenized, in triplicate, by adding the same quantity 

of sterile water only.  

After inoculation, MP samples were mixed in a Kenwood mixer for 2 min in speed 2 (Kenwood, 

Mechelen, Belgium).  

Inoculated and non-inoculated MP samples were then packed (50 g) in two different type of 

non-sterile packaging. The first packaging was a high barrier tray (187x137x36, polyester 10 µm, homo-

polymer polypropylene 50 µm, NutriPack, France) under MAP (CO2 30% / O2 70% ± 0.1%) (Olympia 

V/G, Technovac, Italy) using packaging wrap (PP/EVOH/PP) with random gas measurements 

(CheckMate 3, Dansensor, France). The second packaging concerns a weak barrier tray (175x135x22, 

polystyrene) under FW using cling film (Clinofilm).  

In this study, MP samples were stored during a 13-days shelf life at isothermal temperature: (i) 

4°C (± 1°C), (ii) 8°C (± 1°C), (iii) and 12°C (± 1°C), in climatic chambers (Sanyo MIR 254) (288 

samples for 4 experiments, n = 1152 samples) (Figure 35). A storage time of 13 days was defined in 

this study in order to obtain a sufficient number of points for modeling, allowing us to predict all the 

growth phases. 

The codes used for each experiment, depending on the inoculated bacteria and storage 

conditions, are listed in Table 37. 
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Figure 35. Inoculation experiments performed in food samples.  
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Table 37. List of the codes used for the experiments, depending on the inoculated bacteria and storage 

conditions. FW, food wrap packaging; MAP, modified atmosphere packaging (CO2 30% / O2 70% ± 0.1%); 

mono, mono-culture experiments; co, co-culture experiments with by individually tracking the inoculated 

bacteria by metagenetic analysis (B. thermosphacta, co(A); Pseudomonas spp., co(B); Ln. gelidum, co(C)). 

Experiments Food packaging Temperature (°C) Bacterial species  Codes 
Mono-culture FW 4 B. thermosphacta  Amono 

FW 8   Bmono 

FW 12   Cmono 
MAP 4   Dmono 

MAP 8   Emono 

MAP 12   Fmono 
Mono-culture FW 4 Pseudomonas spp.  Gmono 

FW 8   Hmono 

FW 12   Imono 
MAP 4   Jmono 

MAP 8   Kmono 

MAP 12   Lmono 

Mono-culture FW 4 Ln. gelidum  Mmono 
FW 8   Nmono 

FW 12   Omono 

MAP 4   Pmono 
MAP 8   Qmono 

MAP 12   Rmono 

Co-culture FW 4 B. thermosphacta  Aco(A) 
  Pseudomonas spp.  Aco(B) 
  Ln. gelidum  Aco(C) 

FW 8 B. thermosphacta  Bco(A) 

  Pseudomonas spp.  Bco(B) 
  Ln. gelidum  Bco(C)  

 FW  12 B. thermosphacta  Cco(A) 

  Pseudomonas spp.  Cco(B) 
  Ln. gelidum  Cco(C) 

MAP 4 B. thermosphacta  Dco(A) 

  Pseudomonas spp.  Dco(B) 

  Ln. gelidum  Dco(C) 
 MAP 8 B. thermosphacta  Eco(A) 

  Pseudomonas spp.  Eco(B) 

  Ln. gelidum  Eco(C) 
MAP 12 B. thermosphacta  Fco(A) 

  Pseudomonas spp.  Fco(B) 

  Ln. gelidum  Fco(C) 

 

2.4. pH and gas composition measurements 

 

At the first and the last day of storage, pH of the homogenized samples (5 g in 45 ml of KCl) 

was measured with a pH meter (Knick 765 Calimatic, Allemagne).  

Oxygen and carbon oxygen concentrations of samples stored in MAP were monitored daily 

(CheckMate 3, Dansesor, France).  
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Nonparametric statistical tests were used to compared the pH values and the gas measurements 

between samples. All tests were considered as significant for a p-value < 0.05.  

 

2.5. Plate count enumeration  

 

Twenty-five grams of product were put into a Stomacher bag with a mesh screen liner (80 µm 

pore size) (Biomérieux, Basingstoke, England, ref 80015) under aseptic conditions. Buffered peptone 

water (BPW, 10g/L peptone, 5g/L sodium chloride, #3564684, Bio-Rad, Marnes-la-Coquette, France) 

(225 mL) was automatically added to each bag (Dilumat, Biomérieux, Belgium) and the samples were 

homogenized for 2 min in a Stomacher (Bagmixer, Interscience, France). From this primary suspension, 

decimal dilutions in maximum recovery diluent (1.0 g/L peptone, 8.5 g/L sodium chloride, #CM0733, 

Oxoid, Hampshire, England) were prepared for microbiological analysis, and 0.1 mL aliquots of the 

appropriate dilutions were plated onto media for each analysis (Spiral plater, DW Scientific, England).  

Total viable counts (TVC) for the aerobic psychrophilic microbiota were enumerated on plate 

count agar (PCA agar, #3544475, Bio-Rad, Marnes-la-Coquette, France) after 72 h at 22°C (model 1535 

incubator, Shel Lab, Sheldon Manufacturing. Inc., USA).  

Plate counts were performed for mono- and co-culture experiments, and transformed in decimal 

logarithmic values. Samples for both experiments were enumerated at the first day of inoculation (day 

0) and daily until the last day of storage (day 13). None specific agar media were used in co-culture 

experiments to separately enumerate the three inoculated species. Non-inoculated control samples were 

analyzed at day 0 and at day 13.  

Using R software (R Core Team, 2019), a covariance analysis (ANCOVA) was performed to 

evaluate the effect of the storage conditions on plate counts (FactoMineR package, Le et al., 2008). All 

tests were considered as significant for a p-value < 0.05. 

 

2.6. 16S rDNA amplicon sequecing  

 

A 16S rDNA metagenetic approach was used for mono- and co-culture experiments.  

In mono-culture experiments, metagenetic analysis were performed at the first day of 

inoculation (day 0) and at the last day of storage (day 13) for samples stored at 4°C.  

In co-culture experiments, samples were analyzed at day 0 and daily until day 13. The results 

were then correlated with plate counts in order to obtain estimate bacterial abundance over storage (see 

section 2.6.3.).  

No 16S rDNA metagenetic analysis were performed for non-inoculated control samples.  
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2.6.1. DNA extraction and 16S rDNA amplicon sequencing 

 

Bacterial DNA was extracted from each primary suspension, previously stored at – 80°C, using 

the DNEasy Blood and Tissue kit (QIAGEN Benelux BV, Antwerp, Belgium) following the 

manufacturer’s recommendations. The resulting DNA extracts were eluted in DNAse/RNAse free water 

and their concentration and purity were evaluated by means of optical density using the NanoDrop ND-

1000 spectrophotometer (Isogen, St-Pieters-Leeuw, Belgium). DNA samples were stored at – 20°C until 

used for 16S rDNA amplicon sequencing.  

PCR-amplification of the V1-V3 region of the 16S rDNA library preparation were performed 

with the following primers (with Illumina overhand adapters), forward (5’-

GAGAGTTTGATYMTGGCTCAG-3’) and reverse (5’-ACCGCGGCTGCTGGCAC-3’). Each PCR 

product was purified with the Agencourt AMPure XP beads kit (Beckman Coulter; Pasadena, CA, USA) 

and submitted to a second PCR round for indexing, using the Nextera XT index primers 1 and 2. 

Thermocycling conditions consisted of a denaturation step of 4 min at 94°C, followed by 25 cycles of 

denaturation (15 sec at 94°C), annealing (45 sec at 56°C) and extension (60 sec at 72°C), with a final 

elongation step (8 min at 72°C). These amplifications were performed on an EP Mastercycler Gradient 

System device (Eppendorf, Hamburg, Germany). The PCR products of approximately 650 nucleotides 

were run on 1% agarose gel electrophoresis and the DNA fragments were plugged out and purified using 

a Wizard SV PCR purification kit (Promega Benelux, Leiden, Netherlands). After purification, PCR 

products were quantified using the Quanti-IT PicoGreen (ThermoFisher Scientific, Waltham, MA, 

USA) and diluted to 10 ng/µL. A final quantification, by quantitative (q)PCR, of each sample in the 

library was performed using the KAPA SYBRÒ FAST qPCR Kit (KapaBiosystems, Wilmington, MA, 

USA) before normalization, pooling and sequencing on a MiSeq sequencer using V3 reagents (Illumina, 

San Diego, CA, USA).  

 

2.6.2. Bioinformatics analysis 

 

The 16S rRNA gene sequence reads were processed with MOTHUR. The quality of all sequence 

reads was denoised using the Pyronoise algorithm implemented in MOTHUR. The sequences were 

checked for the presence of chimeric amplification using ChimeraSlayer (developed by the Broad 

Institute, http://microbiomeutil.sourceforge.net/#A_CS). The obtained read sets were compared to a 

reference dataset of aligned sequences of the corresponding region derived from the SILVA database of 

full-length rRNA gene sequences (http://www.arb-silva.de/, version v1.2.11) implemented in 

MOTHUR. The final reads were clustered into operational taxonomic units (OTUs), using the nearest 

neighbor algorithm using MOTHUR with a 0.03 distance unit cutoff. A taxonomic identity was 
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attributed to each OTU by comparison to the SILVA database, using an 80% homogeneity cutoff. As 

MOTHUR is not dedicated to the taxonomic assignment beyond the genus level, all unique sequences 

for each OTU were compared to the SILVA dataset 111, using a BLASTN algorithm. For each OTU, a 

consensus detailed taxonomic identification was given based upon the identity (< 1% mismatch with the 

aligned sequence) and the metadata associated with the best hit (validated bacterial species or not).   

 

2.6.3. 16S rRNA gene analysis and bacterial abundance 

 

A correcting factor for 16S rDNA gene copy numbers was applied for any taxon i (see Equation 

11).  To obtain each gene copy number, Ribosomal RNA Database (rrnDB) (Stoddard et al., 2015) and 

EzBioCloud database (Yoon et al., 2017) were used.  

Then, to compare the relative abundance of OTUs, the number of reads of each taxon were 

normalized as described by Chaillou et al. (2015). Reads counts of each taxon i in the sample k were 

divided by a sample-specific scaling factor (Si) (see Equations 12 and 13) (Fougy et al., 2016; Rouger 

et al., 2018). Reads counts of all samples were then transformed into a percentage of each OTU.  

For co-culture experiments, the percentage of each OUT was finally converted as a proportion 

of the total viable count, obtained by classical microbiological analysis, in order to estimate counts for 

each species (in log10 CFU/g, and expressed as mean ± standard deviation (SD)) (see Equation 14), as 

described by Cauchie et al. (2017). All biosample raw reads were deposited at the National Center for 

Biotechnology Information (NCBI) and are available under de BioProject ID PRJNA590608. The raw 

data supporting the conclusions of this manuscript will be made available by EC to any qualified 

researcher. 

 

2.7. Approach used to develop the interaction model 

 

As proposed by Correia Peres Costa et al. (2019), a step-wise approach (Figure 36) was 

followed to develop interaction models simulating the growth of specific spoilage microorganisms.  

Firstly, primary and secondary models were performed on mono-culture experiments to obtain 

the kinetic parameters (section 2.7.1.): lag phase duration (LPD, hours), maximum specific growth rate 

(µmax, 1/hours), initial and maximal population densities (N0 and Nmax, respectively, log CFU/g), 

theoretical minimal temperature of growth (Tmin, °C), growth rate obtained at the reference temperature 

of 20°C (µref, 1/hours), and minimal shelf life (MSL). The MSL is the time for the plate counts reaching 

approximatively 7.0 log CFU/g (expressed as Spoilage value according to the scientific literature, Sval).   

Secondly, the same approach was applied for co-culture experiments in order to obtain the 

growth parameters (section 2.7.1.), and to compare them with those on mono-culture experiments 
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(section 2.7.2.). The Pearson’s correlation coefficient was also used to choose the highest influencing 

growth parameters on the microbial shelf life of MP samples (section 2.7.2.).  

Thirdly, all of these results were used to estimate competitions parameters in interaction models 

for a three species approach, based on the modified Jameson-effect model and Lotka-Volterra model 

(section 2.7.3.). 

Finally, validation of growth and interaction parameters obtained by the three species models 

were performed with naturally contaminated MP samples stored under different conditions (section 

2.7.4.). 

 

 
Figure 36. Schematic overview of the step-wise method used for the development of a three spoilage species 

interaction model.  

 

2.7.1. Primary and secondary model for the fitting of experimental data 

 

The primary model of Baranyi and Roberts (1994) (see Equations 5 and 6) was fitted to the 

experiment dataset obtained for mono- and co-culture experiments. Experimental dataset is obtained by 

plate counts in mono-culture, and by estimate abundance based on metagenetic results in co-culture. All 

the data from the three replicates were modeled. All fittings were performed using the nlsMicrobio 

package (function: baranyi, Baty and Delignette-Muller, 2013) from the open source R software (R Core 

Team, 2019). 

The adequacy of the primary models to describe the experimental data was observed by using 

the root mean square error of the residuals (RrMSE, standard deviation of the residuals) (Equation 15) 

and the coefficient of multiple determination (R2, the fraction of the square of the deviations of the 
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observed values about their mean explained by the equation fitted to the experimental data) (Equation 

16).  

RrMSE =!"##

$%
  = 

∑ (()
*+

),- .()
/)1

2.3
 (15) 

Where RSS, the residual sum of square; DF, the degrees of freedom; n, the number of data points; s, the 

number of parameters of the model; xi
0, the observed values; and xi

f, the fitted values.  

R2 = 1 - ∑ (45367869)
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),- .	;769<=>69))1

∑ (45367869).?6@2)
+
),-

1   (16) 

Where n, the total number of data points; mean, the average value from all observed values.  

A reparametrized version of the square root secondary model (Ratkowsky et al., 1982) (see 

Equation 10) was then used in R (R Core Team, 2019) to assess the effects of temperature on the growth 

rates. Tmin value, the minimal temperature for growth (°C), were found in the scientific literature for the 

studied bacterial species: - 3.36°C for B. thermosphacta (Leroi et al., 2012); -5.00°C for 

Pseudomonas spp. (Rashid et al., 2001); and +1.00°C for Ln. gelidum (Kim et al., 2000). For 

comparison, Tmin values were also estimated by the Rosso primary model (Rosso et al., 1995) and the 

square root model (Ratkowsky et al., 1983).   

For secondary models, the coefficient of multiple determination (R2) and the goodness of fit 

(GoF, root meat square error of the model, analogous to the accuracy factor) were used (Equation 17).  

GoF = 
∑ (()

*+
),- .()

/)1

2
 (17) 

Extracts of the code in R for primary and secondary fittings are given in R-commands 2. 
 

R-commands 2. Data fitting by primary and secondary models.  
require(nlsMicrobio) 
require(lattice) 
require(deSolve) 
require(growthrates) 
baranyi 
LOG10N ~ LOG10Nmax + log10((-1 + exp(mumax * lag) + exp(mumax *  
    t))/(exp(mumax * t) - 1 + exp(mumax * lag) * 10^(LOG10Nmax -  
    LOG10N0))) 
environment: namespace:nlsMicrobio 
data<-data.frame(t=c(0,24,48,72,96,120,168,216,288),LOG10N=c(1.49,1.55,1.94,2.45,3.83,6.37,9.16)) 
preview(formula=baranyi,data=data,start=list(lag=48,mumax=0.07,LOG10N0=1.49,LOG10Nmax=9.16)) 
primary<-
nls(formula=baranyi,data=BT4data,start=list(lag=48,mumax=0.07,LOG10N0=1.49,LOG10Nmax=9.16)) 
sqrt<-as.formula("sqrtmumax~sqrt((T>Tmin)*muref*((T-Tmin)/(20-Tmin))^2)") 
secondary<-data.frame(T=c(4,8,12),sqrtmumax=sqrt(c(0.07,0.10,0.24))) 
preview(formula=sqrt,data=secondary,start=list(Tmin=-3.36,muref=0.53)) 
time<-c(0,48,96,120,216,288) 
y<-grow_baranyi(time,c(y0=1.49,mumax=0.05,K=8.51,h0=6.24)) 
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2.7.2. Correlations between growth parameters 

 

An analysis of covariance (ANCOVA) was performed to evaluate if the maximal bacterial 

growth rates (µmax) were significantly different between the two food packaging. All tests were 

considered as significant for a p-value < 0.05. Extracts of the code in R for ANCOVA analysis are given 

in R-commands 3.  

Using R software (R Core Team, 2019), correlations between the minimal shelf life (MSL) and 

the growth parameters (µmax, LPD, N0, Nmax) were obtained by the Pearson’s correlation coefficient (r) 

in mono-culture and co-culture experiments (Liu et al., 2006; Miks-Krajnik et al., 2016). High 

correlations were considered when |B| > 0.7000 (Miks-Krajnik et al., 2016). The best influencing growth 

parameter on the microbial shelf life was chosen according to the Pearson’s correlations coefficient. 

Then, a reduction ratio (a) was calculated to quantify the interaction effect on µmax by inoculated 

bacteria in co-culture experiments (Equation 18) (Correia Peres Costa et al., 2019).  

a = 1 - (;CD)

(;ED+D)
 (18) 

Where a is the reduction ratio; pco and pmono  are the growth parameters obtained in co-culture and 

mono-culture experiments, respectively.  

 
R-commands 3. Analysis of covariance (ANCOVA) for bacterial growth parameters.  
require(FactoMineR)  
require(readr) 
ancova<- read_delim("~/Desktop/Data.txt", "\t", escape_double = FALSE, trim_ws = TRUE) 
test.ancova<-
AovSum(counts~packaging*temperature+time+packaging:time+packaging:temperature+temperature:time,data=
ancova) 
test.ancova$Ftest 
 
 

2.7.3. Modelling microbial interactions for Brochothrix thermosphacta, Pseudomonas spp., 

and Leuconostoc gelidum 

 

Two well-known interactions models for two species were modified to predict the simultaneous 

growth of the three-inoculated spoilage bacteria in irradiated MP samples: the modified Jameson-effect 

model and the Lotka-Volterra model (Cornu et al., 2011; Correia Peres Costa et al., 2019).  

In the modified Jameson-effect model, the deceleration function can be replaced by Equation 

19 (Cadavez et al., 2019; Cornu et al., 2011; Quinto et al., 2018; Mejlholm and Dalgaard, 2007).  
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Where Nt is the bacterial concentration at time t (log CFU/g), Nmax(t) is the maximal population density 

(log CFU/g), NMCP(t) is maximum critical population (log CFU/g) that the bacterium should be reached 

to inhibit the growth of the other populations. MCP is inferior to its own maximum population density 

(Nmax) (Cornu et al., 2011; Correia Peres Costa et al., 2019).  

Using R software (R Core Team, 2019), the modified Jameson-effect model (Equation 19) was 

applied on mono-culture experiment data with the functions of Baranyi, Buchanan and without-lag 

(package nlsMicrobio, Baty and Delignette-Muller, 2013). The function without lag shown the best 

fitting in all cases (Table 38). This model was then selected in the rest of the study, by using the growth 

parameters obtained on co-culture experiments. Extracts of the code in R for the modified Jameson-

effect models for two species are given in R-commands 4.  

 

Table 38. Goodness-of-fit indexes for the two species modified Jameson-effect model on mono-culture 

experiment data, by using Baranyi, Buchanan and without-lag functions. RrMSE, the root mean square error 

of the residuals mean sum of square; -a, no bacterial fitting obtained.  

Two species Model RrMSE 
Baranyi Buchanan without-lag 

Amono-Gmono 0.3528 - a 0.5787 
Amono-Mmono - a - a 0.6879 
Gmono-Mmono - a - a 0.3640 
Bmono-Hmono 0.3870 - a 0.8679 
Bmono-Nmono 0.1284 - a 0.7059 
Hmono-Nmono 0.1821 0.1830 0.3422 
Cmono-Imono 0.2486 - a 0.7820 
Cmono-Omono 0.5000 - a 0.7681 
Imono-Omono - a - a 0.4453 
Dmono-Jmono - a - a 0.4690 
Dmono-Pmono - a - a 0.4743 
Jmono-Pmono - a - a 0.2591 
Qmono-Emono 0.1668 - a 0.3046 
Qmono-Kmono 0.6390 - a 0.6867 
Emono-Kmono 0.6390 - a 0.8276 
Fmono-Lmono 0.2665 - a 0.6745 
Fmono-Rmono 0.3011 - a 0.3502 
Lmono-Rmono - a - a 1.0511 

 
R-commands 4. Modified Jameson-effect model without lag phase used for competition of two bacterial species. 
library(nlsMicrobio) 
t<-c(0,24,48,72,168,192,240,312) 
data.specie1<-c(3.84,3.08,3.76,4.54,7.74,7.63,7.68,7.90) 
rep.specie1<-rep(1,8) 
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specie1<-data.frame(t,rep.specie1,data.specie1) 
data.specie2<-c(3.15,3.43,4.52,5.64,9.45,9.51,9.90,10.21) 
rep.specie2<-rep(2,8) 
specie2<-data.frame(t,rep.specie2,data.specie2) 
names(specie1)<-c("t","flora","LOG10N") 
names(specie2)<-c("t","flora","LOG10N") 
rbind(specie1,specie2) 
specie.1.vs.2<-rbind(specie1,specie2) 
summary(specie.1.vs.2) 
modified.jameson.baranyi.two.bacteria<-formula(LOG10N ~ (flora == 1) * ((t <= tmcp) * (LOG10N0_1 + 
mumax_1 * t/log(10) + log10(exp(-mumax_1 * t) * (1 - exp(-mumax_1 * lag_1)) + exp(-mumax_1 * lag_1))) + (t 
> tmcp) * (LOG10N0_1 + mumax_1 * tmcp /log(10) + log10(exp( mumax_1 * tmcp) * (1 - exp(-mumax_1 * 
lag_1)) + exp(-mumax_1 * lag_1)))) + (flora == 2) * ((t <= tmcp) * (LOG10N0_2 + mumax_2 * t/log(10) + 
log10(exp(-mumax_2 * t) * (1 - exp(-mumax_2 * lag_2)) + exp(-mumax_2 * lag_2))) + (t > tmcp) * (LOG10N0_2 
+ mumax_2 * tmcp /log(10) + log10(exp(-mumax_2 * tmcp) * (1 - exp(-mumax_2 * lag_2)) + exp(-mumax_2 * 
lag_2))))) 
modified.jameson.buchanan.two.bacteria<-formula(LOG10N ~ (flora == 1) * ((t <= lag_1) * LOG10N0_1 + ((t > 
lag_1) & (t < tmcp)) * (LOG10N0_1 + mumax_1/log(10) * (t - lag_1)) + (t >= tmcp) * (LOG10N0_1 + 
mumax_1/log(10) * (tmcp - lag_1))) + (flora == 2) * ((t <= lag_2) * LOG10N0_2 + ((t > lag_2) & (t < tmcp)) * 
(LOG10N0_2 + mumax_2/log(10) * (t - lag_2)) + (t >= tmcp) * (LOG10N0_2 + mumax_2/log(10) * (tmcp - 
lag_2)))) 
modified.jameson.without.lag.two.bacteria<-formula(LOG10N ~ (flora == 1) * ((t < tmcp) * (LOG10N0_1 + 
mumax_1/log(10) * t) + (t >= tmcp) * (LOG10N0_1 + mumax_1/log(10) * tmcp)) + (flora == 2) * ((t < tmcp) * 
(LOG10N0_2 + mumax_2/log(10) * t) + (t >= tmcp) * (LOG10N0_2 + mumax_2/log(10) * tmcp))) 
specie.1.vs.2.without.lag<-nls(modified.jameson.without.lag.two.bacteria, 
specie.1.vs.2,list(mumax_1=0.07,LOG10N0_1=3.84,tmcp=310,mumax_2=0.08,LOG10N0_2=3.15)) 
specie.1.vs.2.without.lag  
summary(specie.1.vs.2.without.lag) 
twocolors <- c("red","blue") 
npoints <- 100 
seq.t <- seq(0,max(specie.1.vs.2$t),length.out=npoints) 
prednls3.1 <- predict(specie.1.vs.2.without.lag,data.frame(t=seq.t,flora=rep(1,npoints))) 
prednls3.2 <- predict(specie.1.vs.2.without.lag,data.frame(t=seq.t,flora=rep(2,npoints))) 
plot(specie.1.vs.2$t, specie.1.vs.2$LOG10N,col=twocolors[specie.1.vs.2$flora],xlab="t",ylab="LOG10N") 
lines(seq.t,prednls3.1,col=twocolors[1]) 
lines(seq.t,prednls3.2,col=twocolors[2]) 
 

For a three species mixed culture model, Quinto et al. (2018) recently proposed a modification 

of the logistic deceleration model (Equation 20).  

J(L) = 	 e1 −	
QR(>)f	QW(>)f	QZ(>)

Qghi UDU
j (20) 

Where NA(t), NB(t), and NC(t) are the cell concentration of microorganism A, B, or C in co-culture at time 

t; Nmax tot is the maximal total population density (including all species present) and consequently the 

overall carrying capacity of the system from the three species co-cultured.  

However, this study only considers the effect of Ps. fluorescens and L. innocua on the bacterial growth 

of L. monocytogenes. In our study, the aim of co-culture experiments was to consider the global effect 

of three inoculated bacterial species and the bacterial interaction on each other. According to this, the 

modified Jameson-effect model was re-defined for a three species model that was used in this study 

(Equation 21).  
k
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Where N is the cell concentration (log CFU/g) at time t (h), µmax is the maximum specific growth rate 

(1/h), a(t) is an adjustment function, NMCP is the maximum critical population of each bacterium (log 

CFU/g). Extracts of the code in R for the three species modified Jameson-effect models are given in R-

commands 5.  
 
Supplementary R-commands 5. Modified Jameson-effect model without lag phase used for competition of three 
bacterial species. 
library(nlsMicrobio) 
t<-c(0,24,72,144,312) 
A<-c(2.71,2.67,2.97,3.83,3.83) 
fA<-rep(1,5) 
metaA<-data.frame(t,fA,A) 
B<-c(3.07,3.13,4.24,4.14,4.76) 
fB<-rep(2,5) 
metaB<-data.frame(t,fB,B) 
C<-c(3.00,3.04,4.31,6.81,8.36) 
fC<-rep(3,5) 
metaC<-data.frame(t,fC,C) 
names(metaA)<-c("t","flora","LOG10N") 
names(metaB)<-c("t","flora","LOG10N") 
names(metaC)<-c("t","flora","LOG10N") 
rbind(metaA,metaB,metaC) 
ABC<-rbind(metaA,metaB,metaC) 
ABC 
summary(ABC) 
modified.jameson.without.lag.three.species<-formula(LOG10N ~ (flora == 1) * ((t < tmcp) * (LOG10N0_1 + 
mumax_1/log(10) *  t) + (t >= tmcp) * (LOG10N0_1 + mumax_1/log(10) * tmcp)) + (flora == 2) * ((t < tmcp) * 
(LOG10N0_2 + mumax_2/log(10) * t) + (t >= tmcp) * (LOG10N0_2 + mumax_2/log(10) * tmcp)) + (flora == 3) 
* ((t < tmcp) * (LOG10N0_3 + mumax_3/log(10) * t) + (t >= tmcp) * (LOG10N0_3 + mumax_3/log(10) * tmcp))) 
modified.jameson.without.lag.ABC<-
nls(modified.jameson.without.lag.three.species,ABC,list(mumax_1=0.02,LOG10N0_1=2.71,tmcp=144,mumax_
2=0.06,LOG10N0_2=3.07,mumax_3=0.01,LOG10N0_3=3.00) 
overview(modified.jameson.without.lag.ABC) 
predict(modified.jameson.without.lag.ABC) 
threecolors <- c("red","blue","pink") 
npoints <- 100 
seq.t <- seq(0,max(ABC$t),length.out=npoints) 
prednls3.1 <-predict(modified.jameson.without.lag.ABC,data.frame(t=seq.t,flora=rep(1,npoints))) 
prednls3.2 <- predict(modified.jameson.without.lag.ABC,data.frame(t=seq.t,flora=rep(2,npoints))) 
prednls3.3 <- predict(modified.jameson.without.lag.ABC,data.frame(t=seq.t,flora=rep(3,npoints))) 
plot(ABC$t,ABC$LOG10N,col=threecolors[ABC$flora],xlab="t",ylab="LOG10N") 
lines(seq.t,prednls3.1,col=threecolors[1]) 
lines(seq.t,prednls3.2,col=threecolors[2]) 
lines(seq.t,prednls3.3,col=threecolors[3]) 
 

In the two species model based on the Lotka-Volterra equation, the deceleration function 

includes empirical parameters reflecting the degree of interaction between microbial species (FAB and 

FBA) (see Equation 9) (Cadavez et al., 2019; Cornu et al., 2011; Correia Peres Costa et al., 2019; Liu et 

al., 2006). Using R software (R Core Team, 2019), the Lotka-Volterra model was also re-defined for a 

three species interaction model, represented by Equation 22. 
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(22) 

Where N is the cell concentration (log CFU/g) at time t (h), µmax is the maximum specific growth rate 

(1/h), a(t) is an adjustment function, FA,B,C are the coefficient of interaction measuring the effects of one 

species on the others, Nmax is the maximum population density (log CFU/g). Extracts of the code in R 

for the three species Lotka-Volterra models are given in R-commands 6.  
 
R-commands 6. Lotka-Volterra model used for competition of three bacterial species. 
library(deSolve) 
library(nlsMicrobio) 
library(car) 
LVmodel.three<-function(Time,State,Pars){ 
  with(as.list(c(State,Pars)),{ 
    dx=mumax1*(1-((x+alpha*delta*3)/Nmax1)) 
    dy=mumax2*(1-((y+beta*epsilon*3)/Nmax2)) 
    dz=mumax2*(1-((z+gamma*zeta*3)/Nmax3)) 
    return(list(c(dx,dy,dz))) 
  }) 
} 
Pars<-c(mumax1=0.13,mumax2=0.32,mumax3=0.15,alpha=0.3833,beta=-0.3382,gamma=0.2456,delta=-
0.2456,epsilon=0.1546,zeta=-0.1345,Nmax1=8.83,Nmax2=8.87,Nmax3=6.78) 
State<-c(x=3.84,y=4.00,z=3.85) 
Time<-seq(0,13,by=1) 
three.bacteria.LVmod<-as.data.frame(ode(func=LVmodel.three,y=State,parms=Pars,time=Time)) 
three.bacteria.LVmod 
summary(three.bacteria.LVmod) 
matplot(three.bacteria.LVmod[,-1],type="l",xlab="time",ylab="population") 
 
 

Comparison of the two models was assessed by root mean square error (RMSE) and coefficient 

of determination (R2) (Correia Peres Costa et al., 2019), as previously described in the section above 

(sections 2.7.1.).  

 

2.7.4. Model validation 

 

Validation of the developed three species interaction models was performed using a new dataset 

of experimental data.  

Fresh MP samples were obtained from a local Belgian manufacturer at the day of the production, 

corresponding to the day of slaughtering. MP samples were packed by the manufacturer in a 

polypropylene tray under cling film. Samples have the same composition as described above. 

Samples were not irradiated and not inoculated in order to follow the dynamics of the natural 
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food microbiota. MP samples were also packed (50 g) in two different packaging, in triplicate.  

The first packaging was a tray (187x137x36, polyester 10 µm, homo-polymer polypropylene 

50 µm, NutriPack, France) under MAP (CO2 30% / O2 70% ± 0.1%) (Olympia V/G, Technovac, Italy) 

using packaging wrap (PP/EVOH/PP) with random gas measurements (CheckMate 3, Dansensor, 

France). The second packaging consisted in a tray (175x135x22, polystyrene) under FW using cling 

film (Clinofilm).  

In this study, MP samples were stored during a 13 days shelf life at isothermal temperature: (i) 

4°C (± 1°C), (ii) 8°C (± 1°C), (iii) and 12°C (± 1°C), in climatic chambers (Sanyo MIR 254).  

Samples (n = 288) were then analyzed at the first day of inoculation (day 0) and daily until the 

last day of storage (day 13). Analyses were performed by classical plate counts and 16S rDNA 

metagenetics, as methods previously described in the sections above (sections 2.6. and 2.7.), in order to 

estimate bacterial counts over the storage.  

The performance of the developed interaction models was evaluated by the acceptable 

simulation zone (ASZ) approach. Model performance is considered acceptable when at least 70% of the 

observed log counts values are within the ASZ, defined as ± 0.5 log-units from the simulated 

concentration in log units (Correia Peres Costa et al., 2019).  
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Results  
 

3.1. 16S rDNA metagenetic results 

 

Despite of the inability of differentiation between viable and non-viable cells by the culture-

independent DNA-based methods used, high level (>95%) of relative abundance for each inoculated 

bacterium was observed for mono-culture experiments (Figure 37).  

The relative abundance results for co-culture experiments (expressed in %) at genus levels 

(>1%) are represented in cumulated histograms for all samples in FW (Figure 38) and MAP (Figure 

39). These data including the relative abundance of sequences are also summarized in Supplemental 

Material (Table 39).  

The taxa representing <1% in relative abundance were merged in the category of "Others". 

“Others” are mainly composed by the genera Aeromonas, Arthrobacter, Bacteroides, Carnobacterium, 

Chryseobacterium, Enterococcus, Flavobacterium, Kurthia, Lactobacillus, Lactococcus, Mannheimia, 

Massilia, Micrococcus, Moraxella, Myroides, Ottowia, Peptococcus, Photobacterium, Porphyromonas, 

Propionibacterium, Rothia, Serratia and Staphylococcus. Full data on taxa found in high (>1%) and low 

(<1%) frequencies will be made available by EC to any qualified researcher. 

At day 0, small differences between the distribution of read percentages for the three inoculated 

bacteria are observed (11.8%, 27.4% and 23.3% for Brochothrix, Pseudomonas and Leuconostoc, 

respectively).  

At day 3 in FW, Brochothrix became under the detection limit. At this same time, Pseudomonas 

became the most represented genus (>90%), and remained during the 13 days of storage.  

In MAP, Leuconostoc and Pseudomonas were equally distributed during the first days of 

storage, but Leuconostoc became the most represented genus (>90%) after 3 days and until the end of 

storage. 
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Figure 37. Cumulated histograms of the relative abundance (%) of taxa and the dynamics of the bacterial 

community identified by metagenetics at genus levels in mono-culture experiment, at day 0 and 13, at 4°C: 

(A) for B. thermosphacta, (B) for Pseudomonas spp., and (C) for Ln. gelidum. At genus levels, the taxa 

representing <1% in relative abundance were merged in the category of "Others".  

 

 
Figure 38. Cumulated histograms of the relative abundance (%) of taxa and the dynamics of the bacterial 

community identified by metagenetics at genus levels in co-culture experiment during storage in FW (Aco, at 

4°C; Bco, at 8°C; Cco, at 12°C). At genus levels, the taxa representing <1% in relative abundance were merged 

in the category of "Others". The solid represents the plate counts (means and standard deviation of the three 

replicates).  
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Figure 39. Cumulated histograms of the relative abundance (%) of taxa and the dynamics of the bacterial 

community identified by metagenetics at genus levels in co-culture experiment during storage in MAP (Dco, 

at 4°C; Eco, at 8°C; Fco, at 12°C). At genus levels, the taxa representing <1% in relative abundance were 

merged in the category of "Others". The solid represents the plate counts (means and standard deviation of 

the three replicates).  
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Table 39. Distribution of metagenetics reads percentages at genus level for co-culture experiments. At genus 

levels, the taxa representing <1% in relative abundance were merged in the category of “Others”; -*, data 

under the detection limit; -a, no analysis performed this day.  

Genus Days 
0 1 2 3 4 5 6 7 13 

FW 
4°C          

Brochothrix 11.80 9.10 0.75 - a - a - * - * - * 0.52 
Lactobacillus 10.96 - * - * - a - a - * - * - * 0.10 
Leuconostoc 23.29 5.30 2.35 - a - a 0.10 0.10 0.05 0.07 
Photobacterium 21.92 - * - * - a - a - * - * - * - * 
Pseudomonas 27.40 64.40 93.44 - a - a 99.80 99.80 98.51 98.25 
Rahnella 4.11 - * - * - a - a - * - * - * - * 
Others 0.53 21.20 3.45 - a - a 0.10 0.10 1.42 1.06 

8°C          
Brochothrix 11.80 2.90 - * - a - * - * 1.00 0.43 0.52 
Lactobacillus 10.96 - * - * - a - * - * - * - * 0.10 
Leuconostoc 23.29 4.80 0.07 - a - * 0.20 0.30 0.08 0.07 
Photobacterium 21.92 - * - * - a - * - * - * - * - * 
Pseudomonas 27.40 83.30 98.80 - a 97.10 96.50 94.50 97.85 98.25 
Rahnella 4.11 - * - * - a - * - * - * - * - * 
Others 0.53 9.00 1.12 - a 2.90 3.30 4.20 1.65 1.06 

12°C          
Brochothrix 11.80 0.40 - * - a 1.40 1.90 0.60 0.20 0.10 
Lactobacillus 10.96 - * - * - a - * - * - * 0.03 - * 
Leuconostoc 23.29 2.20 0.03 - a 0.20 0.70 0.10 0.07 0.07 
Photobacterium 21.92 - * - * - a - * - * - * - * 0.07 
Pseudomonas 27.40 93.90 99.41 - a 93.60 91.70 95.20 96.91 92.06 
Rahnella 4.11 - * - * - a - * - * - * - * - * 
Others 0.53 3.50 0.55 - a 4.80 5.70 4.10 2.79 7.68 

 
MAP 

4°C          
Brochothrix 11.80 10.10 - a 2.09 - a - a 0.10 - * - * 
Lactobacillus 10.96 - * - a 0.00 - a - a - * 0.03 - * 
Leuconostoc 23.29 23.90 - a 46.23 - a - a 94.20 99.74 99.92 
Photobacterium 21.92 - * - a 0.00 - a - a - * - * - * 
Pseudomonas 27.40 29.40 - a 39.0 - a - a 0.20 0.23 0.03 
Rahnella 4.11 - * - a 0.00 - a - a - * - * - * 
Others 0.53 36.60 - a 12.67 - a - a 5.50 - * 0.05 

8°C          
Brochothrix 11.80 8.10 2.80 0.50 - a - a - * - * 0.03 
Lactobacillus 10.96 - * - * - * - a - a - * - * - * 
Leuconostoc 23.29 39.10 65.0 90.89 - a - a 95.40 99.94 99.92 
Photobacterium 21.92 - * - * - * - a - a - * 0.03 - * 
Pseudomonas 27.40 30.80 24.20 7.95 - a - a - * 0.03 0.03 
Rahnella 4.11 - * - * - * - a - a - * - * - * 
Others 0.53 22.00 8.00 0.76 - a - a 4.60 - * 0.03 

12°C          
Brochothrix 11.80 3.90 1.00 0 - a - a 0.10 0.08 0.21 
Lactobacillus 10.96 - * - * - * - a - a - * 0.05 0.03 
Leuconostoc 23.29 52.40 86.10 99.41 - a - a 95.50 99.63 99.61 
Photobacterium 21.92 - * - * - * - a - a - * - * - * 
Pseudomonas 27.40 34.40 10.20 0.20 - a - a - * 0.10 0.03 
Rahnella 4.11 - * - * - * - a - a - * - * - * 
Others 0.53 9.30 2.70 0.39 - a - a 4.40 0.10 0.13 
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3.2. Plate counts and estimated abundance 

 

In mono-culture experiments, plate counts for B. thermosphacta, Pseudomonas spp. and 

Ln. gelidum increased during the shelf life with increasing the temperature (Tables 40).  

At the end of the shelf life, the bacterial count was higher than 7.0 log CFU/g, except for some 

samples stored in MAP. During the storage, a high growth rate and a more rapidly reached stationary 

phase were also correlated to FW and the highest storage temperatures.  

No bacterial growth was observed on PCA for the control samples (limit detection < 3.0 log 

CFU/g) (data not shown in this paper).  

For co-culture experiments, the metagenetic data were combined with the plate counts results 

in order to obtain estimated bacterial counts (Table 41).  

As previously observed, estimate counts increased during the shelf life with increasing the 

temperature. At the end of the shelf life, the bacterial count was over 7.0 log CFU/g, except for 

B. thermosphacta and Pseudomonas spp. stored in MAP. During the storage, the same growth profiles 

as mono-culture experiments were observed.  
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Table 40. Microbiological counts (log CFU/g) for mono-culture expriments in minced pork samples stored during 13-days shelf life, at constant temperature, in FW 

and MAP (CO2 30% / O2 70% ± 0.1%). See Table 37 for list of the codes used. Mean values with standard deviations of the three repliacates; -a, no analysis performed 

for the day.  

Codes 
Days 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 
Amono 3.84±0.03 3.08±0.10 3.76±0.07 4.54±0.12 - a - a 7.24±0.11 7.74±0.17 7.63±0.10 8.17±0.33 7.68±0.15 - a - a 7.90±0.15 
Bmono 3.84±0.03 6.76±0.04 7.49±0.11 8.25±0.07 8.51±0.10 8.58±0.06 8.85±0.02 8.77±0.15 9.05±0.03 8.79±0.21 - a - a - a 9.00±0.01 
Cmono 3.84±0.03 7.68±0.08 8.29±0.13 8.66±0.04 8.99±0.09 9.01±0.23 9.11±0.10 8.81±0.28 9.03±0.03 8.91±0.16 - a - a - a 9.27±0.08 
Dmono 3.84±0.03 - a - a 2.17±0.30 - a - a 4.11±0.01 4.01±0.14 4.35±0.03 5.24±0.05 4.99±0.12 - a - a 5.43±0.06 
Emono 3.84±0.03 - a 5.88±0.10 6.11±0.11 7.11±0.02 7.86±0.10 8.21±0.04 8.43±0.11 8.43±0.16 8.41±0.10 8.38±0.16 - a 7.86±0.07 8.76±0.03 
Fmono 3.84±0.03 - a 7.10±0.04 7.76±0.23 8.35±0.04 8.58±0.06 8.40±0.12 8.44±0.07 8.32±0.03 9.16±0.08 8.67±0.40 - a 8.83±0.02 8.71±0.06 
Gmono 3.15±0.59 3.43±0.11 4.52±0.23 5.64±0.19 - a - a - a 9.45±0.13 9.51±0.07 - a 9.90±0.29 - a - a 10.21±0.03 
Hmono 3.15±0.59 3.86±0.17 5.36±0.03 7.69±0.17 9.04±0.05 9.67±0.03 - a 9.62±0.15 10.34±0.24 10.39±0.40 10.11±0.28 - a - a 10.15±0.17 
Imono 3.15±0.59 4.93±0.15 - a 9.81±0.04 9.85±0.29 9.95±0.34 10.15±0.82 10.26±0.08 10.14±0.10 - a 9.87±0.19 - a - a 9.80±0.42 
Jmono 3.15±0.59 - a 3.48±0.06 - a - a 3.90±0.11 4.87±0.34 4.55±0.12 - a - a - a - a 4.73±0.01 4.90±0.01 
Kmono 3.15±0.59 3.52±0.01 4.16±0.05 - a - a 5.41±0.08 6.33±0.07 6.52±0.14 - a 6.59±0.17 - a - a 7.83±0.13 8.37±0.08 
Lmono 3.15±0.59 4.47±0.07 6.08±0.03 - a - a - a 9.42±0.28 9.58±0.23 - a 9.80±0.41 - a - a 9.87±0.06 9.85±0.14 
Mmono 4.00±0.02 4.07±0.01 4.38±0.01 4.61±0.12 - a - a 6.17±0.05 - a - a - a 8.62±0.09 - a - a 8.42±0.06 
Nmono 4.00±0.02 4.58±0.08 5.84±0.02 - a 7.57±0.10 - a 8.61±0.13 - a 8.73±0.07 - a 8.84±0.09 - a - a 8.77±0.30 
Omono 4.00±0.02 5.38±0.01 6.84±0.13 8.35±0.09 7.56±0.01 - a 8.64±0.13 - a - a - a 8.82±0.23 - a - a 8.62±0.18 
Pmono 4.00±0.02 4.18±0.09 - a - a 6.31±0.17 - a 6.84±0.06 7.85±0.01 - a 7.78±0.21 - a - a 8.00±0.10 8.39±0.12 
Qmono 4.00±0.02 4.75±0.03 - a - a 8.06±0.01 - a 8.38±0.05 8.49±0.16 - a 8.85±0.01 - a - a - a 8.75±0.19 
Rmono 4.00±0.02 8.32±0.15 7.28±0.01 - a 8.35±0.06 - a 8.36±0.09 8.64±0.10 - a 8.89±0.07 - a - a - a 8.87±0.11 
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Table 41. Estimate bacterial counts for co-culture experiment. See Table 37 for list of the codes used. Mean values with standard deviations of the three replicates;       

-a, no analysis performed for the day. 

Code Time (days) 
0 1 2 3 4 5 6 7 13 

Aco(A) 2.71±0.24 2.75±0.31 2.71±0.81 - a - a - a - a - a 7.77±0.20 
Aco(B) 3.07±0.24 3.60±0.31 4.80±0.81 - a - a 7.54±0.77 8.14±0.08 9.12±0.53 10.04±0.20 
Aco(C) 3.00±0.24 2.52±0.31 3.20±0.81 - a - a 4.54±0.77 5.14±0.08 5.79±0.53 6.92±0.20 
Bco(A) 2.71±0.24 2.26±0.31 - a - a - a - a 7.13±0.53 7.68±0.20 8.00±0.10 
Bco(B) 3.07±0.24 4.23±0.46 6.43±0.34 - a 8.49±0.18 9.43±0.10 10.11±0.64 10.31±0.47 10.27±0.10 
Bco(C) 3.00±0.24 2.48±0.31 1.70±0.81 - a - a 5.44±0.08 6.61±0.08 6.93±0.20 7.15±0.10 
Cco(A) 2.71±0.24 2.58±0.09 - a - a 7.15±0.20 8.46±0.02 8.18±0.77 7.58±0.78 7.24±0.10 
Cco(B) 3.07±0.24 4.95±0.09 6.55±0.30 - a 8.97±0.20 10.14±0.02 10.38±0.77 10.26±0.78 10.21±0.10 
Cco(C) 3.00±0.24 3.32±0.09 3.04±0.30 - a 6.30±0.20 8.02±0.02 7.41±0.77 7.10±0.78 7.06±0.10 
Dco(A) 2.71±0.24 2.67±0.64 - a 2.97±0.19 - a - a 3.83±0.46 - a 3.83±0.46 
Dco(B) 3.07±0.24 3.13±0.64 - a 4.24±0.19 - a - a 4.14±0.46 5.28±0.23 4.76±0.28 
Dco(C) 3.00±0.24 3.04±0.64 - a 4.31±0.19 - a - a 6.81±0.46 7.91±0.23 8.36±0.28 
Eco(A) 2.71±0.24 3.07±0.19 3.46±0.90 3.95±0.90 - a - a - a - a 4.94±0.07 
Eco(B) 3.07±0.24 3.65±0.19 4.39±0.90 5.15±0.90 - a - a - a 5.00±0.39 4.94±0.07 
Eco(C) 3.00±0.24 3.76±0.19 4.82±0.90 6.21±0.90 - a - a 8.51±0.33 8.56±0.39 8.50±0.07 
Fco(A) 2.71±0.24 3.25±0.30 3.30±0.25 - a - a - a 5.05±0.30 5.51±0.72 5.88±0.58 
Fco(B) 3.07±0.24 4.20±0.30 4.31±0.25 3.34±0.10 - a - a - a 5.63±0.72 4.98±0.58 
Fco(C) 3.00±0.24 4.38±0.30 5.24±0.25 6.05±0.10 - a - a 8.03±0.30 8.61±0.72 8.57±0.58 
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3.3. pH and gas measurements 

 

A significant increase of pH is observed for MP samples inoculated by Pseudomonas spp. (7.54 

± 0.76, n = 5, p-value = 0.01) compared to the control samples (5.79 ± 0.05, n = 10).  

In co-culture experiments, pH values at the end of the shelf life were not different to control 

samples (5.87 ± 0.02, n = 5) (Figure 40).  

A relatively stable concentration of carbon dioxide was observed in MAP at the end of the shelf 

life. Except for MP samples inoculated with Pseudomonas spp., which reached a higher significant 

carbon dioxide value (100.0 ± 0.1 %) at 12 °C (Figure 41).  

 

 
Figure 40. Comparison of pH values for control samples with mono- and co-culture experiments, at day 13 

for all packaging conditions. * significant statistical difference (p-value < 0.05). 
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Figure 41. Comparison of carbon dioxide measurements for control samples with mono- and co-culture 

experiments, at day 13, in MAP. * significant statistical difference (p-value < 0.05).  

 

3.4. Microbial growth parameters 

 

Results of the primary and secondary model fittings for mono- and co-culture experiments are 

shown in Tables 42 and 43. Growth parameters from mono-culture experiments are based on plate 

counts, and those from co-culture experiments are based on estimate abundance (obtained by the 

association of metagenetic and plate counts results).  

Good fit indexes were obtained in all cases (Tables 44 and 45).  

Growth parameters showed different dynamic changes depending on storage temperature: a high 

storage temperature is correlated to a high growth rate during exponential phase and a lower lag-time. 

These growth parameters are also higher in FW than in MAP. 

The MSL value is more rapidly reached in FW, except for Ln. gelidum.  

Moreover, the Sval was never reached in MAP for MP samples inoculated by Pseudomonas spp. 

and B. thermosphacta during the 13-days shelf life at 4°C.  

Based on these results, the dynamics of µmax between a large range of temperature (from -6°C 

to +25°C) in FW and MAP was performed for mono- and co-culture experiments (Figure 42).  

It can be clearly observed that Ln. gelidum had a highest growth rate in MAP, while it concerns 

B. thermosphacta in FW in mono-culture experiments. B. thermosphacta had the lowest one in co-

culture experiments.  
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Table 42. Observed kinetic parameters of mono- and co-culture experiments, calculated by Baranyi equation 

without interactions. See Table 37 for list of the codes used. Mean values with standard deviation (SD 

represent three samples per experiment) or with the 95% confidence intervals (lower limit and upper limit); 

µmax , maximal specific growth rate (1/h); LPD, lag phase duration (h); N0, initial bacterial concentration (log 

CFU/g); Nmax, maximum bacterial concentration (log CFU/g); RSS, Residual Sum of Square of the model; 

Sval, spoilage values of 7.00 log CFU/g (Y (yes) or N(not) if this value is reached during the 13-days shelf 

life); MSL, predictions of the minimal shelf life for the product (days).  

 µmax 
 LPD  N0  Nmax 

 RSS  Sval 
 MSL 

 

Amono 0.09 [0.09-0.08] 51 [53-51] 3.84±0.03 7.90±0.15 0.000442 Y  5.7 [5.8-5.6] 
Bmono 0.21 [0.21-0.19] 0 [0-0] 3.84±0.03 8.79±0.21 0.000255 Y  1.5 [1.5-1.4] 
Cmono 0.39 [0.39-0.35] 0 [0-0] 3.84±0.03 9.11±0.10 0.000558 Y  0.8 [0.8-0.8] 
Dmono 0.03 [0.03-0.03] 20 [20-17] 3.84±0.03 4.99±0.12 0.005700 N  15.3 [15.8-14.7] 
Emono 0.07 [0.07-0.07] 0 [0-0] 3.84±0.03 8.43±0.16 0.005700 Y  3.8 [3.9-3.7] 
Fmono 0.13 [0.13-0.12] 0 [0-0] 3.84±0.03 8.83±0.16 0.005260 Y 1.9 [1.9-1.4] 
Gmono 0.06 [0.06-0.06] 24 [24-24] 3.15±0.59 9.90±0.29 0.010900 Y  4.5 [4.6-4.2] 
Hmono 0.13 [0.13-0.13] 10 [10-10] 3.15±0.59 10.15±0.17 0.010900 Y  2.7 [2.8-2.6] 
Imono 0.23 [0.23-0.23] 0 [0-0] 3.15±0.59 9.95±0.34 0.010900 Y  1.8 [1.9-1.7] 
Jmono 0.04 [0.04-0.04] 48 [48-48] 3.15±0.59 4.90±0.01 0.001210 N  21.8 [22.6-20.9] 
Kmono 0.08 [0.08-0.08] 27 [27-27] 3.15±0.59 8.37±0.08 0.001210 Y  9.0 [9.2-8.8] 
Lmono 0.13 [0.13-0.13] 0 [0-0] 3.15±0.59 9.87±0.06 0.001210 Y  3.5 [3.6-3.3] 
Mmono 0.01 [0.01-0.01] 48 [48-48] 4.00±0.02 8.42±0.06 0.017900 Y  7.1 [7.2-7.0] 
Nmono 0.07 [0.08-0.07] 10 [12-10] 4.00±0.02 8.77±0.30 0.023000 Y  3.4 [3.4-3.3] 
Omono 0.18 [0.19-0.18] 0 [0-0] 4.00±0.02 8.64±0.13 0.017900 Y  2.5 [2.5-2.4] 
Pmono 0.02 [0.02-0.02] 17 [19-15] 4.00±0.02 8.00±0.10 0.025600 Y  6.2 [6.4-5.5] 
Qmono 0.13 [0.13-0.13] 0 [0-0] 4.00±0.02 8.75±0.19 0.023700 Y  3.0 [3.0-2.3] 
Rmono 0.32 [0.33-0.32] 0 [0-0] 4.00±0.02 8.87±0.11 0.025600 Y  1.2 [1.2-1.1] 

        
Aco(A) 0.03 [0.03-0.03] 36 [36-36] 2.71±0.24 7.77±0.20 0.000490 Y  11.2 [11.6-10.6] 
Aco(B) 0.05 [0.06-0.05] 12 [12-12] 3.07±0.24 10.04±0.20 0.098240 Y 5.4 [6.1-4.8] 
Aco(C) 0.01 [0.01-0.01] 24 [30-24] 3.00±0.24 6.92±0.20 0.002650 Y 11.6 [12.3-10.6] 
Bco(A) 0.07 [0.08-0.07] 12 [12-12] 2.71±0.24 8.00±0.10 0.014000 Y 7.8 [8.3-7.3] 
Bco(B) 0.11 [0.12-0.11] 0 [0-0] 3.07±0.24 10.27±0.20 0.472000 Y 3.8 [4.2-3.5] 
Bco(C) 0.05 [0.05-0.05] 24 [24-24] 3.00±0.24 7.15±0.10 0.016460 Y 8.5 [8.8-8.2] 
Cco(A) 0.13 [0.15-0.12] 0 [0-0] 2.71±0.24 7.58±0.92 0.117000 Y 6.0 [6.4-5.6] 
Cco(B) 0.19 [0.20-0.19] 0 [0-0] 3.07±0.24 10.26±0.78 0.472000 Y 3.5 [3.9-3.3] 
Cco(C) 0.12 [0.13-0.11] 0 [0-0] 3.00±0.24 7.10±0.90 0.000840 Y 6.6 [7.1-6.1] 
Dco(A) 0.02 [0.02-0.01] 46 [59-10] 2.71±0.24 3.83±0.46 0.000150 N 21.0 [20.5-16.8] 
Dco(B) 0.06 [0.06-0.03] 48 [48-48] 3.07±0.24 4.76±0.75 0.135300 N 17.2 [17.4-16.9] 
Dco(C) 0.01 [0.02-0.01] 12 [12-12] 3.00±0.24 8.36±0.28 0.046870 Y 7.6 [8.2-7.0] 
Eco(A) 0.04 [0.06-0.03] 16 [16-16] 2.71±0.24 4.94±0.07 0.005560 N 23.1 [24.0-15.6] 
Eco(B) 0.12 [0.12-0.07] 16 [16-16] 3.07±0.24 5.00±0.40 0.059240 N 14.4 [21.2-8.5] 
Eco(C) 0.08 [0.08-0.07] 6 [6-6] 3.00±0.24 8.50±0.45 0.076910 Y 5.9 [6.6-5.1] 
Fco(A) 0.07 [0.10-0.06] 0 [0-0] 2.71±0.24 5.88±0.01 0.006320 N 14.0 [16.7-11.8] 
Fco(B) 0.20 [0.21-0.12] 0 [0-0] 3.07±0.24 5.00±0.56 0.015400 N 14.0 [17.5-11.3] 
Fco(C) 0.20 [0.20-0.16] 0 [0-0] 3.00±0.24 8.57±0.73 0.030760 Y 5.9 [6.6-5.2] 
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Table 43. Estimation of the secondary parameters obtained by the square root model without interactions. 

Mean values with the 95% confidence intervals (lower limit and upper limit); -a, not calculated in the model; 

Tmin, minimal temperature for growth (°C) provided from scientific litterature; Adjusted Tmin, minimal 

temperature for growth (°C) provided from adjustment by the Rosso model (°C); µref, bacterial growth rate 

at the reference (1/h) obtained using a reparametrized version of the square root secondary model; RSS, 

Residual Sum of Square for the µref value.  

Mono-culture experiments Tmin  Adjusted Tmin  µref 
 RSS  

FW B. thermosphacta  -3.36 -3.36 0.99 [0.99-0.89] 0.000668 
FW Pseudomonas spp.  -5.00 -5.02 0.42 [0.42-0.42] 0.001070 
FW Ln. gelidum  +1.00 +1.40 0.39 [0.41-0.39] 0.004580 

MAP B. thermosphacta  -3.36 -3.36 0.33 [0.33-0.32] 0.000003 
MAP Pseudomonas spp.  -5.00 -5.02 0.24 [0.24-0.24] 0.000323 
MAP Ln. gelidum +1.00 +1.40 0.71 [0.73-0.71] 0.000033 

      
Co-culture experiments     
FW B. thermosphacta  -3.36 - a 0.30 [0.35-0.28] 0.000193 
FW Pseudomonas spp.  -5.02 - a 0.42 [0.44-0.42] 0.000190 
FW Ln. gelidum  +1.40 - a 0.35 [0.40-0.34] 0.000008 

MAP B. thermosphacta  -3.36 - a 0.17 [0.24-0.13] 0.000092 
MAP Pseudomonas spp.  -5.02 - a 0.43 [0.46-0.27] 0.023100 
MAP Ln. gelidum +1.40 - a 0.59 [0.61-0.49] 0.000750 
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Table 44. Goodness-of-fit indexes used in primary models for fitting the experimental data in mono- and co-

culture experiments. RrMSE, the root mean square error of the residuals (standard deviation of the residuals); 

R2, the coefficient of multiple determination (the fraction of the square of the deviations of the observed 

values about their mean explained by the equation fitted to the experimental data).  

Models RrMSE R2
 

Amono 0.0070 0.9996 
Bmono 0.0053 0.9997 
Cmono 0.0079 0.9994 
Dmono 0.0252 0.9943 
Emono 0.0252 0.9943 
Fmono 0.0242 0.9947 
Gmono 0.0348 0.9891 
Hmono 0.0348 0.9891 
Imono 0.0348 0.9891 
Jmono 0.0116 0.9988 
Kmono 0.0116 0.9988 
Lmono 0.0116 0.9988 
Mmono 0.0446 0.9821 
Nmono 0.0506 0.9770 
Omono 0.0446 0.9821 
Pmono 0.0533 0.9744 
Qmono 0.0513 0.9763 
Rmono 0.0533 0.9744 
Aco(A) 0.0074 0.9995 
Aco(B) 0.1045 0.9018 
Aco(C) 0.0172 0.9974 
Bco(A) 0.0394 0.9860 
Bco(B) 0.2290 0.4280 
Bco(C) 0.0428 0.9835 
Cco(A) 0.1140 0.8830 
Cco(B) 0.2290 0.5280 
Cco(C) 0.0097 0.9992 
Dco(A) 0.0041 0.9999 
Dco(B) 0.1226 0.8647 
Dco(C) 0.0722 0.9531 
Eco(A) 0.0249 0.9944 
Eco(B) 0.0811 0.9408 
Eco(C) 0.0924 0.9231 
Fco(A) 0.0265 0.9937 
Fco(B) 0.0414 0.9846 
Fco(C) 0.0585 0.9692 
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Table 45. Goodness-of-fit indexes used in secondary models for fitting the experimental data in mono- and 

co-culture experiments. GoF, the goodness of fit (root meat square error of the model, analogous to the 

accuracy factor); R2 , the coefficient of multiple determination (the fraction of the square of the deviations of 

the observed values about their mean explained by the equation fitted to the experimental data).  

Mono-culture experiments GoF R2
 

FW B. thermosphacta  0.0183 0.9993 
FW Pseudomonas spp.  0.0231 0.9989 
FW L. gelidum  0.0479 0.9954 

MAP B. thermosphacta  0.0012 1.0000 
MAP Pseudomonas spp.  0.0127 0.9997 
MAP L. gelidum 0.0041 0.9989 

    
Co-culture experiments   
FW B. thermosphacta  0.0098 0.9998 
FW Pseudomonas spp.  0.0097 0.9998 
FW L. gelidum  0.0020 1.0000 

MAP B. thermosphacta  0.0068 0.9999 
MAP Pseudomonas spp.  0.1075 0.9769 
MAP L. gelidum 0.0194 0.9993 

 

 
Figure 42. Dynamics of µmax between a large range of temperature (from -6°C to +25°C) for mono-culture 

experiments in FW (A) and MAP (B), and for co-culture experiments in FW (C) and MAP (D).  

 

3.5. Correlations between growth parameters obtained in mono- and co-culture 

experiments 

 

Correlations between growth parameters of B. thermosphacta, Pseudomonas spp. and 

Ln. gelidum for mono-culture and co-culture experiments are presented in Table 46. 
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It can be observed that the maximum specific growth rate (µmax) of microorganisms was 

negatively correlated with microbial shelf life. The correlation was higher in mono-culture (-0.8660 to 

-0.9572) than in co-culture experiments (-0.0339 to -0.9160).  

Lag phase duration (LPD) of all microorganisms showed good correlation. High correlations of 

µmax and LPD were observed in FW for co-culture experiments.  

N0 showed little correlations than the two others parameters, except for mono-culture of 

Pseudomonas spp. stored in FW.  

Moreover, no obvious correlation has been shown between Nmax with shelf life for co-cultures 

experiments.  

In conclusion, the results showed in our study that the microbial shelf life of MP samples is 

mainly correlated with µmax and LPD than by Nmax and N0. Even if the correlations are lower for 

experiments carried out in co-culture under MAP.   

It was also showed that µmax seems to be mainly influenced by the food packaging (Table 47), 

and by the interaction of the storage conditions applied in this study (packaging and temperature). These 

results were confirmed by the study of the reduction ratio a (Figure 43). B. thermosphacta and 

Ln. gelidum presented a higher reduction in FW. But an increase was observed for Pseudomonas spp. 

in MAP. Indeed, µmax of Pseudomonas spp. was 0.04, 0.08 and 0.13, at 4°C, 8°C and 12°C, respectively, 

in mono-culture experiments. While the parameter was gradually increasing to 0.06 (a = -50.0%), 0.12 

(a = -50.0%) and 0.20 (a = -53.8%), at 4°C, 8°C and 12°C, respectively, in co-culture experiments. 

However, Nmax values of this bacterium was lesser in co-culture than in mono-culture experiments.  
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Table 46. Correlations between growth parameters and the minimal shelf life (MSL) for mono-culture and co-culture experiments. N0, the initial bacterial population 

(log CFU/g); Nmax, the maximal bacterial population (log CFU/g); LPD, the lag phase duration (h); µmax (the maximum specific growth rate (1/h). 

Bacterial 
species/packaging 

Growth 
parameters 

Mono-culture experiments Co-culture experiments 
Pearsons-correlations (r) CI p-value Pearsons-correlations (r) CI p-value 

FW        
B.thermosphacta µmax -0.8660 -0.9715;-0.4771 0.0025 -0.9144 -0.9821;-0.6376 0.0005 

LPD 0.9920 0.9608;0.9983 1.52-07 0.9839 0.9227;0.9967 1.71-06 

N0 0.0188 -0.6534;0.6745 0.9617 0.1763 -0.5524;0.7523 0.6500 
Nmax -0.9553 -0.9908;-0.7965 5.94-05 0.2151 -0.5238;0.7693 0.5783 

Pseudomonas spp. µmax -0.9548 -0.9907;-0.7945 6.17-05 -0.7774 -0.9507;-0.2344 0.0136 
LPD 0.9905 0.9542;0.9980 2.63-07 0.9013 0.5911;0.9792 0.0008 
N0 0.9903 -0.6048;0.7160 0.7999 0.3903 -0.3696;0.8373 0.2990 

Nmax -0.0675 -0.7002;0.6245 0.8629 0.0278 -0.6482;0.6783 0.9434 
Ln. gelidum µmax -0.8784 -0.9742;-0.5144 0.0018 -0.9160 -0.9824;-0.6434 0.0005 

LPD 0.9989 0.9948;0.9997 1.23-10 0.8251 0.3563;0.9620 0.0061 
N0 0.0271 -0.6486;0.6790 0.9448 0.2163 -0.5228;0.7698 0.5760 

Nmax -0.5478 -0.8886;0.1828 0.1268 -0.0568 -0.6947;0.6311 0.8846 
 

MAP        

B.thermosphacta µmax -0.8819 -0.9750;-0.5258 0.0016 -0.2501 -0.7839;0.4965 0.5164 
 LPD 0.9881 0.9424;0.9975 5.95-07 0.5490 -0.1811;0.8890 0.1257 
 N0 0.0411 -0.6405;0.6864 0.9164 0.5858 -0.1281;0.8998 0.0973 
 Nmax -0.9925 -0.9984;-0.9637 1.15-07 -0.4274 -0.8502;0.3304 0.2511 

Pseudomonas spp. µmax -0.9572 -0.9912;-0.8047 5.09-05 -0.0339 -0.6827;0.6446 0.9308 
 LPD 0.9549 0.7951;0.9907 6.10-05 0.3844 -0.3755;0.8352 0.3070 
 N0 0.0425 -0.6396;0.6872 0.9134 0.7422 0.1540;0.9420 0.2202 
 Nmax -0.9977 -0.9995;-0.9890 1.66-09 0.2979 -0.4565;0.8031 0.4362 

Ln. gelidum µmax -0.9283 -0.9851;-0.6891 0.0003 -0.5587 -0.8919;0.1675 0.1178 
 LPD 0.9424 0.7438;0.9881 0.0001 0.7049 0.0768;0.9325 0.0339 
 N0 0.1130 -0.5958;0.7228 0.7722 0.5667 -0.1561;0.8942 0.1116 
 Nmax -0.8983 -0.9786;-0.5806 0.0009 0.3732 -0.3867;0.8313 0.3225 
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Table 47. Effect of food storage conditions on the maximal bacterial growth rates (µmax, 1/h) for mono- and 

co-cultures experiments (analysis of covariance, ANCOVA). a, interaction effect of packaging and 

temperature on bacterial growth rates; *, significant statistical effect (p<0.05). 

Experiments Effects 
Packaging Temperature Packaging*temperaturea 

Mono-culture    
B. thermosphacta 0.0113* 0.0003* 0.0001* 

Pseudomonas spp. 0.4133 0.7389 0.0050* 

Ln. gelidum 0.1655 0.0015* 0.4331 
 

Co-culture    

B. thermosphacta 0.0280* 0.8072 0.0016* 

Pseudomonas spp. 0.3063 0.3564 0.8114 
Ln. gelidum 0.1030 0.1691 0.8728 

 

 
Figure 43. Reduction ratio (a), in %, of the parameters µmax for B. thermosphacta, Pseudomonas spp. and 

Ln. gelidum in co-culture experiments at different storage conditions (see Table 37 for legend). The negative 

bars represents an increase in co-culture for the specific parameters. No growth of bacteria (NG) was only 

observed for Ln. gelidum in MAP at 4°C. 

 

3.6. Three species interaction models and validation step 

 

Estimated growth parameters and goodness-of-fit indexes for the two developed interaction 

model are available in Table 48.  

The Lotka-Volterra model showed lower RrMSE values but the interaction factors are 
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sometimes included in high intervals.  

Simulations provided by the predictive models based on the modified Jameson-effect model and 

the Lotka-Volterra equations, are represented in Figures 44 and 45.   

The modified Jameson-effect model showed the best model performance (ASZ), with a mean of 

63 ± 23%, while the Lotka-Volterra model showed lesser percentages (31 ± 17% (n = 18)). Eight 

simulated models based on the equation of the modified Jameson-effect model can be considered as 

acceptable, because at least 70% of the observed log counts values are within the ASZ.  

 

Table 48. Estimated growth parameters of the three species modified Jameson-effect and Lotka-Volterra 

models, with goodness-of-fit indexes. See Table 37 for the list of codes used. Mean values with the 95% 

confidence intervals (lower limit and upper limit); RrMSE, the root mean square error of the residuals; µmax, 

the maximum growth rate (1/h); FABC, FACB, FBAC, FBCA, FCAB, FCBA, the coefficient of interaction measuring 

the effects of one species on the others (A, B. thermosphacta; B, Pseudomonas spp.; C, Ln. gelidum; 

respectively). 

 
Modified Jameson-effect 

model Lotka-Volterra model 

RrMSE µmax RrMSE FABC FACB FBAC FBCA FCAB FCBA 

Aco(A) 0.261 0.047 
[0.019;0.076] 0.154 -0.90 

[-5.41;-0.19] 
-1.10 

[-5.13;-0.18] 
2.20 

[0.92;2.81] 
0.45 

[0.35;1.08] 
0.50 

[0.19;1.82] 
1.99 

[0.54;5.00] 

Aco(B) 0.273 0.065 
[0.031;0.097] 0.171 -0.90 

[-5.41;-0.19] 
-1.10 

[-5.13;-0.18] 
2.20 

[0.92;2.81] 
0.45 

[0.35;1.08] 
0.50 

[0.19;1.82] 
1.99 

[0.54;5.00] 

Aco(C) 0.284 0.039 
[0.013;0.065] 0.199 -0.90 

[-5.41;-0.19] 
-1.10 

[-5.13;-0.18] 
2.20 

[0.92;2.81] 
0.45 

[0.35;1.08] 
0.50 

[0.19;1.82] 
1.99 

[0.54;5.00] 

Bco(A) 0.372 0.230 
[0.019;0.380] 0.113 0.05 

[-0.02;0.09] 
6.02 

[3.53;6.55] 
0.90 

[0.85;0.99] 
1.08 

[0.67;1.11] 
-5.51 

[-5.73;-0.27] 
-0.04 

[-0.05;-0.03] 

Bco(B) 0.273 0.317 
[0.031;0.485] 0.365 0.05 

[-0.02;0.09] 
6.02 

[3.53;6.55] 
0.90 

[0.85;0.99] 
1.08 

[0.67;1.11] 
-5.51 

[-5.73;-0.27] 
-0.04 

[-0.05;-0.03] 

Bco(C) 0.284 0.184 
[0.015;0.327] 0.108 0.05 

[-0.02;0.09] 
6.02 

[3.53;6.55] 
0.90 

[0.85;0.99] 
1.08 

[0.67;1.11] 
-5.51 

[-5.73;-0.27] 
-0.04 

[-0.05;-0.03] 

Cco(A) 0.224 0.111 
[0.082;0.140] 0.216 0.11 

[0.04;0.17] 
0.38 

[0.17;0.50] 
0.62 

[0.61;0.63] 
1.15 

[1.06;1.21] 
0.78 

[0.60;1.06] 
0.12 

[0.12;0.15] 

Cco(B) 0.248 0.136 
[0.105;0.169] 0.294 0.11 

[0.04;0.17] 
0.38 

[0.17;0.50] 
0.62 

[0.61;0.63] 
1.15 

[1.06;1.21] 
0.78 

[0.60;1.06] 
0.12 

[0.12;0.15] 

Cco(C) 0.250 0.090 
[0.062;0.116] 0.186 0.11 

[0.04;0.17] 
0.38 

[0.17;0.50] 
0.62 

[0.61;0.63] 
1.15 

[1.06;1.21] 
0.78 

[0.60;1.06] 
0.12 

[0.12;0.15] 

Dco(A) 0.187 0.015 
[0.004;0.028] 0.056 -0.06 

[-0.14;0.15] 
-11.08 

[-11.08;-3.72] 
2.21 

[1.80;2.21] 
0.45 

[0.45;0.48] 
-5.05 

[-5.05;0.50] 
0.13 

[-0.32;0.37] 

Dco(B) 0.186 0.018 
[0.004;0.033] 0.205 -0.06 

[-0.14;0.15] 
-11.08 

[-11.08;-3.72] 
2.21 

[1.80;2.21] 
0.45 

[0.45;0.48] 
-5.05 

[-5.05;0.50] 
0.13 

[-0.32;0.37] 

Dco(C) 0.223 0.064 
[0.004;0.084] 0.083 -0.06 

[-0.14;0.15] 
-11.08 

[-11.08;-3.72] 
2.21 

[1.80;2.21] 
0.45 

[0.45;0.48] 
-5.05 

[-5.05;0.50] 
0.13 

[-0.32;0.37] 

Eco(A) 0.187 0.044 
[0.023;0.095] 0.050 0.26 

[-0.24;0.26] 
3.08 

[-3.96;3.08] 
4.40 

[1.31;4.40] 
0.14 

[0.11;0.75] 
-0.28 

[-0.28;3.01] 
-0.74 

[-0.74;0.32] 

Eco(B) 0.228 0.039 
[0.014;0.096]  0.094 0.26 

[-0.24;0.26] 
3.08 

[-3.96;3.08] 
4.40 

[1.31;4.40] 
0.14 

[0.11;0.75] 
-0.28 

[-0.28;3.01] 
-0.74 

[-0.74;0.32] 

Eco(C) 0.186 0.110 
[0.055;0.184] 0.119 0.26 

[-0.24;0.26] 
3.08 

[-3.96;3.08] 
4.40 

[1.31;4.40] 
0.14 

[0.11;0.75] 
-0.28 

[-0.28;3.01] 
-0.74 

[-0.74;0.32] 

Fco(A) 0.192 0.056 
[0.015;0.095] 0.203 -0.15 

[-0.19;0.02] 
-0.11 

[-0.20;0.01] 
0.66 

[0.40;0.83] 
0.47 

[0.43;0.48] 
0.63 

[0.60;0.63] 
1.19 

[1.19;1.27] 

Fco(B) 0.228 0.035 
[0.010;0.096] 0.189 -0.15 

[-0.19;0.02] 
-0.11 

[-0.20;0.01] 
0.66 

[0.40;0.83] 
0.47 

[0.43;0.48] 
0.63 

[0.60;0.63] 
1.19 

[1.19;1.27] 

Fco(C) 0.186 0.100 
[0.046;0.184] 0.221 -0.15 

[-0.19;0.02] 
-0.11 

[-0.20;0.01] 
0.66 

[0.40;0.83] 
0.47 

[0.43;0.48] 
0.63 

[0.60;0.63] 
1.19 

[1.19;1.27] 
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Figure 44. Experimental observed data (validation dataset, means and standard deviation of the three 

replicates) and simulations provided by the predictive models based on the modified Jameson-effect equation 

and on the Lotka-Volterra equation in food wrap. See Table 37 for list of the codes used. Black solid lines 

represent the Jameson-effect model, grey solid lines represent the Lotka-Volterra model. Dashed and dotted 

lines represent the acceptable simulation zone (ASZ) used to compare observations versus predictions of the 

interaction models.   
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Figure 45. Experimental observed data (validation dataset, means and standard deviation of the three 

replicates) and simulations provided by the predictive models based on the modified Jameson-effect equation 

and on the Lotka-Volterra equation in modified atmosphere packaging. See Table 37 for list of the codes 

used. Black solid lines represent the Jameson-effect model, grey solid lines represent the Lotka-Volterra 

model. Dashed and dotted lines represent the acceptable simulation zone (ASZ) used to compare observations 

versus predictions of the interaction models.   
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3.7. Validation dataset 

 

As previously described, plate counts in validation dataset increased during the shelf life with 

increasing the temperature (Figures 46 and 47).  

At the end of the shelf life, the natural logarithm of the bacterial count was over 7.0 log CFU/g.  

During the storage, a high growth rate and a more rapidly reached stationary phase are also 

correlated to FW and the highest storage temperatures.  

No bacterial growth was observed on PCA for the control samples (limit detection < 3.00 log 

CFU/g) (data not shown in this paper).  

The relative abundance results obtained by metagenetic analysis (expressed in %) at species 

levels (>1%) are represented in cumulated histograms for validation dataset in Supplemental Material 

for FW (Table 49) and MAP (Table 50). The metagenetic data were then combined with the plate counts 

results in order to obtain estimated bacterial counts (Table 51).  

At day 0, the distribution of read percentages shows high values (> 90%) of 

Photobacterium spp., Ph. kishitanii and Ph. illiopiscarium.  

In FW, Pseudomonas spp. reached higher values at day 3, and became the most represented 

bacteria until the end of the shelf life (>90%). B. thermosphacta reached lesser values, with 3.22% at 

the end of the shelf life. Ln. gelidum was always under the detection limit. These results are in 

accordance with those obtained in co-culture experiments.  

In MAP, Photobacterium spp. was the most represented genus (>90%) during storage. 

However, low levels of B. thermosphacta and Ln. gelidum were observed at 8°C and 12°C. 

Pseudomonas spp. was always under the detection limit. These results are different from those obtained 

in co-culture experiments.  

Moreover, pH value of the validation dataset at the end of the shelf life was statistically different 

to control samples (7.06 ± 0.80, n = 7, p-value = 0.01).  

At the same time, the concentration of carbon dioxide also showed higher values than control 

samples (35.5 ± 1.64, 56.7 ± 2.17, and 96.7 ± 5.57, at 4°C, 8°C and 12°C, respectively).  
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Figure 46. Cumulated histograms of the relative abundance (%) of taxa and the dynamics of the bacterial 

community identified by metagenetics at species levels in validation dataset during storage in FW (A, at 4°C; 

B, at 8°C; C, at 12°C) At species levels, the taxa representing <1% in relative abundance were merged in the 

category of "Others". The solid represents the plate counts (means and standard deviation of the three 

replicates).   

 

 
Figure 47. Cumulated histograms of the relative abundance (%) of taxa and the dynamics of the bacterial 

community identified by metagenetics at species levels in validation dataset during storage in MAP (D, at 

4°C; E, at 8°C; F, at 12°C). At species levels, the taxa representing <1% in relative abundance were merged 

in the category of "Others". The solid represents the plate counts (means and standard deviation of the three 

replicates).   
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Table 49. Distribution of metagenetic reads percentages at species level for validation dataset, during storage of MP samples in FW. At species levels, the taxa 

representing <1% in relative abundance were merged in the category of “Others”; Temp., temperature (°C); -*, data under the detection limit.  

  
T

em
p.  

D
ays 

A
cinetobacter sp. 

B
acillus  sp. 

B
.  cam

pestris  

B
rochothrix sp. 

C
arnobacterium

 sp. 

C
. divergens 

C
.  m

altarom
aticum

 

Lb. algidus 

Lactococcus sp. 

Lc. piscium
 

Ln. inhae 

Leuconotos sp. 

Ln. gelidum
 

Ph. kishitanii 

Ph. illiopiscarium
 

Photobacterium
 sp. 

Ph. piscicola 

Ps. psychrophila 

Ps. taetrolens 

Pseudom
onas sp. 

R
ahnella sp. 

S. proteam
aculans 

Serratia sp. 

U
nclassified 

O
thers 

4°C 0 - * - * - * 0.56 - * 0.03 - * 0.86 0.18 0.12 0.21 0.12 0.59 0.35 53.75 33.54 6.80 0.03 0.06 0.56 - * - * - * 2.10 0.15 
 1 - * - * - * 0.45 - * - * 0.03 0.05 0.03 0.08 - * - * 0.19 0.19 52.23 32.68 7.24 - * 0.11 0.24 - * - * - * 6.10 0.39 
 2 - * - * - * 0.17 - * 0.03 - * - * - * - * - * - * 0.03 0.11 52.41 33.46 7.19 - * - * 0.14 - * - * - * 5.84 0.63 
 3 - * 0.09 - * 0.69 0.03 0.03 - * 0.21 0.03 0.03 0.03 0.03 0.15 0.51 43.46 30.32 9.94 0.15 1.02 3.41 - * - * - * 9.30 0.58 
 6 0.03 0.52 - * 5.80 - * - * - * 0.17 0.06 0.09 0.09 - * 0.29 0.73 16.80 11.37 9.40 0.73 6.24 27.13 - * - * - * 20.57 0.00 
 7 - * 0.25 - * 2.13 0.03 - * - * 0.09 0.06 0.09 - * - * 0.09 0.68 8.66 7.21 7.15 0.62 10.45 45.65 - * - * - * 16.50 0.33 
 13 - * 3.35 - * 0.09 - * - * - * 0.15 - * - * 0.03 - * - * 0.53 1.06 1.12 0.88 0.94 3.20 83.92 - * - * - * 4.61 0.15 
                           

8°C 0 - * - * - * 0.56 - * 0.03 - * 0.86 0.18 0.12 0.21 0.12 0.59 0.35 53.75 33.54 6.80 0.03 0.06 0.56 - * - * - * 2.10 0.15 
 1 - * 0.06 - * 0.17 - * - * - * - * - * - * - * - * 0.06 0.14 52.98 34.93 10.37 - * 0.03 0.22 - * - * - * 0.47 0.58 
 2 - * 0.90 0.13 11.16 0.10 0.07 - * 3.27 0.07 0.33 0.40 0.23 0.80 1.30 40.58 26.09 8.28 0.03 0.43 1.50 - * - * - * 4.24 0.07 
 3 - * 5.77 - * 1.17 - * - * - * 0.07 - * - * 0.15 - * - * 2.04 28.76 21.75 7.15 0.29 2.34 23.87 - * - * - * 6.20 0.44 
 6 0.37 0.55 0.05 3.14 0.02 0.05 - * - * - * 0.02 0.02 - * 0.02 - * 0.12 0.02 0.02 1.62 1.14 87.41 - * - * - * 5.35 0.05 
 7 0.09 0.42 0.02 1.39 - * 0.02 - * 0.02 - * - * - * - * - * - * 0.14 0.12 0.02 1.53 1.20 90.35 - * - * - * 4.65 0.02 
 13 0.03 1.75 - * 1.78 - * - * - * - * - * - * - * - * - * 0.03 0.19 0.11 0.03 4.71 3.39 86.48 - * - * - * 1.51 0.00 
                           

12°C 0 - * - * - * 0.56 - * 0.03 - * 0.86 0.18 0.12 0.21 0.12 0.59 0.35 53.75 33.54 6.80 0.03 0.06 0.56 - * - * - * 2.10 0.15 
 1 - * 0.32 0.10 11.98 - * 0.13 - * 0.64 - * 0.19 0.54 0.19 0.89 0.96 46.75 28.86 7.56 - * 0.26 0.41 - * - * - * 0.11 0.13 
 2 - * 7.15 - * 15.04 - * 0.14 - * 0.53 - * 0.11 0.21 0.14 0.42 - * 15.68 11.00 8.70 - * 2.37 27.03 - * - * - * 10.90 0.57 
 3 - * 1.50 - * 27.86 0.03 - * - * 0.25 - * 0.37 0.09 0.06 0.12 - * 0.56 0.78 0.34 0.99 5.40 41.53 - * - * - * 4.65 15.46 
 6 0.24 1.16 0.06 1.66 0.03 - * 0.06 - * - * - * - * - * - * - * - * - * - * 0.74 14.60 79.32 - * - * - * 2.14 0.00 
 7 0.12 0.84 0.09 5.45 - * 0.09 0.12 0.03 - * - * 0.03 0.06 - * - * - * 0.03 - * 0.93 12.90 77.34 - * - * - * 1.89 0.09 
 13 0.19 2.34 0.06 3.22 - * - * - * - * - * - * - * - * 0.03 - * - * - * - * 1.20 14.54 75.37 - * 0.06 - * 2.94 0.00 
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Table 50. Distribution of metagenetic reads percentages at species level for validation dataset, during storage of MP samples in MAP. At species levels, the taxa 

representing <1% in relative abundance were merged in the category of “Others”; Temp., temperature (°C); -*, data under the detection limit; -a, no analysis performed 

this day. 

T
em

p.  

D
ays 

A
cinetobacter sp. 

B
acillus sp. 

B
. cam

pestris 

B
rochothrix sp. 

C
arnobacterium

 sp. 

C
. divergens 

C
. m

altarom
aticum

 

Lb. algidus 

Lactococcus sp. 

Lc. piscium
 

Ln. inhae  

Leuconotos sp. 

Ln. gelidum
 

Ph. kishitanii  

Ph. illiopiscarium
 

Photobacterium
 sp. 

Ph. piscicola 

Ps. psychrophila 

Ps. taetrolens 

Pseudom
onas sp.  

R
ahnella sp. 

S. proteam
aculans 

Serratia sp.  

U
nclassified 

O
thers 

4°C 0 - * - * - * 0.56 - * 0.03 - * 0.86 0.18 0.12 0.21 0.12 0.59 0.35 53.75 33.54 6.80 0.03 0.06 0.56 - * - * - * 2.10 0.15 
 1 - * - * - * 1.23 - * - * 0.14 0.36 0.06 0.03 0.22 0.14 0.78 0.42 52.17 33.45 7.41 - * 0.11 0.45 - * - * - * 2.80 0.24 
 2 - a - a - a - a - a - a - a - a - a - a - a - a - a - a - a - a - a - a - a - a - a - a - a - a - a 
 3 - * - * - * 0.92 - * - * 0.03 2.49 0.03 0.09 0.31 0.31 0.74 0.22 50.15 32.39 7.13 - * 0.03 0.09 - * - * - * 4.90 0.17 
 6 0.03 - * - * 0.97 - * - * - * 2.13 0.03 - * 2.76 0.21 4.43 0.67 46.77 30.34 6.86 - * - * 0.06 - * - * - * 4.52 0.21 
 7 - * - * - * 2.88 0.16 0.06 - * 4.85 0.13 0.09 5.42 1.06 7.74 0.75 39.74 23.99 6.61 - * - * 0.09 - * - * - * 6.36 0.06 
 13 - * 0.03 - * 0.12 - * - * - * 2.06 - * - * 0.23 - * 0.70 0.46 51.06 34.16 6.32 - * - * 0.23 - *     
                           

8°C 0 - * - * - * 0.56 - * 0.03 - * 0.86 0.18 0.12 0.21 0.12 0.59 0.35 53.75 33.54 6.80 0.03 0.06 0.56 - * - * - * 2.10 0.15 
 1 - * - * - * 0.10 - * - * - * 0.12 0.02 0.15 0.10 0.07 0.12 0.07 50.38 34.10 13.36 - * - * 0.05 - * - * - * 0.94 0.40 
 2 - * - * 0.03 2.97 0.03 - * 0.06 3.96 0.06 0.21 4.24 0.51 8.50 0.76 36.47 27.48 9.35 - * 0.03 0.03 - * - * - * 5.29 0.00 
 3 - * - * 0.06 3.34 - * - * - * 3.63 - * 0.23 2.95 0.34 5.26 0.51 46.69 28.73 4.76 - * - * 0.06 - * - * - * 3.57 0.00 
 6 - * - * - * 3.95 - * - * - * 2.03 0.06 0.09 2.34 0.49 2.82 0.55 44.57 29.63 8.56 - * - * 0.06 - * - * - * 4.85 0.00 
 7 - * 0.07 0.35 14.16 0.03 - * 0.07 2.09 0.21 0.83 7.62 1.39 6.92 0.83 36.24 22.47 4.83 - * 0.07 - * - * - * - * 1.81 0.00 
 13 44.73 0.09 - * 2.07 - * - * - * - * - * - * 0.09 - * 6.80 4.01 1.17 0.81 9.18 0.36 8.87 0.32 - * 0.59 1.31 19.62 0.00 
                           

12°C 0 - * - * - * 0.56 - * 0.03 - * 0.86 0.18 0.12 0.21 0.12 0.59 0.35 53.75 33.54 6.80 0.03 0.06 0.56 - * - * - * 2.10 0.15 
 1 - * 0.03 0.16 9.23 - * - * - * 1.65 - * 0.16 0.82 0.19 1.46 0.73 47.57 30.19 7.07 - * 0.06 0.13 - * - * - * 0.54 0.00 
 2 - * - * 0.39 25.64 0.06 0.03 - * 3.80 0.33 0.56 10.58 1.69 18.54 0.98 19.32 14.56 3.36 - * 0.03 0.09 - * - * - * - * 0.03 
 3 - * - * 0.06 3.59 0.03 0.03 - * 10.47 0.30 0.79 10.90 2.37 14.31 0.88 24.26 15.80 3.71 - * - * 0.09 - * - * - * 12.36 0.03 
 6 - * - * 1.19 49.13 0.60 1.06 - * 7.26 1.36 5.41 16.53 2.09 15.03 0.20 0.08 0.03 0.03 - * - * - * - * - * - * - * 0.00 
 7 - * - * 2.04 50.50 0.47 11.52 - * 1.74 0.97 1.80 15.35 1.20 14.22 - * 0.07 0.07 0.03 - * - * 0.03 - * - * - * - * - * 
 13 47.53 - * 0.04 1.53 - * - * - * - * - * - * 0.27 - *0.04 - * - * - * - * - * - * 0.04 0.13 - * 9.84 6.06 34.50 0.00 
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Table 51. Estimate bacterial counts calculated for validation dataset. Mean values with lower and upper confidence intervals; -*, data under the detection limit.  

Conditions/ 
Bacteria 

Time (days) 
0 1 2 3 6 7 13 

FW 4°C    - a    
B.thermosphacta 2.96 [3.31-2.60] 3.75 [4.10-2.94] 4.37 [4.72-3.55] 5.74 [6.09-5.18] 6.96 [7.31-6.51] 7.13 [7.48-6.58] 6.84 [7.19-5.88] 

Pseudomonas spp. 3.02 [3.37-2.66] 3.63 [3.98-2.83] 4.29 [4.64-3.47] 6.57 [6.92-6.01] 7.73 [8.08-7.28] 8.55 [8.90-8.00] 9.84 [10.19-8.88] 
L. gelidum 3.06 [3.41-2.71] - * - * 5.16 [5.51-4.60] 5.66 [6.01-5.21] - * 5.68 [6.03-5.33] 

        
FW 8°C        

B.thermosphacta 2.96 [3.31-2.60] 3.51 [3.93-3.09] 6.55 [6.80-6.31] 6.54 [6.57-6.51] 6.85 [7.44-6.26] 6.92 [7.80-6.04] 8.64 [8.71-8.57] 
Pseudomonas spp. 3.02 [3.37-2.66] 3.68 [4.10-3.26] 5.80 [6.04-5.56] 7.90 [7.93-7.87] 8.31 [8.90-7.72] 8.74 [9.62-7.86] 10.37 [10.44-10.30] 

L. gelidum 3.06 [3.41-2.71] - * 5.52 [5.76-5.28] - * 4.75 [5.34-4.16] - * - * 
        

FW 12°C        
B.thermosphacta 2.96 [3.31-2.60] 5.69 [6.63-4.75] 7.36 [7.88-6.83] 8.14 [8.59-7.69] 7.62 [8.17-7.07] 8.54 [8.99-8.09] 8.91 [9.89-7.94] 

Pseudomonas spp. 3.02 [3.37-2.66] 4.44 [5.38-3.50] 7.65 [8.17-7.12] 8.38 [8.83-7.93] 9.38 [9.93-8.83] 9.76 [10.21-9.31] 10.36 [11.34-9.38] 
L. gelidum 3.06 [3.41-2.71] 4.65 [5.59-3.71] 5.93 [6.46-5.41] 5.97 [6.42-5.52] - * 6.57 [7.02-6.12] 6.59 [6.94-6.24] 

        
MAP 4°C        

B.thermosphacta 2.96 [3.31-2.60] 3.56 [3.91-2.94] - * 5.34 [5.69-4.99] 5.67 [6.02-5.32] 5.86 [6.21-5.76] 4.85 [5.20-3.96] 
Pseudomonas spp. 3.02 [3.37-2.66] 3.22 [3.57-2.60] - * 4.47 [4.82-4.11] 4.47 [4.82-4.12] 4.37 [4.72-4.27] 5.15 [5.50-4.26] 

L. gelidum 3.06 [3.41-2.71] 3.34 [3.79-2.81] - * 5.40 [5.75-5.04] 6.35 [6.70-6.00] 6.34 [6.69-6.24] 5.63 [5.98-4.74] 
        

MAP 8°C        
B.thermosphacta 2.96 [3.31-2.60] 3.42 [4.02-2.82] 5.66 [5.76-5.56] 6.26 [6.99-5.52] 6.05 6.94-5.16] 6.99 [7.57-6.41] 7.05 [7.56-6.54] 

Pseudomonas spp. 3.02 [3.37-2.66] 3.12 [3.52-2.52] 3.97 [4.07-3.87] 4.49 [5.22-3.75] 4.24 [5.13-3.35] 4.68 [5.26-4.10] 7.72 [8.23-7.21] 
L. gelidum 3.06 [3.41-2.71] 3.72 [4.32-3.12] 6.14 [6.24-6.04] 6.47 [7.21-5.74] 5.97 [6.86-5.08] 6.76 [7.34-6.18] 7.57 [8.08-7.06] 

        
MAP 12°C        

B.thermosphacta 2.96 [3.31-2.60] 5.62 [5.80-5.44] 7.27 [7.81-6.73] 6.75 [7.01-6.49] 8.09 [8.59-7.59] 8.73 [8.87-8.59] 8.71 [8.77-8.65] 
Pseudomonas spp. 3.02 [3.37-2.66] 3.93 [4.11-3.75] 4.94 [5.48-4.40] 5.16 [5.42-4.90] - * 5.55 [5.69-5.41] 7.78 [7.84-7.72] 

L. gelidum 3.06 [3.41-2.71] 4.87 [5.05-4.69] 7.17 [7.71-6.63] 7.42 [7.68-7.16] 7.63 [8.13-7.13] 8.21 [8.35-8.07] 7.18 [7.24-7.12] 
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Discussion 
  
The present study aimed to obtain the growth parameters of three specific spoilage 

microorganisms previously isolated in MP samples, and to develop a three spoilage species interaction 

model under different storage conditions. B. thermosphacta, Pseudomonas spp. and Ln. gelidum were 

previously isolated as predominant strains (>50% reads) from different batches of Belgian MP samples 

at the end of their use-by-date (Cauchie et al., 2019). Considered as the main representative spoilage 

species in meat and meat products (Andritsos et al., 2012; Casaburi et al., 2014; De Filippis et al., 2013; 

Del Blanco et al., 2017; Geeraerts et al., 2017; Koort et al., 2005; Li et al., 2019a; Liu et al., 2006; 

Mann et al., 2016; Mansur et al., 2019; Nychas et al., 2008; Pennacchia et al., 2009; Pennacchia et al., 

2011; Peruzy et al., 2019a; Raimondi et al., 2018; Stellato et al., 2016; Stoops et al., 2015; Zhao et al., 

2015), these bacteria were inoculated on irradiated MP samples, in mono- and in co-culture experiments.  

However, the selection of dominant and non-dominant species in inoculation experiments could 

have been more interesting in order to better represent the natural contamination of MP, and thus to 

better model the impact of sub-dominant microbiota. Indeed, others taxa were also present in MP 

samples but in lesser abundance, even if they are considered as dominant taxa in several studies: 

Photobacterium spp. (Ast et al., 2007; Bjornsdottir-Butler et al., 2016; Fogarty et al., 2019; Jääskeläinen 

et al., 2019; Kuuliala et al., 2018; Moretro et al., 2016; Nieminen et al., 2016) and Lactobacillus spp. 

(especially Lb. algidus) (Alvarez-Sieiro et al., 2016; Dalcanton et al., 2013; Doulgeraki et al., 2012; 

Fadda et al., 2010; Kato et al., 2000; Nieminen et al., 2015; Pothakos et al., 2015; Stefanovic et al., 

2017; Woraprayote et al., 2016). According to this, they were not included in models of this study, as 

all others non-dominant microbiota. Moreover, Ps. fluorescens and Ps. fragi were used together in 

experiments. The objective of this study was to offer an exploratory approach to the proposed method 

by following the common genus formed by the two species mentioned. So, it would have been 

interesting to inoculate MP samples with both species in different batches, as behavior of these species 

is different according to the storage conditions.  

The inputs of models were provided from culture-dependent and culture-independent analysis 

performed on inoculation experiments. The association of both techniques allow us to obtain estimate 

abundance during storage in co-culture experiments. Although we acknowledge that the plate count 

method is not able to assess all the microbial populations in presence, the combination of these two 

methods was previously validated by a quantitative PCR (qPCR) approach (Cauchie et al., 2017). This 

approach was also used in others studies (Chaillou et al., 2015; Delhalle et al., 2016). Fougy et al. (2016) 
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also showed that this conversion can be used to obtain an extrapolated estimation of the bacterial 

concentration, and may be used in food industries. But comparison of these results with counts on 

selective media would also be interesting to study in the future. Moreover, even if this method 

overestimates the bacterial concentration, it could be beneficial in a worst-case risk assumption for food 

industries (Crotta et al., 2016; Membré and Boué, 2018).  

In this study, models show relatively good fitting indexes (RrMSE and R2). Good performances 

(ASZ) in the three species interaction approach were also obtained, especially with the modified 

Jameson-effect model. 

The growth parameters of the three specific spoilage microorganisms were obtained for mono- 

and co-culture experiments by fittings primary and secondary models (Tables 42 and 43). The food 

packaging shows the highest impact on bacterial growth rates (µmax), which in turn have the strongest 

influence on the shelf life of food products (Simpson and Carevic, 2004; Stoops et al., 2015; Guillard et 

al., 2016; Saraiva et al., 2016; Couvert et al., 2017). In accordance with Liu et al. (2006), N0 showed a 

little correlation with the microbial shelf life in mono- and co-culture experiments, indicated that the 

storage outcome of food seems to be not completely determined by the initial microbial counts. 

Moreover, no obvious correlation has been shown between Nmax and shelf life in co-cultures 

experiments. This can be explained by the fact that meat shelf life is determined primarily by the 

metabolic patterns of the spoilage microbiota, rather than by total counts of bacteria (Liu et al., 2006). 

However, it can be observed that the parameters obtained in single culture were quite different from 

those in co-culture, especially for Pseudomonas spp. and B. thermosphacta. In FW, B. thermosphacta 

grew faster on mono-culture, but this behavior was not detected in co-culture. On the opposite, 

Pseudomonas spp. became the dominant bacteria in FW in the presence of the two others 

microorganisms. These differences between mono- and co-culture inoculations have already been 

observed by Hibbing et al. (2010) and Quinto et al. (2018).  

On the other hand, observations in co-culture experiments showed that the suppression of the 

two other bacteria occurred when the dominant one reached its MCP. This result reveals a potential 

Jameson effect between populations, rather than a prey-predator trend. According to these, differences 

between mono- and co-cultures experiments could maybe be explained by two hypotheses: (i) a non-

specific interaction involving the Jameson effect, where growth inhibition is the result from a depletion 

in nutrient bioavailability and toxicity increase when the dominant bacteria reaches NMCP; and (ii) a 

specific interaction due to the modification of the food matrix where bacteria are growing (i.e. 

catabolism of carbon sources, the production of by products such as carbon dioxide and acids, …) (Bruce 

et al., 2017; Correia Peres Costa et al., 2019; Kumariya et al., 2019; Quinto et al., 2018). Nadell et al. 

(2016) have mentioned that Ps. fluorescens can produces extracellular matrix materials to give them an 

advantage over competitors. Quorum sensing (QS) could also be related to this inhibition by the 
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dominant bacteria, by exchanging information to synchronize bacterial behavior in mixed-culture 

(Dubey and Ben-Yehuda, 2011; Ng and Basster, 2009; Quinto et al., 2018).  

The development of a three spoilage species interaction model was then performed using two 

models: the modified Jameson-effect and the Lotka-Volterra (Figures 44 and 45). The modified 

Jameson-effect model showed slightly better fits than the Lotka-Volterra equation, with 40 – 86% out 

of the observed counts falling into the ASZ, indicating a satisfactory model performance. It only concerns 

14-48% for the prey-predator approach. These results can be explained by the fact that the dynamics of 

experimental and validation datasets seems to follow a Jameson behavior, because the minority bacteria 

decelerate when the majority one reaches the MCP (Cornu et al. (2011). Moreover, the modified 

Jameson-effect equation is considering growth parameters (µmax, tMCP and N0) for modeling (Equation 

21). These parameters are obtained by primary and secondary fittings, and are relatively reliable in our 

study due to the numbers of samples analyzed. On the other hand, the Lotka-Volterra model is based on 

complex interaction factors (Equation 22) which are obtained by linear regression. Due to the high 

variability of interactions that can be simulated, particularly in three or more species models, these 

interaction factors must necessarily be as accurate as possible. In this study, interaction factors are 

included in highly variable intervals (Table 48), with some variations observed according to the 

temperature (Correia Peres Costa et al., 2019; Mejlholm and Dalgaard, 2015; Moller et al., 2013). More 

datasets are probably needed to obtained reliable factors. Also, the Lotka-Volterra model could be 

modified for a more realistic approach by considering the effect of other influencing factors (e.g. 

environmental conditions such as several storage and packaging conditions, bacteriocin production, etc.) 

(Baka et al., 2014; Powell et al., 2004).  

More inoculation experiments are so needed to develop better predictive models, especially for 

a three or more spoilage species interaction approach. And also, to better understand the dynamics of 

spoilage bacteria towards each other and in the presence of natural microbiota. As mentioned by Quinto 

et al. (2018): “it is well known that a spoilage microorganism can either stimulate, inhibit or have no 

effect on the growth of the pathogenic species”. So, it could be interesting to study interactions between 

spoilage microorganisms, with production of metabolites or other substances as interaction factors. It 

would also be interesting to investigate co-culture experiments with two species. Moreover, metabolites 

production by each of the inoculated bacteria, as inputs interacting models, will be studied in another 

scientific publication.  

Finally, naturally contaminated samples were used to validate the developed models by 

considering the effect of the food microbiota. Differences with co-culture experiments were obtained: a 

predominance of Photobacterium spp. (>90% of reads) was observed in MAP (Figure 47). It could be 

interesting to take also into account this bacterium for modeling interactions. The addition of this 

bacterium could possibly improve the reliability of predictions, particularly for the Lotka-Volterra 
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model. Moreover, Photobacterium spp. is not well recovered on PCA at 22°C (Dalgaard et al., 1997; 

Hilgarth et al., 2018c). According to this, improving cultivation methods for this bacterium is important 

to obtain more reliable results. Further studies are so needed to develop more realistic interacting 

predictive models, especially in a three  or more spoilage species interaction approach, and to develop 

new food preservation process. 

In conclusion, new omics technologies, such as metagenetics and metabolomics, are important 

to characterize and to follow the dynamics of bacterial microbiota and metabolites in complex food 

matrices. New generations of predictive models will probably need to be developed, by considering the 

results provided by these techniques. These models will provide a better understanding of the 

interactions between microorganisms and food, and microorganisms between them. 
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Abstract 
 

Þ Objective 4. Study the metabolome of minced pork samples 

 
The aim of this study was to assess bacterial meat spoilage through the dynamics of microbial 

counts and changes in the metabolic profile of MP samples using NMR-based metabolomics. Three 

dominant bacterial isolates were inoculated in irradiated samples in mono-culture experiments: 

B. thermosphacta, Pseudomonas spp. (Ps. fluorescens and Ps. fragi) and Ln. gelidum. Samples were 

stored under food packaging at constant temperature during 13 days. For all conditions, irradiated non-

inoculated samples were also stored. Analysis were carried out by using microbial counts and 1H-NMR. 

The multivariate analysis (OPLS-DA) shows a clear discrimination between: (i) the non-inoculated 

product at day 0 and 13, (ii) the inoculated and non-inoculated samples, (iii) the type of strain, and (iv) 

the packaging conditions. It can be observed that the type of strain inoculated has a higher impact on the 

metabolome than that of the packaging conditions. Some metabolites are also significantly increased: 

acetate, cadaverine, glutamate and succinate in samples inoculated with Pseudomonas spp., and acetate, 

acetoin and isobutyrate in samples inoculated with B. thermosphacta. The results for Ln. gelidum have 

not yet been reported. Exploration of the correlations of NMR-based metabolomics results with others 

microbial parameters suggested that their use might be a useful tool to provide information on minced 

pork spoilage.  
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Introduction 
 

Food spoilage is a major problem for the food industry and consumers because it renders 

products unacceptable for consumption and consequently leads to significant food waste and economic 

losses (Garnier et al., 2017). In Europe, the losses of initial meat production represent 20% and more 

than half of this occurs at animal production, slaughtering, processing and distribution steps (Food and 

Agriculture Organization, 2011; Kergourlay et al. 2015). Foof waste which is a major issue, is mainly 

due to contamination and development in a food matrix of spoilage bacteria during the transformation 

and storage steps (Lipsinki et al., 2013; Remenant et al., 2015). It is well established that spoilage of 

meat is the result of decomposition and formation of metabolites caused by the growth and enzymatic 

activity of microorganisms (Argyri et al., 2015), highlighting the importance of managing the quality of 

food products.  

Food quality is commonly described using sensory evaluation, microbial inspection, 

biochemical methods, and proteome analysis. New “omics” approaches and more specifically 

metabolomics, which deals with the study of the metabolite’s profiles of samples, are relatively new 

investigation tools in food science (“foodomics”) (Aru et al., 2016; Cevallos-Cevallos et al., 2009). 

Metabolomics was initially applied to fields of plant science and toxicology (Fiehn, 2002) and has 

gained popularity in the last 10 years, as shown by the recent surge in the number of metabolomic studies 

in foods to obtain metabolite profiling of salmon, meat, honey, milk, olive oil, wine, tea and others plants 

(Ibanez et al., 2013; Jung et al., 2010; Mannina et al., 2012; Piras et al., 2013; Ritota et al., 2012; Singh 

et al., 2017; Trimigno et al., 2015). NMR spectroscopy and more specifically proton NMR is, together 

with MS, the most widely used analytical platform for metabolomic analysis (Marcone et al., 2013; 

Pinu, 2016; Sundekilde et al., 2013).  

Several studies showed the interest of metabolomics for the study of food quality (Castro-

Puyana and Herrero, 2013; Tarachawin et al., 2007; Zanardi et al., 2015) with assessment of food 

spoilage (Duarte et al., 2006; Pinter et al., 2014), geographical origin (Boffo et al., 2012; Brescia et al., 

2003; Cubero-Leon et al., 2014; Jung et al., 2010; Mannina et al., 2001; Schievano et al., 2008; Shintu 

and Caldarelli, 2006), authenticity assessment (Aru et al., 2016; Jiang and Bratcher, 2016; Charlton et 

al., 2002; Chen et al., 2016; Chen et al., 2017; Mazzei and Piccolo, 2012), and metabolomic profiles 

linking to process and storage conditions (Consonni and Cagliani, 2008; Piras et al., 2013). However, 

among all these studies only a few have been performed on beef meat (Castejon et al., 2015; Jung et al., 

2010; Zanardi et al., 2015) and none of them are concerning pork meat.  
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 Because meat has a high water content and an abundance of nutrients available for bacteria, 

that renders is one of the most perishable foods (Ercolini et al., 2011), no metabolite profiles from 

inoculated meat by putatively spoilage microorganisms have been reported to date. The main reason is 

due to the dynamic and complex nature of this system and to large gaps of knowledge on the interactions 

between microbiota, food structure and sensorial aspect (flavor, aroma, texture, color) (Piras et al., 

2013). However, the putative interest for the association between microbial development and chemical 

changes occurring during the storage of meat is recognized as a potential means of revealing indicators 

of meat quality or freshness (Castejon et al., 2015; Ercolini et al., 2011; Jung et al., 2010).  

Moreover, it is expected that the combination of metabolomic data with other complementary 

approaches (classical microbiology and quality parameters) can give the opportunity to gain deeper 

insights into, and have a better comprehension of the spoilage mechanisms (Consonni and Cagliani, 

2008; Mannina et al., 2012). It has proved to be an attractive technique offering in a single experiment 

an overview of a wide range of low molecular-mass compounds (<1500 Da) present in a matrix by 

detecting all 1H containing metabolites with concentrations above level of ten micromolar (Dufour et 

al., 2015; Shumilina et al., 2016; Verpoorte et al., 2008; Yuan et al., 2017).  

According to these, the objectives of the present study were (i) to explore the dynamics of 

metabolomic profiles by 1H-NMR in MP samples, during storage under different packaging and 

temperature conditions, and (ii) to associate putative metabolites with the dynamics of each inoculated 

spoilage bacterial strains.  
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Material and methods 
 

2.1. Bacterial strains and sampling  

 

As described in the study of Cauchie et al. (2019), three specific spoilage microorganisms were 

previously isolated from different batches of naturally contaminated Belgian MP samples at the end of 

their use-by date. Samples were stored under 2 packaging (under air and MAP (30% CO2 - 70% O2)) 

and 3 temperature conditions (4°C, 8°C and 12°C). These predominant strains, represented more than 

50% of the natural microbiota, were identified by 16S rRNA sequencing and used for experiments: 

B. thermosphacta (MM008), Ln. gelidum (MM045) and Pseudomonas spp. (Ps. fluorescens MM026 

and Ps. fragi MM014). Ps. fluorescens and Ps. fragi were used in a mix because they correspond to the 

most frequently spoilage species in MP. Bacterial strains were stored at −80 °C in nutrient broth with 

30% glycerol as a cryoprotective agent. Before use, strains were transferred from the −80 °C culture 

collection to Brain Heart Infusion (BHI) broth for 48 h at 22 °C. The cultures were incubated overnight 

at 4 °C before inoculation.  

Fresh MP samples were obtained from a local Belgian manufacturer at the day of the production, 

corresponding to the day of slaughtering. MP samples were packed by the manufacturer in a 

polypropylene tray under cling film. According to the recipe MP is composed of 100% minced pork 

(70% lean, 30% fat), no salt, no spices, no additives, no eggs and no sugar were added. At the day of the 

production, the water activity of the product was 0.98 ± 0.02 and the pH value was 5.80 ± 0.02 (n = 12). 

pH of the homogenized samples (5 g in 45 ml KCl) was measured with a pH meter (Knick 765 Calimatic, 

Germany). The water activity was measured for homogenized samples on the basis of the relative 

humidity measurement of the air balance in the micro enclosure at 25 ± 0.4°C (Thermoconstanter 

TH200, Novasina, Switzerland).  

Food samples were then irradiated by gamma irradiation at 17.5 ± 0.4 kGy (Sterigenics, Fleurus, 

Belgium) and were stored until used at -20 °C.  

 

2.2. Inoculation experiments 

 

The three selected bacteria were inoculated on irradiated MP samples (1% v/w), in triplicate, 

with the objective to reach an average concentration of 3.0 log colony forming units (log CFU/g on the 

product). Experiments were performed by inoculation of individual bacterial strains (mono-culture 

experiments): B. thermosphacta MM008, Pseudomonas spp. (Ps. fluorescens MM026, Ps. fragi 
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MM014 and MM015), and Ln. gelidum MM045 (n = 465 samples). Non-inoculated control samples 

were homogenized, in triplicate, by adding the same quantity of sterile water only (n = 36 samples).  

After inoculation, MP samples were mixed in a Kenwood mixer for 2 min in speed 2 (Kenwood, 

Mechelen, Belgium).  

Inoculated and non-inoculated MP samples were then packed (50 g) in two different type of 

non-sterile packaging. The first packaging was a tray (187x137x36, polyester 10 µm, homo-polymer 

polypropylene 50 µm, NutriPack, France) under MAP (CO2 30% / O2 70% ± 0.1%) (Olympia V/G, 

Technovac, Italy) using packaging wrap (PP/EVOH/PP) with random gas measurements (CheckMate 

3, Dansensor, France). The second packaging concerns a tray (175x135x22, polystyrene) under FW 

using cling film (Clinofilm).  

In this study, MP samples were stored during 13 days at isothermal temperature: (i) 4°C (± 1°C), 

(ii) 8°C (± 1°C) and (iii) 12°C (± 1°C), in climatic chambers (Sanyo MIR 254).  

The codes used for each experiment, depending on the inoculated bacteria and storage 

conditions, are listed in Table 52.  

 

Table 52. List of the codes used for the experiments, depending on the inoculated bacteria and storage 

conditions. FW, food wrap packaging; MAP, modified atmosphere packaging (CO2 30% / O2 70% ± 0.1%).  

Bacterial species Food packaging Temperature (°C) Codes 
B. thermosphacta FW 4 A 

FW 8 B 
FW 12 C 
MAP 4 D 
MAP 8 E 
MAP 12 F 

Pseudomonas spp. FW 4 G 
FW 8 H 
FW 12 I 
MAP 4 J 
MAP 8 K 
MAP 12 L 

Ln. gelidum FW 4 M 
FW 8 N 
FW 12 O 
MAP 4 P 
MAP 8 Q 
MAP 12 R 

 
Moreover, irradiated MP samples were also inoculated by a mix containing the same bacterial 

strains (1:1:1 ratio) (co-culture experiments). These co-culture experiments were stored under the same 

storage conditions as mono-culture experiments. 
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2.3. pH and gas composition measurements  

 

At the first and the last day of storage, pH of the homogenized samples (5 g in 45 ml of KCl) 

was measured with a pH meter (Knick 765 Calimatic, Germany).  

Oxygen and carbon dioxide concentrations of samples stored in MAP were monitored daily 

(CheckMate 3, Dansensor, France).  

Nonparametric statistical tests were used to compare the pH values and the gas measurements 

between samples. All tests were considered as significant for a p-value <0.05.  

 
2.4. Plate count enumeration 

 

Twenty-five grams of product were put into a Stomacher bag with a mesh screen liner (80 µm 

pore size) (Biomérieux, Basingstoke, England, ref 80015) under aseptic conditions. Buffered peptone 

water (BPW, 10 g/L peptone, 5 g/L sodium chloride, #3564684, Bio-Rad, Marnes-la-Coquette, France) 

(225 mL) was automatically added to each bag (Dilumat, Biomérieux, Belgium) and the samples were 

homogenized for 2 min in a Stomacher (Bagmixer, Interscience, France). From this primary suspension, 

decimal dilutions in maximum recovery diluent (1.0 g/L peptone 8.5 g/L sodium chloride, #CM0733, 

Oxoid, Hampshire, England) were prepared for microbiological analysis and 0.1 mL aliquots of the 

appropriate dilutions were plated onto media for each analysis in duplicate (Spiral plater, DW Scientific, 

England). Total viable count (TVC) for the psychrophilic microbiota were enumerated on plate count 

agar (PCA agar, #3544475, Bio-Rad, Marnes-la-Coquette, France) after 72 h at 22°C (model 1535 

incubator, Shel Lab, Sheldon Manufacturing Inc., USA). Enumerations were performed for mono- and 

co-culture experiments, and transformed in decimal logarithmic values. Samples from both experiments 

were analyzed at the first day of inoculation (day 0) and daily until the last day of storage (day 13). Non-

inoculated samples were only analyzed at day 0 and at day 13.  

 

2.5. Fittings of bacterial curves 

 

Growth curves of each bacteria were fitted by primary model of Baranyi and Roberts (1994) to 

estimate growth parameters: initial bacterial concentration (N0), maximal bacterial concentration (Nmax), 

lag-time duration (lag) and maximal growth rates (µmax). All fittings were performed on triplicate data 

sets, using the nlsMicrobio package (Baty and Delignette-Muller, 2013) from the open source R software 

(R Core Team, 2019).  
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2.6. Sample preparation for NMR analysis 

 
1H-NMR analysis of MP samples was realized at day 0 and day 13, in five repetitions, for 

inoculated and non-inoculated samples. A volume of 500 µl deuterated phosphate butter (DPB, pH 7.4) 

was added to 100 mg of each meat samples. The mixture was homogenized with a vortex during 1 min 

and then centrifuged 2x30 sec at 5.000 rpm. Supplemental 300 µl of D2O were added and the mixture 

was homogenized with a vortex 1 min and then left at room temperature for 15 min. A final 

centrifugation step during 15 min at 13.000 rpm was performed and the supernatants (650 µl) were 

supplemented with 100 µl of DPB, 100 µl of a 5 mM solution of maleic acid and 5 µl of a 10 mg/ml 

trimethylsilyl-3-propionic-d4 (TMSP) solution and transferred to a 5-mm NMR tube for the analysis by 

NMR. Maleic acid was used as internal standard for quantification and TMSP for the zero calibration. 

 

2.7. NMR measurements 

 

All samples were recorded at 298 Kelvin on a Bruker Advance spectrometer operating at 

500 MHz for the proton signal acquisition. The instrument was equipped with a 5 mm TCI cryoprobe 

with a Z-gradient. 1H-NMR spectra of the samples were acquired using a CPMG relaxation-editing 

sequence with presaturation. The CPMG experiment used a RD-90-(t-180-t)-n-sequence with a 

relaxation delay (RD) of 2 s, a spin echo delay (t) of 400 ms and the number of loops (n) equal to 80. 

The water suppression pulse was placed during the relaxation delay (RD). The number of transients was 

typically 32 and a number of 4 dummy scans was chosen. The data were processed with the Bruker 

Topspin 3.2 software with a standard parameter set. Phase and baseline corrections were performed 

manually over the entire range of the spectra and the δ scale was calibrated to 0 ppm using the internal 

standard TMSP. In order to prevent any bias related to the day of acquisition on the equipment, meat 

extracts were randomly analyzed in single blind: at the time of sample preparation and NMR acquisition, 

the analyst did not know which number matched a particular meat sample. 

 

2.8. Multivariate analysis for NMR spectra 

 

For statistical analysis, optimized 1H-NMR spectra were automatically baseline-corrected and 

reduced to ASCII files using AMIX software (version 3.9.14; Bruker). The spectral intensities were 

normalized to total intensities and reduced to integrated regions of equal width (0.04 ppm) 

corresponding to the 0.5–10.00 ppm region. Because of the residual signals of water and maleic acid, 

regions between 4.7 and 5 ppm (water signal) and 5.6–6.2 ppm (maleic acid signal) were removed 

before analysis. The reduced and normalized NMR spectral data were imported into SIMCA (version 
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13.0.3, Umetrics AB, Umea Sweden). Pareto scaling was applied to bucket tables and discriminant 

analysis (DA) such as PCA (Principal Component Analysis), PLS-DA (Partial Least Squares 

Discriminant Analysis), OPLS-DA (orthogonal partial least squares discriminant analysis) and PLS 

(Partial Least Square) regression were performed. SIMCA was used to generate all PCA, PLS, PLS-

DA, and OPLS-DA models and plots. PCA was only used to detect possible outliers and determine 

intrinsic clusters within the dataset, while PLS-DA maximized the separation and OPLS-DA facilitated 

the graphic visualization of differences and similarities between groups. The quality of OPLS-DA 

models was determined by the goodness of fit (R²) and the predictability was calculated on the basis of 

the fraction correctly predicted in one-seventh cross-validation (Q²).  

 

2.9. Metabolite identification 

 

Spectra for each minced meat sample was acquired by 1H-NMR. Based on 2D experiments, 

previous research and websites, such as FooDB version 1.0 (http://foodb.ca), water-soluble metabolites 

were detected and annotated. From PLS-DA loading plots, metabolites with higher loadings were 

identified. Signals with values of Variable Importance in Projection (VIP) higher than 1 were considered 

as significant, and further validated using t-test with Metaboanalyst (http://www.metaboanalyst.ca). 

Metabolite identification was then performed using the open-access database NMR suite 8.1 (Chenomx 

inc., Edmonton, Canada), the free web-based tool HMDB (http://www.hmdb.ca) and tables. Each 

metabolite identified was finally confirmed by performing peak correlation plots from 2D-NMR spectra 

(COSY and HSQC). 
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Results  
 

3.1. Microbial counts 

 

As expected, the storage temperature and the packaging conditions have a strong impact on the 

bacterial dynamics (Table 53). During storage, a more rapidly reached stationary phase is correlated to 

the FW packaging and the highest temperature.  

At the end of the shelf life, the natural logarithm of bacterial counts was over the spoilage 

threshold of 7.00 log CFU/g, except for some samples stored in MAP at low temperature.  

No bacterial growth was observed on PCA for the control samples (limit detection < 3.00 log 

CFU/g) (data not shown).  

 

3.2. pH and gas measurements 

 

A significant increase of pH was observed for MP samples inoculated by Pseudomonas spp. 

(7.54 ± 0.76, n = 5, p-value = 0.01) compared to non-inoculated samples (5.79 ± 0.05, n = 10). For the 

two others inoculated bacteria, no statistical differences was observed when comparing to control 

samples.  

Moreover, a relatively stable composition of carbon dioxide in MAP was observed at the end of 

the shelf life for all inoculated samples [30.0 – 38.5 %], except for MP samples inoculated with 

Pseudomonas spp. that reached a higher amount at 12°C (100.0 ± 0.1 %).  
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Table 53. Microbiological counts (log CFU/g) for mono-culture expriments in minced pork samples stored during 13-days shelf life, at constant temperature, in FW 

and MAP (CO2 30% / O2 70% ± 0.1%). See Table 52 for list of the codes used. Mean values with standard deviations of the three repliacates; -a, no analysis performed 

for the day. 

Codes 
Days 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 
A 3.84±0.03 3.08±0.10 3.76±0.07 4.54±0.12 - a - a 7.24±0.11 7.74±0.17 7.63±0.10 8.17±0.33 7.68±0.15 - a - a 7.90±0.15 
B 3.84±0.03 6.76±0.04 7.49±0.11 8.25±0.07 8.51±0.10 8.58±0.06 8.85±0.02 8.77±0.15 9.05±0.03 8.79±0.21 - a - a - a 9.00±0.01 
C 3.84±0.03 7.68±0.08 8.29±0.13 8.66±0.04 8.99±0.09 9.01±0.23 9.11±0.10 8.81±0.28 9.03±0.03 8.91±0.16 - a - a - a 9.27±0.08 
D 3.84±0.03 - a - a 2.17±0.30 - a - a 4.11±0.01 4.01±0.14 4.35±0.03 5.24±0.05 4.99±0.12 - a - a 5.43±0.06 
E 3.84±0.03 - a 5.88±0.10 6.11±0.11 7.11±0.02 7.86±0.10 8.21±0.04 8.43±0.11 8.43±0.16 8.41±0.10 8.38±0.16 - a 7.86±0.07 8.76±0.03 
F 3.84±0.03 - a 7.10±0.04 7.76±0.23 8.35±0.04 8.58±0.06 8.40±0.12 8.44±0.07 8.32±0.03 9.16±0.08 8.67±0.40 - a 8.83±0.02 8.71±0.06 
G 3.15±0.59 3.43±0.11 4.52±0.23 5.64±0.19 - a - a - a 9.45±0.13 9.51±0.07 - a 9.90±0.29 - a - a 10.21±0.03 
H 3.15±0.59 3.86±0.17 5.36±0.03 7.69±0.17 9.04±0.05 9.67±0.03 - a 9.62±0.15 10.34±0.24 10.39±0.40 10.11±0.28 - a - a 10.15±0.17 
I 3.15±0.59 4.93±0.15 - a 9.81±0.04 9.85±0.29 9.95±0.34 10.15±0.82 10.26±0.08 10.14±0.10 - a 9.87±0.19 - a - a 9.80±0.42 
J 3.15±0.59 - a 3.48±0.06 - a - a 3.90±0.11 4.87±0.34 4.55±0.12 - a - a - a - a 4.73±0.01 4.90±0.01 
K 3.15±0.59 3.52±0.01 4.16±0.05 - a - a 5.41±0.08 6.33±0.07 6.52±0.14 - a 6.59±0.17 - a - a 7.83±0.13 8.37±0.08 
L 3.15±0.59 4.47±0.07 6.08±0.03 - a - a - a 9.42±0.28 9.58±0.23 - a 9.80±0.41 - a - a 9.87±0.06 9.85±0.14 
M 4.00±0.02 4.07±0.01 4.38±0.01 4.61±0.12 - a - a 6.17±0.05 - a - a - a 8.62±0.09 - a - a 8.42±0.06 
N 4.00±0.02 4.58±0.08 5.84±0.02 - a 7.57±0.10 - a 8.61±0.13 - a 8.73±0.07 - a 8.84±0.09 - a - a 8.77±0.30 
O 4.00±0.02 5.38±0.01 6.84±0.13 8.35±0.09 7.56±0.01 - a 8.64±0.13 - a - a - a 8.82±0.23 - a - a 8.62±0.18 
P 4.00±0.02 4.18±0.09 - a - a 6.31±0.17 - a 6.84±0.06 7.85±0.01 - a 7.78±0.21 - a - a 8.00±0.10 8.39±0.12 
Q 4.00±0.02 4.75±0.03 - a - a 8.06±0.01 - a 8.38±0.05 8.49±0.16 - a 8.85±0.01 - a - a - a 8.75±0.19 
R 4.00±0.02 8.32±0.15 7.28±0.01 - a 8.35±0.06 - a 8.36±0.09 8.64±0.10 - a 8.89±0.07 - a - a - a 8.87±0.11 
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1.3. Microbial growth parameters 

 

Results of the primary model fittings are shown in Table 54. Good fit indexes were obtained in 

all cases.  

Bacterial growth parameters showed different dynamic changes depending on storage 

temperature and packaging condition. Indeed, the storage temperature had a strong impact on the 

maximal growth rate and lag-time: a high storage temperature is correlated to a high growth rate during 

exponential phase and a lower lag-time duration. The maximal bacterial growth is also higher in the FW 

packaging.  

 

Table 54. Observed kinetic parameters calculated by Baranyi equation. See Table 52 for list of the codes 

used. Mean values with standard deviation (SD represent three samples per experiment) or with the 95% 

confidence intervals (lower limit and upper limit); µmax , maximal specific growth rate (1/h); LPD, lag phase 

duration (h); N0, initial bacterial concentration (log CFU/g); Nmax, maximum bacterial concentration (log 

CFU/g); RSS, Residual Sum of Square of the model.  

 µmax 
 LPD  N0  Nmax 

 RSS  

A 0.09 [0.09-0.08] 51 [53-51] 3.84±0.03 7.90±0.15 0.000442 
B 0.21 [0.21-0.19] 0 [0-0] 3.84±0.03 8.79±0.21 0.000255 
C 0.39 [0.39-0.35] 0 [0-0] 3.84±0.03 9.11±0.10 0.000558 
D 0.03 [0.03-0.03] 20 [20-17] 3.84±0.03 4.99±0.12 0.005700 
E 0.07 [0.07-0.07] 0 [0-0] 3.84±0.03 8.43±0.16 0.005700 
F 0.13 [0.13-0.12] 0 [0-0] 3.84±0.03 8.83±0.16 0.005260 
G 0.06 [0.06-0.06] 24 [24-24] 3.15±0.59 9.90±0.29 0.010900 
H 0.13 [0.13-0.13] 10 [10-10] 3.15±0.59 10.15±0.17 0.010900 
I 0.23 [0.23-0.23] 0 [0-0] 3.15±0.59 9.95±0.34 0.010900 
J 0.04 [0.04-0.04] 48 [48-48] 3.15±0.59 4.90±0.01 0.001210 
K 0.08 [0.08-0.08] 27 [27-27] 3.15±0.59 8.37±0.08 0.001210 
L 0.13 [0.13-0.13] 0 [0-0] 3.15±0.59 9.87±0.06 0.001210 
M 0.01 [0.01-0.01] 48 [48-48] 4.00±0.02 8.42±0.06 0.017900 
N 0.07 [0.08-0.07] 10 [12-10] 4.00±0.02 8.77±0.30 0.023000 
O 0.18 [0.19-0.18] 0 [0-0] 4.00±0.02 8.64±0.13 0.017900 
P 0.02 [0.02-0.02] 17 [19-15] 4.00±0.02 8.00±0.10 0.025600 
Q 0.13 [0.13-0.13] 0 [0-0] 4.00±0.02 8.75±0.19 0.023700 
R 0.32 [0.33-0.32] 0 [0-0] 4.00±0.02 8.87±0.11 0.025600 

 

3.4. NMR metabolomic profiling of the meat ageing-process 

 

In order to assess the dynamics of the metabolomic profile of minced meat samples during the 

storage period, OPLS-DA was performed on the NMR spectra between non-inoculated MP samples at 

day 0 and 13 (Figure 48). Score-plot analysis reveals an excellent separation between samples (model 

values of R2=0.925, Q2=0.903, 4 principal components). VIP analysis revealed 32 features with 
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values ≥1 potentially significant. Among those features, 12 metabolites were identified with accuracy. 

Threonine, lactate, creatine and formic acid decreased during the storage; while capric acid, isoleucine, 

leucine, valine, alanine, acetate, adipate and inosine increased.  

 

 
Figure 48. OPLS-DA based on NMR spectra between non-inoculated samples analyzed at day 0 and 13.  

 

3.5. Comparison of inoculated and non-inoculated samples on the metabolic profiles  

 

OPLS-DA was then carried out on all spectra between inoculated (all inoculated conditions 

combined) and non-inoculated MP samples at day 13 (Figure 49). Score-plot analysis also reveals 

excellent separation between samples (R2=0.858, Q2=0.838).  

Non-inoculated group appeared homogeneous, indicating that packaging and storage 

temperature have a limited impact on their metabolomic profile. However, an important intra-variability 

within inoculated samples was observed, indicating a likely effect of the storage parameters. Indeed, 

inoculated samples seemed to be separated into three distinct clusters. The first sub-group is located 

farthest from the non-inoculated samples on the score-plot and is composed of MP samples inoculated 

with Pseudomonas spp. (stored in FW at 4, 8, and 12°C and in MAP at 12°C). The second intermediate 

subgroup contains MP samples inoculated with B. thermosphacta (stored in FW at 4, 8, and 12°C and 

in MAP at 12°C). The last subgroup, closest to the non-inoculated group, is composed of samples 

inoculated with Ln. gelidum (all packaging and temperatures), and those with Pseudomonas spp. and  

B. thermosphacta kept in MAP at 4 and 8°C. Thus, Pseudomonas spp. seem to have a more important 

effect on the meat pork minced meat metabolic profiles, followed by B. thermosphacta, while 

Ln. gelidum seems to exert little modification on meat samples.  
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Figure 49. OPLS-DA between all non-inoculated and inoculated samples at day 13.  

 

3.6. Influencing factors on the metabolomic profiles of inoculated minced pork samples 

 

Influencing factors are likely to impact the metabolomic profiles of inoculated MP samples: the 

inoculated bacterial species, the food packaging and the temperature of storage (Figure 50). These 

results are still ongoing, as not all scare plots and metabolites have yet been reported by CIRM-CHU. 

Score plots highlighted a significant discrimination between inoculation experiments with 

specific bacterial specie (B. thermosphacta, Pseudomonas spp. and Ln. gelidum) at day 13 (Figure 50A). 

These results also highlighted a significant effect of food packaging, revealing a clear discrimination 

between samples stored in FW and in MAP (Figure 50B), while the temperature of storage seems to 

have a little effect on metabolome profile (Figure 50C).  

Significant increase or decrease of metabolites responsible for the separation between non-

inoculated samples and each inoculated bacteria are described in Table 55 (quantity not yet available). 

At day 13, some metabolites increased in each inoculated samples. It mainly concerns acetate, 

cadaverine, glutamate and succinate for Pseudomonas spp., and acetate, acetoin and isobutyrate for 

B. thermosphacta. The results for Ln. gelidum have not yet been reported.  
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Figure 50. Metabolomic patterns between inoculated samples at day 13 and according to the inoculated 

bacteria (A), the packaging condition (B) and the temperature of storage (C).  
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Table 55. Metabolites profiles at day 13 between inoculated and non-inoculated samples stored at 4, 8 and 

12°C, in both FW and MAP. Metabolites increased (↑), decreased (↓) or not modified (-).  

Identified 
metabolite 

Inoculated 
bacteria 

Inoculated  
vs non-inoculated 
samples stored at 

4°C 

Inoculated  
vs non-inoculated 
samples stored at 

8°C 

Inoculated  
vs non-inoculated 
samples stored at 

12°C 
Acetate B. thermosphacta ↑ ↑ ↑ 

Pseudomonas spp. ↑ ↑ ↑ 
Acetoin B. thermosphacta ↑ ↑ ↑ 

Pseudomonas spp. - - - 
Alanine B. thermosphacta - - - 

Pseudomonas spp. ↓ ↓ ↓ 
Aminopentanoate B. thermosphacta - - - 

Pseudomonas spp. - - ↑ 
Anserine B. thermosphacta - - - 

Pseudomonas spp. ↓ ↓ ↓ 
Cadaverine B. thermosphacta - - - 

Pseudomonas spp. ↑ ↑ ↑ 
Creatine B. thermosphacta - - - 

Pseudomonas spp. ↓ ↓ ↓ 
Glucose B. thermosphacta ↓ ↓ ↓ 

Pseudomonas spp. ↓ ↓ ↓ 
Glutamate B. thermosphacta - - - 

Pseudomonas spp. ↑ ↑ ↑ 
Glutamine B. thermosphacta - - - 

Pseudomonas spp. ↓ ↓ ↓ 
Leucine/ 
isoleucine 

B. thermosphacta ↓ ↓ - 
Pseudomonas spp. - ↑ ↑ 

Isobutyrate B. thermosphacta ↑ ↑ ↑ 
Pseudomonas spp. - - - 

Lactic acid B. thermosphacta - ↓ ↓ 
Pseudomonas spp. ↓ ↓ ↓ 

Succinate B. thermosphacta - - - 
Pseudomonas spp. ↑ ↑ ↑ 

Tyrosine B. thermosphacta - - - 
Pseudomonas spp. - - ↑ 

 

A preliminary analysis of NMR pattern for comparing mono- and co-culture experiments is 

available but full results are not yet available (Figure 51). It appears that a clear distinction can be made 

between each mono-culture experiments, as described above. And that co-culture experiments seems to 

correspond to mono-cultures experiments for MP samples inoculated by Pseudomonas spp. and 

Ln. gelidum. These results are in accordance with those obtained in study 4, where Pseudomonas spp. 

become the dominant specie in FW, and Ln. gelidum in MAP for co-culture experiments. A detailed 

comparison between each inoculation experiments shows clearly these results (Figure 52). But more 

precise results concerning the comparison of mono- and co-culture experiments are still being studied. 
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Figure 51. Comparison of NMR spectra between all samples in mono-culture and co-culture experiments.  

 

 
Figure 52. Comparison of each NMR spectrum between co-culture and mono-culture experiments, for 

B. thermosphacta (A), Pseudomonas spp. (B) and Ln. gelidum (C). 
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Discussion 
 

Thanks to NMR-based metabolomics, the exploration of the correlations of metabolites with 

other parameters, such as microbiological counts, pH changes and gas composition, is feasible in order 

to provide information on minced pork spoilage. Spoilage occurs when the formation of off-flavors, off-

odors, discoloration, slime, or any other changes in physical appearance or chemical characteristics 

make the food unacceptable for human consumption (Ercolini et al., 2011). Indeed, the qualitative and 

quantitative analyses of metabolic compounds present, as a consequence of microbial activity, in a more 

integrated holistic approach, regardless of storage conditions (e.g. temperature, type of packaging) 

(Argyri et al., 2015). In MAP, all bacteria reached stationary phase. Moreover, a high growth rate and a 

more rapidly reached stationary phase were correlated with the highest storage temperatures. In FW, 

Pseudomonas spp. reached the highest microbiological counts at the end of storage. These results are of 

interest because this bacterium is considered as specific spoilage organism in meat products, responsible 

for unpleasant odors and flavors (Pothakos et al., 2015; Saraoui et al., 2017).  

Although most spoilage bacteria are proteolytic, they initially grow by utilizing the most readily 

available carbohydrates and nonprotein nitrogen. Glucose, lactic acid, and certain amino acids, followed 

by water-soluble proteins, are the precursors of metabolites that are responsible for meat spoilage. 

Moreover, concentrations of the precursors can influence the rate and extent of spoilage. It is the 

accumulation of microbial metabolites, such as aldehydes, ketones, esters, alcohols, organic acids, 

amines, and sulphur compounds, that triggers the meat spoilage (Ercolini et al., 2011). The 

determination of metabolites reveals interesting relationships between nutrient consumption and 

possible variations in metabolic pathways (Castro-Puyana and Herrero, 2013). Analysis of NMR 

patterns reveals a clear discrimination between all tested conditions in this study: (i) the non-inoculated 

products analyzed at day 0 and 13, showing the natural dynamics of irradiated meat according to the 

storage conditions; (ii) the inoculated and non-inoculated samples at day 13; (iii) the inoculated bacterial 

species on the samples; and finally (iv) the packaging conditions, between FW and MAP. The storage 

temperature seems also to have a significant effect but with a lesser impact than the other parameters.  

For non-inoculated samples, a decrease of threonine, lactate, creatine and formic acid amounts, 

and an increase of capric acid, isoleucine, leucine, valine, alanine, acetate, adipate and inosine amounts 

was observed during storage. These results are partially in accordance with Ercolini et al. (2011), who 

showed a decrease of lactate and creatine in beef chops stored at 4°C under bacteriocin-activated 

antimicrobial packaging.   



Chapter 3  Experimental studies 

Study 5. A NMR-based metabolomics study of minced pork samples inoculated with Brochothrix thermosphacta, 
Pseudomonas spp. and Leuconostoc gelidum. 

   222 

Samples inoculated with Pseudomonas spp. exhibit the most important differences from the 

non-inoculated samples, while those inoculated with Ln. gelidum is the worst model. Samples spiked 

with Pseudomonas spp. also showed the highest pH and carbon dioxide in MAP compared to non-

inoculated samples. The change in pH of food products is usually a good index for quality assessment, 

commonly related to the accumulation of lactic acid produced in anoxic condition (Aru et al., 2016). 

We also observed some metabolites with amount increased in all inoculated samples. Those are acetate, 

cadaverine, glutamate and succinate in samples with Pseudomonas spp., and acetate, acetoin and 

isobutyrate in the presence of B. thermosphacta. The results for Ln. gelidum have not yet been fully 

analyzed. All metabolites were assigned into Kyoto Encyclopedia of Genes and Genomes (KEGG) 

database (https://www.kegg.jp/kegg/). Mapping results of KEGG pathway help to explain the different 

increases and decreases of metabolites for B. thermosphacta and Pseudomonas spp. (Ps. fragi and 

Ps. fluorescens). However, a further study on this subject must be carried out once the complete results 

have been obtained. Moreover, these results are in accordance with scientific studies, especially those 

of Zareian et al. (2018) who evaluated VOCs in raw pork samples stored at 4°C under MAP, which is 

the same as the one used in experiments in MP samples (70% O2 – 30% CO2). These results, along with 

those of Zareian et al. (2018), could offer important insights for potential future implementation of 

specific sensors for shelf life of MP. According to others studies, acetate seems to be mainly produced 

by Pseudomonas spp. (Ps. fragi and Ps. taetrolens) in meat and meat products and be associated with 

off-odors (Stanborough et al., 2018b). Based on this, Mansur et al., 2019 have proposed to use acetate, 

as well as acetoin, as spoilage indicators for chilled-beef stored under air and VP. Argyri et al. (2015) 

had already proposed to use acetoin as a spoilage indicator for ground beef. Acetoin is mainly produced 

under aerobic conditions by LAB and B. thermosphacta, and is associated with a sour-sweet odor 

(Ercolini et al., 2011; Panseri et al., 2018; Raimondi et al., 2019; Russo et al., 2006). Illikoud et al. 

(2019a) showed that strains of B. campestris and B. thermosphacta produced acetoin and diacetyl in 

beef minced meat and peeled shrimp juices. This was also observed by Stanborough et al. (2017) who 

analyzed the genome of B. thermosphacta, and by Casaburi et al. (2014) who monitored activities of 

strains of B. thermosphacta in vitro and in beef meat. However, acetoin production seems to be highly 

variable between strains (Illikoud et al., 2019b). Moreover, cadaverine, with putrescine and 

phenylethylamine, are the predominant BAs found in pork meat samples (Bartkiene et al., 2019). Many 

bacteria, belonging to the Enterobacteriaceae family, are able to produce cadaverine because they can 

produce ornithine and lysine decarboxylase enzymes (Chaidoutis et al., 2019). B. thermosphacta does 

not appear to be a cadaverine-producing bacterium but, instead, can produce histamine (Casaburi et al., 

2014).  

According to this, metabolites and their pathways could give important information about the 

spoilage capacity of inoculated bacteria, and particularly for Pseudomonas spp. which seems to be of 
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interest in our product. More complete genomic analysis, coupled with transcriptome and volatilome 

analyses, are necessary to better understand spoilage mechanisms. Moreover, preliminary analysis of 

NMR pattern for comparing mono- and co-culture experiments show interesting results, in accordance 

with those obtained in experimental study 4. Further analyses are in progress and migh enable to 

understand the underlying mechanisms of growth and interaction. These mechanisms are sometimes 

very complex and still little studied, especially for spoilage bacteria. Cross-feeding (also called “public 

goods”) is a good example of complex interactions that are not yet fully understood (D’Souza et al., 

2018; Smith et al., 2019). This phenomenon has already been described for LAB (Seth and Taga, 2014), 

pathogenic bacteria (Ziesack et al., 2019), especially E. coli (Dal Co et al., 2019; Pande et al., 2014; 

Pande et al., 2015), and in the gut microbiota (Henriques et al., 2019; Turroni et al., 2018), although 

none related to food spoilage bacteria. It could therefore be interesting to study these phenomena in 

future research, as using them in modeling to better understand and predict food spoilage. NMR analysis 

on naturally contaminated MP samples, in order to compare the metabolomic profiles with the results 

of inoculation experiments, are also important for validation purpose. This was not performed in this 

study and should therefore be studied in further studies.  

In conclusion, these results support the use of NMR-based metabolomics as an easy valuable tool to 

provide information on minced pork spoilage and to follow intrinsically the dynamics of the 

metabolomic pattern linked to a specific bacterium in complex bacterial ecosystems. These data also 

suggest that NMR-based metabolomics is an efficient method to distinguish fingerprinting differences 

between samples, and to distinguish metabolites as putative biomarkers of spoilage products. 
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Some highlights of the six experimental studies described previsouly are presented in this 

subsection.  

 

- Investigation of the microbial spoilage communities and their dynamics using both 16S rRNA gene 

sequencing and classical microbiology offers a more detailed characterization of bacterial 

microbiota in samples. The approach of combining these data in predictive models seems also 

promising.  

- Without extensive studies involving a large number of samples under different food companies, 

batches production and storage conditions, it will not be possible to determine exactly the 

variability of bacterial ecosystems, and thus the role of individual spoilage species.  

- Food spoilage needs to be assessed to species levels, because potentially protective bacteria, such 

as some lactic acid bacteria, can also occur in food products.  

- Sensory analyses would be interesting to assess food spoilage. The sum of biogenic amines could 

also be used as quality indicator of meat freshness during storage.  

- Low storage temperatures and adequate packaging are considered as the most important factors for 

improving meat shelf life by delaying meat spoilage.   

- Predictive models based on one bacterial species show relatively good adjustments although not 

always, in particular for complex prediction with three species. More datasets are probably needed 

to obtain reliable factors that could be used in predictive models.  

- It is also important to consider all intrinsic and extrinsic factors, and microbial interactions between 

different types of microorganisms and within the food matrix, in order to obtain more accurate 

models.  

- Investigation of metabolite production by 1H-NMR-based metabolomics is an interesting tool, 

providing usefull information for monitoring the shelf life of perishable products. 

- Metabolomic patterns and interaction of each bacteria (e.g. cross-feeding) could also be used as 

input in modeling to better understand and predict food spoilage.  

- Validation is an essential step: more experimental data, derived from multiple repetitions, are 

needed to validate the developed models.  
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 Chapter 4 involves a general discussion and perspectives of this research.  

 

Three sections are presented and are dedicated to the objectives of this thesis:  

 

(1) Investigation of the natural spoilage microbiota, and characterization of the dynamics of 

specific related bacteria, in minced pork and white pudding samples (Objectives 1 and 2).  

 

(2) Development of complex species-growth models in minced pork and white pudding 

samples (Objective 3).  

 

(3) Study of the metabolome in minced pork samples (Objective 4).  
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4.1. Investigation of microbial 

spoilage communities 
 

 
The aim of this topic was to describe the natural spoilage microbiota of samples and their 

dynamics depending on food packaging and storage temperature. Characterization of specific related 

spoilage bacteria in these selected food matrices was also performed, and these data were used as inputs 

for predictive models in order to obtain growth parameters.  

 

4.1.1. Describing the natural spoilage microbiota of minced pork and white pudding 
samples 

 

Experimental studies showed that the combination of plate counts and 16S rRNA gene 

sequencing enables monitoring of the dynamics of microbial food spoilage communities. The 

advantages of these techniques have already been demonstrated in several studies, but none of them had 

been interested in their association or in the use of the data obtained as inputs for predictive models.  

Although we acknowledge that the plate count method is not able to completely assess all the 

microbial populations present, the combination of these two methods was validated by a quantitative 

PCR (qPCR) approach in study 2. Fougy et al. (2016) showed that this conversion can be used to obtain 

an extrapolated estimation of the bacterial concentration. Association of relative abundance results with 

cell counts is also described for microbiome analysis (Amend et al., 2010; Guo et al., 2019). And 

Vandeputte et al. (2017) associated flow cytometric enumeration of microbial cells with sequencing 

data in order to obtain quantitative microbiome profiles. However, the inability of differentiation 

between viable and non-viable cells by culture-independent DNA-based methods in experimental 

studies remains an important drawback, which could result in significant overestimation of viable 

species (Scariot et al., 2018; Tantikachornkiat et al., 2016). Systematic biases of processing and analysis 

steps in culture-dependent and -independent methods must also be considered in further studies (Louca 

et al., 2018; Pollock et al., 2018; Salter et al., 2014). Despite this, models based on these results in 

experimental studies show relatively good fitting indices. In this context, further studies and repetitions 

are needed to demonstrate the interest of combining culture-dependent and -independent methods to 

explore bacterial variability between food samples, depending on their origin, production environment 

and storage conditions, and then to use these data as inputs for predictive models.  
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Moreover, it could be interesting to compare other associated methods, such as flow cytometric 

enumerations, matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry (MALDI-

TOF MS) (Rahi and Vaishampayan, 2020; Seuylemezian et al., 2018) or gyrB sequencing with the 

results obtained. Peruzy et al. (2019b) have shown that 16S rRNA sequencing does not always detect 

some bacteria, demonstrating the necessity to combine new analysis techniques such as MALDI-TOF 

MS. A comparison between amplicon sequencing based on 16S rDNA (V3-V4) and on gyrB, an 

alternative genetic marker, has also been carried out for different types of meat and seafood products by 

Poirier et al. (2018b). This study showed better accuracy for bacterial richness by using gyrB 

sequencing. It could also be interesting to compare intra-species diversity results obtained from gyrB 

and 16S rDNA (V1-V3) amplicon sequencing for the studied samples.   

 

Experimental studies also showed that Pseudomonas and Brochothrix dominate the community 

of MP samples at the end of the shelf life in FW and MAP, respectively, together with Photobacterium, 

whereas the major genus taxa are represented by Brochothrix, Pseudomonas and Psychrobacter in WP. 

These results can be explained by the fact that multiple sources of contamination can contribute to the 

initial composition of the meat microbiota. Further researches on the main contamination routes during 

the slaughtering, cutting and processing processes, such as the processing environment, procedures and 

storage conditions, are thus desirable to provide a complete assessment of the microbiome of minced 

meat and white pudding, and so to limit incidents of unexpected spoilage.  

 

4.1.2. Characterization of specific related spoilage microorganisms in studied samples 
 

Specific spoilage bacteria were selected for the two studied matrices.  

• For white pudding samples: 

o B. thermosphacta, C. maltaromaticum, Lb. fuchuensis, Lb. graminis, 

Ln. mesenteroides, Lc. lactis, Pseudomonas sp., Psychrobacter spp. 

(Psy. okhotskensis and Psy. urativorans) and Serratia sp..  

• For minced pork samples:  

o B. thermosphacta, Pseudomonas spp. (Ps. fragi and Ps. fluorescens) and 

Ln. gelidum.  

 

The growth parameters of these selected bacteria (maximal bacterial growth, lag phase duration, 

maximal and minimal bacterial populations, minimal temperature for growth, time to reach the 

stationary phase and time to reach the spoilage value level) were obtained by fitting primary and 

secondary models for naturally contaminated or inoculated samples.  

These results are very important for creating a comprehensive database of spoilage 

microorganisms, but accurate cardinal values are needed to improve the robustness of growth prediction. 
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Currently, these parameters are mainly studied for pathogenic bacteria (Martinez-Rios et al., 2019) and 

for spoilage bacteria in culture medium. An approach in food would therefore be very interesting and 

could be complementary to the other databases available, such as ComBase and Sym’Previus.  

 

 

The general perspective of this thesis is therefore to create a comprehensive database for the 

growth of spoilage microorganisms in food, in connection with existing data or databases (Microbial 

Responses Viewer, ComBase, Sym’Previus), and thus to develop a web interface useful to researchers 

or agro-industries.  
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4.2. Development of complex 

predictive models  
 

 
The aim of this topic was to develop complex models for spoilage species in MP and WP 

samples, and to validate and compare these approaches.   

 

4.2.1. Development of spoilage species growth models 
 

Predictive models without interactions were based on naturally contaminated WP samples. 

Good adjustments were obtained for the growth simulations in WP, even if overestimations were often 

observed. By comparing these simulations with those available from other software, an overestimation 

was mainly observed with Sym’Previus, while an underestimation was more frequently observed during 

the lag-phase period with ComBase.  

For minced pork, the data obtained obtained enabled the development of a three species 

interaction model based on the Lotka-Volterra (prey-predator model) and the modified Jameson models. 

The best adjusments were obtained with the modified Jameson model, although the prey-predator 

approach seems to be an interesting interaction model for complex microbiota.  

As we know, there is a lack of information and of predictive models for spoilage bacteria (Alfaro 

et al., 2013). Further studies and repetitions are thus needed to develop more realistic interacting 

predictive models, especially in approaches considering the interaction of two or more spoilage species 

interaction approach, and to develop new food preservation processes.  

 

The Jameson model seems to be more appropriate for describing the dynamics of spoilage 

organisms for the MP matrices studied. Indeed, this phenomenon was observed in MP samples where 

the minority bacteria decelerate when the majority one reaches the MCP. It was also the case in WP 

where bacterial strains were classified into three categories according to their behavior in the ecosystem:  

“dominant”, “subdominant” or “inhibited”.  

On the other hand, the Lotka-Volterra model should be used in further studies with more 

accurate interaction factors, and also for obtaining more datasets such as for the growth rates and 

bacterial concentrations of each taxon (den Besten et al., 2018). Indeed, more datasets are probably 
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needed to obtain reliable factors. Thank to this, the Lotka-Volterra model could be modified to make a 

more realistic model by considering the effect of environmental conditions and interactions, such as 

bacteriocin production, QS, etc.  

 

Knowledge of bacterial interactions is crucial for understanding the dynamics of bacterial 

communities and global metabolic activities, and also for developing a new modeling approach (Zhang 

et al., 2015). The interactions between microorganisms may be classified on the basis of their effects as 

being detrimental or beneficial : (i) antagonism, due to a change in environmental conditions; (ii) QS, 

by bacterial communication and/or (iii) metabiosis, by interdependent ways between microorganisms 

(Gram et al., 2002; Hibbing et al., 2010).  

Antagonism is mainly caused by the competition for nutrients and for iron, by bacterial 

siderophore production, by bacteriocin production and/or by lowering of pH. LAB are particularly able 

to cause a decrease of pH and to produce bacteriocins. Some Gram-negative bacteria may also produce 

NH3 and trimethyl-amine, which are toxic to other bacteria and sometimes to the producing organism 

itself. Pseudomonas spp., in particular the fluorescent group, can produce a wide range of antibacterial 

and antifungal compounds such as antibiotics and cyanide. These bacteria are also competitors for iron 

through the production of siderophores, biofilms and QS molecules. As discussed by Tsigarida et al. 

(2003), this bacterial group can also inhibit the growth of S. putrefaciens by producing siderophores.  

Quorum sensing can also be related in mixed culture to synchronized bacterial behavior. The 

dominant bacteria inhibit other microorganisms by exchanging information (low molecular weight 

signaling molecules) (Diggle et al., 2007). Indeed, when a microorganism reaches its maximum 

population density, the concentration of the signaling molecules produced also reaches its maximum, 

indicating that the second species of the mixed culture should complete its growth because the maximum 

total population density of the culture (or carrying capacity of the system) has been reached. It is now 

in evidence that QS regulates food spoilage by cell-to-cell communication. Nychas et al. (2009) found 

that the growth rate of Ps. fluorescens and S. marcescens are increased by QS compounds extracted 

from meat. Russo et al. (2006) also found that the growth of B. thermosphacta decreased in the presence 

of LAB. Moreover, Gram-negative bacteria have the capability to coordinate the expression of certain 

phenotypic traits (e.g. hydrolytic enzymes) through bacterial communication via N-acyl homoserine 

lactones (AHLs) (Whitehead et al., 2001). Serratia spp. and Hafnia alvei have been identified as the 

dominating AHL producers in VP meats. AHLs are also produced by Pseudomonas spp. and some 

strains of Photobacterium spp. (Gram et al., 2002), even though Bruhn et al. (2004) mentioned that 

Pseudomonas isolates do not produce a detectable amount of AHLs. These signaling molecules become 

detectable when Enterobacteriaceae reached around 5.0 to 7.0 log CFU/g (Lopes Martins et al., 2018), 

and at around 8.0 to 9.0 log CFU/g for Pseudomonadaceae (Ammor et al., 2008). However, the role of 

AHLs in the spoilage of food remains unclear. Studying AHLs might offer further insights into spoilage 

metabolisms and related VOC production. Several proteolytic and lipolytic activities also appear to be 
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regulated by QS for a variety of Gram-positive and -negative bacteria (Ammor et al., 2008). It could be 

interesting to better understand these mechanisms, and also to design an approach for specific blocking 

of these communication systems, hence reducing or preventing spoilage reactions and extending shelf 

life (Nychas et al., 2009). As discussed by Tiwari et al. (2016), natural or synthetic QS inhibitors or QS 

quenching compounds can be used as novel biopreservatives against food spoilage bacteria, by 

disturbing microbial cell-to-cell communication. However, this approach is difficult due to the complex 

nature of food and multiple communications between bacteria.  

On the other hand, metabiosis occurs due to a change in the spoilage profile of an organism by 

the supply of nutrients from another microorganism, creating a favorable environment. Several studies 

have shown that despite the inhibitory activity of Pseudomonas spp., their presence may enhance the 

growth of some microorganisms. Synergistic interactions were also observed by Lapointe et al. (2019)  

in tri-species biofilms (Ps. fluorescens, Lb. plantarum and Ln. pseudomesenteroides). In addition, cross-

feeding interactions may contribute to the creation of an environment favorable for bacterial populations 

through complementary metabolic pathways, as a result of adaptation to an environmental change (Dal 

Co et al., 2019; Smith et al., 2019). Considered as cooperative social behavior, cross-feeding enables 

intra- and inter-species exchanges of several metabolites (D’Souza et al., 2018; Henriques et al., 2019; 

Turroni et al., 2018). These “public goods”, which benefit not only the producer but also other cells in 

the neighboring group or population, are released into the extracellular environment by secretion, 

diffusion or connections between cells (e.g. bacterial nanotubes) (D’Souza et al., 2018; Pande et al., 

2015; Ziesack et al., 2019). The meta-analysis of D’Souza et al. (2018) revealed that cross-feeding of 

metabolites is a common phenomenon between bacterial species, but also between bacteria of other 

kingdoms. The study of these behaviors could therefore be of interest, particularly concerning metabolic 

pathways potentially involved in spoilage. 

 

In terms of modeling approaches, changes in model inputs are thus expected: building predictive 

models of interactions will increase our knowledge of spoilage bacteria in meat and meat products, and 

consequently will reduce uncertainty. This progress will benefit the whole community of safety 

assessors and research scientists from academia, regulatory agencies and industries (den Besten et al., 

2018). Andreevskaya et al. (2018) have studied interactions between Ln. gelidum, Lc. piscium and 

Lb. oligofermentans in individual, pairwise and triple cultures. It was concluded that interactions 

between members of LAB communities are not well known. Moreover, all influencing factors need to 

be included in models, such as temperature, packaging, food composition and characteristics, as well as 

the main source of variability (Couvert et al., 2010). Currently, only some predictive models based on 

spoilage bacteria have included several factors (Kapetanakou et al., 2019).  

A one-step model may also be an interesting approach, providing better fit to the data and 

minimizing errors. This approach involves directly forming a single global model by fitting the raw data 

to the primary and secondary models in a single step (Jewell, 2012). Akkermans et al. (2018), Huang 
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(2015), Jewell (2012) and Li et al. (2019b) have demonstrated that the one-step method gives a better 

fit to the data and yields more accurate estimations and precise calculations of the model, with less 

prediction uncertainty, than the two-step method. Moreover, the one-step method allows a more robust 

model on smaller data sets. Currently, this approach has not been well tested and has only been studied 

for pathogenic bacteria (Hwang and Huang, 2019).  

 

Another future area of interest is to explore the use of antimicrobial agents in meat and meat 

products in order to preserve food quality and to extend shelf life (Singh, 2018). Numerous compounds 

(e.g. nisin, chitosan, lysozyme, essential oils, L-carnitine, conjugated linoleic acid, carboxylic acids and 

plant extracts) have been employed as potential preservatives to prolong the shelf life of meat products, 

but little is known about the changes that may occur in the fingerprint of VOCs and related potential 

characteristic biomarkers.  

 

4.2.2. Validation step 
 

The predictive simulations obtained were validated by monitoring the spoilage microbiota of 

naturally contaminated MP matrices. But differences with experiments were observed: Photobacterium 

was a predominant taxon in MP samples in MAP, while Psychrobacter spp. was predominant in WP 

samples. Even though preliminary studies of the most representative taxa were performed for these 

experiments, it could be interesting to take into account these bacteria for modelized interactions. These 

differences may thus explain the reliability of predictions, especially for the Lotka-Volterra model.  

These proposals for models, with one or more spoilage bacteria, need to be validated by more 

experimental repetitions. Indeed, models based on background food microorganisms are less common 

and future predictive models are likely to include the behavior of the whole ecosystem (den Besten et 

al., 2018). 

 

 

The general perspective of this thesis is therefore to develop new predictive models, by 

combining accurate data of bacterial kinetics, interactions and other growth mechanisms, in order to 

better predict spoilage bacteria dynamics and gene expression in meat and meat products. And thus 

offer more reliable and accurate modeling tools to scientists and agri-food stakeholders.  
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4.3. Metabolomic approach for 

bacterial food spoilage 
 

 
The aim of this topic was to understand the influence of spoilage bacteria and storage conditions 

on the metabolome of MP samples.  

 

4.3.1. Study of the spoilage metabolome of inoculated minced pork samples 
 

Our results demonstrated that the use of 1H-NMR-based metabolomics in study 6 is an 

interesting non-targeted approach, identifying several metabolites in inoculated and non-inoculated MP 

samples.  

Other studies have shown that Raman microspectroscopy is also a fast, robust and non-

destructive method for detection of spoilage bacteria. Klein et al. (2019) have shown the interest of this 

technique for the detection of seven spoilage microorganisms in agar medium, with an error rate of 

3.5%. This technique seems to be promising and has the potential to be used for rapid differentiation of 

microorganisms and to determine microbial contamination in food safety issues. Jaafreh et al. (2018) 

used a portable fiber-optic Raman spectrometer, in conjunction with chemometric analysis, in order to 

rapidly detect and predict poultry spoilage. They concluded that this technique is a reliable and fast 

method for evaluation of poultry freshness during storage. But further investigations are required to use 

this method for determining the real shelf life of food products. It may therefore be interesting to study 

it, in association with 1H-NMR, and to compare the two approaches. 

 

In our study, the multivariate analysis (PLS-DA) showed a clear discrimination between 

samples: (i) the non-inoculated products analyzed at day 0 and 13, (ii) the inoculated and non-inoculated 

samples at day 13, (iii) the type of inoculated bacteria, and (iv) the packaging conditions. It could be 

observed that the inoculated bacteria have a more important impact on the metabolome than the 

packaging conditions. Some metabolites are also significantly increased: mainly acetate, cadaverine, 

glutamate and succinate for Pseudomonas spp., and acetate, acetoin and isobutyrate for 

B. thermosphacta. The results for Ln. gelidum are not yet available. Mapping results of KEGG pathway 

could help to explain the different increases and decreases of metabolites for B. thermosphacta and 
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Pseudomonas spp., as well as the available scientific studies on the metabolism of spoilage bacteria. 

Therefore, a more detailed discussion on this subject should be conducted once the full results have been 

obtained. Exploration of correlations of NMR-based metabolomic results with other microbial 

parameters also needs to be developed, as they may suggest their use as a possible tool to provide 

information on MP spoilage.  

 

It is also important to increase our understanding of food spoilage mechanisms and metabolisms 

in order to better detect and ultimately prevent this phenomenon. In all studies, the bacterial count at the 

end of the shelf life was over 7.0 log CFU/g, indicating that MP and WP had probably begun to 

deteriorate and would not be suitable for human consumption. As reviewed by Wang et al. (2016b) other 

microbial VOCs could be studied as indicators of microbial spoilage in meat and meat products. Indeed, 

the sum of BAs could be used as spoilage indicators (Vieira et al., 2019), such as total volatile basic 

nitrogen (TVB-N) (e.g. ammonia,  dimethylamine and trimethylamine). Moreover, sensory analyses 

would be interesting in this context, but were not performed in these studies. In association with 

predictive models, new detection systems, such as electronic noses, biosensors and conjugated polymer 

nanocomposite-based chemical sensors, are also promising candidates for the detection and monitoring 

of food spoilage (Ghasemi-Varnamkhasti et al., 2018; Pavase et al., 2018; Tamplin, 2018). Indeed, the 

VOC release profiles provided useful information that could be used for developing specific sensors to 

monitor shelf life (Zareian et al., 2018). At the moment, few sensors have the capabilities to detect food 

spoilage (Dudnyk et al., 2018) and they are mainly studied for pathogenic bacteria (Tait et al., 2014). 

Nevertheless, color indicators for monitoring the freshness of skinless chicken breast were proposed by 

Ruckson et al. (2014).  

 

 Study of the production of bacteriocins, bacteriophages, endolysins and BAs is also important 

to enhance our comprehension of food spoilage.  

The use of bacteriocins is of great interest, as they may be added as biopreservatives to improve 

the microbial stability and safety of food products (Juturu and Wu, 2018). Several studies have been 

performed on bacteriocins to improve the safety of foods (Deegan et al., 2006), but little is known about 

how they could improve food quality. All genera of LAB are able to produce a broad spectrum of 

bacteriocins (Tumbarski et al., 2018) and by 2005, 185 bacteriocins produced by LAB had been 

identified (Woraprayote et al., 2016). Nisin, the best known LAB bacteriocin, is produced by 

Lc. lactis subsp. lactis and has a large antimicrobial spectrum, against Gram-positive and -negative 

bacteria (Ahmad et al., 2017). Although the effect of nisin on the total spoilage microbiota is well 

established, limited information is available about its effect on some species or strains of spoilage 

bacteria, and how bacteriocin can influence the spoilage dynamics during meat storage (Doulgeraki et 

al., 2012). Indeed, nisin reduces viable counts of E. coli, S. aureus and slime-producing bacteria in a 

meat model system (Garriga et al., 2002). Synergistic activity of nisin and lysozyme against Gram-
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positive bacteria has also been observed, including activity against spoilage lactobacilli and S. aureus 

(Chung and Hancock, 2000; Nattress and Baker, 2003). Carnobacterium species, especially 

C. divergens and C. maltaromaticum, may also produce bacteriocins which are effective towards LAB, 

Enterococcus and L. monocytogenes. It has been demonstrated that strains of the same Carnobacterium 

species may produce different bacteriocins, and that the production rate for the same bacteriocin differs 

among strains. Thus, variations in the antibacterial spectra can be expected within the same species 

(Doulgeraki et al., 2012). Ps. fluorescens seems also to be able to produce bacteriocins but inhibition 

occurs less frequently between coexisting isolates (Bruce et al., 2017). Moreover, caution should be 

taken when using bacteriocins due to the resistance of pathogenic and spoilage bacteria to bacteriocins 

that have been mentioned above (Kumariya et al., 2019).  

Moreover, bacteriophages and endolysins have a promising role in food processing, preservation 

and safety. Bacteriophages (or phages) have been recognized for their great effectiveness as 

antimicrobial candidates because of their ubiquity, self-replication capacity, low inherent toxicity and 

their high specificity against a target host or host range (Yezhi et al., 2016). The potential of 

bacteriophages and phage-encoded lytic enzymes to control specific pathogens in foods has been 

investigated intensively in recent years, as for example for the biocontrol of Salmonella spp., 

Campylobacter spp., Listeria spp. and E. coli (Greer, 2005; Hagens and Loessner, 2007). In recent 

years, several delivery systems using phages in food packaging have been developed but most of them 

are mainly directed mainly to controlling the growth of pathogenic species in foods products (Colom et 

al., 2015; Korehei and Kadla, 2014; Vonasek et al., 2014). Concerning spoilage bacteria, it has been 

shown that Brochothrix phage A3 is able to limit off-odor formation and increase the storage life of pork 

adipose tissue (Greer and Dilts, 2002). More recently, Alves et al. (2019) used bacteriophages loaded 

on sodium alginate-based films to prevent microbial poultry spoilage caused by Ps. fluorescens. These 

authors showed that a decrease in phage viability was detected after 8 weeks under refrigerated 

conditions, and that phages containing films applied on commercial poultry fillets were able to control 

bacterial growth for a period of up to 5 days. On the other hand, the control of environmental biofilms 

produced by Ps. fluorescens was investigated by Sillankorva et al. (2008), but phage behavior on 

biofilms is still poorly studied. 

Because of the specific action of endolysins, they also offer an interesting option for the 

biological control of unwanted bacteria without having any effect on the natural microbiota (Loessner, 

2005). But only a few studies have tested their antimicrobial effect against spoilage microbiota. 

Zinoviadou et al. (2010) showed the interest of using e-polylysine against the spoilage microbiota of 

fresh beef in order to reduce the growth of LAB and pseudomonads. The direct application of purified 

bacteriophage endolysins to foods or raw products was also studied by Kilcher et al. (2010) for the 

biocontrol of B. thermosphacta. These concepts should be further explored in order to prevent spoilage 

phenomenon, but also to minimize pathogenic bacterial levels as well.  
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Moreover, knowledge of the regulatory mechanisms of bacterial food spoilage is still very 

limited. Transcriptomics could be interesting to fully understand how spoilage microorganisms regulate 

their metabolic pathways under specific conditions. But these studies are mainly focused on pathogenic 

bacteria (Lamas et al., 2019), and only few transcriptome analyses concerns spoilage bacteria. Wang et 

al. (2018a) and Liu et al. (2017) have shown the response of Pseudomonas species under stress 

conditions. Höll et al. (2019) have also used metatranscriptomics for predicting metabolite production 

by Photobacterium spp. in poultry meat stored in MAP. Recently, Liu et al. (2019b) have demonstrated 

that RpoS, an alternative sigma factor induced in stationary growth phase and under stress conditions, 

plays an important role in modulating the spoilage activity of Ps. fluorescens by regulating resistance to 

different stress conditions, extracellular AHL levels, extracellular proteases, biofilm formation and 

TVB-N production. It could be also interesting to provide insights into the regulatory mechanisms of 

Pseudomonas species and those of other food spoilage bacteria.  

 

4.3.2. Association of metabolomics with predictive microbiology 
 

Metabolite production by each of the inoculated bacteria, as inputs in interaction models, should 

be studied. Metagenomics, metatranscriptomics, metaproteomics and metabolomics have the potential 

to produce a large amount of data in a very short time, by integrating multi-omics data in microbiological 

risk assessment (Cocolin et al., 2018; Mu et al., 2020). Integrative studies have the power to provide a 

new approach for the investigation of microbial communities, enabling data integration, which can be 

used to better understand the interactions between community members (Aguiar-Pulido et al., 2016). 

Approaching the food ecosystem from different methods enables a “holistic” representation of which 

microorganisms are present, how they behave, how they interact and which are the phenotypic 

manifestations in this complex arena. However, multi-omics data also require careful data integration 

strategies. A further goal of data integration could also be the construction of predictive models 

(Franzosa et al., 2015).  

The expected outcome may have an invaluable impact on food safety, in order to reduce the risk 

associated with foodborne pathogens, but also to better control spoilage processes. However, before this 

becomes reality, a number of hurdles have to be overcome. More specifically we have to learn how to 

translate molecular events into practical applications, which will give the food industry a concrete 

solution to make food products more safe and stable.  

 

 

The general perspective of this thesis is therefore to study in more detail the metabolism related 

to spoilage bacteria in meat and meat products; to integrate these data into an “omics” approach, 

which could thus contribute to a better understanding and an anticipation of bacterial food spoilage; 

and also to improve predictive models in order to offer better tools to assist risk management.  
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In conclusion, this research proposed the study and the prediction of the dynamics of specific 

spoilage bacteria in minced pork and white pudding samples, depending on different storage conditions.  

 

The results obtained and the proposed approaches could be further studied for extending shelf 

life and so preventing food losses and waste. Indeed, food spoilage must be addressed at the species 

levels and also be related to food companies, production batches and storage conditions. Further 

experimental studies are therefore needed to better characterize the kinetics and the behavior of these 

bacteria. Further researches and more experimental repetitions are also needed to better understand and 

predict food spoilage of meat and meat products, but also for all perishable foods.  

 

Predictive models can provide valuable assistance in this area, but more integrated models are 

needed to obtain reliable predictions that could be used in practical applications. Several methods are 

now available to monitor and understand spoilage microbiota, which could be used in multi-omics 

approaches. This concept is essential to provide more accurate data and new perspectives for modeling.  
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The use of 16S rRNA gene metagenetic monitoring of refrigerated food
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In order to control food losses and wastage, monitoring the microbial diversity of food products, during process-
ing and storage is important, as studies have highlighted themetabolic activities of somemicroorganisms which
can lead to spoilage. Knowledge of this diversity can be greatly improved by using ametagenetic approach based
on high throughput 16S rRNA gene sequencing, which enables a much higher resolution than culture-based
methods. Moreover, the Jameson effect, a phenomenon described by Jameson in 1962, is often used to classify
bacterial strains within an ecosystem. According to this, we have studied the bacterial microbiota of Belgian
white pudding during storage at different temperatures using culture-dependent and independent methods.
The product was inoculated with a mix of dominant strains previously isolated from this foodstuff at the end
of its shelf life (Carnobacterium maltaromaticum, Lactobacillus fuchuensis, Lactobacillus graminis, Lactobacillus
oligofermentans, Lactococcus lactis, Leuconostoc mesenteroides, Raoultella terrigena and Serratia sp.). Daily during
16 days, the absolute abundance of inoculated strain was monitored by combining total count on plate agar
andmetagenetic analysis. The resultswere confirmed byqPCR analysis. The growth of each specieswasmodelled
for each temperature conditions, representative of good or bad storage practices. These data allowed the bacterial
strains subdivision into three classes based on criteria of growth parameters for the studied temperature: the
“dominant”, the “subdominant” and the “inhibited” bacterial species, according to their maximal concentration
(Nmax, log CFU/g), growth rate (μmax, 1/h) and time to reach the stationary phase (TRSP, days). Thereby, de-
pending on the storage conditions, these data have permitted to follow intrinsically the evolution of each strain
on the bacterial ecosystemof Belgianwhite pudding. Interestingly, it has shown that the reliability of the Jameson
effect can be discussed. For example, at 4 °C when Lactococcus lactis and Serratia sp. stopped growth at day 12, at
the same time Carnobacterium maltaromaticum reached its maximal concentration and entered its stationary
phase. In opposition to this, it can be noticed that in the same condition, the “sub-dominant” organisms contin-
ued their growth independently of the “dominant” species behaviour. In this case, the Jameson effect was not il-
lustrated. This pattern is described for all storage conditions with the same strain classifications. These results
highlighted the importance of combining metagenetic analysis and classical methods, with modelling, to offer
a new tool for studying the evolution ofmicroorganisms present in perishable foodwithin different environmen-
tal conditions.

© 2016 Elsevier B.V. All rights reserved.
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1. Introduction

In past years, scientists who study the safety of highly perishable
food products have focussed theirwork on the detection and the control
of pathogenic microorganisms. However, Food Law (Regulation (EC)

N°178/2002) also integrates all products that are unfit for human con-
sumption because of contamination, deterioration, decomposition or
rotting into the definition of unsafe food. Around a third of all food pro-
duced for human consumption on Earth is lost or wasted. In Europe, the
losses of initial meat production represent 20% and more than half of
this occurs at animal production, slaughtering, processing and distribu-
tion steps (Food and Agriculture Organization, 2011; Kergourlay et al.,
2015). These data highlight the importance of managing the microbio-
logical quality of food products. Indeed, among the reasons for food
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loss and waste, spoilage by bacteria that contaminate the food matrix
and are able to develop during transformation steps and storage is a
major issue (Lipinski et al., 2013; Remenant et al., 2015).

For a clear and complete understanding of themechanisms that lead
to the spoilage of food products, classical microbiology is not sufficient.
Fortunately, molecular technologies can elucidate the microbial com-
munities, including the identification and quantification of culturable
and non-culturable organisms, and can do so at a much higher resolu-
tion than was previously possible with culture-based methods
(Kergourlay et al., 2015; Elizaquível et al., 2015). Many bacterial species
putatively responsible for food spoilage have been reported, thanks to
the development of high throughput sequencing methods, that allow
for a more detailed and deeper description of bacterial species present
in food (Benson et al., 2014; Chaillou et al., 2014; Delcenserie et al.,
2014; Galimberti et al., 2015; Riquelme et al., 2015). These works are
mainly limited to the description of the product's microbiota during
its shelf life. However, spoilage is a complex process, resulting most
often from incorrect storage temperatures and bacterial functions that
are not fully understood. Spoilage is not only species and strain depen-
dent, but also the result of interactions between strains. Few studies
have described the evolution of a whole microbiota in a food matrix
with consideration of the storage parameters (Ercolini et al., 2011;
Nieminen et al., 2012).

The present study proposes to follow the evolution of the main bac-
terial species present in a famous Belgian meat product: the white pud-
ding. For this, we inoculated a mix of strains previously isolated from
aging tests on the same food matrix. The mix of inoculated strains has
been studied in challenge tests at different storage temperatures, repre-
sentative of good or bad practices. The growth of the added bacteria has
been assessed daily at the same time by combining classical microbiol-
ogy and 16S rRNAmetagenetic analysis (Esposito and Kirschberg, 2014)
with the goal of obtaining quantitative results for each strain and to
study their respective kinetics. Quantitative PCR (qPCR) analysis
targeted on corresponding bacterial genera was used in order to vali-
date the metagenetic approach.

There are two objectives in this study: the first is to reinforce the im-
portance of combining classical microbiology and metagenetics analy-
sis, with modelling, as a new tool to follow the evolution of
microorganisms present in perishable food within different environ-
mental conditions. This approach can examine the potential for next-
generationDNA sequencingmethods to elucidate the detailed dynamics
of microbial population during spoilage. To this end, a combination of
metagenetics and traditional microbiological methods were used to
quantify themicrobiota of Belgianwhite pudding. The second is provid-
ing knowledge on the composition and dynamics of the emblematic
bacterial species components of white pudding, and shown how it is af-
fected by storage temperature.

2. Material and methods

2.1. Food samples and selection of bacterial strains

The strains used in this study were previously isolated from Belgian
white puddings at the end of their use-by date, by one Belgianmanufac-
turer (five batches analysed), after storage for a third of the storage pe-
riod at 4 °C and the remaining time at 8 °C following the guidelines for
implementing microbiological durability tests of chilled perishable and
highly perishable foodstuffs (NF EN V01-003, 2010). The results of
these first aging tests are not shown in this paper. Eight of the natural
predominant strains isolated at the end of the shelf life, represented to-
gether more than 50% of the natural microbiota, were identified by se-
quencing of their 16S rRNA genes and used for the challenge-tests:
Carnobacterium maltaromaticum, Lactobacillus fuchuensis, Lactobacillus
graminis, Lactobacillus oligofermentans, Lactococcus lactis, Leuconostoc
mesenteroides, Raoultella terrigena and Serratia sp. For this study, a
short 16 days shelf life was evaluated for the Belgian white pudding.

Bacterial strains were stored at −80 °C in nutrient broth with 30%
glycerol as a cryoprotective agent. Before use, strains were transferred
from the −80 °C culture collection to Brain Heart Infusion (BHI)
broth for C. maltaromaticum, R. terrigena and Serratia sp., and de Man,
Rogosa and Sharpe (MRS) broth for Lb. fuchuensis, Lb. graminis, Lb.
oligofermentans, Lc. lactis and Ln.mesenteroides for 48 h at 22 °C. The cul-
tures were incubated overnight at 4 °C before inoculation.

2.2. Challenge tests

Thirty-three kilograms of white puddings (each 150 g) were re-
ceived from a Belgian manufacturer the day following their production
and stored at 4 °C (composition: porkmeat 64%,milk, bread, onions, salt
and spices. No sugar was added). The natural microbiota was consid-
ered as insignificant because these products were inoculated by a con-
centrate mix of eight bacterial species who dominate the initial
indigenous microbiota. The surface products were inoculated by
soaking for 2 min in a bath of sterile water containing a mix of the
eight bacterial strains at the same concentrations with the goal of
reaching an approximatively global concentration of 3 log colony
forming units (log CFU/g on the product), in duplicate (n = 192).
Non-inoculated control samples were soaking for the same time in a
bath of sterile water only, in duplicate (n = 24). After a drying
step of 20 min at 10 °C, white puddings were packed (300 g) in a tray
(PP/EVOH/PP) under modified atmosphere (CO2 30%/N2 70%, Olympia
V/G, Technovac, Italy) using packaging wrap (polyester 10 μm, homo-
polymer polypropylene 50 μm, NutriPack, France). According to the
shelf life of the product, inoculated samples were stored at different
temperatures, constant or dynamic: (i) for 16 days at 4 °C (4 °C), (ii)
for 16 days at 8 °C (8 °C), (iii) for 16 days at 12 °C (12 °C), (iv) for
4 days at 4 °C and for 12 days at 8 °C (4–8 °C), (v) for 4 days at 4 °C,
followed by a break of 4 h at 20 °C than 12 days at 4 °C (4/20–4 °C),
(vi) 4 days at 4 °C, followed by a break of 4 h at 20 °C then 12 days at
8 °C (4/20–8 °C). Control samples were only stored at the first day and
at day 16.

2.3. Incubation and enumeration by conventional microbiological method

Each day during the 16-day storage period except on day 2, 25 g of
product were put into a Stomacher bag with a mesh screen liner
(80 μm pore size) (bioMérieux, Basingstoke, England, ref 80015)
under aseptic conditions. Physiological water (225 mL) was automati-
cally added to each bag (Dilumat, Biomerieux, Belgium) and the
samples were homogenised for 2 min in a Stomacher (Bagmixer,
Interscience, France). From this primary suspension, decimal dilutions
in peptone water (1 g/L peptone, 8.5 g/L sodium chloride) were pre-
pared formicrobiological analysis and 0.1mL aliquots of the appropriate
dilutions were plated onto media for each analysis in duplicate (Spiral
plater, DW Scientific, England). A total count was made on Plate Count
Agar (PCA) at 22 °C for 48 h for the psychrotrophic aerobic plate
count, using themodifiedmethod specified by the International Organi-
zation for Standardization [ISO (2013, ISO 4833-2)]. Graphs were plot-
ted with each of the day time points over the 16-day storage period
(n = 192). Non-inoculated products were only analysed at day 1 and
day 16 (n = 24).

2.4. Total DNA extraction

Bacterial DNAwas directly extracted from each primary suspension,
which had been stored at −80 °C, using the DNeasy Blood & Tissue
DNA Extraction kit (Qiagen, Venlo, Netherlands), following the
manufacturer's recommendations. The resulting DNA extracts were
eluted in DNAse/RNAse free water and their concentrations and purity
were evaluated by means of optical density using the NanoDrop ND-
1000 spectrophotometer (Isogen, St-Pieters-Leeuw, Belgium). The
quality and quantity of the products were confirmed by Picogreen
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double-stranded DNA (dsDNA) quantitation assay (Isogen, St-Pieters-
Leeuw, Belgium). DNA samples were stored at −20 °C until use for
16S rRNA amplicon pyrosequencing and qPCR analysis.

2.5. Bacterial 16S rRNA gene amplification and barcoded pyrosequencing

16S rRNA PCR libraries targeting the V1–V3 hypervariable region
were generated. Primers E9-29 and E514-430 (Brosius et al., 1981), spe-
cific for bacteria, were selected for their theoretical ability to generate
the lowest amplification bias relative to amplification capability
among the various bacterial phyla (Wang and Qian, 2009). The oligonu-
cleotide design included 454 Life Sciences A or B sequencing titanium
adapters (Roche Diagnostics, Vilvoorde, Belgium) andmultiplex identi-
fiers (MIDs) fused to the 5′ end of each primer. The amplification mix
contained 5 units (U) of FastStart high fidelity polymerase (Roche Diag-
nostics, Vilvoorde, Belgium), 1× enzyme reaction buffer, 200 μM
deoxynucleotide triphosphates (dNTPs) (Eurogentec, Liège, Belgium),
0.2 μM of each primer and 100 ng of genomic DNA in a final volume of
100 μL. Thermocycling conditions consisted of a denaturation step of
15 min at 94 °C, followed by 25 cycles of 40 s at 94 °C, 40 s at 56 °C,
and 1 min at 72 °C, with a final elongation step of 7 min at 72 °C.
These amplifications were performed on an EP Mastercycler Gradient
System apparatus (Eppendorf, Hamburg, Germany). The PCR products
were run on 1% agarose gel electrophoresis and the DNA fragments
were plugged out and purified using a Wizard SV PCR purification kit

(Promega Benelux, Leiden, Netherlands). The quality and quantity of
the products were assessed by Picogreen dsDNA quantitation assay
(Isogen, St-Pieters-Leeuw, Belgium). Equal amounts of each of the PCR
products were pooled and subsequently amplified by emulsion PCR. Py-
rosequencing was performed with the Illumina sequencer (Illumina,
Eindhoven, Netherlands) (2 × 300 bp). A mean 19,581 of reads per
day were analysed for all temperature conditions.

2.6. Bioinformatics and data analysis

The 16S rRNA gene sequence reads were processed with MOTHUR
(Pothakos et al., 2014; Schloss et al., 2009). The quality of all sequence
reads were denoised using the Pyronoise algorithm implemented in
MOTHUR. The sequences were checked for the presence of chimeric
amplification using ChimeraSlayer (developed by the Broad Institute,
http://microbiomeutil.sourceforge.net/#A_CS). The obtained reads sets
were compared to a reference dataset of aligned sequences of the corre-
sponding region derived from the SILVA database of full-length rRNA
gene sequences (http://www.arb-silva.de/) implemented in MOTHUR
(Pothakos et al., 2014). The final reads were clustered into operational
taxonomic units (OTUs) using the nearest neighbour algorithm using
MOTHURwith a 0.03 distance unit cut off. A taxonomic identity was at-
tributed to each OTU by comparison to the SILVA database using an 80%
homogeneity cut off. As MOTHUR is not dedicated to the taxonomic as-
signment beyond the genus level, all unique sequences for each OTU

Table 1
Primers and probes designed for the qPCR tests.

Target bacterial genus Target gene Primers Sequence

Lactobacillus Tuf Lactobacillus-Tuf-F2 5′-GCYCACGTWGAATAYGAAAC-3′
Lactobacillus-Tuf-R2 5′-CGDACTTCCATTTCAACYAAGTC-3′
Lactobacillus-Tuf-FAM1 5′-TGTGGCATWGGRCCATCAGTTGC-3′

Lactococcus RecA Lactococcus-RecA-F2 5′-GCCGAAATYGATGGYGAAAT-3′
Lactococcus-RecA-R2 5′-CAACTTTTTCACGCAATTGGTTG-3′
Lactococcus-RecA-FAM4 5′-TGATGTCWCAAGCYATGCGTAAAC-3′

Leuconostoc Fus Leuconostoc-Fus-F1 5′-TTCTTGTTCCATGAAATCCATTTG-3′
Leuconostoc-Fus-R1 5′-GAATACCCACTAGAWCGTACAC-3′
Leuconostoc-Fus-FAM1 5′-TGTGTTTCACCAATTTTGTGAATTTTACC-3′

Carnobacterium rpoA Carnobacterium-rpoA-F1 5′-ATTGGYGTATTACCAGTCGA-3′
Carnobacterium-rpoA-R1 5′-AACCATCTGCCCATACATC-3′
Carnobacterium-rpoA-FAM1 5′-CGATTTACACCCCAGTTAGTCGT-3′

Primers and probes designed for the qPCR tests allowing for the relative proportion of genera mainly present in Belgian white pudding to be estimated.

Fig. 1. Enumeration of the total psychrotrophic aerobic microorganisms from inoculated white puddings stored at different temperatures for 16 days. A solid line after the fourth day
represents the transition from 4 °C to 8 °C for the 4–8 °C condition and the break at 20 °C for 4 h for the 4–8 °C, 4/20–4 °C and 4/20–8 °C conditions. The average of the replicate
plating is plotted, with the standard deviation indicated by the whiskers.
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were compared to the SILVA dataset 111 using a BLASTN algorithm
(Delcenserie et al., 2014; Pothakos et al., 2014). For each OTU, a consen-
sus detailed taxonomic identificationwas given based upon the identity
(b1% mismatch with the aligned sequence) and the metadata associat-
ed with the best hit (validated bacterial species or not) (Delcenserie et
al., 2014; Pothakos et al., 2014).

2.7. Estimate abundance results

The PCA results of the microflora at 22 °C (Fig. 1, expressed in log
CFU/g) and the relative proportions of strains given by metagenetics
(Tables 2 and 3, expressed in %) were combined in order to obtain esti-
mate counts for the strains (in log CFU/g). For this, relative abundance of

Table 3
Metagenetics results for dynamic temperature condition.

Bacterial strains/temperature

Days

1 3 4 5 6 7 8 9 10 11 12 13 14 15

4–8 °C
C. maltaromaticum 1.1 8.7 2.6 50.4 49.8 89.5 86.3 72.0 48.5 27.0 14.6 15.2 7.3 11.9
Lc. lactis 0.3 20.2 10.8 4.1 16.0 0.3 0.4 0.4 1.0 2.6 2.3 2.7 2.4 3.6
Ln. mesenteroides 0.1 1.5 0.5 1.1 4.8 1.2 2.5 3.1 6.8 15.7 46.1 49.4 59.6 41.2
Lb. graminis 0.2 2.3 0.2 2.0 2.5 1.3 2.2 3.0 0.0 4.4 3.9 4.1 1.3 4.9
Serratia sp. 0.2 1.1 0.4 1.3 2.8 0.8 0.7 0.5 1.0 0.6 0.8 1.2 0.1 1.2
Lb. fuchuensis 0.2 0.9 0.3 1.7 7.3 2.7 4.7 11.3 26.4 36.9 23.4 17.7 11.3 27.0
Other strains 97.9 65.3 85.1 39.4 16.9 4.1 3.3 9.8 16.3 12.7 8.9 9.8 18.0 10.2

4/20–4 °C
C. maltaromaticum 1.1 3.9 2.8 32.7 29.8 69.8 92.4 80.5 92.7 83.7 68.5 57.9 35.1 29.1
Lc. lactis 0.3 1.0 2.3 16.9 19.9 0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.1 0.1
Ln. mesenteroides 0.1 0.3 0.3 0.7 4.8 2.5 1.1 4.2 0.3 0.8 2.4 4.8 10.4 12.3
Lb. graminis 0.2 0.1 0.6 2.4 3.9 1.8 0.8 2.2 0.0 1.8 2.0 4.6 4.7 4.8
Serratia sp. 0.2 0.4 0.3 1.7 2.4 1.7 0.5 0.4 0.2 0.1 0/3 0.2 0.7 0.4
Lb. fuchuensis 0.2 0.2 0.3 1.4 5.6 3.9 2.2 8.8 2.9 5.2 15.1 25.0 37.7 39.6
Other strains 97.9 94.1 93.5 44.4 33.5 20.4 3.1 3.9 3.8 8.4 11.6 7.5 11.2 13.6

4/20–8 °C
C. maltaromaticum 1.1 2.3 3.0 35.5 38.4 88.0 89.9 56.6 36.7 24.2 12.0 13.0 12.6 9.2
Lc. lactis 0.3 1.2 0.8 24.4 21.3 0.8 0.2 2.5 9.1 7.4 12.3 11.6 21.1 8.2
Ln. mesenteroides 0.1 0.1 0.2 1.7 3.1 1.6 1.5 6.4 5.2 20.7 39.3 29.6 29.0 46.4
Lb. graminis 0.2 0.4 0.9 2.3 2.5 1.4 1.5 3.9 0.0 5.6 4.4 4.0 4.1 5.2
Serratia sp. 0.2 0.4 0.3 1.1 2.5 0.8 0.3 0.5 3.8 1.1 1.1 2.9 3.1 0.7
Lb. fuchuensis 0.2 0.2 0.6 1.6 4.2 1.6 2.3 20.6 29.7 30.3 16.2 25.1 20.7 17.5
Other strains 97.6 95.5 94.1 33.4 28.0 5.8 4.2 9.5 15.6 10.7 14.8 13.8 9.5 12.8

Distribution of reads percentages for the six major bacterial species inoculated for each samples conditions obtained by metagenetics analysis during shelf life product in dynamic tem-
perature. Others strains represented the natural microbiota of white pudding.

Table 2
Metagenetics results for constant temperature condition.

Bacterial strains/temperature

Days

1 3 4 5 6 7 8 9 10 11 12 13 14 15 16

4 °C
C. maltaromaticum 1.1 3.2 4.5 11.5 25.8 70.5 86.8 96.7 96.4 93.9 90.7 76.7 65.8 50.4 42.1
Lc. lactis 0.3 0.2 0.1 0.4 1.2 0.2 0.2 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0
Ln. mesenteroides 0.1 0.3 0.0 0.3 0.5 0.6 1.3 0.3 0.0 0.6 0.7 1.3 4.2 4.6 12.5
Lb. graminis 0.2 0.4 1.3 0.5 0.8 1.5 1.8 0.2 0.0 0.8 0.7 1.9 2.7 3.8 4.3
Serratia sp. 0.2 0.2 0.7 0.6 0.8 0.8 0.7 0.2 0.1 0.2 0.1 0.1 0.6 0.2 0.5
Lb. fuchuensis 0.2 0.4 0.6 0.6 1.5 1.9 3.1 0.4 1.1 2.8 4.2 13.6 18.1 35.8 32.3
Other strains 97.9 95.1 92.8 86.2 69.3 24.5 6.0 2.0 2.5 1.7 3.6 6.3 8.6 5.1 8.2

8 °C
C. maltaromaticum 1.1 33.8 60.4 69.8 75.1 48.8 43.0 18.7 8.4 14.0 7.0 6.7 8.2 8.3 3.4
Lb. fuchuensis 0.3 2.4 6.5 4.4 4.2 14.8 18.3 36.3 16.2 30.7 10.1 18.2 14.5 11.9 16.6
Lb. graminis 0.1 1.7 2.4 5.2 4.3 9.8 15.3 10.8 23.1 17.4 50.4 45.6 45.7 39.2 53.7
Ln. mesenteroides 0.2 2.3 5.9 3.5 2.6 4.3 3.0 3.1 0.5 1.7 2.4 3.0 2.7 4.1 2.3
Lc. Lactis 0.2 1.8 3.1 4.3 4.3 5.0 0.7 0.2 0.7 1.0 0.6 0.9 0.9 0.7 1.2
Serratia sp. 0.2 1.2 2.6 5.4 3.8 8.0 8.5 19.1 26.1 23.0 15.7 14.9 15.7 26.2 12.4
Other strains 97.9 56.8 19.1 7.4 5.7 9.3 11.2 11.9 25.1 12.2 13.8 10.6 12.4 9.6 10.4

12 °C
C. maltaromaticum 1.1 8.0 2.7 0.8 0.7 0.7 0.8 1.1 0.8 0.8 1.0 0.4 0.6 0.5 0.6
Lb. fuchuensis 0.3 83.8 92.0 92.5 88.5 83.1 79.5 65.6 61.7 62.7 43.0 53.1 54.1 46.6 43.8
Lb. graminis 0.1 1.2 0.8 0.8 2.3 6.4 5.4 12.0 11.5 12.6 33.5 24.8 19.8 33.5 31.4
Ln. mesenteroides 0.2 1.3 0.4 0.9 0.8 1.2 0.6 1.1 0.0 2.0 0.9 1.4 1.8 1.4 1.6
Lc. Lactis 0.2 1.7 0.6 0.1 0.5 0.2 0.2 0.1 0.1 0.1 0.2 0.3 0.2 0.0 0.1
Serratia sp. 0.2 0.7 0.3 0.4 2.9 4.5 3.7 9.5 14.2 17.1 10.6 13.6 14.7 11.7 12.7
Other strains 97.9 3.4 3.1 4.3 4.4 4.0 9.8 10.5 11.6 4.7 10.8 6.4 8.8 6.4 9.8

Distribution of reads percentages for the six major bacterial species inoculated for each samples conditions obtained by metagenetics analysis during shelf life product in constant tem-
perature. Others strains represented the natural microbiota of white pudding.

73E. Cauchie et al. / International Journal of Food Microbiology 247 (2017) 70–78



  Annexes 

   305 

 
 
 
 
 
 
 

bacteria obtained by metagenetic results were reported over the PCA
real value (Eq. 1). Indeed, thanks to the plate counts estimates, the pro-
portions of the bacterial populations were transformed into concentra-
tions. These results were used for statistical and graphical analysis.

Cbacterial strain ¼ Ctotal flora " Nreads of bacterial strain
! "

=100 Eq: 1

Where Cbacterial strain is the estimated abundance concentration in the
sample (log CFU/g).

Ctotal flora is the bacterial concentration per samples in the PCA anal-
ysis (log CFU/g).

Nreads of bacterial strain is the number of reads for the bacterial strain per
sample in the metagenetic analysis (expressed in % of the total number
reads in the sample).

2.8. qPCR analysis

The primers described in Table 1 were used for real-time PCR assay
analysis using the Lightcycler 480 system (Roche, Basel, Switzerland).
The real-time PCR reactionmixtureswere combined in a 12 μL final vol-
ume containing 6 μL of LC480 probemaster mix (Roche, Basel, Switzer-
land), 2 μL of template DNA (at 5 ng/μL), 0.25 μL of primer pairs (10 μM
each), 0.125 μL of Taqman probe (10 μM). The reaction conditions in-
cluded the initiation step off 10 min at 95 °C, followed by 40 cycles of
15 s at 95 °C and 1 min at 60 °C. The real-time system is supplied with
the Lightcycler 480 Software version 1.5 using unique Roche algorithms
for highly accurate and robust automated data analysis. Serial dilutions
(106 to 1 copy numbers) of bacterial DNA were used for determining
reference curves. The arithmetic mean of Cycle Threshold (CT) of the
three repetitionswas used in order to estimate the load of targeted bac-
terial populations present in the samples.

2.9. Statistical analysis

Using R software, the Analysis of Covariance (ANCOVA) test was
used to evaluate if bacterial concentrations (log CFU/g) are equal across
levels of a categorical independent variable (temperature conditions or
microbial count method). With relation to temperature conditions,
ANCOVA tests were realised using the bacterial growth data (from day
1 to day 16) and the bacterial growth during the exponential phase
data (from day 4 to day 8). All tests were considered as significant for
a p-value of b0.05.

3. Results

3.1. Bacterial evolution by classical microbiological analysis

Fig. 1 shows the PCA results from inoculated Belgianwhite puddings
at different temperatures. The bacterial population showeddifferent dy-
namic changes depending on conditions of storage and stabilised be-
tween 8.5 and 9.2 log CFU/g. For the non-inoculated products, results
were respectively inferior to 3 log CFU/g and the same as inoculated
products at day 16.

As expected, the storage temperature had a strong impact on the
bacterial evolutions. A high storage temperature is correlated to a high
growth rate during exponential phase and a stationary phasemore rap-
idly reached.While the break at 20 °C for 4 h doesn't seem to have a sig-
nificant effect on the evolution of the culturable microflora, the
transition from 4 °C to 8 °C stimulated the growth of the microorgan-
isms. It would be interesting to intrinsically study the effect of temper-
ature conditions on the behaviour of each strain inside the ecosystem.

3.2. Relative abundance results obtained by metagenetics analysis

The distribution of reads percentages for the eight major bacterial
species for each samples (n = 768) in constant temperature shows

that at day 7 the mix reach more than 70% of total reads in samples
for 4 °C. The same percentage is attained at day 3 both for 8 °C and
12 °C. The major bacterial species concerned C. maltaromaticum at 4 °C
and Lc. lactis at 12 °C. All inoculated samples reached more than 90%
at the end of shelf-life product (Table 2) and the natural microbiota of
thewhite pudding seems to becomeminor in contrast to the inoculated

Table 5
Comparison of bacterial strains in inoculatedwhite puddings subject to storage conditions
with changes of temperature, according to the time taken to reach a 7 log CFU/g threshold
and ANCOVA-test based on the global growth and the growth rate during exponential
phase.

Bacterial strains
7 log CFU/g
threshold (days) ANCOVA-test

4 °C 4–8 °C Global
growth

Growth rate during
exponential phase

a.
C. maltaromaticum 8 7 Ø 4–8 N 4⁎⁎

Lc. lactis – 11 4–8 N 4⁎⁎⁎ 4–8 N 4⁎⁎

Lb. fuchuensis 12 8 4–8 N 4⁎⁎ 4–8 N 4⁎⁎

Lb. graminis 14 9 4–8 N 4⁎⁎ 4–8 N 4⁎⁎
Ln. mesenteroides 14 9 4–8 N 4⁎⁎⁎ 4–8 N 4⁎⁎⁎
Serratia sp. – 12 4–8 N 4⁎⁎ 4–8 N 4⁎⁎

b.
C. maltaromaticum 8 7 Ø Ø
Lc. lactis – – 4/20–4 N 4⁎ –
Lb. fuchuensis 12 11 4/20–4 N 4⁎ Ø
Lb. graminis 14 12 4/20–4 N 4⁎ Ø
Ln. mesenteroides 14 12 4/20–4 N 4⁎⁎ 4/20–4 N 4⁎
Serratia sp. – – 4/20–4 N 4⁎ Ø

c.
C. maltaromaticum 7 7 Ø Ø
Lc. lactis 11 9 Ø Ø
Lb. fuchuensis 8 8 Ø Ø
Lb. graminis 9 9 Ø Ø
Ln. mesenteroides 9 9 Ø Ø
Serratia sp. 12 11 Ø Ø

(a) 4 °C vs. 4–8 °C, (b) 4 °C vs. 4/20–4 °C, (c) 4–8 °C vs. 4/20–8 °C.
– data out of range, N superior value, Ø no significant statistical difference.
⁎ Significant statistical difference, p-value b 0.05.
⁎⁎ High significant statistical difference, p-value b 0.01.
⁎⁎⁎ Highly significant statistical difference, p-value b 0.001.

Table 4
Growth parameters of bacterial strains in inoculatedwhite puddings under constant stor-
age conditions.

Nmax TRSP μmax Class

4 °C
C. maltaromaticum 8.6 12 0.07 D
Lb. fuchuensis 8.5 16 0.05 S
Lb. graminis 7.6 16 0.03 S
Ln. mesenteroides 8.1 16 0.03 S
Lc. Lactis 4.9 12 0.05 I
Serratia sp. 6.7 12 0.04 I

8 °C
C. maltaromaticum 8.1 8 0.10 D
Lc. Lactis 8.4 10 0.09 S
Lb. fuchuensis 8.3 10 0.09 S
Ln. mesenteroides 8.9 10 0.10 S
Lb. graminis 7.6 8 0.08 I
Serratia sp. 6.7 8 0.10 I

12 °C
Lc. Lactis 8.9 4 0.25 D
Lb. fuchuensis 8.3 11 0.14 S
Ln. mesenteroides 8.7 11 0.10 S
C. maltaromaticum 7.0 4 0.10 I
Lb. graminis 7.4 4 0.11 I
Serratia sp. 6.0 4 0.12 I

Bacterial concentration at day 16 (Nmax, log CFU/g), time to reach the stationary phase
(TRSP, days) and maximal bacterial growth rate (μmax, 1/h). Bacterial strains were
subdivided into three categorical classes: D (“dominant”), S (“subdominant”), I (“inhibited”).
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mix of the surface product. For the dynamic temperature condition, the
same results were observed (Table 3).

In these two cases, some bacterial strains (R. terrigena and Lb.
oligofermentans) were excluded from the results for better readability
because they were often under the detection level for the metagenetic
analysis (data not shown).

3.3. Combining PCA results and relative abundance to obtain estimate counts

Table 4 shows growth parameters, for each strain, calculated from
the combination of the PCA counts at 22 °C and the relative proportions

of strains given by metagenetics (estimate abundance results) for con-
stant temperature conditions (at 4 °C, 8 °C and 12 °C). Using R software
these parameters were obtained by fitting to a primary model of bacte-
rial curves according to the Baranyi equation (Delhalle et al., 2012;
Ercolini et al., 2011; Zwietering et al., 1990). These parameters give
the bacterial concentration at day 16 (Nmax, log CFU/g), the maximal
bacterial growth rate (μmax, 1/h) and the time to reach the stationary
phase (TRSP, days).

These results allowed the bacterial strain subdivision into three clas-
ses based on growth parameters for each temperature conditions stud-
ied. These three classes are respectively called “dominant”, “inhibited”

Fig. 2. qPCR counts from inoculated white puddings stored at 4 °C (a), 8 °C (b) and 12 °C (c).
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and “subdominant” according to their growth parameters and their be-
haviour observed inside the bacterial ecosystem:

The “dominant” bacterial species had three high growthparameters:
they have the highest growth rate (μmax), maximal concentration
(Nmax) between 8 and 9 log CFU/g, and rapidly reached the stationary
phase during the shelf life of the product.

The “inhibited” bacterial species had a lesser or equal growth rate
but they achieved an inferior Nmax value, and stopped their growth at
the same time as the “dominant” species.

The “subdominant” bacterial species are all other bacterial species
that continued growth when the “dominant” organisms reached the
stationary phase, which is the opposite to the “inhibited” bacteria,
with a generally lesser growth rate than the “dominant” species. They
reached the stationary phase lesser rapidly but they achieved a high
maximal concentration.

According to the conditions of storage the bacterial ecosystem
change: C. maltaromaticum is the “dominant” bacteria at 4 °C and 8 °C,
while Lc. lactis dominates at 12 °C. Lc. lactis is an “inhibited” and a “sub-
dominant” bacterial species for conditions at 4 °C and 8 °C respectively.
Lb. graminis is a “subdominant” bacteria at 4 °C and an “inhibited” spe-
cies for the two other conditions. Interestingly, Ln. mesenteroides and
Lb. fuchuensis were “subdominant” bacteria at all temperatures. On the
other hand, Serratia sp. is an “inhibited” bacterium at all temperatures.

Table 5 shows the combination of the PCA counts of themicroflora at
22 °C and the relative proportions of strains obtained by metagenetics
(estimate abundance results) for storage conditions with changes of
temperature (at 4–8 °C, 4/20–4 °C and 4/20–8 °C). For these situations
two parameters were studied: the time necessary to attain a 7 log
CFU/g threshold of spoilage (days) and the statistical difference be-
tween conditions of storage by ANCOVA-tests based on the global
growth and the growth rate during exponential phase.

The results of the ANCOVA-tests show that strains have a better bac-
terial growth at 4–8 °C than at 4 °C, except for C. maltaromaticum that
showed a statistically different growth rate only during the exponential
phase. Consequently, all species reached the 7 log CFU/g threshold ear-
lier at 4–8 °C than at 4 °C (Table 5(a)). For the break of 4 h at 20 °C dur-
ing storage this phenomenon was significantly weaker. Indeed, Ln.
mesenteroides is the only specieswhich showed a significant statistically
effect in the two tested parameters of growth rate. The other strains
have a better global growth at 4/20–4 °C (except for C.maltaromaticum)
and all species reached the 7 log CFU/g threshold earlier at 4/20–4 °C
than at 4 °C (Table 5(b)). Results shows also that there were no signifi-
cant statistical changes on the growth parameters between the break of
4 h at 20 °C and the transition from 4 °C to 8 °C but Lc. lactis and Serratia
sp. reached the 7 log CFU/g earlier (Table 5(c)).

3.4. Comparison with qPCR results

Fig. 2 shows the qPCR counts for four genus at 4 °C (Fig. 2a), 8 °C
(Fig. 2b) and 12 °C (Fig. 2c). The comparison between metagenetics re-
sults and the LAB genus specific qPCR are summarised in Table 6. On

average, the population overestimation was equal to 1.1 log CFU/g in
qPCR test at 4 °C for Lactobacillus and Leuconostoc. Indeed, bacterial
curves are convergent except for Lactobacillus and Leuconostoc at 4 °C.

4. Discussion

Based on the primary results given on total count on plate agar, the
influence of temperature on the development of a whole ecosystem
on Belgian white puddings was observed. The power of metagenetic
analysis, when added to these basics results, has allowed us to closely
follow the evolution of each strain inoculated on the product during
its shelf life. In addition, the data have been validated by a qPCR analysis
where no significant differences were seen for the quantification of the
genera studied except for Lactobacillus and Leuconostoc at 4 °C. These
small differences at the beginning of the shelf life can be explained by
the detection of DNA from dead bacteria naturally present in large
quantities on the raw meat and resulting from microbial destruction
during the manufacturing process. This means that the qPCR analysis
has detected some DNA fragments from dead organisms that haven't
evidently grown on plate agar, leading to a weak overestimation of
the qPCR results at the beginning of the experiment. This phenomenon
is lesser in metagenetics analysis because of the high variability of
strains presents in the product at the beginning of the experiment.
Later during the challenge-test, this difference between the two tech-
niques becomes negligible. Indeed, gradually throughout the experi-
ment, the Lactobacillus and Leuconostoc species become a part of the
dominant microflora that leads to a dilution effect of the dead bacterial
DNA by the living bacteria's DNA.

The large amount of data provided by the combination of the cul-
ture-dependent and culture-independent techniques has given useful
information about the growth of each strain during challenge tests.
Metagenetic analysis also allows for the assessment of the dynamics of
bacterial species within a food matrix. It permitted classification of bac-
terial strains into different categories according to their behaviour in the
ecosystem. The so-called “dominant” bacterial species rapidly reached
the stationary phase at a concentration of between 8 and 9 log CFU/g
while at the same time the “inhibited” strains stopped their growth at
a lower concentration. This phenomenon was described by Jameson in
1962 and recently reviewed by other scientists as follows: “theminority
population decelerates when the majority or the total population
count reaches its maximum” (Ross et al., 2000; Mellefont et al., 2008;
Irlinger and Mounier, 2009; Cornu et al., 2011). This Jameson
effect was clearly observed in our study, for example at 4 °C (Table 2),
when Lc. lactis and Serratia sp. stopped growth at day 12, at the same
time C.maltaromaticum reached its maximal concentration and entered
its stationary phase. In opposition to this, it can be noticed that in the
same condition, the “sub-dominant” organisms continued their growth
independently of the “dominant” species behaviour. In this case, the
Jameson effect was not illustrated. This pattern is described for all stor-
age conditions with the same strain classifications (Table 2). This phe-
nomenon was also observed by others scientists and they proposed
that the growth of the minority population is only partly inhibited
after the majority population has reached its stationary phase
(Gnanou Besse et al., 2006; Cornu et al., 2011). This can be explained
by the fact that the minority population is only partly affected by the
limiting resource and/or inhibiting waste product that led it to stop
growing (Gnanou Besse et al., 2006; Cornu et al., 2011).

According to this, the bacterial strain subdivision based on growth
parameters can be represented as (Table 7):

If Nmaxbacterial strainNNmaxothersð Þ& μmaxbacterial strainNμmaxothersð Þ
& TRSPbacterial strainbTRSPothersð Þ ¼ }dominant} bacterial species:

If Nmaxbacterial strain≅Nmaxothersð Þ& μmaxbacterial strain≤μmaxothersð Þ
& TRSPbacterial strainNTRSPothersð Þ ¼ }subdominant} bacterial species:

Table 6
Comparison between qPCR and estimate abundance results (log CFU g−1) for days 1, 4, 7,
11 and 15 with ANCOVA-test.

Carnobacterium Lactobacillus Lactococcus Leuconostoc

4 °C Ø qPCR N Meta⁎⁎ Ø qPCR N Meta⁎
8 °C Ø Ø Ø Ø
12 °C Ø Ø Ø Ø

Estimate abundance results: obtained by combination of the PCA counts at 22 °C and the
relative proportions of strains given by metagenetics.
N superior value, Ø no significant statistical difference.
⁎ Significant statistical difference, p-value b0.05.
⁎⁎ Very significant statistical difference, p-value b0.01.
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If Nmaxbacterial strainbNmaxothersð Þ& μmaxbacterial strain≤μmaxothersð Þ
& TRSPbacterial strain ¼ TRSPothersð Þ ¼ }inhibited} bacterial species:

Where Nmax (bacterial concentration at day 16, log CFU/g), μmax
(maximal bacterial growth rate, 1/h) and TRSP (time to reach the sta-
tionary phase, days) are growth parameters.

Regarding the “inhibited” strains, hypotheses can be made about in-
convenient growth temperatures (Tmin) and/or amicrobial competition
with the rest of the ecosystem. The composition ofwhite pudding seems
not to have an effect on strains competiveness. According to scientific
literature, Serratia sp. has a minimum growth temperature (Tmin) of
0 °C (Labadie, 1999) and would normally grow at 4 °C. But at this tem-
perature, it is classified as an “inhibited” strain. Therefore, the inhibition
of the bacterial growth of Serratia sp. is probably due to an ecosystemef-
fect. Concerning Lactococcus lactis, one study set its Tmin at 10 °C
(Labadie, 1999), while in our experiment a normal growth pattern
was observed at 8 °C, allowing its classification in the “sub-dominant”
group. In this case, the inhibited development of this organism at 4 °C
is probably due to an ecosystem effect coupled with a temperature ef-
fect. Indeed, when Lc. lactis grew at 12 °C, it became the dominant
flora and was more competitive than C. maltaromaticum which seems
to bemore adapted to lower temperatures (Tmin of C.maltaromaticum=
0 °C, (Casaburi et al., 2011)). For Ln. mesenteroides and Lb. fuchensis, for
which Tmin are respectively 4 °C (Osmanagaoglu and Kiran, 2011) and
2 °C (Zwietering et al., 1993), they stayed “subdominant” for all the tem-
perature conditions tested. The rest of the ecosystem probably does not
affect their growth, insofar as they never gained predominance but they
were not inhibited either.

The results of the challenge tests with temperature breaks or chang-
es are consistent with our previous observations. Indeed, C.
maltaromaticum seems to be more adapted to low temperatures. To
this end, this bacterium didn't take a great benefit in its growth when
the storage temperature moved to 20 °C for 4 h (Table 3). In contrast,
the growth parameters of Ln. mesenteroides rose during the transition
from 4 °C to 8 °C or with the break of 4 h at 20 °C. This is consistent
with the fact that its optimal growth temperature (Topt) is between
20 °C and 35 °C (Zwietering et al., 1993, Jin et al., 2012). Lc. lactis also
has a Topt around 25 °C but any improvement of its growth parameters
was not observed. The hypothesis ismade that the break time of 4 hwas
too short to see a significant effect. In conclusion, a break of 4 h at 20 °C
is prejudicial only if the storage temperature (4 °C) is respected during
the entire life of the product.Moreover it is commonly admitted that the
customer's fridge is rarely at 4 °C (Lagendijk et al., 2010). By taking ac-
count of this fact, the lack of respect for good temperature storage
(8 °C instead of 4 °C), particularly in customer's fridges, is more prejudi-
cial than a break of the cold chain for up to 4 h. However, an indication
about the true temperature in the product during the 4 h of breaking
time at 20 °Cwould be necessary beforemaking this conclusion. Indeed,
the internal temperature of white pudding samples may stay colder
than 20 °C, due to the thickness of this product, explaining the apparent
absence of effect or a weak effect.

In the future, it will be interesting to explore the interactions in the
white pudding ecosystem more deeply. Further studies will focus on
the comprehension of themechanisms that force the “inhibited” strains
to stop their growth in the early stage of the shelf life of the product. In-
deed, it is commonly accepted that the self-limiting growth process in
microbial ecosystem is supposed to be due to (i) the exhaustion of
one of the essential nutrients, (ii) the accumulation of metabolic
waste products which inhibit growth, and/or (iii) the lowering of pH
due to acid production (Cornu et al., 2011). According to the data al-
ready obtained,we could suppose that competition for space or nutrient
has an effect. The action of a bacteriocin is also not excluded and could
for example explain the lack of development of some strains inoculated
into the product: Lb. oligofermentans and R. terrigena. It would also be in-
teresting to know the spoilage or biopreservative potential of all the
strains inoculated in the Belgian white pudding in this study. Another
challenge will be in differentiating the nature of the ecosystem interac-
tions: strain dependent or species dependent. Finally, this supply of new
information will be a good start for future experiments when it is con-
sidered that the natural contamination of a food product is more com-
plex that an inoculation of eight bacterial strains from different species.

Our applications of the 16S rRNA gene-based pyrosequencing has
now extended our view of the dynamic behaviour of complexmicrobial
populations in Belgian white pudding, revealing the quantitative dis-
placement of taxa that occur during microbial successions. By integrat-
ingmetageneticswith traditional microbiological analysis we have now
extended this view of a highly quantitative characterization of dynamic
changes that occur during refrigerated storage. In addition to the predic-
tive microbiology, these data also permit to classify the population dy-
namics into three major classes, based on growth parameters.

5. Conclusions

Metagenetic analysis offers a new tool for identifying microorgan-
isms present in perishable foods and for studying their evolutionwithin
different environmental conditions. The information that can be obtain-
ed provides a clear picture of themicrobial community. Microbiological
ecology studies have shown that the microbiota of food is much more
diverse than the cultivable group of bacteria studied by the use of cul-
ture media. The use of these new technologies will open a new era for
modelling and predictive microbiology. In this study, these results pro-
vide valuable informations for discussing about the theory of the Jame-
son effect. In addition, it will help food business operators to have a
better view of the quality of their product by differentiating between
the spoilage or bioprotective microflora. Moreover, it will provide
knowledge on the composition and dynamics of white pudding and
shown how it is affected by storage temperature. Indeed, many food
manufacturers, government agencies, retailers, distribution quality lab-
oratories and researchers use classical culturemedia without being able
to precisely identify the bacterial communities present within the food.
In the future, new gold standards for food quality will need to be devel-
oped in order to allow the use of metagenetics as a complementary

Table 7
Bacterial strain subdivision based on growth parameters in three categorical classes: D (“dominant”), S (“subdominant”), I (“inhibited”).

Class μmax Nmax TRSP Growth parameters

D The highest Maximal value. Between 8 and 9 log CFU g−1 Rapidly reached If (Nmaxbacterial strain N Nmaxothers) &
(μmaxbacterial strain N μmaxothers) &
(TRSPbacterial strain b TRSPothers)

S Generally lesser High value Continue to growth when the D organisms
reached the stationary phase

If (Nmaxbacterial strain ≅ Nmaxothers) &
(μmaxbacterial strain ≤ μmaxothers) &
(TRSPbacterial strain N TRSP others)

I Lesser or equal Inferior value The same as the D organisms If (Nmaxbacterial strain b Nmaxothers) &
(μmaxbacterial strain ≤ μmaxothers) &
(TRSPbacterial strain = TRSPothers)

Maximal bacterial growth rate (μmax, 1/h), bacterial concentration at day 16 (Nmax, log CFU/g) and time to reach the stationary phase (TRSP, days).
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technique for characterizing the bacterial flora of products and its use
should be considered as a technique for quality control, for accurately
determining the length of shelf life and for developing new food prod-
ucts and/or new storage advices.
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Although several studies have focused on the dynamics of bacterial food community,
little is known about the variability of batch production and microbial changes that
occur during storage. The aim of the study was to characterize the microbial spoilage
community of minced pork meat samples, among different food production and storage,
using both 16S rRNA gene sequencing and classical microbiology. Three batches of
samples were obtained from four local Belgian facilities (A–D) and stored until shelf life
under food wrap (FW) and modified atmosphere packaging (MAP, CO2 30%/O2 70%),
at constant and dynamic temperature. Analysis of 288 samples were performed by
16S rRNA gene sequencing in combination with counts of psychrotrophic and lactic
acid bacteria at 22�C. At the first day of storage, different psychrotrophic counts were
observed between the four food companies (Kruskal-Wallist test, p-value < 0.05).
Results shown that lowest microbial counts were observed at the first day for industries
D and A (4.2 ± 0.4 and 5.6 ± 0.1 log CFU/g, respectively), whereas industries B and
C showed the highest results (7.5 ± 0.4 and 7.2 ± 0.4 log CFU/g). At the end of
the shelf life, psychrotrophic counts for all food companies was over 7.0 log CFU/g.
With metagenetics, 48 OTUs were assigned. At the first day, the genus Photobacterium

(86.7 and 19.9% for food industries A and C, respectively) and Pseudomonas (38.7 and
25.7% for food companies B and D, respectively) were dominant. During the storage,
a total of 12 dominant genera (>5% in relative abundance) were identified in MAP
and 7 in FW. Pseudomonas was more present in FW and this genus was potentially
replaced by Brochothrix in MAP (two-sided Welch’s t-test, p-value < 0.05). Also,
a high Bray-Curtis dissimilarity in genus relative abundance was observed between food
companies and batches. Although the bacteria consistently dominated the microbiota in
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our samples are known, results indicated that bacterial diversity needs to be addressed
on the level of food companies, batches variation and food storage conditions. Present
data illustrate that the combined approach provides complementary results on microbial
dynamics in minced pork meat samples, considering batches and packaging variations.

Keywords: minced meat, metagenetics, spoilage bacteria, modified atmosphere packaging, food wrap packaging

INTRODUCTION

Meat and meat products are highly perishable, with colonization
and development of a variety of microorganisms, especially
bacteria. This is due to complex nutrient-rich environment
with chemical and physical conditions favorable to bacterial
development (Nychas et al., 2008; Pennacchia et al., 2009;
Chaillou et al., 2015; Garnier et al., 2017). Moreover, mincedmeat
can be contaminated by di�erent types of microorganisms from
several sources, such as raw materials, equipment, environment
and handling involved in the production process. Abiotic factors
(temperature, gaseous atmosphere, pH, NaCl levels, etc.) can also
select certain bacteria (Mann et al., 2016; Stellato et al., 2016;
Rouger et al., 2018). However, it is well known that richness and
abundance of microbiota present in food products, and especially
meats, play an important role in the microbial safety and the
shelf life of the products (Zhao et al., 2015; Pinu, 2016). Microbial
growth on meat to unacceptable levels and the various metabolic
activities contribute to its deterioration by altering the structure,
color and flavor of the meat (Mann et al., 2016). This leading to
a reduction in food quality to the point of not being edible for
human consumption (Holm et al., 2013; Silbande et al., 2016;
Stellato et al., 2016), with alterations in the sensorial qualities
of the product, particularly the aspect, with discoloration and
gas production, and the presence of an o�-odors and o�-flavors
(Stoops et al., 2015). Thus, food spoilage is problematic for two
main reasons: first, it renders food unfit for human consumption
and, secondly, it results in significant economic losses (Dalcanton
et al., 2013; Pinter et al., 2014; Den Besten et al., 2017).

As mentioned by Benson et al. (2014), the microbial
population that colonizes and ultimately spoils minced pork
meat is highly variable, depending on which groups of microbial
taxa the product has been exposed to and perhaps even the
order in which they are encountered. Using traditional cultivation
methods, the microbial composition and diversity in fresh meat
have been widely investigated (Zhao et al., 2015), but it is well
known that traditional identification and culture-based methods
for pathogens or food spoilage microbes are time-consuming
(Pinu, 2016). Moreover, ecological studies at the genus-species
level are required because the same storage conditions may a�ect
di�erently the species in the same groups of bacteria (Pennacchia
et al., 2011; Stoops et al., 2015), and because not all the members
of this microbiota contribute to food spoilage. Several studies
in meat microbiology have established that spoilage is caused
only by a dominated fraction of the initial microbial association
(Nychas et al., 2008). These spoilage microorganisms have been
designated as Ephemeral/Specific Spoilage Organisms (E(S)SOs)
(Benson et al., 2014; Zotta et al., 2019). Therefore, as discussed by

De Filippis et al. (2013), the concept of succession of spoilage-
related microbial groups is very important, and many studies
have been performed to investigate the dynamics and changes of
the meat microbiota during storage.

Developed during the last decades, the next generation
sequencing methodologies provide a powerful tool to study
microbial community structure and composition shifts at
di�erent stages of ripening, allowing the detection of minor
bacterial populations (Riquelme et al., 2015), at variable
taxonomic depth (Pothakos et al., 2014; Chaillou et al., 2015;
Parente et al., 2016). The introduction of molecular methods,
especially culture-independent approaches, have contributed to
the exploration of various food microbiota (Galimberti et al.,
2015; Pinu, 2016; Garofalo et al., 2017; Parlapani et al., 2018), as
for beverages (Elizaquivel et al., 2015), vegetables (Lee et al., 2017;
Gu et al., 2018; Liu et al., 2019), and for dairy (Nalbantoglu et al.,
2014; Riquelme et al., 2015; Ceugniez et al., 2017; Porcellato et al.,
2018), seafood (Li et al., 2018; Parlapani et al., 2018; Silbande
et al., 2018), and meat products (Cocolin et al., 2004; Pennacchia
et al., 2011; Nieminen et al., 2012; Benson et al., 2014; Greppi
et al., 2015; Polka et al., 2015; Stoops et al., 2015; Zhao et al.,
2015; Delhalle et al., 2016; Mann et al., 2016; Carrizosa et al.,
2017; Cauchie et al., 2017; Kaur et al., 2017; Korsak et al., 2017;
Peruzy et al., 2019; Vester Lauritsen et al., 2019), in order to
assess themicrobial levels and diversity of food and food products
(Nieminen et al., 2012; Pothakos et al., 2014; Lee et al., 2017;
Rouger et al., 2018). The interest of this method to characterize
the dominant spoilage bacteria in pork meat and meat products
was also described (Andritsos et al., 2012; Mann et al., 2016;
Raimondi et al., 2018; Li et al., 2019; Peruzy et al., 2019).

In this context, the aim of the present study was to assess
the microbial spoilage community and dynamics of minced
pork meat samples, among di�erent conditions of production
and food storage, using both 16S rRNA gene sequencing and
classical microbiology.

MATERIALS AND METHODS

Sampling
Fresh minced pork meat (MPM) samples packed with a food
wrap film were obtained from four local small and medium-sized
Belgian manufacturers (food companies A, B, C, and D) at the
day of the production, corresponding to the day of slaughtering.
Three batches for each manufacturer were used, with a 1-week
interval between sampling (Supplementary Figure S1).

According to the recipe MPM is composed of 100% minced
pork meat (70% lean, 30% fat), no salt, no spices, no additives,
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no eggs and no sugar are added. At the day of the production,
the water activity of this product was 0.98 ± 0.02 and the pH
value was 5.80 ± 0.05 (n = 12). pH of the homogenized samples
(5 g in 45 ml of KCl) was measured with a pH meter (Knick
765 Calimatic, Allemagne). The water activity was measured
for homogenized samples on the basis of the relative humidity
measurement of the air balance in the micro enclosure at
25 ± 0.4�C (Thermoconstanter TH200, Novasina, Switzerland).

Minced pork meat samples were packed (100 g), in triplicate,
in two di�erent types of non-sterile packaging.

The first packaging concerns a tray (187 ⇥ 137 ⇥ 36, polyester
10µm, homo-polymer polypropylene 50µm,NutriPack, France)
under modified atmosphere (MAP, CO2 30%/O2 70% ± 0.1%)
(Olympia V/G, Technovac, Italy) using packaging wrap
(PP/EVOH/PP) with random gas measurements (CheckMate 3,
Dansensor, France).

The second packaging concerns a tray (175 ⇥ 135 ⇥ 22,
polystyrene) under food wrap packing (FW) using cling
film (Clinofilm).

Food Storage
According to the requirements for implementing microbiological
tests of chilled perishable and highly perishable foodstu�s
(AFNOR, 2010, NF V01-003), MPM samples were stored during
3 days of shelf life under FW, and during 6 days under MAP
packaging, at constant and dynamic temperature: at (i) 2�C
(± 1�C), (ii) 8�C (± 1�C), (iii) 12�C (±1�C), and (iv) for a third
of the shelf life at 2�C and for the rest of the shelf life at 8�C
(2/8�C ± 1�C), in climatic chambers (Sanyo MIR 254).

Samples were analyzed at the first day of inoculation (day 0)
and at the last day of storage (day 3 in FW and day 6 in MAP,
n = 288) (Supplementary Figure S1).

Plate Count Enumeration
Twenty-five grams of product were randomly collected from
the trays at the surface and at depth, without homogenization,
and put into a Stomacher bag with a mesh screen liner
(80 µm pore size) (Biomérieux, Basingstoke, England, ref 80015)
under aseptic conditions. Bu�ered peptone water (BPW, 10 g/L
peptone, 5 g/L sodium chloride, #3564684, Bio-Rad, Marnes-
la-Coquette, France) (225 mL) was automatically added to
each bag (Dilumat, Biomérieux, Belgium) and the samples
were homogenized for 2 min in a Stomacher (Bagmixer,
Interscience, France). From this primary suspension, decimal
dilutions in maximum recovery diluent (10 g/L peptone, 8.5 g/L
sodium chloride, #CM0733, Oxoid, Hampshire, England) were
prepared for microbiological analysis, and 0.1 mL aliquots of the
appropriate dilutions were plated onto media for each analysis
(Spiral plater, DWScientific, England). Total viable counts (TVC)
for the aerobic psychrotrophic flora were performed on plate
count agar (PCA agar, #3544475, Bio-Rad, Marnes-la-Coquette,
France), and for the lactic acid bacteria (LAB) on de Man,
Rogosa and Sharpe (MRS agar, #CM0361, Oxoid, Hampshire,
England), after incubation at 22�C (Pothakos et al., 2014) for
72 h (model 1535 incubator, Shel Lab, Sheldon Manufacturing
Inc., United States).

DNA Extraction and 16S rDNA Amplicon
Sequencing
Bacterial DNA was extracted from each primary suspension,
previously stored at �80�C, using the DNEasy Blood and Tissue
kit (QIAGEN Benelux BV, Antwerp, Belgium) following the
manufacturer’s recommendations. The resulting DNA extracts
were eluted in DNAse/RNAse free water and their concentration
and purity were evaluated by means of optical density using the
NanoDrop ND-1000 spectrophotometer (Isogen, Sint-Pieters-
Leeuw, Belgium). DNA samples were stored at �20�C until used
for 16S rDNA amplicon sequencing.

PCR-amplification of the V1-V3 region of the 16S rDNA
library preparation were performed with the following
primers (with Illumina overhand adapters), forward
(50-GAGAGTTTGATYMTGGCTCAG-30) and reverse (50-
ACCGCGGCTGCTGGCAC-30). Each PCR product was purified
with the Agencourt AMPure XP beads kit (Beckman Coulter;
Pasadena, CA, United States) and submitted to a second PCR
round for indexing, using the Nextera XT index primers 1 and
2. Thermocycling conditions consisted of a denaturation step
of 4 min at 94�C, followed by 25 cycles of denaturation (15 s at
94�C), annealing (45 s at 56�C) and extension (60 s at 72�C),
with a final elongation step (8 min at 72�C). These amplifications
were performed on an EP Mastercycler Gradient System
device (Eppendorf, Hamburg, Germany). The PCR products
of approximately 650 nucleotides were run on 1% agarose gel
electrophoresis and the DNA fragments were plugged out and
purified using a Wizard SV PCR purification kit (Promega
Benelux, Leiden, Netherlands). After purification, PCR products
were quantified using the Quanti-IT PicoGreen (ThermoFisher
Scientific, Waltham, MA, United States) and diluted to 10 ng/µL.
A final quantification, by quantitative (q)PCR, of each sample in
the library was performed using the KAPA SYBR R� FAST qPCR
Kit (KapaBiosystems, Wilmington, MA, United States) before
normalization, pooling and sequencing on a MiSeq sequencer
using V3 reagents (Illumina, San Diego, CA, United States).

Bioinformatics Analysis
The 16S rRNA gene sequence reads were processed with
MOTHUR (Schloss et al., 2009). The quality of all sequence
reads was denoised using the Pyronoise algorithm implemented
in MOTHUR. The sequences were checked for the presence of
chimeric amplification using ChimeraSlayer (developed by the
Broad Institute)1. The obtained read sets were compared to a
reference data-set of aligned sequences of the corresponding
region derived from the SILVA database of full-length rRNA gene
sequences (version v1.2.11)2 implemented in MOTHUR (Pruesse
et al., 2012; Pothakos et al., 2014; Cauchie et al., 2017). The final
reads were clustered into operational taxonomic units (OTUs),
using the nearest neighbor algorithm using MOTHUR with a
0.03 distance unit cut o�. A taxonomic identity was attributed
to each OTU by comparison to the SILVA database, using an
80% homogeneity cut o�. As MOTHUR is not dedicated to
the taxonomic assignment beyond the genus level, all unique

1http://microbiomeutil.sourceforge.net/#A_CS
2http://www.arb-silva.de/
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sequences for each OTU were compared to the SILVA data-set
111, using a BLASTN algorithm. For each OTU, a consensus
detailed taxonomic identification was given based upon the
identity (<1% mismatch with the aligned sequence) and the
metadata associated with the best hit (validated bacterial species
or not) (Delcenserie et al., 2014; Cauchie et al., 2017).

16S rDNA Data Analysis
A correcting factor for 16S rDNA gene copy numbers was applied
for any taxon i (Eq. 1) (Kembel et al., 2012; Louca et al., 2018).

Ai = Nk
�
Ci (Eq. 1)

Where Ai is the real abundance of 16S genes from the taxon
in the sample, Nk is the number of reads for the taxon in the
sample k, and Ci is determined by the genomic 16S copy number
of that taxon. To obtain each gene copy number, Ribosomal
RNA Database (rrnDB) (Stoddard et al., 2015) and EzBioCloud
database (Yoon et al., 2017) were used.

Then, to compare the relative abundance of OTUs, the number
of reads of each taxon were normalized (Nri) as described by
Chaillou et al. (2015). Reads counts of each taxon i in the sample
k were divided by a sample-specific scaling factor (Si) (Eq. 2)
(Fougy et al., 2016; Rouger et al., 2018):

Nri = Ai
�
Sk (Eq. 2)

Where Ai is the real abundance of 16S genes from that
taxon obtained with a correcting factor for 16S rDNA gene copy
numbers, Sk is the normalization factor associated with sample k.

The sample-specific scaling factor was calculated by (Eq. 3):

Sk = Tk
�
me (Eq. 3)

Where Sk is the sample-specific scaling factor associated with
sample k, Tk is the number of total reads in the sample k, me
is the median value of total reads for all the samples of the
dataset. Reads counts of all samples were then transformed into a
percentage of each OTUs.

All biosample raw reads were deposited at the National Center
for Biotechnology Information (NCBI) and are available under
de BioProject ID PRJNA551357. The raw data supporting the
conclusions of this manuscript will be made available by EC to
any qualified researcher.

Statistical Analysis
Statistical Analysis on Microbiological Results
Non-parametric statistical tests were used to compare the
classical microbiology result between samples taken on the day
of production and at the end of shelf life for a same temperature.
With the help of R software (R Core Team, 2016), Kruskal-Wallis
test was performed to make a comparison between the food
industries on a certain day (i.e., day 0 or day 3) (stats package,
kruskal.test function). An Analysis of Covariance (ANCOVA)
was also performed to evaluate the interactions between the

storage conditions and the food origin on psychrotrophic
counts (FactoMineR package, AovSum function). All tests were
considered as significant for a p-value of < 0.05.

Statistical Analysis on 16S rDNA Results
Alpha diversity for each sample was evaluated by richness
estimation (Chao1 estimator), microbial biodiversity (inverse
of the Simpson index, coverage), and the population evenness
(Simpson evenness) usingMOTHUR (version 1.40.5)3 (Riquelme
et al., 2015; Zhao et al., 2015). Rarefaction curves were calculated
for all samples to ensure that sequencing depth was su�cient:
OTUs identified were plotted as a function of sequences obtained
per sample. High diversity coverage was achieved with all
curves reaching asymptotes from 3000 reads (Supplementary
Figure S2). Using Explicet, alpha and beta diversity indices were
also calculated with bootstrapped sequencing data4 (Robertson
et al., 2013; Mann et al., 2016).

Beta-diversity was assessed with Explicet using the Bray-Curtis
index on a 0-1 scale.

Using STAMP (v2+) software5, a 2-sided Welch’s t-test
was performed on metagenetic results and confidence intervals
were calculated according to the Newcombe-Wilson method.
A Principal Component Analysis (PCoA) was also applied to
classify and cluster samples according to the identified OTUs
for the two packaging (Tukey-Kramer test in conjunction with
an ANOVA) (Parlapani et al., 2018). The di�erences were
considered significant for a corrected p-value of less than 0.05
(Parks et al., 2014).

RESULTS

Microbiological Analysis
As expected, psychrotrophic and lactic aerobic counts increased
during the shelf life with increasing the temperature (Tables 1, 2).

Compared to the TVC values, LAB counts showed highest
results for food industries A and D.

At day 0, di�erent microbiological counts were observed
between food companies for TVC (Kruskal-Wallis test, H = 9.43,
p-value = 0.02) and for LAB (Kruskal-Wallis tests, H = 8.90,
p-value = 0.04). The lowest psychrotrophic populations were
observed for food industries D (4.2 ± 0.4 log CFU/g) and A
(5.6 ± 0.1 log CFU/g), whereas minced pork meat samples from
B to C showed the highest results (7.5 ± 0.4 and 7.2 ± 0.4 log
CFU/g, respectively).

At the end of the shelf life, the natural logarithm of the
TVC for all food companies was over 7.0 log CFU/g. At this
time, the Analysis of Covariance revealed also a significant
e�ect of the food companies (p-value = 0.00000998) and the
temperature of storage (p-value = 0.00000095) on microbial
total counts. Psychrotrophic counts seems also to be influenced
by the interaction of the food industry and the temperature

3http://www.mothur.org
4http://www.explicet.org
5https://www.mybiosoftware.com/stamp-2-0-0-analyze-metagenomic-profiles.
html
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TABLE 1 | Results of psychrotrophic aerobic counts in minced pork meat samples according to the origin, the food packaging and the temperature of storage.

Industries/packaging Day 0 End of the shelf life (day 3)

2�C 8�C 12�C 2/8�C

FW

A 5.6 ± 0.1 6.5 ± 0.6 8.3 ± 0.4* 8.3 ± 0.5* 8.3 ± 0.3*

B 7.5 ± 0.4 7.5 ± 0.4 8.3 ± 0.0* 8.3 ± 0.2* 8.3 ± 0.9*

C 7.2 ± 0.4 7.3 ± 0.5 7.8 ± 0.0 7.8 ± 0.2 7.6 ± 1.3

D 4.2 ± 0.4 4.6 ± 0.2 7.2 ± 0.2* 8.3 ± 0.0* 6.6 ± 0.2*

Kruskal-Wallis test 9.43 (0.02)� 8.74 (0.03)� 9.02 (0.03)� 5.71 (0.13) 9.68 (0.02)�

MAP

A 5.6 ± 0.1 6.5 ± 0.1* 7.9 ± 0.1* 8.3 ± 0.3* 7.9 ± 0.2*

B 7.5 ± 0.4 7.9 ± 0.1 8.3 ± 0.0* 8.3 ± 0.0* 8.3 ± 0.0*

C 7.2 ± 0.4 7.5 ± 0.2 7.6 ± 0.1 8.3 ± 0.1* 7.8 ± 0.6

D 4.2 ± 0.4 5.2 ± 0.3* 7.9 ± 0.1* 8.1 ± 0.1* 7.2 ± 0.1*

Kruskal-Wallis test 9.43 (0.02)� 10.39 (0.02)� 9.68 (0.02)� 3.45 (0.33) 8.94 (0.03)�

Values given as log CFU/g (mean ± SD, n = 3) at 2, 8, 12, and 2/8
�
C. FW (food wrap packaging), MAP (modified atmosphere packaging),

�
significant Kruskal-Wallis value

(p < 0.05) with p-value between bracket, *significant Wilcoxon value (p < 0.05).

TABLE 2 | Results of lactic aerobic counts in minced pork meat samples according to the origin, the food packaging and the temperature of storage.

Industries/packaging Day 0 End of the shelf life (day 6)

2�C 8�C 12�C 2/8�C

FW

A 5.2 ± 0.2 6.4 ± 0.4 7.8 ± 0.1* 7.8 ± 0.2* 7.4 ± 0.2*

B 5.5 ± 0.6 5.5 ± 0.5 7.1 ± 0.3* 7.9 ± 0.2* 6.8 ± 0.4*

C 5.2 ± 0.7 6.7 ± 0.2* 7.4 ± 0.1* 7.6 ± 0.1* 7.0 ± 0.2*

D 3.5 ± 0.2 4.4 ± 0.3* 5.9 ± 0.4* 7.5 ± 0.1* 5.1 ± 0.3*

Kruskal-Wallis test 8.90 (0.04)� 9.15 (0.03)� 9.67 (0.02)� 7.62 (0.05) 8.44 (0.04)�

MAP

A 5.2 ± 0.2 7.1 ± 0.2* 8.0 ± 0.18* 8.2 ± 0.09* 8.2 ± 0.09*

B 5.5 ± 0.6 6.6 ± 0.6* 7.8 ± 0.21* 7.7 ± 0.16* 7.8 ± 0.15*

C 5.2 ± 0.7 7.3 ± 0.2* 7.6 ± 0.06* 7.9 ± 0.09* 7.5 ± 0.07*

D 3.5 ± 0.2 5.2 ± 0.4* 7.5 ± 0.07* 7.8 ± 0.03* 6.8 ± 0.24*

Kruskal-Wallis test 8.90 (0.04)� 8.44 (0.04)� 9.05 (0.03)� 8.27 (0.04)� 9.45 (0.02)�

Values given as log CFU/g (mean ± SD, n = 3) at 2, 8, 12, and 2/8
�
C. FW (food wrap packaging), MAP (modified atmosphere packaging),

�
Significant Kruskal-Wallis

value (p < 0.05) with p-value between bracket, *significant t-student value (p < 0.05).

(p-value = 000442), but not by others interactions terms
(p-value > 0.05).

Carbon Dioxygen Production
As shown in Figure 1, carbon dioxygen values increased with
highest temperatures, except for the food companies C and D
which shown relatively stable measurements. Results at 2/8�C are
not shown in this paper.

Alpha Diversity of Bacteria With 16S
rDNA Amplicon Sequencing
Over 4,200 reads per sample were generated with
pyrosequencing. In total, 48 mains OTUs were assigned.
The number of OTUs, the bacterial diversity, richness estimators
and coverage are presented in Supplementary Tables S1–S3).

The highest number of identified species was encountered for
the food industries C and D.

Bacterial Communities at the Family and
Genus Levels
The relative abundance results obtained by metagenetics analysis
(expressed in%) in FW and MAP packaging at Family (Figure 2)
and Genus (Figure 3) levels (>5%) are represented in cumulated
histograms for all samples. These data including the relative
abundance of sequences are also summarized in Supplementary
Tables S4–S6). The taxa representing <5% in relative abundance
were merged in the category of “Others.” “Others” in FW are
mainly composed by the genera Bacillus, Carnobacterium,
Enterococcus, Hafnia, Myroides, Rahnella, Staphylococcus,
Serratia, Streptococcus,Weissella and Xanthomonas in FW.While
it concerns Bacillus, Carnobacterium, Enterococcus, Hafnia,
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FIGURE 1 | Box plots show the carbon dioxide measurements at the end of the shelf life, for the four food companies (A–D) at (A) 2�C, (B) 8�C, and (C) 12�C. The
boxes represent the interquartile range between the first (Q1) and the third (Q3) quartiles; the vertical black line insides the box is the median obtained from the three
batches analyzed by food industries; the two dotted line is the difference of 25% below the Q1 or above the Q3. The presence of stars indicated that samples
deviated significantly from the carbon dioxide value at day 0 (30.0 ± 0.1%).

Rahnella, Staphylococcus, Streptococcus and Xanthomonas
in MAP. Full data on taxa found in high (>5%) and low
(<5%) frequencies will be made available by EC to any
qualified researcher.

According to Figures 2, 3, the food companies show a high
variability in the distribution of read percentages at day 0. At
this time, the genus Photobacterium is the most represented
for A and C (86.7 and 19.9%, respectively), while it concerns
the genus Pseudomonas for the industries B and D (38.7 and
25.7%, respectively).

At the end of the shelf life, a total of 12 genera were
identified as dominant (taxa representing more than 5% in
relative abundance) in MAP and only seven genera in FW. These
seven genera are all identical to those found in MAP.

For all samples, the percentage of “unassigned” reads was
relatively low (7.1 ± 3.7).

Effect of the Food Packaging on the
Bacterial Communities
However, although dominant genera were identified across all
samples, the two di�erent types of packaging were characterized
by di�erent microbiota, with only some genera in common
(Supplementary Figure S3). At the end of the shelf life,
Pseudomonas was more present in FW and this genus was
potentially replaced by Brochothrix in the MAP packaging
(Welch’s t-test, p-value < 0.05) (Figure 4).

At this time, the major OTUs groups (Figure 5) are
therefore di�erent according to the food packaging: Brochothrix
thermosphacta, Lactobacillus algidus, Photobacterium kishitanii,

Photobacterium phosphoreum, Pseudomonas psychrophila,
and Pseudomonas sp. are dominant in FW. While it
concerns Acinetobacter sp., Brochothrix thermosphacta,
Lactobacillus algidus, Lactococcus piscium, Leuconostoc inhae,
Leuconostoc gelidum, Leuconostoc sp., Photobacterium kishitanii,
Photobacterium phosphoreum, and Pseudomonas sp. in MAP.

Variability of the Minced Pork Meat
Ecosystem Between Samples
Genus relative abundance shows a high Bray-Curtis dissimilarity
during the storage, and between the food companies and
batches (Figure 6).

At day 0, samples showed a high dissimilarity (>70%) with the
metadata groupings at the end of the shelf life. At this time, the
food company A seems not to shared OTUs in common with the
three others food industries.

At the end of the shelf life, Bray-Curtis index seems indicating
that a relative similarity exists for OTUs contained within food
companies A and C, and within B andD. This index also indicates
a relative similarity concerning the temperature of storage, except
for the industry D.

A synthetic view about the Bray-Curtis index between
samples according to the food origin and storage condition is
summarized in Table 3.

DISCUSSION

In this study, we investigated the microbial spoilage community
and dynamics of minced pork meat samples, among di�erent

Frontiers in Microbiology | www.frontiersin.org 6 January 2020 | Volume 10 | Article 3074



  Annexes 

   317 

 

 
 
 
 
 
 
 
 
 

fmicb-10-03074 January 11, 2020 Time: 14:21 # 7

Cauchie et al. Minced Pork Meat Spoilage

FIGURE 2 | Cumulated histograms of the relative abundance (%) of taxa and the dynamics of the bacterial community identified by metagenetics at Family levels,
during cold storage of minced pork meat in relation to the food packaging and the origin of samples (food companies and batches). (A) food samples analyzed at
day 0 for the four companies (A–D), (B) storage in FW (food wrap) packaging, (C) storage in MAP (modified atmosphere) packaging. At Family levels, the taxa
representing <5% in relative abundance were merged in the category of "Others". Legend: batch 1 (B1), batch 2 (B2), batch 3 (B3), at 2�C (2), at 8�C (8), at 12�C
(12), and for a third of the shelf life at 2�C and for the rest of the shelf life at 8�C (2/8).

conditions of production and food storage, using both 16S rRNA
gene sequencing and classical microbiology. Indeed, whereas the
dynamics of the bacterial community of meat and meat products
have been studied before, Stoops et al. (2015) reported that
little is known about di�erences in microbial changes during
storage, and among the variability of batches production. Meat

and meat products are highly perishable, with colonization and
development of a great variety of microorganisms (Nychas et al.,
2008; Pennacchia et al., 2009; Chaillou et al., 2015; Stellato et al.,
2016; Garnier et al., 2017). The product composition (low/high
pH, low/high concentration of glucose, water activity, . . .) and
the storage conditions (temperature of storage and packaging
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FIGURE 3 | Cumulated histograms of the relative abundance (%) of taxa and the dynamics of the bacterial community identified by metagenetics at Genus levels,
during cold storage of minced pork meat in relation to the food packaging and the origin of samples (food companies and batches). (A) food samples analyzed at
day 0 for the four companies (A–D), (B) storage in FW (food wrap) packaging, (C) storage in MAP (modified atmosphere) packaging. At Genus levels, the taxa
representing <5% in relative abundance were merged in the category of "Others". These data including the relative abundance of sequences are also summarized in
Supplementary Tables S4–S6. Legend: batch 1 (B1), batch 2 (B2), batch 3 (B3), at 2�C (2), at 8�C (8), at 12�C (12), and for a third of the shelf life at 2�C and for
the rest of the shelf life at 8�C (2/8).
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FIGURE 4 | Extended bar plot showing the bacterial populations whose mean relative abundance differed between food wrap (FW) and modified atmosphere (MAP)
packaging at genus scale. The relative abundance and the difference in mean proportions are illustrated for the statistically different taxa (p < 0.05).

FIGURE 5 | Heatmap of relative read abundance at species level for all samples (expressed in %) among the different storage conditions. Only the most abundant
OTUs obtained in this study are specially indicated (>1%). Others OTUs are gathered in “Others OTUs.” Legend: food companies (A–D), with three batches each
(B1, B2, B3), analyzed at the first (0) and the last day of storage, in food wrap (FW) and modified atmosphere (MAP) packaging. Temperature of storage: 2�C (2), 8�C
(8), 12�C (12), and for a third of the shelf life at 2�C and for the rest of the shelf life at 8�C (2/8).

conditions for example) may favor growth of microorganisms,
that are responsible for the formation of spoilage (Argyri
et al., 2015; Reid et al., 2017). This can lead to visible growth
(slime, colonies), as textural changes, o�-odors or o�-flavors
(Casaburi et al., 2014; Chaillou et al., 2015; Stoops et al.,
2015; Del Blanco et al., 2017). In this context, minced meat
is a potentially hazardous food product, vulnerable to bacterial
spoilage, with a very short shelf life (Geeraerts et al., 2017)
due to abundant and diverse substrate for bacterial growth
and favorable growth conditions (Benson et al., 2014). In our
study, the minced pork meat samples present a high water
activity and a near-neutral pH which are in accordance with
previous studies on this food matrix (Blixt and Borch, 2002;
Andritsos et al., 2012).

The initial contamination of products, and also the initial
level of lactic acid bacteria, is also a key factor that can
influence the spoilage dynamic during storage (De Filippis
et al., 2013). In our results, the microbial counts of the
four manufacturers were quite di�erent and psychrotrophic
counts were higher for two food industries (Tables 1, 2).
High levels of initial contamination in minced pork meat
samples were also observed by Peruzy et al. (2019). This
di�erence of the initial bacterial contamination is not in
relation with the size of the company. These results can be
explained by the fact that multiple sources of contamination
can contribute to the initial composition of the meat microbiota
(De Filippis et al., 2013), such as at the farm (hygiene
practices, the conditions of animal transport, etc.) and at the
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FIGURE 6 | Global microbial dissimilarity obtained by metagenetics between samples for different conditions of storage. The heatmap shows the Bray-Curtis
dissimilarity measure based on relative abundance of OTUS (genus scale). Values are given in dissimilarity counts (1 = 100% dissimilar, 0 = 0% dissimilar). Legend:
analysis at day 0 (0), at day 3 (3) and at day 6 (6); food companies (A–D); three batches each (1, 2, 3); in food wrap (FW) and in modified atmosphere (MAP)
packaging. Temperature of storage: 2�C in FW (A), for a third of the shelf life at 2�C and for the rest of the shelf life at 8�C in FW (B), 8�C in FW (C), 12�C in FW (D),
2�C in MAP (E), for a third of the shelf life at 2�C and for the rest of the shelf life at 8�C in MAP (F), 8�C in MAP (G), 12�C in MAP (H).

slaughterhouse (automatic level of the process, cleaning practices,
etc.). Initial carcass contamination can be also environmental,
with contamination by tools, machines, and surfaces of slaughter
equipment (Mann et al., 2016; Moretro et al., 2016). In
addition, subsequent handling of meat in the operations of
slicing, sectioning, portioning, and transferring in packages
can determine further contamination in the handling points
(Del Blanco et al., 2017).

The bacterial count at the end of the shelf life was over
7.0 log CFU/g, indicating that meat had probably begun to be
deteriorated and would not be suitable for human consumption
(Zhao et al., 2015). Indeed, it is generally recognized that
microbial spoilage of meat occurs when counts reach arbitrary
level between 7.0 log CFU/g (Nychas et al., 2008; Pothakos
et al., 2014; Stoops et al., 2015; Reid et al., 2017; Spanu et al.,
2018) and 8.00 log CFU/g (Nychas et al., 2008; Fall et al., 2012;
Pothakos et al., 2014; Chaillou et al., 2015; Reid et al., 2017).
However, these values are only indicative and refer here to the
total viable count. Food spoilage needs to be assessed to the
genus-species level, because potentially protective bacteria can
also occur in food products.

As discussed by Del Blanco et al. (2017), common approaches
for delaying meat spoilage and improving meat shelf life
are available, including good hygienic practices and all the
storage conditions. Among these, low storage temperatures and
adequate packaging are considered as the most important factors
(Koutsoumanis et al., 2006; Andritsos et al., 2012; Kaur et al.,
2017). During the storage at 2�C, the arbitrary level of 7.0
log CFU/g was sometimes not reached. In addition, it can be
observed that the microbial kinetics from 2 to 8�C were quite
similar to those at 8�C, as described by Cauchie et al. (2017).

In relation with the food packaging, the most common
used in meat and meat products are vacuum packaging and
modified atmosphere packaging (MAP) (Caryé et al., 2005;
Koutsoumanis et al., 2008; Dalcanton et al., 2013; Chaix et al.,
2015; Silbande et al., 2016). In this study, a food wrap (FW) and a
MAP (30% CO2 – 70% O2) packaging are used. The composition
of modified atmosphere systems can be an e�ective way to
reduce the growth rate of spoilage aerobic organisms and modify
the microbial ecology of the product. But their e�ectiveness
strongly depends on the initial microbial contamination of
raw materials, storage temperature, film permeability and the
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TABLE 3 | Dominant bacteria represented in minced pork meat samples according to storage conditions.

Food companies First day of storage Last day of storage

Batch FW MAP

A Photobacterium sp.,
Ph. phosphoreum

1 Brochothrix

thermosphacta,

Photobacterium kishitanii,

Pseudomonas sp.

B. thermosphacta,

Ph. kishitanii

2 B. thermosphacta,

Ph. kishitanii,

Pseudomonas sp.

B. thermosphacta,

Ph. kishitanii,

Weissella sp.

3 Ph. phosphoreum,

Pseudomonas sp.
Ph. phosphoreum

B Pseudomonas sp.,
Ps. psychrophila

1 B. thermosphacta,

Ps. psychrophila

B. thermosphacta,

Ps. psychrophila

2 B. thermosphacta,

Photobacterium sp.,
Pseudomonas sp.

Acinetobacter sp.,
B. thermosphacta,

Photobacterium sp.

3 Ph. kishitanii,

Ph. phosphoreum,

Pseudomonas sp.

Acinetobacter sp.,
Lactobacillus sp.,
Leuconostoc sp.,
Ln. gelidum,

Photobacterium sp.,
Ph. kishitanii

C Photobacterium sp.,
Ph. kishitanii

1 Lactobacillus algidus,

Ph. kishitanii

Lb. algidus,

Ln. carnosum, Ln.

inhae,

Ph. kishitanii

2 Photobacterium sp.,
Ph. kishitanii,

Pseudomonas sp.,
Ps. phychrophila

Lb. algidus,

Lactococcus piscium,

Ln. inhae,

Ph. kishitanii

3 Ph. kishitanii,

Pseudomonas sp.
Ph. kishitanii

D Pseudomonas sp.,
Ps. psychrophila,
Ps. syncyanea

1 B. thermosphacta,

Pseudomonas sp.,
B. thermosphacta,

Photobacterium sp.,
Pseudomonas sp.

2 Acinetobacter sp.,
B. thermosphacta,

Photobacterium sp.,
Ps. psychrophila

B. thermosphacta,

Lc. piscium,

Ln. gelidum, Ln. inhae

3 Acinetobacter sp.,
Brochothrix sp.,
B. thermosphacta,

Pseudomonas sp.,

B. thermosphacta,

Ph. kishitanii

At species level, the taxa representing <20% in relative abundance were not considered as dominant in this table. FW (food wrap packaging), MAP (modified

atmosphere packaging).

carbon dioxide concentration used (20–40% is commonly used
to suppress microbial growth) (Simpson and Carevic, 2004;
Rotabakk et al., 2006; Stoops et al., 2015; Guillard et al.,
2016; Saraiva et al., 2016; Couvert et al., 2017). The carbon
dioxide concentration was here theoretically su�cient to limit
the microbial growth. However, the higher percentage of oxygen

can also enhance the growth of aerobic microbial communities
in our samples. Moreover, some bacteria are able to grow
in variable food packaging, as Photobacterium which is CO2-
tolerant (Dalgaard, 1995; Fuertez-Perez et al., 2019). Also, in
accordance with Stoops et al. (2015), it can be observed a
significant production of carbon dioxide. This production may

Frontiers in Microbiology | www.frontiersin.org 11 January 2020 | Volume 10 | Article 3074



  Annexes 

   322 

 

 
 
 
 
 
 
 
 
 
 

fmicb-10-03074 January 11, 2020 Time: 14:21 # 12

Cauchie et al. Minced Pork Meat Spoilage

be the reflect of the development of bacterial groups belonging
to lactic acid bacteria, Brochothrix or Enterobacteriaceae (Caryé
et al., 2005). As environment of slaughtering and processing steps
(Stellato et al., 2016), packaging materials can also be a source
of contamination because they are not sterile in study. Further
studies based on microbial contamination of food trays would
also be interesting.

According to this, and based on the study by Stoops et al.
(2015), viable counts are not suitable to characterize themicrobial
diversity of food products and to investigate thoroughly
shifts in the bacterial communities during storage. Indeed,
culture-dependent techniques largely underestimated the species
richness and abundance. For a more detailed characterization
of microbial communities in samples, originating from di�erent

TABLE 4 | Examples of some microbial species occurring during chilled storage of meat and their potential spoilage effects.

Bacteria Growth conditions Spoilage effects References

Actinetobacter spp. Especially present in dairy and
seafood products.

Low spoilage potential but can
enhanced the growth of other spoilage
bacteria by means of quorum sensing.

Pinu, 2016; Ghasemi-Varnamkhasti
et al., 2018; Odeyemi et al., 2018;
Hahne et al., 2019

Brochothrix spp. In different gas composition, such
as under air, modified atmosphere
and vacuum-packaging. More
tolerant in oxygen-depleted and
CO2-enriched environments.

Sour, acid and cheesy odor. Koutsoumanis et al., 2008; Nychas
et al., 2008; Ercolini et al., 2011;
Doulgeraki et al., 2012; Zhao et al.,
2015; Mann et al., 2016; Del
Blanco et al., 2017; Reid et al.,
2017; Mansur et al., 2019

Carnobacterium spp. In all types of packaging conditions.
Predominance in low O2
packaging.

Spoilage effect can vary, producing
volatile molecules with low sensory
impacts (fruity or fermented odors, . . .)

Casaburi et al., 2011; Doulgeraki
et al., 2012; Pothakos et al., 2015

Lactobacillus spp. (Lb. sakei, Lb.

fuchuensis, Lb. plantarum, Lb.

curvatus, Lb. algidus, Lb.

oligofermentans, . . .)

In all types of packaging conditions.
Predominance with high
concentration of CO2.

Severe acidification, emission of
off-odor compounds and ropy slime.
However, lactic acid bacteria may
produce lactic acid, which inhibits the
growth of other families of bacteria. And
some species can produce
bacteriocins.

Kato et al., 2000; Fadda et al.,
2010; Doulgeraki et al., 2012;
Dalcanton et al., 2013; Nieminen
et al., 2015; Pothakos et al., 2015;
Zhao et al., 2015; Alvarez-Sieiro
et al., 2016; Mann et al., 2016;
Woraprayote et al., 2016;
Stefanovic et al., 2017; Mansur
et al., 2019

Lactococcus spp. In various types of packaging. Traditionally they have not been
considered as spoilage
microorganisms, but the spoilage
potential of these bacteria is still
scarcely known.

Kato et al., 2000; Doulgeraki et al.,
2012; Rahkila et al., 2012;
Dalcanton et al., 2013; Pothakos
et al., 2014; Zhao et al., 2015;
Mann et al., 2016; Mansur et al.,
2019

Leuconostoc spp.
(Ln. gelidum, Ln. carnosum, Ln.

mesenteroides, . . .)

Under aerobic, vacuum and
modified atmosphere packaging.
Predominance with high
concentration of O2.

Buttery aroma, formation of slime,
blowing of packages, green
discoloration.

Kato et al., 2000; Doulgeraki et al.,
2012; Dalcanton et al., 2013;
Nieminen et al., 2015; Pothakos
et al., 2015; Zhao et al., 2015;
Mann et al., 2016; Mansur et al.,
2019

Photobacterium spp. Under air, vacuum and modified
atmosphere packaging. More
frequently present in seafood
products.

Typically not associated with spoilage of
meat. Responsible for reducing TMAO
to TMA, off-odor (produce volatile
organic compounds) and biogenic
amine formation. The mechanism
underlying spoilage has not been
clarified.

Nieminen et al., 2016; Li et al.,
2019

Pseudomonas spp. In different gas composition, such
as under air, modified atmosphere
and vacuum-packaging.
Predominance under aerobic low
temperature. Limitation in the
bacterial flora by the presence of
CO2 and/or the limitation of O2 in
MAP packaging.

Slime, discoloration, off-odor
producing.

Koutsoumanis et al., 2008; Nychas
et al., 2008; Ercolini et al., 2011;
Andritsos et al., 2012; Doulgeraki
et al., 2012; Zhao et al., 2015;
Mann et al., 2016; Del Blanco et al.,
2017; Reid et al., 2017; Liu et al.,
2018; Spanu et al., 2018; Mansur
et al., 2019

Weissella spp. Some can be found in salted and
fermented foods. Present in
vacuum packaging.

Greenish appearance. Can plays an
important role in the fermentation
process. Some species can produce
bacteriocins.

Pothakos et al., 2015; Martins
et al., 2016; Kim et al., 2017;
Kariyawasam et al., 2019
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ecological niches, a sequence-based approach was used, allowing
identification of OTUs at various taxonomic levels (species,
genus or family levels) (Stoops et al., 2015). However, without
extensive studies involving a large number of samples under
di�erent storage conditions it will not be possible to determine
exactly the bacterial ecosystem and the role of individual spoilage
species (Pennacchia et al., 2011; Rouger et al., 2018). According
to this, we analyzed minced meat samples from four di�erent
food companies, with three di�erent batches per industries. In
addition to previous studies based on themicrobial description of
minced meat samples (Stoops et al., 2015; Peruzy et al., 2019), our
study aims to understand and monitor microbial dynamics and
variability between food companies and food batches, according
to di�erent storage conditions.

In our results, the observed microbial diversity was relatively
high, and the most abundant bacteria di�er among samples.
As observed by Stoops et al. (2015) in minced meat samples,
an increase of microbial counts is coinciding with a decrease
in bacterial diversity during storage. At the end of the storage
period, the major genus taxa are represented by Pseudomonas in
FW and Brochothrix in MAP. But it can also be observed a high
diversity between food companies and batches (Table 3). Our
results are in accordance with Peruzy et al. (2019), which also
observed a dominance of the genus Pseudomonas, Brochothrix,
and Carnobacterium in minced pork meat samples. Moreover,
these results are not surprising because the microbial populations
of refrigerated meat and pork-meat products are mainly
composed by Pseudomonas spp., cold tolerant Enterobaceriaceae,
lactic acid bacteria (such as Lactobacillus spp., Lactococcus
spp., Leuconostoc spp., Carnobacterium spp., etc.), Brochothrix
thermosphacta, Clostridium spp. (Koort et al., 2005; Liu et al.,
2006; Nychas et al., 2008; Pennacchia et al., 2009, 2011; Casaburi
et al., 2014; Stellato et al., 2016; Del Blanco et al., 2017; Geeraerts
et al., 2017) and Weissella spp. (Pothakos et al., 2014; Stellato
et al., 2016). Other genera isolated frequently from fresh pork
meats are Acinetobacter spp., Aeromonas spp., Enterococcus
spp., and Moraxella spp. (Zhao et al., 2015; Mann et al.,
2016). However, these results are not completely in accordance
with Stoops et al. (2015) because this study mentioned that
Lactobacillus algidus and Leuconostoc sp. became the dominant
bacteria in minced meat samples stored at 5�C under modified
atmosphere (66% O2, 25% CO2, and 9% N2). These di�erences
can be explained by di�erent meat compositions (beef in the
study by Stoops et al. (2015) and pork in our study), the initial
contamination of samples, and the gas mixture used.

The results also showed the interest of using culture-
independent method to better understand the changes of food
microbiota over time, and in each food companies, according to
the storage conditions. Indeed, metagenetics approach produce a
large amount of data in a very short time (Cocolin et al., 2018;
Den Besten et al., 2018), allowing to interpret and use these
data to help agri-food companies in their decisions regarding
food safety and quality decisions. Moreover, all the OTUs-
species described as potentially spoilers in our study are well
described in the literature (Table 4), and in minced pork meat
samples (Stoops et al., 2015; Peruzy et al., 2019). The bacterial
species present in our samples are also able to grow in meat

matrices, and they are potentially responsible of spoilage e�ects,
which can a�ect color, flavor, visual aspect, etc. (Pothakos
et al., 2015). Sensory analyses would be interesting in this
context, but were not performed in this study. Moreover, the
enzymatic decarboxylation of amino acids, or the transamination
of aldehydes and ketones, by bacteria results in the formation
and accumulation of biogenic amines (BAs) (Jastrzębska et al.,
2016). Biogenic amines (e.g., b-phenylethylamine, cadaverine,
histamine, putrescrine, spermidine, spermine, tyramine and
tryptamine) are reported in various foods including meat,
fish, cheese, and wine (Papageorgiou et al., 2018). They can
have health implications, such as allergic reactions, but also
contribute to spoilage due to their putrid aroma (Stanborough
et al., 2017). Therefore, as proposed by Cheng et al. (2016),
the sum of BAs could be used as an indicator of pork meat
quality and freshness during storage. Li et al. (2014) also
showed that some BAs could be used as spoilage indicators
of chilled pork.

However, it is important to add that some bacteria can
be considered as protective, such as some lactic acid bacteria.
As mentioned by Singh (2018), the presence of high LAB
communities does not necessarily result in quality defect, and
their intra-species variation to cause spoilage has already been
recognized (Pothakos et al., 2015).

In the present study, we designed a method to collect MPM
samples in order to explore the bacterial communities and
diversity among di�erent food origin and storage conditions.
Indeed, the modification of the composition of the spoilage
flora during storage is an important factor in assessing food
quality (Holm et al., 2013). Although the bacteria consistently
dominated the microbiota of MPM samples are known, results
indicated that bacterial diversity needs to be addressed on the
level of food companies and batches variations. As discussed by
Rouger et al. (2017), it is important to overcome variability to
better understand the factors underlying the diversity of spoilage
bacterial communities, by (i) defining reproducible and reliable
experimental conditions to lead to biological interpretation, or
(ii) to multiplying sampling or experiments to obtain statistical
significance of the results (Chaillou et al., 2015; Rouger et al.,
2017). A seasonal e�ect on the microbial quality of minced
meat has also been reported by Andritsos et al. (2012). In
this paper, no conclusions about bacterial ecosystems for others
food companies, or for di�erent times of the year, should be
dawn. Further data are so needed to determine diversity of
spoilage microbiota in minced pork meat samples, according to
others food industries, sampling periods and storage conditions.
Also, a comparative evaluation of spoilage-related bacterial
species and metabolic profiles, with growth parameters of
these potentially spoilage bacteria in samples, will be studied
in another study.

In conclusion, the combination of both culture-dependent and
culture-independent analyses enabled us to explore the microbial
communities of minced pork meat samples under di�erent
food origin and storage conditions, as previously described by
Stoops et al. (2015). In our study, microbial changes during
storage were monitored, according to a sampling in four food
companies and for several batches. In accordance with previous
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studies we found that Pseudomonas and Brochothrix dominate
the community at the end of the shelf life in FW and MAP,
respectively, together with Photobacterium. The major OTUs
groups are also often associated with pork meat spoilage in the
scientific literature. And these results are also in accordance with
studies conducted on the microbiota of minced meat by Stoops
et al. (2015) and Peruzy et al. (2019). Psychrophilic spoilers
dominated the microbiota of our samples, but each sample
harbored a unique pork meat microbiota, depending on the
manufacturing batch and the packaging used. The gas mixture
and the temperature condition used in this study are probably the
most important factors implied to the dynamics of the bacterial
community. Further researches on the main contamination
during slaughter production process, such as importance of
processing environment, procedures and storage conditions, are
desirable to provide a complete assessment of the microbiome of
minced meat and to limit incidents of unexpected spoilage.
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The aim of this study was to obtain the growth parameters of specific spoilage

micro-organisms previously isolated in minced pork (MP) samples and to develop a

three-spoilage species interaction model under different storage conditions. Naturally

contaminated samples were used to validate this approach by considering the effect of

the food microbiota. Three groups of bacteria were inoculated on irradiated samples,

in mono- and in co-culture experiments (n = 1152): Brochothrix thermosphacta,

Leuconostoc gelidum, and Pseudomonas spp. (Pseudomonas fluorescens and

Pseudomonas fragi). Samples were stored in two food packaging [food wrap and

modified atmosphere packaging (CO2 30%/O2 70%)] at three isothermal conditions

(4, 8, and 12�C). Analysis was carried out by using both 16S rRNA gene amplicon

sequencing and classical microbiology in order to estimate bacterial counts during

the storage period. Growth parameters were obtained by fitting primary (Baranyi) and

secondary (square root) models. The food packaging shows the highest impact on

bacterial growth rates, which in turn have the strongest influence on the shelf life of

food products. Based on these results, a three-spoilage species interaction model

was developed by using the modified Jameson-effect model and the Lotka Volterra

(prey–predator) model. The modified Jameson-effect model showed slightly better

performances, with 40–86% out of the observed counts falling into the Acceptable

Simulation Zone (ASZ). It only concerns 14–48% for the prey–predator approach. These

results can be explained by the fact that the dynamics of experimental and validation

datasets seems to follow a Jameson behavior. On the other hand, the Lotka Volterra

model is based on complex interaction factors, which are included in highly variable

intervals. More datasets are probably needed to obtained reliable factors, and so

better model fittings, especially for three- or more-spoilage species interaction models.

Further studies are also needed to better understand the interaction of spoilage bacteria

between them and in the presence of natural microbiota.

Keywords: predictive microbiology, growth parameters, interaction models, Brochothrix thermosphacta,
Pseudomonas spp., Leuconostoc gelidum, Jameson-effect model, Lotka Volterra model
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INTRODUCTION

During production and distribution steps, spoilage of meat
and meat products may occur, rendering them unacceptable
for human food consumption. Spoilage is mainly caused
by microbial growth, which triggers alterations in the
sensorial qualities of the product, with o�-odor and o�-
flavor, discoloration, texture changes, etc. (Kreyenschmidt
et al., 2010; Dalcanton et al., 2013; Pinter et al., 2014; Cauchie
et al., 2017; Den Besten et al., 2017; Torngren et al., 2018). It is
well known that the initial bacterial counts on meat and meat
products is highly variable (Benson et al., 2014), but several
studies have established that only a dominant fraction of the
microbiota, designated as specific spoilage organisms (SSOs),
contributes to spoilage (Nychas et al., 2008; Kreyenschmidt et al.,
2010; Pennacchia et al., 2011; Benson et al., 2014; Zotta et al.,
2019). In this context, predictive microbiology can be a helpful
tool because the prediction of microbial growth, especially
SSOs, enables food industries to optimize their production and
storage managements, and thus reduce their economic losses
(Kreyenschmidt et al., 2010; Fakruddin et al., 2012; Li et al., 2017;
Tamplin, 2018).

During the last years, several models have been developed to
predict the growth of SSOs in meat and meat products (Liu et al.,
2006;Mataragas et al., 2006; Koutsoumanis, 2009; Kreyenschmidt
et al., 2010; Dalcanton et al., 2013; Mejlholm andDalgaard, 2013).
But the majority of the developedmodels are based on the growth
of two bacterial species in a food matrix (Vereecken et al., 2000;
Giu�rida et al., 2007), most often to study the interaction between
spoilage and pathogenic bacteria (Lebert et al., 2000; Mejlholm
and Dalgaard, 2007; Giu�rida et al., 2009; Cornu et al., 2011;
Ye et al., 2014; Correia Peres Costa et al., 2019; Pedrozo et al.,
2019). Moreover, these models often describe the growth of the
SSOs depending on the storage temperature (Dominguez and
Scha�ner, 2007; Gospavic et al., 2008; Kreyenschmidt et al., 2010;
Psomas et al., 2011; Longhi et al., 2013; Antunes-Rohling et al.,
2019) or the packaging conditions (Devlieghere et al., 1999; Chaix
et al., 2015; Guillard et al., 2016; Couvert et al., 2019; Kapetanakou
et al., 2019), but do not always consider the interaction of these
storage conditions for the growth of spoilage bacteria (Rosso
et al., 1995; Augustin and Carlier, 2000; Le Marc et al., 2002;
Pinon et al., 2004; Dalcanton et al., 2018; Kakagianni et al., 2018;
Nyhan et al., 2018; Correia Peres Costa et al., 2019).

Asmentioned by Correia Peres Costa et al. (2019): “interaction
models are usually intended to quantify how much the growth of
one population is reduced by the growth of other populations.”
In this context, two model approaches are generally used to
describe themicrobial interaction: (i) those based on themodified
Jameson-e�ect phenomenon (Jameson, 1962; Cornu et al., 2011;
Ye et al., 2014; Cauchie et al., 2017; Correia Peres Costa et al.,
2019), and (ii) those based on the predator-prey models (Lotka
Volterra equation) (Dens et al., 1999; Berlow et al., 2004; Powell
et al., 2004; Giu�rida et al., 2007; Mounier et al., 2008; Cornu
et al., 2011; Ye et al., 2014; Correia Peres Costa et al., 2019).

As described by Cornu et al. (2011), the Jameson-e�ect model
assumes that: “(i) many microbial interactions in foods limit the
maximum population density, without any significant e�ect on

the lag time, and (ii) the growth of the minority population is
only partly inhibited after the majority population count has
reached its stationary phase [maximum critical population,MCP,
expressed in log colony forming units (CFU)/g].” The modified
Jameson-e�ect model makes the hypothesis that there is one
single inhibition function for both populations; hence, both
populations are similarly inhibited by the same limiting resource,
the same waste products, and/or by change in pH (Cornu et al.,
2011). Recently, Quinto et al. (2018) have developed a three-
strain model based on the modified Jameson-e�ect equation for
inoculated spoilage and pathogenic bacteria in a reconstituted
sterile skimmed milk. This study considers the e�ect of two
bacteria, Pseudomonas fluorescens and Listeria innocua, on the
bacterial growth of Listeria monocytogenes. But the e�ect of
the natural food microbiota on the growth of specific spoilage
bacteria needs to be studied (Rouger et al., 2017) in order
to predict bacterial growth resulting from several interactions
between three or more spoilage species (Ye et al., 2014). This
approach needs to be studied.

The Lotka Volterra model can be considered as a prey-
predator model that includes competition for a common
substrate (Cornu et al., 2011). As cited by Chauvet et al. (2002),
the Lotka Volterra model for a three-species food chain approach
can be considered as: “the lowest-level prey x is preyed upon
by a mid-level species y, which, in turn, is preyed upon by a
top-level predator z.” However, this hypothesis cannot always be
applied in food matrix. Indeed, the growth of a bacterium (BA)
presents simultaneously with other bacteria in a food matrix (BB
and BC) can be a�ected by three di�erent ways: (i) BA growth
with a reduced growth rate after that BB and BC reach their
maximal population densities (Nmax, expressed in log CFU/g),
(ii) BA stops growing when BB and BC reach their Nmax, and (iii)
BA declines when BB and BC reach their Nmax (Cauchie et al.,
2017; Correia Peres Costa et al., 2019). It could be so interesting
to develop a Lotka Volterra model for a three-species approach,
by considering the e�ect of the natural food microbiota for the
growth of specific spoilage bacteria. Also, this approach is, to the
best knowledge of the authors, not available in the literature.

Based on these, the objectives of the present study were (i) to
obtain the growth parameters of three specific spoilage micro-
organisms previously isolated in minced pork (MP) samples,
according to di�erent storage conditions, (ii) to develop a
three-spoilage species interaction model based on available
models, under food wrap and modified atmosphere packaging,
at isothermal conditions, and (iii) to validate this approach
with naturally contaminated food samples stored under di�erent
storage conditions.

MATERIALS AND METHODS

Sampling
Fresh MP samples were obtained from a local Belgian
manufacturer at the day of the production, corresponding to
the day of slaughtering. MP samples were packed by the
manufacturer in a polypropylene tray under cling film (high
film permeability).
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According to the recipe, MP is composed of 100% pork mince
(70% lean, 30% fat), no salt, no spices, no additives, no eggs, and
no sugar are added.

At the day of the production, the water activity of the product
was 0.98 ± 0.02 and the pH value was 5.80 ± 0.05 (n = 12).
pH of the homogenized samples (5 g in 45 mL of KCl) was
measured with a pH meter (Knick 765 Calimatic, Allemagne).
The water activity was measured for homogenized samples on the
basis of the relative humidity measurement of the air balance in
the micro enclosure at 25 ± 0.4�C (Thermoconstanter TH200,
Novasina, Switzerland).

Food samples were then stored at �20�C and irradiated by
gamma irradiation (17.5 ± 0.4 kGy) at the same temperature
(Sterigenics, Fleurus, Belgium) to limit the adverse e�ects of
irradiation at this dose (Kim et al., 2002; Ham et al., 2017;
Wang et al., 2018).

Bacterial Strains
As described in the study of Cauchie et al. (2019), three
specific spoilage micro-organisms were previously isolated from
di�erent batches of naturally contaminated Belgian MP samples
at the end of their use-by date. Samples were stored under
two packaging (under air and modified atmosphere—30% CO2–
70% O2) and three temperature conditions (4, 8, and 12�C).
These predominant strains, represented more than 50% of the
natural microbiota, were identified by 16S rRNA sequencing
and used for experiments: Brochothrix thermosphacta (MM008),
Leuconostoc gelidum (MM045) Pseudomonas spp. (P. fluorescens
MM026 and Pseudomonas fragi MM014). P. fluorescens and
P. fragi were used together because experiments were carried
out in an exploratory approach to the proposed method, thus
wishing to consider a wide diversity of Pseudomonas species most
frequently found in MP.

Brochothrix thermosphacta MM008, L. gelidum (MM045),
P. fragiMM014, and P. fluorescensMM026 were stored at �80�C
in nutrient broth with 30% glycerol as a cryoprotective agent.
Before use, strains were transferred from the �80�C culture
collection to Brain Heart Infusion (BHI) broth for 48 h at 22�C.
The bacterial suspensions were incubated overnight at 4�C before
inoculation at stationary phase (7.00 log CFU/mL).

Inoculation Experiments
The three selected bacteria suspensions were inoculated on
irradiated MP samples (1% v/w), in triplicate, for mono-culture
and co-culture experiments with the objective to reach an average
concentration of 3.0 log CFU/g (on the product).

Mono-culture experiments were performed by inoculation
of individual bacterial strains: B. thermosphacta MM008,
Pseudomonas spp. (P. fluorescens MM026, P. fragi MM014, 1:1
ratio), and L. gelidumMM045.

Co-culture experiments were performed by inoculation of a
mix containing B. thermosphacta MM008, Pseudomonas spp.
(P. fragi MM0014 and P. fluorescens MM0026, 1:1 ratio), and
L. gelidumMM045 (1:1:1 ratio).

Non-inoculated control samples were homogenized, in
triplicate, by adding the same quantity of sterile water only.

After inoculation, MP samples were mixed in a Kenwood
mixer for 2 min in speed 2 (Kenwood, Mechelen, Belgium).

Inoculated and non-inoculated MP samples were then packed
(50 g) in two di�erent types of non-sterile packaging. The first
packaging was a high barrier tray (187 ⇥ 137 ⇥ 36, polyester
10µm, homo-polymer polypropylene 50µm,NutriPack, France)
under modified atmosphere (MAP, CO2 30%/O2 70% ± 0.1%)
(Olympia V/G, Technovac, Italy) using packaging wrap
(PP/EVOH/PP) with random gas measurements (CheckMate
3, Dansensor, France). The second packaging concerns a weak
barrier tray (175 ⇥ 135 ⇥ 22, polystyrene) under food wrap
packing (FW) using cling film (Clinofilm).

In this study, MP samples were stored during a 13-days
shelf life at isothermal temperature: (i) 4�C (±1�C), (ii) 8�C
(±1�C), (iii) and 12�C (±1�C), in climatic chambers (Sanyo
MIR 254) (288 samples for four experiments, n = 1152 samples)
(Supplementary Figure S1). A storage time of 13 days was
defined in this study in order to obtain a su�cient number of
points for modeling, allowing us to predict all the growth phases.

The codes used for each experiment, depending on the
inoculated bacteria and storage conditions, are listed in Table 1.

pH and Gas Composition Measurements
At the first and the last day of storage, pH of the homogenized
samples (5 g in 45 mL of KCl) was measured with a pH meter
(Knick 765 Calimatic, Allemagne).

Oxygen and carbon oxygen concentrations of samples
stored in modified atmosphere packaging were monitored daily
(CheckMate 3, Dansesor, France).

Non-parametric statistical tests were used to compare the pH
values and the gas measurements between samples. All tests were
considered as significant for a p-value < 0.05.

Plate Count Enumeration
Twenty-five grams of product were put into a Stomacher
bag with a mesh screen liner (80 µm pore size) (Biomérieux,
Basingstoke, England, ref 80015) under aseptic conditions.
Bu�ered peptone water (BPW, 10 g/L peptone, 5 g/L sodium
chloride, #3564684, Bio-Rad, Marnes-la-Coquette, France)
(225 mL) was automatically added to each bag (Dilumat,
Biomérieux, Belgium) and the samples were homogenized for
2 min in a Stomacher (Bagmixer, Interscience, France). From this
primary suspension, decimal dilutions in maximum recovery
diluent (1.0 g/L peptone, 8.5 g/L sodium chloride, #CM0733,
Oxoid, Hampshire, England) were prepared for microbiological
analysis, and 0.1 mL aliquots of the appropriate dilutions
were plated onto media for each analysis (Spiral plater, DW
Scientific, England).

Total viable counts (TVCs) for the aerobic psychrophilic
microbiota were enumerated on plate count agar (PCA agar,
#3544475, Bio-Rad, Marnes-la-Coquette, France) after 72 h at
22�C (model 1535 incubator, Shel Lab, Sheldon Manufacturing,
Inc., United States).

Plate counts were performed for mono- and co-culture
experiments, and transformed in decimal logarithmic values.
Samples for both experiments were enumerated at the first day of
inoculation (day 0) and daily until the last day of storage (day 13).
None specific agar media were used in co-culture experiments
to separately enumerate the three inoculated species. Non-
inoculated control samples were analyzed at day 0 and at day 13.
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TABLE 1 | List of the codes used for the experiments, depending on the

inoculated bacteria and storage conditions.

Food Temperature

Experiments packaging (�C) Bacterial species Codes

Mono-culture FW 4 B. thermosphacta Amono

FW 8 Bmono

FW 12 Cmono

MAP 4 Dmono

MAP 8 Emono

MAP 12 Fmono

Mono-culture FW 4 Pseudomonas spp. Gmono

FW 8 Hmono

FW 12 Imono

MAP 4 Jmono

MAP 8 Kmono

MAP 12 Lmono

Mono-culture FW 4 L. gelidum Mmono

FW 8 Nmono

FW 12 Omono

MAP 4 Pmono

MAP 8 Qmono

MAP 12 Rmono

Co-culture FW 4 B. thermosphacta Aco(A)

Pseudomonas spp. Aco(B)

L. gelidum Aco(C)

FW 8 B. thermosphacta Bco(A)

Pseudomonas spp. Bco(B)

L. gelidum Bco(C)

FW 12 B. thermosphacta Cco(A)

Pseudomonas spp. Cco(B)

L. gelidum Cco(C)

MAP 4 B. thermosphacta Dco(A)

Pseudomonas spp. Dco(B)

L. gelidum Dco(C)

MAP 8 B. thermosphacta Eco(A)

Pseudomonas spp. Eco(B)

L. gelidum Eco(C)

MAP 12 B. thermosphacta Fco(A)

Pseudomonas spp. Fco(B)

L. gelidum Fco(C)

FW, food wrap; MAP, modified atmosphere packaging (CO2 30%/O2 70% ± 0.1%);
mono, mono-culture experiments; co, co-culture experiments with by individually
tracking the inoculated bacteria by metagenetic analysis [B. thermosphacta, co(A);
Pseudomonas spp., co(B); L. gelidum, co(C)].

Using R software (R Core Team, 2019), an analysis of
covariance (ANCOVA) was performed to evaluate the e�ect of
the storage conditions on plate counts (FactoMineR package,
Le et al., 2008). All tests were considered as significant for a
p-value < 0.05.

16S rDNA Metagenetic Approach
A 16S rDNA metagenetic approach was used for mono- and co-
culture experiments.

In mono-culture experiments, metagenetic analysis were
performed at the first day of inoculation (day 0) and at the last
day of storage (day 13) for samples stored at 4�C.

In co-culture experiments, samples were analyzed at day 0
and daily until day 13. The results were then correlated with
plate counts in order to obtain estimate bacterial abundance
over storage (see section “16S rDNA Data Analysis and
Bacterial Abundance”).

No 16S rDNA metagenetic analysis was performed for non-
inoculated control samples.

DNA Extraction and 16S rDNA Amplicon Sequencing
Bacterial DNA was extracted from each primary suspension,
previously stored at –80�C, using the DNEasy Blood and Tissue
kit (QIAGEN Benelux BV, Antwerp, Belgium) following the
manufacturer’s recommendations. The resulting DNA extracts
were eluted in DNAse/RNAse free water and their concentration
and purity were evaluated by means of optical density using
the NanoDrop ND-1000 spectrophotometer (Isogen, St-Pieters-
Leeuw, Belgium). DNA samples were stored at –20�C until used
for 16S rDNA amplicon sequencing.

PCR-amplification of the V1–V3 region of the 16S rDNA
library preparation was performed with the following primers
(with Illumina overhand adapters), forward (50-GAGAGTTTGA
TYMTGGCTCAG-30) and reverse (50-ACCGCGGCTGCTGG
CAC-30). Each PCR product was purified with the Agencourt
AMPure XP beads kit (Beckman Coulter; Pasadena, CA,
United States) and submitted to a second PCR round for
indexing, using the Nextera XT index primers 1 and 2.
Thermocycling conditions consisted of a denaturation step of
4 min at 94�C, followed by 25 cycles of denaturation (15 s at
94�C), annealing (45 s at 56�C), and extension (60 s at 72�C),
with a final elongation step (8 min at 72�C). These amplifications
were performed on an EP Mastercycler Gradient System
device (Eppendorf, Hamburg, Germany). The PCR products
of approximately 650 nucleotides were run on 1% agarose gel
electrophoresis and the DNA fragments were plugged out and
purified using a Wizard SV PCR purification kit (Promega
Benelux, Leiden, Netherlands). After purification, PCR products
were quantified using the Quanti-IT PicoGreen (ThermoFisher
Scientific, Waltham, MA, United States) and diluted to
10 ng/µL. A final quantification, by quantitative (q)PCR, of
each sample in the library was performed using the KAPA
SYBRR� FAST quantitative PCR (qPCR) Kit (KapaBiosystems,
Wilmington, MA, United States) before normalization, pooling,
and sequencing on a MiSeq sequencer using V3 reagents
(Illumina, San Diego, CA, United States).

Bioinformatics Analysis
The 16S rRNA gene sequence reads were processed with
MOTHUR. The quality of all sequence reads was denoised
using the Pyronoise algorithm implemented in MOTHUR.
The sequences were checked for the presence of chimeric
amplification using ChimeraSlayer (developed by the Broad
Institute1). The obtained read sets were compared to a reference
dataset of aligned sequences of the corresponding region derived
from the SILVA database of full-length rRNA gene sequences2

1http://microbiomeutil.sourceforge.net/#A_CS
2http://www.arb-silva.de/
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(version v1.2.11) implemented in MOTHUR. The final reads
were clustered into operational taxonomic units (OTUs), using
the nearest neighbor algorithm using MOTHUR with a 0.03
distance unit cuto�. A taxonomic identity was attributed to
each OTU by comparison to the SILVA database, using an
80% homogeneity cuto�. As MOTHUR is not dedicated to
the taxonomic assignment beyond the genus level, all unique
sequences for eachOTUwere compared to the SILVA dataset 111,
using a BLASTN algorithm. For each OTU, a consensus detailed
taxonomic identification was given based upon the identity (<1%
mismatch with the aligned sequence) and themetadata associated
with the best hit (validated bacterial species or not).

16S rDNA Data Analysis and Bacterial Abundance
A correcting factor for 16S rDNA gene copy numbers was applied
for any taxon i (Eq. 1).

Ai = Nk/Ci (1)

Where Ai is the real abundance of 16S genes from the taxon
in the sample, Nk is the number of reads for the taxon in the
sample k, and Ci is determined by the genomic 16S copy number
of that taxon. To obtain each gene copy number, Ribosomal
RNA Database (rrnDB) (Stoddard et al., 2015) and EzBioCloud
database (Yoon et al., 2017) were used.

Then, to compare the relative abundance of OTUs, the number
of reads of each taxon was normalized as described by Chaillou
et al. (2015). Reads counts of each taxon i in the sample k were
divided by a sample-specific scaling factor (Si) (Eq. 2) (Fougy
et al., 2016; Rouger et al., 2018):

Nri = Ai/Sk (2)

Where Nri is the normalized number of reads for the taxon
in the sample, Ai is the real abundance of 16S rRNA genes
from that taxon obtained with a correcting factor for 16S rRNA
gene copy numbers, and Sk is the normalization factor associated
with sample k.

The sample-specific scaling factor was calculated by (Eq. 3):

Sk = Tk/me (3)

Where Sk is the sample-specific scaling factor associated with
sample k, Tk is the number of total reads in the sample k, and
me is the median value of total reads for all the samples of the
dataset. Reads counts of all samples were then transformed into a
percentage of each OTU.

For co-culture experiments, the percentage of each OTUs
was finally converted as a proportion of the TVC, obtained by
classical microbiological analysis, in order to estimate counts for
each species [in log10 CFU/g, and expressed as mean ± standard
deviation (SD)] (Eq. 4), as described by Cauchie et al. (2017).

Cbacterial species = (Ctotal microbiota ⇥ Preads of bacterial species)/100 (4)

Where Cbacterial species is the estimated abundance concentration
in the sample (log CFU/g), Ctotal microbiota is the bacterial
concentration per samples in the PCA analysis (log CFU/g), and
Preads of bacterial species is the proportion of reads for the bacterial

species per sample in the metagenetic analysis (expressed in% of
the total number reads in the sample).

All biosample raw reads were deposited at the National Center
for Biotechnology Information (NCBI) and are available under
de BioProject ID PRJNA590608. The raw data supporting the
conclusions of this article will be made available by EC to any
qualified researcher.

Approach Used to Develop the
Interaction Model
As proposed by Correia Peres Costa et al. (2019), a step-wise
approach (Figure 1) was followed to develop interaction models
simulating the growth of specific spoilage micro-organisms.

First, primary and secondary models were performed on
mono-culture experiments to obtain the kinetic parameters
(section “Primary and Secondary Model for the Fitting of
Experimental Data”): lag phase duration (LPD, hours), maximum
specific growth rate (µmax, 1/hours), initial and maximal
population densities (N0 and Nmax, respectively, log CFU/g),
theoretical minimal temperature of growth (Tmin,�C), growth
rate obtained at the reference temperature of 20�C (µref ,
1/hours), and minimal shelf life (MSL). The MSL is the
time for the plate counts reaching approximatively 7.0 log
CFU/g (expressed as Spoilage value according to the scientific
literature, Sval).

Second, the same approach was applied for co-culture
experiments in order to obtain the growth parameters
(section “Primary and Secondary Model for the Fitting of
Experimental Data”), and to compare them with those on
mono-culture experiments (section “Correlations Between
Growth Parameters”). The Pearson’s correlation coe�cient was
also used to choose the highest influencing growth parameters
on the microbial shelf life of MP samples (section “Correlations
Between Growth Parameters”).

Third, all of these results were used to estimate competitions
parameters in interaction models for a three-species approach,
based on the modified Jameson-e�ect model and Lotka
Volterra model (section “Modeling Microbial Interactions for
B. thermosphacta, Pseudomonas spp., and L. gelidum”).

Finally, validation of growth and interaction parameters
obtained by the three-species models was performed with
naturally contaminated MP samples stored under di�erent
conditions (section “Model Validation”).

Primary and Secondary Model for the Fitting of
Experimental Data
The primary model of Baranyi and Roberts (1994) (Eq. 5) was
fitted to the experiment dataset obtained for mono- and co-
culture experiments. Experimental dataset is obtained by plate
counts in mono-culture, and by estimate abundance based on
metagenetic results in co-culture. All the data from the three
replicates were modeled.

Based on primary fitting, the growth kinetic parameters
were obtained.

Nt = N0 + µmax ⇥ At + ln

1 + exp(µmax ⇥ At) � 1

exp(Nmax � N0)

�
(5)
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FIGURE 1 | Schematic overview of the step-wise method used for the development of a three-spoilage species interaction model.

Where Nt the bacterial population at any time t (log CFU/g);
Nmax and N0, the maximum and initial population level,
respectively (log CFU/g); µmax, the maximum specific growth
rate (1/hour); and At , an adjustment function to define the
LPD (Eq. 6).

At = t + 1
µmax

⇥ ln{exp(�µmax ⇥ t)

+ exp(�h0) � exp[( �µmax ⇥ t) � h0]} (6)

Where h0 is simply a transformation of the initial conditions.
All fittings were performed using the nlsMicrobio package

(function: baranyi, Baty and Delignette-Muller, 2013) from the
open source R software (R Core Team, 2019).

The adequacy of the primary models to describe the
experimental data was observed by using the root-mean-square
error of the residuals (RrMSE, SD of the residuals) (Eq. 7) and
the coe�cient of multiple determination (R2, the fraction of the
square of the deviations of the observed values about their mean
explained by the equation fitted to the experimental data) (Eq. 8).

RrMSE =
r
RSS
DF

=
Pn

i=1(x
0
i � xfi )

2

n � s
(7)

Where RSS, the residual sum of square; DF, the degrees
of freedom; n, the number of data points; s, the number of
parameters of the model; xi0, the observed values; and xif ,
the fitted values.

R2 = 1 �
Pn

i=1(observedi � predictedi)2Pn
i=1(observedi � mean)2

(8)

Where n, the total number of data points; mean, the average
value from all observed values.

A reparameterized version of the square root secondary model
(Ratkowsky et al., 1982) (Eq. 9) was then used in R (R Core Team,
2019) to assess the e�ects of temperature on the growth rates.

µmax = µref

✓
T � Tmin

Tref � Tmin

◆2
(9)

Where µref is the reference growth rate obtained at Tref = 20�C
(1/hours), T is the temperature (�C), and Tmin is the minimal
temperature for growth (�C) found in the scientific literature for
the studied bacterial species:�3.36�C for B. thermosphacta (Leroi
et al., 2012); �5.00�C for Pseudomonas spp. (Rashid et al., 2001);
and + 1.00�C for L. gelidum (Kim et al., 2000).

For comparison, Tmin values were also estimated by the Rosso
primary model (Rosso et al., 1995) and the square root model
(Ratkowsky et al., 1983) (Eq. 10).

p
µmax = btimes(T � Tmin) (10)

Where µmax is the maximal growth rate (1/hours), b is a constant
parameter obtained by linear regression, T is the temperature
(�C), and Tmin is the minimal temperature for growth (�C).

For secondary models, the coe�cient of multiple
determination (R2) and the goodness of fit (GoF, root-meat-
square error of the model, analogous to the accuracy factor)
were used (Eq. 11).

GoF =
Pn

i=1(x
0
i � xfi )

2

n
(11)

Extracts of the code in R for primary and secondary fittings are
given in Supplementary Material (R-commands 1).
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Correlations Between Growth Parameters
An analysis of covariance was performed to evaluate if the
maximal bacterial growth rates (µmax) were significantly di�erent
between the two food packaging. All tests were considered
as significant for a p-value of < 0.05. Extracts of the code
in R for ANCOVA analysis are given in Supplementary
Material (R-commands 2).

Using R software (R Core Team, 2019), correlations between
the minimal shelf life (MSL) and the growth parameters
(µmax, LPD, N0, Nmax) were obtained by the Pearson’s
correlation coe�cient (r) in mono-culture and co-culture
experiments (Liu et al., 2006; Miks-Krajnik et al., 2016). High
correlations were considered when |r| > 0.7000 (Miks-Krajnik
et al., 2016). The best influencing growth parameter on the
microbial shelf life was chosen according to the Pearson’s
correlations coe�cient.

Then, a reduction ratio (a) was calculated to quantify the
interaction e�ect on µmax by inoculated bacteria in co-culture
experiments (Eq. 12) (Correia Peres Costa et al., 2019).

a = 1 � (pco)
(pmono)

(12)

Where a is the reduction ratio; pco and pmono are the
growth parameters obtained in co-culture and mono-culture
experiments, respectively.

Modeling Microbial Interactions for
B. thermosphacta, Pseudomonas spp., and
L. gelidum
Two well-known interactions models for two-species were
modified to predict the simultaneous growth of the three-
inoculated spoilage bacteria in irradiated MP samples: the
modified Jameson-e�ect model and the Lotka Volterra model
(Cornu et al., 2011; Correia Peres Costa et al., 2019).

As presented by Cornu et al. (2011) and Quinto et al. (2018), a
modified generic primary growth model can be written as Eq. 13.

1
N(t)

dN(t)
dt

= d(ln (N (t)))
dt

= µmax ⇥ a (t) ⇥ f (t) (13)

Where 1
N(t)

dN(t)
dt is the relative or instantaneous growth rate of

the microorganism, Nt is the bacterial concentration at time t
(log CFU/g), µmax is the maximum growth rate (1/h), a(t) is an
adjustment function, and f(t) is an inhibition function, defined as
Eqs 14 and 15:

at =
⇢
0 if t < LPD
1 if t � LPD

(14)

ft =
✓
1 �

✓
Nt

Nmax

◆◆
(15)

Where LPD is the lag phase duration (hours) and Nmax is the
maximal population density (log CFU/g).

Based on Eq. 13, an alternative deceleration function can
be added for modeling the interaction of two bacterial species

(Jameson-e�ect model) (Eq. 16) (Mejlholm and Dalgaard, 2007;
Cornu et al., 2011).
8
>>>>>>>>>>><

>>>>>>>>>>>:

1
NA (t)

dNA(t)
dt

= µmax A(t) ⇥ aA (t) ⇥
✓
1 � NA(t)

Nmax A(t)

◆

⇥
✓
1 � NB(t)

Nmax B(t)

◆

1
NB (t)

dNBt

dt
= µmax B(t) ⇥ aB (t) ⇥

✓
1 � NB(t)

Nmax B(t)

◆

⇥
✓
1 � NA(t)

Nmax A(t)

◆

(16)

Where N is the cell concentration (log CFU/g) at time t (h),
µmax is the maximum specific growth rate (1/h), and Nmax is the
maximum population density (log CFU/g).

In the modified Jameson-e�ect model, the deceleration
function can be replaced by Eq. 17 (Mejlholm and Dalgaard,
2007; Cornu et al., 2011; Quinto et al., 2018; Cadavez et al., 2019).
8
>>>>>><

>>>>>>:

fA (t) =
√

1 � NA(t)
NmaxA(t)

! √

1 � NB (t)
NmaxB(t)

!

fB (t) =
√

1 � NA(t)
NMCPA(t)

! ✓
1 � NB(t)

NmaxB(t)

◆
if NA (t) � NMCPA(t)

fB (t) = 0 if NA (t) � NMCPA(t)
(17)

Where Nt is the bacterial concentration at time t (log CFU/g),
Nmax(t) is the maximal population density (log CFU/g),
and NMCP(t) is maximum critical population (log CFU/g)
that the bacterium should be reached to inhibit the growth
of the other populations. MCP is inferior to its own
maximum population density (Nmax) (Cornu et al., 2011;
Correia Peres Costa et al., 2019).

Using R software (R Core Team, 2019), the modified Jameson-
e�ect model (Eq. 17) was applied on mono-culture experiment
data with the functions of Baranyi, Buchanan and without-
lag (package nlsMicrobio, Baty and Delignette-Muller, 2013).
The function without lag shown the best fitting in all cases
(Supplementary Table S1). This model was then selected in
the rest of the study, by using the growth parameters obtained
on co-culture experiments. Extracts of the code in R for the
modified Jameson-e�ect models for two species are given in
Supplementary Material (R-commands 3).

For a three-species mixed culture model, Quinto et al. (2018)
recently proposed a modification of the logistic deceleration
model (Eq. 18).

f (t) =
✓
1 � NA (t) + NB (t) + NC(t)

Nmax tot

◆
(18)

Where NA(t), NB(t), and NC(t) are the cell concentration of
microorganism A, B, or C in co-culture at time t; Nmaxtot is the
maximal total population density (including all species present)
and consequently the overall carrying capacity of the system from
the three-species co-cultured.

However, this study only considers the e�ect of P. fluorescens
and L. innocua on the bacterial growth of L. monocytogenes.
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In our study, the aim of co-culture experiments was to
consider the global e�ect of three inoculated bacterial species and
the bacterial interaction on each other.

According to this, the modified Jameson-e�ect model was
re-defined for a three-species model that was used in this
study (Eq. 19).

1
Ntot (t)

dNtot(t)

dt
= µmax(Bm,Ps,Lg)(t)

⇥a(Bm,Ps,Lg) (t)

⇥
✓
1 � NBm(t) + NPs(t) + NLg(t)

NMCP(t)

◆
(19)

Where N is the cell concentration (log CFU/g) at time t
(h), µmax is the maximum specific growth rate (1/h), a(t) is
an adjustment function, and NMCP is the maximum critical
population of each bacterium (log CFU/g).

Extracts of the code in R for the three-species modified
Jameson-e�ect models are given in Supplementary
Material (R-commands 4).

In the two-species model based on the Lotka Volterra
equation, the deceleration function can be replaced by Eq. 20
(Cornu et al., 2011), which includes empirical parameters
reflecting the degree of interaction between microbial species
(FAB and FBA) (Liu et al., 2006; Cornu et al., 2011; Cadavez et al.,
2019; Correia Peres Costa et al., 2019).

8
>><

>>:

fA (t) =
✓
1 � NA (t) + FABNB(t)

NmaxA(t)

◆

fB (t) =
✓
1 � NB (t) + FBANA(t)

NmaxB(t)

◆ (20)

Where the parameters FAB and FBA are the coe�cients of
interaction measuring the e�ects of one species on the other.

Using R software (R Core Team, 2019), the Lotka Volterra
model (Eq. 20) was also re-defined for a three-species interaction
model, represented by Eq. 21.

8
>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>:

1
NA (t)

dNA(t)

dt
= µmax A(t) ⇥ aA (t)

⇥
✓
1 � NA(t0) + (FABC ⇥ FACB ⇥ NBC(t0))

Nmax A(t)

◆

1
NB (t)

dNB(t)

dt
= µmax B(t) ⇥ aB (t)

⇥
✓
1 � NB(t0) + (FBAC ⇥ FBCA ⇥ NAC(t0))

Nmax B(t)

◆

1
NC (t)

dNC(t)

dt
= µmax C(t) ⇥ aC (t)

⇥
✓
1 � NC(t0) + (FCAB ⇥ FCBA ⇥ NAB(t0))

Nmax C(t)

◆

(21)
WhereN is the cell concentration (log CFU/g) at time t (h), µmax
is the maximum specific growth rate (1/h), a(t) is an adjustment
function, FA,B,C are the coe�cient of interaction measuring the
e�ects of one species on the others, and Nmax is the maximum
population density (log CFU/g).

Extracts of the code in R for the three-species Lotka Volterra
models are given in Supplementary Material (R-commands 5).

Comparison of the two models was assessed by root-mean-
square error (RMSE) and coe�cient of determination (R2)
(Correia Peres Costa et al., 2019), as previously described in the
section above (Section 2.7.1.).

Model Validation
Validation of the developed three-species interaction models was
performed using a new dataset of experimental data.

Fresh MP samples were obtained from a local Belgian
manufacturer at the day of the production, corresponding to
the day of slaughtering. MP samples were packed by the
manufacturer in a polypropylene tray under cling film. Samples
have the same composition as described above.

Samples were not irradiated and not inoculated in order to
follow the dynamics of the natural food microbiota. MP samples
were also packed (50 g) in two di�erent packaging, in triplicate.

The first packaging was a tray (187 ⇥ 137 ⇥ 36, polyester
10µm, homo-polymer polypropylene 50µm,NutriPack, France)
under modified atmosphere (MAP, CO2 30%/O2 70% ± 0.1%)
(Olympia V/G, Technovac, Italy) using packaging wrap
(PP/EVOH/PP) with random gas measurements (CheckMate
3, Dansensor, France). The second packaging consisted in a
tray (175 ⇥ 135 ⇥ 22, polystyrene) under FW using cling
film (Clinofilm).

In this study, MP samples were stored during a 13 days shelf
life at isothermal temperature: (i) 4�C (±1�C), (ii) 8�C (±1�C),
(iii) and 12�C (±1�C), in climatic chambers (Sanyo MIR 254).

Samples (n = 288) were then analyzed at the first day of
inoculation (day 0) and daily until the last day of storage (day
13). Analyses were performed by classical plate counts and 16S
rDNA metagenetics, as methods previously described in the
sections above (sections “16S rDNA Metagenetic Approach” and
“Approach Used to Develop the Interaction Model”), in order to
estimate bacterial counts over the storage.

The performance of the developed interaction models was
evaluated by the acceptable simulation zone (ASZ) approach.
Model performance is considered acceptable when at least 70%
of the observed log counts values are within the ASZ, defined
as ± 0.5 log-units from the simulated concentration in log units
(Correia Peres Costa et al., 2019).

RESULTS

16S rDNA Metagenetic Results
Despite of the inability of di�erentiation between viable
and non-viable cells by the culture-independent DNA-based
methods used, high level (>95%) of relative abundance for
each inoculated bacterium was observed for mono-culture
experiments (Supplementary Figure S2).

The relative abundance results for co-culture experiments
(expressed in%) at genus levels (>1%) are represented in
cumulated histograms for all samples in FW (Figure 2) and
MAP (Figure 3). These data including the relative abundance of
sequences are also summarized in Supplementary Table S2.
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FIGURE 2 | Cumulated histograms of the relative abundance (%) of taxa and the dynamics of the bacterial community identified by metagenetics at genus levels in

co-culture experiment during storage in food wrap (Aco, at 4�C; Bco, at 8�C; Cco, at 12�C). At genus levels, the taxa representing < 1% in relative abundance were

merged in the category of “Others.” The solid represents the plate counts (means and standard deviation of the three replicates).

FIGURE 3 | Cumulated histograms of the relative abundance (%) of taxa and the dynamics of the bacterial community identified by metagenetics at genus levels in

co-culture experiment during storage in modified atmosphere packaging (Dco, at 4�C; Eco, at 8�C; Fco, at 12�C). At genus levels, the taxa representing < 1% in

relative abundance were merged in the category of “Others.” The solid represents the plate counts (means and standard deviation of the three replicates).

The taxa representing < 1% in relative abundance
were merged in the category of “Others.” “Others” are
mainly composed by the genera Aeromonas, Arthrobacter,
Bacteroides, Carnobacterium, Chryseobacterium, Enterococcus,
Flavobacterium, Kurthia, Lactobacillus, Lactococcus,
Mannheimia, Massilia, Micrococcus, Moraxella, Myroides,
Ottowia, Peptococcus, Photobacterium, Porphyromonas,
Propionibacterium, Rothia, Serratia, and Staphylococcus. Full
data on taxa found in high (>1%) and low (<1%) frequencies
will be made available by EC to any qualified researcher.

At day 0, small di�erences between the distribution of
read percentages for the three inoculated bacteria are observed
(11.8, 27.4, and 23.3% for Brochothrix, Pseudomonas, and
Leuconostoc, respectively).

At day 3 in FW, Brochothrix became under the detection limit.
At this same time, Pseudomonas became the most represented
genus (>90%), and remained during the 13 days of storage.

In MAP, Leuconostoc and Pseudomonas were equally
distributed during the first days of storage, but Leuconostoc
became the most represented genus (>90%) after 3 days and
until the end of storage.

Plate Counts and Estimated Abundance
In mono-culture experiments, plate counts for B. thermosphacta,
Pseudomonas spp., and L. gelidum increased during the shelf life
with increasing the temperature (Table 2).

At the end of the shelf life, the bacterial count was higher
than 7.0 log CFU/g, except for some samples stored in MAP.
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TABLE 2 | Microbiological counts (log CFU/g) for mono-culture experiments in minced pork samples stored during 13-days shelf life, at constant temperature, in food wrap (FW) and modified atmosphere packaging

(MAP, CO2 30%/O2 70% ± 0.1%).

Days

Codes 0 1 2 3 4 5 6 7 8 9 10 11 12 13

Amono 3.84 ± 0.03 3.08 ± 0.10 3.76 ± 0.07 4.54 ± 0.12 –a –a 7.24 ± 0.11 7.74 ± 0.17 7.63 ± 0.10 8.17 ± 0.33 7.68 ± 0.15 –a –a 7.90 ± 0.15

Bmono 3.84 ± 0.03 6.76 ± 0.04 7.49 ± 0.11 8.25 ± 0.07 8.51 ± 0.10 8.58 ± 0.06 8.85 ± 0.02 8.77 ± 0.15 9.05 ± 0.03 8.79 ± 0.21 –a –a –a 9.00 ± 0.01

Cmono 3.84 ± 0.03 7.68 ± 0.08 8.29 ± 0.13 8.66 ± 0.04 8.99 ± 0.09 9.01 ± 0.23 9.11 ± 0.10 8.81 ± 0.28 9.03 ± 0.03 8.91 ± 0.16 –a –a –a 9.27 ± 0.08

Dmono 3.84 ± 0.03 –a –a 2.17 ± 0.30 –a –a 4.11 ± 0.01 4.01 ± 0.14 4.35 ± 0.03 5.24 ± 0.05 4.99 ± 0.12 –a –a 5.43 ± 0.06

Emono 3.84 ± 0.03 –a 5.88 ± 0.10 6.11 ± 0.11 7.11 ± 0.02 7.86 ± 0.10 8.21 ± 0.04 8.43 ± 0.11 8.43 ± 0.16 8.41 ± 0.10 8.38 ± 0.16 –a 7.86 ± 0.07 8.76 ± 0.03

Fmono 3.84 ± 0.03 –a 7.10 ± 0.04 7.76 ± 0.23 8.35 ± 0.04 8.58 ± 0.06 8.40 ± 0.12 8.44 ± 0.07 8.32 ± 0.03 9.16 ± 0.08 8.67 ± 0.40 –a 8.83 ± 0.02 8.71 ± 0.06

Gmono 3.15 ± 0.59 3.43 ± 0.11 4.52 ± 0.23 5.64 ± 0.19 –a –a –a 9.45 ± 0.13 9.51 ± 0.07 –a 9.90 ± 0.29 –a –a 10.21 ± 0.03

Hmono 3.15 ± 0.59 3.86 ± 0.17 5.36 ± 0.03 7.69 ± 0.17 9.04 ± 0.05 9.67 ± 0.03 –a 9.62 ± 0.15 10.34 ± 0.24 10.39 ± 0.40 10.11 ± 0.28 –a –a 10.15 ± 0.17

Imono 3.15 ± 0.59 4.93 ± 0.15 –a 9.81 ± 0.04 9.85 ± 0.29 9.95 ± 0.34 10.15 ± 0.82 10.26 ± 0.08 10.14 ± 0.10 –a 9.87 ± 0.19 –a –a 9.80 ± 0.42

Jmono 3.15 ± 0.59 –a 3.48 ± 0.06 –a –a 3.90 ± 0.11 4.87 ± 0.34 4.55 ± 0.12 –a –a –a –a 4.73 ± 0.01 4.90 ± 0.01

Kmono 3.15 ± 0.59 3.52 ± 0.01 4.16 ± 0.05 –a –a 5.41 ± 0.08 6.33 ± 0.07 6.52 ± 0.14 –a 6.59 ± 0.17 –a –a 7.83 ± 0.13 8.37 ± 0.08

Lmono 3.15 ± 0.59 4.47 ± 0.07 6.08 ± 0.03 –a –a –a 9.42 ± 0.28 9.58 ± 0.23 –a 9.80 ± 0.41 –a –a 9.87 ± 0.06 9.85 ± 0.14

Mmono 4.00 ± 0.02 4.07 ± 0.01 4.38 ± 0.01 4.61 ± 0.12 –a –a 6.17 ± 0.05 –a –a –a 8.62 ± 0.09 –a –a 8.42 ± 0.06

Nmono 4.00 ± 0.02 4.58 ± 0.08 5.84 ± 0.02 –a 7.57 ± 0.10 –a 8.61 ± 0.13 –a 8.73 ± 0.07 –a 8.84 ± 0.09 –a –a 8.77 ± 0.30

Omono 4.00 ± 0.02 5.38 ± 0.01 6.84 ± 0.13 8.35 ± 0.09 7.56 ± 0.01 –a 8.64 ± 0.13 –a –a –a 8.82 ± 0.23 –a –a 8.62 ± 0.18

Pmono 4.00 ± 0.02 4.18 ± 0.09 –a –a 6.31 ± 0.17 –a 6.84 ± 0.06 7.85 ± 0.01 –a 7.78 ± 0.21 –a –a 8.00 ± 0.10 8.39 ± 0.12

Qmono 4.00 ± 0.02 4.75 ± 0.03 –a –a 8.06 ± 0.01 –a 8.38 ± 0.05 8.49 ± 0.16 –a 8.85 ± 0.01 –a –a –a 8.75 ± 0.19

Rmono 4.00 ± 0.02 8.32 ± 0.15 7.28 ± 0.01 –a 8.35 ± 0.06 –a 8.36 ± 0.09 8.64 ± 0.10 –a 8.89 ± 0.07 –a –a –a 8.87 ± 0.11

See Table 1 for list of the codes used. Mean values with standard deviations of the three replicates. –a no analysis performed for the day.
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TABLE 3 | Estimate bacterial counts for co-culture experiment.

Time (days)

Code 0 1 2 3 4 5 6 7 13

Aco(A) 2.71 ± 0.24 2.75 ± 0.31 2.71 ± 0.81 –a –a –a –a –a 7.77 ± 0.20

Aco(B) 3.07 ± 0.24 3.60 ± 0.31 4.80 ± 0.81 –a –a 7.54 ± 0.77 8.14 ± 0.08 9.12 ± 0.53 10.04 ± 0.20

Aco(C) 3.00 ± 0.24 2.52 ± 0.31 3.20 ± 0.81 –a –a 4.54 ± 0.77 5.14 ± 0.08 5.79 ± 0.53 6.92 ± 0.20

Bco(A) 2.71 ± 0.24 2.26 ± 0.31 –a –a –a –a 7.13 ± 0.53 7.68 ± 0.20 8.00 ± 0.10

Bco(B) 3.07 ± 0.24 4.23 ± 0.46 6.43 ± 0.34 –a 8.49 ± 0.18 9.43 ± 0.10 10.11 ± 0.64 10.31 ± 0.47 10.27 ± 0.10

Bco(C) 3.00 ± 0.24 2.48 ± 0.31 1.70 ± 0.81 –a –a 5.44 ± 0.08 6.61 ± 0.08 6.93 ± 0.20 7.15 ± 0.10

Cco(A) 2.71 ± 0.24 2.58 ± 0.09 –a –a 7.15 ± 0.20 8.46 ± 0.02 8.18 ± 0.77 7.58 ± 0.78 7.24 ± 0.10

Cco(B) 3.07 ± 0.24 4.95 ± 0.09 6.55 ± 0.30 –a 8.97 ± 0.20 10.14 ± 0.02 10.38 ± 0.77 10.26 ± 0.78 10.21 ± 0.10

Cco(C) 3.00 ± 0.24 3.32 ± 0.09 3.04 ± 0.30 –a 6.30 ± 0.20 8.02 ± 0.02 7.41 ± 0.77 7.10 ± 0.78 7.06 ± 0.10

Dco(A) 2.71 ± 0.24 2.67 ± 0.64 –a 2.97 ± 0.19 –a –a 3.83 ± 0.46 –a 3.83 ± 0.46

Dco(B) 3.07 ± 0.24 3.13 ± 0.64 –a 4.24 ± 0.19 –a –a 4.14 ± 0.46 5.28 ± 0.23 4.76 ± 0.28

Dco(C) 3.00 ± 0.24 3.04 ± 0.64 –a 4.31 ± 0.19 –a –a 6.81 ± 0.46 7.91 ± 0.23 8.36 ± 0.28

Eco(A) 2.71 ± 0.24 3.07 ± 0.19 3.46 ± 0.90 3.95 ± 0.90 –a –a –a –a 4.94 ± 0.07

Eco(B) 3.07 ± 0.24 3.65 ± 0.19 4.39 ± 0.90 5.15 ± 0.90 –a –a –a 5.00 ± 0.39 4.94 ± 0.07

Eco(C) 3.00 ± 0.24 3.76 ± 0.19 4.82 ± 0.90 6.21 ± 0.90 –a –a 8.51 ± 0.33 8.56 ± 0.39 8.50 ± 0.07

Fco(A) 2.71 ± 0.24 3.25 ± 0.30 3.30 ± 0.25 –a –a –a 5.05 ± 0.30 5.51 ± 0.72 5.88 ± 0.58

Fco(B) 3.07 ± 0.24 4.20 ± 0.30 4.31 ± 0.25 3.34 ± 0.10 –a –a –a 5.63 ± 0.72 4.98 ± 0.58

Fco(C) 3.00 ± 0.24 4.38 ± 0.30 5.24 ± 0.25 6.05 ± 0.10 –a –a 8.03 ± 0.30 8.61 ± 0.72 8.57 ± 0.58

See Table 1 for list of the codes used. Mean values with standard deviations of the three replicates. FW, food wrap; MAP, modified atmosphere packaging (CO2 30%/O2
70% ± 0.1%), –a no analysis performed for the day.

During the storage, a high growth rate and amore rapidly reached
stationary phase were also correlated to FW and the highest
storage temperatures.

No bacterial growth was observed on PCA for the
control samples (limit detection < 3.0 log CFU/g) (data
not shown in this paper).

For co-culture experiments, the metagenetic data were
combined with the plate counts results in order to obtain
estimated bacterial counts (Table 3).

As previously observed, estimate counts increased during the
shelf life with increasing the temperature. At the end of the
shelf life, the bacterial count was over 7.0 log CFU/g, except
for B. thermosphacta and Pseudomonas spp. stored in MAP.
During the storage, the same growth profiles as mono-culture
experiments were observed.

pH and Gas Measurements
A significant increase of pH is observed for MP samples
inoculated by Pseudomonas spp. (7.54 ± 0.76, n = 5, p-value =
0.01) compared to the control samples (5.79 ± 0.05, n = 10).

In co-culture experiments, pH values at the end of the shelf
life were not di�erent to control samples (5.87 ± 0.02, n = 5)
(Supplementary Figure S3).

A relatively stable concentration of carbon dioxide was
observed in MAP at the end of the shelf life. Except for MP
samples inoculated with Pseudomonas spp., which reached a
higher significant carbon dioxide value (100.0 ± 0.1%) at 12�C
(Supplementary Figure S4).

Microbial Growth Parameters
Results of the primary and secondary model fittings for mono-
and co-culture experiments are shown in Tables 4, 5. Growth

parameters from mono-culture experiments are based on plate
counts, and those from co-culture experiments are based on
estimate abundance (obtained by the association of metagenetic
and plate counts results).

Good fit indexes were obtained in all cases
(Supplementary Tables S3, S4).

Growth parameters showed di�erent dynamic changes
depending on storage temperature: a high storage temperature
is correlated to a high growth rate during exponential phase
and a lower lag-time. These growth parameters are also higher
in FW than in MAP.

The MSL value is more rapidly reached in FW, except for
L. gelidum.

Moreover, the Sval was never reached in MAP for MP samples
inoculated by Pseudomonas spp. and B. thermosphacta during the
13-days shelf-life at 4�C.

Based on these results, the evolution of µmax between a large
range of temperature (from �6 to +25�C) in FW and MAP was
performed for mono- and co-culture experiments (Figure 4).

It can be clearly observed that L. gelidum had a highest growth
rate in MAP, while it concerns B. thermosphacta in FW in mono-
culture experiments. B. thermosphacta had the lowest one in co-
culture experiments.

Correlations Between Growth
Parameters Obtained in Mono- and
Co-culture Experiments
Correlations between growth parameters of B. thermosphacta,
Pseudomonas spp., and L. gelidum for mono-culture and co-
culture experiments are presented in Table 6.

It can be observed that the maximum specific growth
rate (µmax) of micro-organisms was negatively correlated with
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TABLE 4 | Observed kinetic parameters of mono- and co-culture experiments, calculated by Baranyi equation without interactions.

µmax LPD N0 Nmax RSS Sval MSL

Amono 0.09 [0.09–0.08] 51 [53–51] 3.84 ± 0.03 7.90 ± 0.15 0.000442 Y 5.7 [5.8–5.6]
Bmono 0.21 [0.21–0.19] 0 [0–0] 3.84 ± 0.03 8.79 ± 0.21 0.000255 Y 1.5 [1.5–1.4]
Cmono 0.39 [0.39–0.35] 0 [0–0] 3.84 ± 0.03 9.11 ± 0.10 0.000558 Y 0.8 [0.8–0.8]
Dmono 0.03 [0.03–0.03] 20 [20–17] 3.84 ± 0.03 4.99 ± 0.12 0.005700 N 15.3 [15.8–14.7]
Emono 0.07 [0.07–0.07] 0 [0–0] 3.84 ± 0.03 8.43 ± 0.16 0.005700 Y 3.8 [3.9–3.7]
Fmono 0.13 [0.13–0.12] 0 [0–0] 3.84 ± 0.03 8.83 ± 0.16 0.005260 Y 1.9 [1.9–1.4]
Gmono 0.06 [0.06–0.06] 24 [24–24] 3.15 ± 0.59 9.90 ± 0.29 0.010900 Y 4.5 [4.6–4.2]
Hmono 0.13 [0.13–0.13] 10 [10–10] 3.15 ± 0.59 10.15 ± 0.17 0.010900 Y 2.7 [2.8–2.6]
Imono 0.23 [0.23–0.23] 0 [0–0] 3.15 ± 0.59 9.95 ± 0.34 0.010900 Y 1.8 [1.9–1.7]
Jmono 0.04 [0.04–0.04] 48 [48–48] 3.15 ± 0.59 4.90 ± 0.01 0.001210 N 21.8 [22.6–20.9]
Kmono 0.08 [0.08–0.08] 27 [27–27] 3.15 ± 0.59 8.37 ± 0.08 0.001210 Y 9.0 [9.2–8.8]
Lmono 0.13 [0.13–0.13] 0 [0–0] 3.15 ± 0.59 9.87 ± 0.06 0.001210 Y 3.5 [3.6–3.3]
Mmono 0.01 [0.01–0.01] 48 [48–48] 4.00 ± 0.02 8.42 ± 0.06 0.017900 Y 7.1 [7.2–7.0]
Nmono 0.07 [0.08–0.07] 10 [12–10] 4.00 ± 0.02 8.77 ± 0.30 0.023000 Y 3.4 [3.4–3.3]
Omono 0.18 [0.19–0.18] 0 [0–0] 4.00 ± 0.02 8.64 ± 0.13 0.017900 Y 2.5 [2.5–2.4]
Pmono 0.02 [0.02–0.02] 17 [19–15] 4.00 ± 0.02 8.00 ± 0.10 0.025600 Y 6.2 [6.4–5.5]
Qmono 0.13 [0.13–0.13] 0 [0–0] 4.00 ± 0.02 8.75 ± 0.19 0.023700 Y 3.0 [3.0–2.3]
Rmono 0.32 [0.33–0.32] 0 [0–0] 4.00 ± 0.02 8.87 ± 0.11 0.025600 Y 1.2 [1.2–1.1]
Aco(A) 0.03 [0.03–0.03] 36 [36–36] 2.71 ± 0.24 7.77 ± 0.20 0.000490 Y 11.2 [11.6–10.6]
Aco(B) 0.05 [0.06–0.05] 12 [12–12] 3.07 ± 0.24 10.04 ± 0.20 0.098240 Y 5.4 [6.1–4.8]
Aco(C) 0.01 [0.01–0.01] 24 [30–24] 3.00 ± 0.24 6.92 ± 0.20 0.002650 N 11.6 [12.3–10.6]
Bco(A) 0.07 [0.08–0.07] 12 [12–12] 2.71 ± 0.24 8.00 ± 0.10 0.014000 Y 7.8 [8.3–7.3]
Bco(B) 0.11 [0.12–0.11] 0 [0–0] 3.07 ± 0.24 10.27 ± 0.20 0.472000 Y 3.8 [4.2–3.5]
Bco(C) 0.05 [0.05–0.05] 24 [24–24] 3.00 ± 0.24 7.15 ± 0.10 0.016460 Y 8.5 [8.8–8.2]
Cco(A) 0.13 [0.15–0.12] 0 [0–0] 2.71 ± 0.24 7.58 ± 0.92 0.117000 Y 6.0 [6.4–5.6]
Cco(B) 0.19 [0.20–0.19] 0 [0–0] 3.07 ± 0.24 10.26 ± 0.78 0.472000 Y 3.5 [3.9–3.3]
Cco(C) 0.12 [0.13–0.11] 0 [0–0] 3.00 ± 0.24 7.10 ± 0.90 0.000840 Y 6.6 [7.1–6.1]
Dco(A) 0.02 [0.02–0.01] 46 [59–10] 2.71 ± 0.24 3.83 ± 0.46 0.000150 N 21.0 [20.5–16.8]
Dco(B) 0.06 [0.06–0.03] 48 [48–48] 3.07 ± 0.24 4.76 ± 0.75 0.135300 N 17.2 [17.4–16.9]
Dco(C) 0.01 [0.02–0.01] 12 [12–12] 3.00 ± 0.24 8.36 ± 0.28 0.046870 Y 7.6 [8.2–7.0]
Eco(A) 0.04 [0.06–0.03] 16 [16–16] 2.71 ± 0.24 4.94 ± 0.07 0.005560 N 23.1 [24.0–15.6]
Eco(B) 0.12 [0.12–0.07] 16 [16–16] 3.07 ± 0.24 5.00 ± 0.40 0.059240 N 14.4 [21.2–8.5]
Eco(C) 0.08 [0.08–0.07] 6 [6–6] 3.00 ± 0.24 8.50 ± 0.45 0.076910 Y 5.9 [6.6–5.1]
Fco(A) 0.07 [0.10–0.06] 0 [0–0] 2.71 ± 0.24 5.88 ± 0.01 0.006320 N 14.0 [16.7–11.8]
Fco(B) 0.20 [0.21–0.12] 0 [0–0] 3.07 ± 0.24 5.00 ± 0.56 0.015400 N 14.0 [17.5–11.3]
Fco(C) 0.20 [0.20–0.16] 0 [0–0] 3.00 ± 0.24 8.57 ± 0.73 0.030760 Y 5.9 [6.6–5.2]

See Table 1 for list of the codes used. Mean values with standard deviation (SD represent three samples per experiment) or with the 95% confidence intervals (lower
limit and upper limit); µmax, maximal specific growth rate (1/h); LPD, lag phase duration (h); N0, initial bacterial concentration (log CFU/g); Nmax, maximum bacterial
concentration (log CFU/g); RSS, residual sum of square of the model; Sval, spoilage values of 7.00 log CFU/g [Y (yes) or N(not) if this value is reached during the 13-days
shelf life]; MSL, predictions of the minimal shelf life for the product (days).

microbial shelf life. The correlation was higher in mono-
culture (�0.8660 to �0.9572) than in co-culture experiments
(�0.0339 to �0.9160).

Lag phase duration (LPD) of all micro-organisms showed
good correlation. High correlations of µmax and LPD were
observed in FW for co-culture experiments.

N0 showed little correlations than the two others parameters,
except for mono-culture of Pseudomonas spp. stored in FW.

Moreover, no obvious correlation has been shown between
Nmax with shelf life for co-cultures experiments.

In conclusion, the results showed in our study that the
microbial shelf life of MP samples is mainly correlated with µmax

and LPD than by Nmax and N0. Even if the correlations are lower
for experiments carried out in co-culture under MAP.

It was also showed thatµmax seems to be mainly influenced by
the food packaging (Table 7), and by the interaction of the storage
conditions applied in this study (packaging and temperature).
These results were confirmed by the study of the reduction ratio
a (Figure 5). B. thermosphacta and L. gelidum presented a higher
reduction in FW. But an increase was observed for Pseudomonas
spp. in MAP. Indeed, µmax of Pseudomonas spp. was 0.04,
0.08, and 0.13, at 4, 8, and 12�C, respectively, in mono-culture
experiments. While the parameter was gradually increasing to
0.06 (a = �50.0%), 0.12 (a = �50.0%), and 0.20 (a = �53.8%), at
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TABLE 5 | Estimation of the secondary parameters obtained by the square root

model without interactions.

Adjusted

Mono-culture experiments Tmin Tmin µref RSS

FW B. thermosphacta �3.36 �3.36 0.99 [0.99–0.89] 0.000668

FW Pseudomonas spp. �5.00 �5.02 0.42 [0.42–0.42] 0.001070

FW Ln. gelidum +1.00 +1.40 0.39 [0.41–0.39] 0.004580

MAP B. thermosphacta �3.36 �3.36 0.33 [0.33–0.32] 0.000003

MAP Pseudomonas spp. �5.00 �5.02 0.24 [0.24–0.24] 0.000323

MAP Ln. gelidum +1.00 +1.40 0.71 [0.73–0.71] 0.000033

Co-culture experiments

FW B. thermosphacta �3.36 –a 0.30 [0.35–0.28] 0.000193

FW Pseudomonas spp. �5.02 –a 0.42 [0.44–0.42] 0.000190

FW Ln. gelidum +1.40 –a 0.35 [0.40–0.34] 0.000008

MAP B. thermosphacta �3.36 –a 0.17 [0.24–0.13] 0.000092

MAP Pseudomonas spp. �5.02 –a 0.43 [0.46–0.27] 0.023100

MAP Ln. gelidum +1.40 –a 0.59 [0.61–0.49] 0.000750

Mean values with the 95% confidence intervals (lower limit and upper limit). FW,
food wrap; MAP, modified atmosphere packaging (CO2 30%/O2 70% ± 0.1%); –a

not calculated in the model; Tmin, minimal temperature for growth (�C) provided
from scientific literature; Adjusted Tmin, minimal temperature for growth (�C)
provided from adjustment by the Rosso model (�C); µref, bacterial growth rate
at the reference (1/h) obtained using a reparameterized version of the square root
secondary model; RSS, residual sum of square for the µref value.

4, 8, and 12�C, respectively, in co-culture experiments. However,
Nmax values of this bacterium were lesser in co-culture than in
mono-culture experiments.

Three-Species Interaction Models and
Validation Step
Estimated growth parameters and goodness-of-fit indexes for the
two developed interaction models are available in Table 8.

The Lotka Volterra model showed lower RrMSE values but the
interaction factors are sometimes included in high intervals.

Simulations provided by the predictive models based on the
modified Jameson-e�ect model and the Lotka Volterra equations
are represented in Figures 6, 7.

The modified Jameson-e�ect model showed the best model
performance (ASZ), with a mean of 63 ± 23%, while the Lotka
Volterra model showed lesser percentages [31 ± 17% (n = 18)].
Eight simulated models based on the equation of the modified
Jameson-e�ect model can be considered as acceptable, because at
least 70% of the observed log counts values are within the ASZ.

Validation Dataset
As previously described, plate counts in validation dataset
increased during the shelf life with increasing the temperature
(Supplementary Figures S5, S6).

At the end of the shelf life, the natural logarithm of the
bacterial count was over 7.0 log CFU/g.

During the storage, a high growth rate and a more rapidly
reached stationary phase are also correlated to FW and the
highest storage temperatures.

No bacterial growth was observed on PCA for the
control samples (limit detection < 3.00 log CFU/g) (data
not shown in this paper).

The relative abundance results obtained by metagenetic
analysis (expressed in%) at species levels (>1%) are represented
in cumulated histograms for validation dataset in Supplementary
Material for FW (Supplementary Table S5) and MAP
(Supplementary Table S6). The metagenetic data were then
combined with the plate counts results in order to obtain
estimated bacterial counts (Supplementary Table S7).

At day 0, the distribution of read percentages shows high
values (>90%) of Photobacterium spp., Photobacterium kishitanii
and Photobacterium illiopiscarium.

FIGURE 4 | Evolution of µmax between a large range of temperature (from �6 to + 25�C) for mono-culture experiments in FW (A) and MAP (B), and for co-culture

experiments in FW (C) and MAP (D).
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TABLE 6 | Correlations between growth parameters and the minimal shelf life (MSL) for mono-culture and co-culture experiments.

Mono-culture experiments Co-culture experiments

Bacterial species/ Growth Pearsons- Pearsons-

packaging parameters correlations (r) CI p-value correlations (r) CI p-value

FW

B. thermosphacta µmax �0.8660 �0.9715; �0.4771 0.0025 �0.9144 �0.9821; �0.6376 0.0005

LPD 0.9920 0.9608; 0.9983 1.52�07 0.9839 0.9227; 0.9967 1.71�06

N0 0.0188 �0.6534; 0.6745 0.9617 0.1763 �0.5524; 0.7523 0.6500

Nmax �0.9553 �0.9908; �0.7965 5.94�05 0.2151 �0.5238; 0.7693 0.5783

Pseudomonas spp. µmax �0.9548 �0.9907; �0.7945 6.17�05 �0.7774 �0.9507; �0.2344 0.0136

LPD 0.9905 0.9542; 0.9980 2.63�07 0.9013 0.5911; 0.9792 0.0008

N0 0.9903 �0.6048; 0.7160 0.7999 0.3903 �0.3696; 0.8373 0.2990

Nmax �0.0675 �0.7002; 0.6245 0.8629 0.0278 �0.6482; 0.6783 0.9434

L. gelidum µmax �0.8784 �0.9742; �0.5144 0.0018 �0.9160 �0.9824; �0.6434 0.0005

LPD 0.9989 0.9948; 0.9997 1.23�10 0.8251 0.3563; 0.9620 0.0061

N0 0.0271 �0.6486; 0.6790 0.9448 0.2163 �0.5228; 0.7698 0.5760

Nmax �0.5478 �0.8886; 0.1828 0.1268 �0.0568 �0.6947; 0.6311 0.8846

MAP

B. thermosphacta µmax �0.8819 �0.9750; �0.5258 0.0016 �0.2501 �0.7839; 0.4965 0.5164

LPD 0.9881 0.9424; 0.9975 5.95�07 0.5490 �0.1811; 0.8890 0.1257

N0 0.0411 �0.6405; 0.6864 0.9164 0.5858 �0.1281; 0.8998 0.0973

Nmax �0.9925 �0.9984; �0.9637 1.15�07 �0.4274 �0.8502; 0.3304 0.2511

Pseudomonas spp. µmax �0.9572 �0.9912; �0.8047 5.09�05 �0.0339 �0.6827; 0.6446 0.9308

LPD 0.9549 0.7951; 0.9907 6.10�05 0.3844 �0.3755; 0.8352 0.3070

N0 0.0425 �0.6396; 0.6872 0.9134 0.7422 0.1540; 0.9420 0.2202

Nmax �0.9977 �0.9995; �0.9890 1.66�09 0.2979 �0.4565; 0.8031 0.4362

L. gelidum µmax �0.9283 �0.9851; �0.6891 0.0003 �0.5587 �0.8919; 0.1675 0.1178

LPD 0.9424 0.7438; 0.9881 0.0001 0.7049 0.0768; 0.9325 0.0339

N0 0.1130 �0.5958; 0.7228 0.7722 0.5667 �0.1561; 0.8942 0.1116

Nmax �0.8983 �0.9786; �0.5806 0.0009 0.3732 �0.3867; 0.8313 0.3225

N0, the initial bacterial population (log CFU/g); Nmax, the maximal bacterial population (log CFU/g); LPD, the lag phase duration (h), µmax (the maximum specific
growth rate (1/h).

In FW, Pseudomonas spp. reached higher values at day 3, and
became the most represented bacteria until the end of the shelf-
life (>90%). B. thermosphacta reached lesser values, with 3.22% at

TABLE 7 | Effect of food storage conditions on the maximal bacterial growth rates

(µmax , 1/h) for mono- and co-cultures experiments (analysis of covariance,

ANCOVA).

Effects

Packaging *

Experiments Packaging Temperature temperaturea

Mono-culture

B. thermosphacta 0.0113* 0.0003* 0.0001*

Pseudomonas spp. 0.4133 0.7389 0.0050*

L. gelidum 0.1655 0.0015* 0.4331

Co-culture

B. thermosphacta 0.0280* 0.8072 0.0016*

Pseudomonas spp. 0.3063 0.3564 0.8114

L. gelidum 0.1030 0.1691 0.8728

aInteraction effect of packaging and temperature on bacterial growth rates;
*significant statistical effect (p < 0.05).

the end of the shelf-life. L. gelidumwas always under the detection
limit. These results are in accordance with those obtained in co-
culture experiments.

In MAP, Photobacterium spp. was the most represented genus
(>90%) during storage. However, low levels of B. thermosphacta
and L. gelidum were observed at 8 and 12�C. Pseudomonas spp.
was always under the detection limit. These results are di�erent
from those obtained in co-culture experiments.

Moreover, pH value of the validation dataset at the end
of the shelf-life was statistically di�erent to control samples
(7.06 ± 0.80, n = 7, p-value = 0.01).

At the same time, the concentration of carbon dioxide
also showed higher values than control samples (35.5 ± 1.64,
56.7 ± 2.17, and 96.7 ± 5.57, at 4, 8, and 12�C, respectively).

DISCUSSION

The present study aimed to obtain the growth parameters of
three specific spoilage micro-organisms previously isolated in
MP samples, and to develop a three-spoilage species interaction
model under di�erent storage conditions. B. thermosphacta,
Pseudomonas spp., and L. gelidum were previously isolated as
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FIGURE 5 | Reduction ratio (a), in%, of the parameters µmax for B. thermosphacta, Pseudomonas spp., and L. gelidum in co-culture experiments at different

storage conditions (see Table 1 for legend). The negative bars represent an increase in co-culture for the specific parameters. No growth of bacteria (NG) was only

observed for Ln. gelidum in MAP at 4�C.

predominant strains (>50% reads) from di�erent batches of
Belgian MP samples at the end of their use-by-date (Cauchie
et al., 2019). Considered as the main representative spoilage
species in meat and meat products (Koort et al., 2005; Liu et al.,
2006; Nychas et al., 2008; Pennacchia et al., 2009, 2011; Andritsos
et al., 2012; De Filippis et al., 2013; Casaburi et al., 2014; Stoops
et al., 2015; Zhao et al., 2015; Mann et al., 2016; Stellato et al.,
2016; Del Blanco et al., 2017; Geeraerts et al., 2017; Raimondi
et al., 2018; Li et al., 2019; Mansur et al., 2019; Peruzy et al.,
2019), these bacteria were inoculated on irradiated MP samples,
in mono- and in co-culture experiments.

However, the selection of dominant and non-dominant
species in inoculation experiments could have been more
interesting in order to better represent the natural contamination
of MP, and thus to better model the impact of sub-dominant
microbiota. Indeed, others taxa were also present in MP samples
but in lesser abundance, even if they are considered as dominant
taxa in several studies: Photobacterium spp. (Ast et al., 2007;
Bjornsdottir-Butler et al., 2016; Moretro et al., 2016; Nieminen
et al., 2016; Kuuliala et al., 2018; Fogarty et al., 2019; Jääskeläinen
et al., 2019) and Lactobacillus spp. (especially Lactobacillus
algidus) (Kato et al., 2000; Fadda et al., 2010; Doulgeraki et al.,
2012; Dalcanton et al., 2013; Nieminen et al., 2015; Pothakos
et al., 2015; Alvarez-Sieiro et al., 2016; Woraprayote et al.,
2016; Stefanovic et al., 2017). According to this, they were not
included in models of this study, as all others non-dominant
microbiota. Moreover, P. fluorescens and P. fragi were used

together in experiments. The objective of this study was to o�er
an exploratory approach to the proposed method by following
the common genus formed by the two species mentioned. So,
it would have been interesting to inoculate MP samples with
both species in di�erent batches, as behavior of these species is
di�erent according to the storage conditions.

The inputs of models were provided from culture-dependent
and culture-independent analysis performed on inoculation
experiments. The association of both techniques allows us
to obtain estimate abundance during storage in co-culture
experiments. Although we acknowledge that the plate count
method is not able to assess all the microbial populations in
presence, the combination of these two methods was previously
validated by a qPCR approach (Cauchie et al., 2017). This
approach was also used in others studies (Chaillou et al., 2015;
Delhalle et al., 2016). Fougy et al. (2016) also showed that this
conversion can be used to obtain an extrapolated estimation of
the bacterial concentration, and may be used in food industries.
But comparison of these results with counts on selective media
would also be interesting to study in the future. Moreover, even
if this method overestimates the bacterial concentration, it could
be beneficial in a worst-case risk assumption for food industries
(Crotta et al., 2016; Membré and Boué, 2018).

In this study, models show relatively good fitting indexes
(RrMSE and R2). Good performances (ASZ) in the three-species
interaction approach were also obtained, especially with the
modified Jameson-e�ect model.
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TABLE 8 | Estimated growth parameters of the three-species modified Jameson-effect and Lotka Volterra models, with goodness-of-fit indexes.

Modified Jameson-effect model Lotka Volterra model

RrMSE µmax RrMSE FABC FACB FBAC FBCA FCAB FCBA

Aco(A) 0.261 0.047 [0.019; 0.076] 0.154 �0.90 [�5.41; �0.19] �1.10 [�5.13; �0.18] 2.20 [0.92; 2.81] 0.45 [0.35; 1.08] 0.50 [0.19; 1.82] 1.99 [0.54; 5.00]
Aco(B) 0.273 0.065 [0.031; 0.097] 0.171 �0.90 [�5.41; �0.19] �1.10 [�5.13; �0.18] 2.20 [0.92; 2.81] 0.45 [0.35; 1.08] 0.50 [0.19; 1.82] 1.99 [0.54; 5.00]
Aco(C) 0.284 0.039 [0.013; 0.065] 0.199 �0.90 [�5.41; �0.19] �1.10 [�5.13; �0.18] 2.20 [0.92; 2.81] 0.45 [0.35; 1.08] 0.50 [0.19; 1.82] 1.99 [0.54; 5.00]
Bco(A) 0.372 0.230 [0.019; 0.380] 0.113 0.05 [�0.02; 0.09] 6.02 [3.53; 6.55] 0.90 [0.85; 0.99] 1.08 [0.67; 1.11] �5.51 [�5.73; �0.27] �0.04 [�0.05; �0.03]
Bco(B) 0.273 0.317 [0.031; 0.485] 0.365 0.05 [�0.02; 0.09] 6.02 [3.53; 6.55] 0.90 [0.85; 0.99] 1.08 [0.67; 1.11] �5.51 [�5.73; �0.27] �0.04 [�0.05; �0.03]
Bco(C) 0.284 0.184 [0.015; 0.327] 0.108 0.05 [�0.02; 0.09] 6.02 [3.53; 6.55] 0.90 [0.85; 0.99] 1.08 [0.67; 1.11] �5.51 [�5.73; �0.27] �0.04 [�0.05; �0.03]
Cco(A) 0.224 0.111 [0.082; 0.140] 0.216 0.11 [0.04; 0.17] 0.38 [0.17; 0.50] 0.62 [0.61; 0.63] 1.15 [1.06; 1.21] 0.78 [0.60; 1.06] 0.12 [0.12; 0.15]
Cco(B) 0.248 0.136 [0.105; 0.169] 0.294 0.11 [0.04; 0.17] 0.38 [0.17; 0.50] 0.62 [0.61; 0.63] 1.15 [1.06; 1.21] 0.78 [0.60; 1.06] 0.12 [0.12; 0.15]
Cco(C) 0.250 0.090 [0.062; 0.116] 0.186 0.11 [0.04; 0.17] 0.38 [0.17; 0.50] 0.62 [0.61; 0.63] 1.15 [1.06; 1.21] 0.78 [0.60; 1.06] 0.12 [0.12; 0.15]
Dco(A) 0.187 0.015 [0.004; 0.028] 0.056 �0.06 [�0.14; 0.15] �11.08 [�11.08; �3.72] 2.21 [1.80; 2.21] 0.45 [0.45; 0.48] �5.05 [�5.05; 0.50] 0.13 [�0.32; 0.37]
Dco(B) 0.186 0.018 [0.004; 0.033] 0.205 �0.06 [�0.14; 0.15] �11.08 [�11.08; �3.72] 2.21 [1.80; 2.21] 0.45 [0.45; 0.48] �5.05 [�5.05; 0.50] 0.13 [�0.32; 0.37]
Dco(C) 0.223 0.064 [0.004; 0.084] 0.083 �0.06 [�0.14; 0.15] �11.08 [�11.08; �3.72] 2.21 [1.80; 2.21] 0.45 [0.45; 0.48] �5.05 [�5.05; 0.50] 0.13 [�0.32; 0.37]
Eco(A) 0.187 0.044 [0.023; 0.095] 0.050 0.26 [�0.24; 0.26] 3.08 [�3.96; 3.08] 4.40 [1.31; 4.40] 0.14 [0.11; 0.75] �0.28 [�0.28; 3.01] �0.74 [�0.74; 0.32]
Eco(B) 0.228 0.039 [0.014; 0.096] 0.094 0.26 [�0.24; 0.26] 3.08 [�3.96; 3.08] 4.40 [1.31; 4.40] 0.14 [0.11; 0.75] �0.28 [�0.28; 3.01] �0.74 [�0.74; 0.32]
Eco(C) 0.186 0.110 [0.055; 0.184] 0.119 0.26 [�0.24; 0.26] 3.08 [�3.96; 3.08] 4.40 [1.31; 4.40] 0.14 [0.11; 0.75] �0.28 [�0.28; 3.01] �0.74 [�0.74; 0.32]
Fco(A) 0.192 0.056 [0.015; 0.095] 0.203 �0.15 [�0.19; 0.02] �0.11 [�0.20; 0.01] 0.66 [0.40; 0.83] 0.47 [0.43; 0.48] 0.63 [0.60; 0.63] 1.19 [1.19; 1.27]
Fco(B) 0.228 0.035 [0.010; 0.096] 0.189 �0.15 [�0.19; 0.02] �0.11 [�0.20; 0.01] 0.66 [0.40; 0.83] 0.47 [0.43; 0.48] 0.63 [0.60; 0.63] 1.19 [1.19; 1.27]
Fco(C) 0.186 0.100 [0.046; 0.184] 0.221 �0.15 [�0.19; 0.02] �0.11 [�0.20; 0.01] 0.66 [0.40; 0.83] 0.47 [0.43; 0.48] 0.63 [0.60; 0.63] 1.19 [1.19; 1.27]

See Table 1 for the list of codes used. Mean values with the 95% confidence intervals (lower limit and upper limit). RrMSE, the root-mean-square error of the residuals; µmax, the maximum growth rate (1/h); FABC, FACB,
FBAC, FBCA, FCAB, FCBA, the coefficient of interaction measuring the effects of one species on the others (A, B. thermosphacta; B, Pseudomonas spp.; C, L. gelidum; respectively).
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FIGURE 6 | Experimental observed data (validation dataset, means, and standard deviation of the three replicates) and simulations provided by the predictive

models based on the modified Jameson-effect equation and on the Lotka Volterra equation in food wrap. See Table 1 for list of the codes used. Black solid lines

represent the Jameson-effect model and gray solid lines represent the Lotka Volterra model. Dashed and dotted lines represent the acceptable simulation zone

(ASZ) used to compare observations versus predictions of the interaction models.

Frontiers in Microbiology | www.frontiersin.org 17 April 2020 | Volume 11 | Article 639



  Annexes 

   346 

 

fmicb-11-00639 April 7, 2020 Time: 17:4 # 18

Cauchie et al. Development of Three-Species Spoilage Models

FIGURE 7 | Experimental observed data (validation dataset, means, and standard deviation of the three replicates) and simulations provided by the predictive

models based on the modified Jameson-effect equation and on the Lotka Volterra equation in modified atmosphere packaging. See Table 1 for list of the codes

used. Black solid lines represent the Jameson-effect model and gray solid lines represent the Lotka Volterra model. Dashed and dotted lines represent the

acceptable simulation zone (ASZ) used to compare observations versus predictions of the interaction models.
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The growth parameters of the three specific spoilage micro-
organisms were obtained for mono- and co-culture experiments
by fittings primary and secondary models (Tables 4, 5). The
food packaging shows the highest impact on bacterial growth
rates (µmax), which in turn have the strongest influence on
the shelf life of food products (Simpson and Carevic, 2004;
Stoops et al., 2015; Guillard et al., 2016; Saraiva et al., 2016;
Couvert et al., 2017). In accordance with Liu et al. (2006),
N0 showed a little correlation with the microbial shelf life in
mono- and co-culture experiments, indicated that the storage
outcome of food seems to be not completely determined by
the initial microbial counts. Moreover, no obvious correlation
has been shown between Nmax and shelf life in co-cultures
experiments. This can be explained by the fact that meat shelf life
is determined primarily by the metabolic patterns of the spoilage
microbiota, rather than by total counts of bacteria (Liu et al.,
2006). However, it can be observed that the parameters obtained
in single culture were quite di�erent from those in co-culture,
especially for Pseudomonas spp. and B. thermosphacta. In FW,
B. thermosphacta grew faster on mono-culture, but this behavior
was not detected in co-culture. On the opposite, Pseudomonas
spp. became the dominant bacteria in FW in the presence
of the two others micro-organisms. These di�erences between
mono- and co-culture inoculations have already been observed
by Hibbing et al. (2010) and Quinto et al. (2018).

On the other hand, observations in co-culture experiments
showed that the suppression of the two other bacteria occurred
when the dominant one reached its MCP. This result reveals a
potential Jameson e�ect between populations, rather than a prey-
predator trend. According to these, di�erences between mono-
and co-cultures experiments could maybe be explained by two
hypotheses: (i) a non-specific interaction involving the Jameson
e�ect, where growth inhibition is the result from a depletion in
nutrient bioavailability and toxicity increase when the dominant
bacteria reaches NMCP; and (ii) a specific interaction due to the
modification of the food matrix where bacteria are growing (i.e.,
catabolism of carbon sources, the production of by products such
as carbon dioxide and acids, . . .) (Bruce et al., 2017; Quinto
et al., 2018; Correia Peres Costa et al., 2019; Kumariya et al.,
2019). Nadell et al. (2016) have mentioned that P. fluorescens can
produces extracellularmatrixmaterials to give them an advantage
over competitors. Quorum sensing could also be related to this
inhibition by the dominant bacteria, by exchanging information
to synchronize bacterial behavior in mixed-culture (Ng and
Bassler, 2009; Dubey and Ben-Yehuda, 2011; Quinto et al., 2018).

The development of a three-spoilage species interactionmodel
was then performed using two models: the modified Jameson-
e�ect and the Lotka Volterra (Figures 6, 7). The modified
Jameson-e�ect model showed slightly better fits than the Lotka
Volterra equation, with 40–86% out of the observed counts falling
into the ASZ, indicating a satisfactory model performance. It
only concerns 14–48% for the prey-predator approach. These
results can be explained by the fact that the dynamics of
experimental and validation datasets seems to follow a Jameson
behavior, because the minority bacteria decelerate when the
majority one reaches the MCP (Cornu et al., 2011). Moreover,
the modified Jameson-e�ect equation is considering growth

parameters (µmax, tMCP, and N0) for modeling (Eq. 19). These
parameters are obtained by primary and secondary fittings, and
are relatively reliable in our study due to the numbers of samples
analyzed. On the other hand, the Lotka Volterra model is based
on complex interaction factors (Eq. 21) which are obtained by
linear regression. Due to the high variability of interactions
that can be simulated, particularly in three or more species
models, these interaction factors must necessarily be as accurate
as possible. In this study, interaction factors are included in
highly variable intervals (Table 8), with some variations observed
according to the temperature (Moller et al., 2013; Mejlholm
and Dalgaard, 2015; Correia Peres Costa et al., 2019). More
datasets are probably needed to obtained reliable factors. Also,
the Lotka Volterra model could be modified for a more realistic
approach by considering the e�ect of other influencing factors
(e.g., environmental conditions such as several storage and
packaging conditions, bacteriocin production, etc.) (Powell et al.,
2004; Baka et al., 2014).

More inoculation experiments are so needed to develop
better predictive models, especially for a three- or more-spoilage
species interaction approach. And also, to better understand
the dynamics of spoilage bacteria toward each other and in
the presence of natural microbiota. As mentioned by Quinto
et al. (2018): “it is well known that a spoilage microorganism
can either stimulate, inhibit, or have no e�ect on the growth
of the pathogenic species.” So, it could be interesting to study
interactions between spoilage microorganisms, with production
of metabolites or other substances as interaction factors. It would
also be interesting to investigate co-culture experiments with
two species. Moreover, metabolites production by each of the
inoculated bacteria, as inputs interacting models, will be studied
in another scientific publication.

Finally, naturally contaminated samples were used to validate
the developed models by considering the e�ect of the food
microbiota. Di�erences with co-culture experiments were
obtained: a predominance of Photobacterium spp. (>90% of
reads) was observed in MAP (Supplementary Figure S5). It
could be interesting to take also into account this bacterium
for modeling interactions. The addition of this bacterium could
possibly improve the reliability of predictions, particularly for
the Lotka Volterra model. Moreover, Photobacterium spp. is
not well recovered on PCA at 22�C (Dalgaard et al., 1997;
Hilgarth et al., 2018). According to this, improving cultivation
methods for this bacterium is important to obtain more reliable
results. Further studies are so needed to develop more realistic
interacting predictive models, especially in a three- or more-
spoilage species interaction approach, and to develop new food
preservation process.

CONCLUSION

New omics technologies, such asmetagenetics andmetabolomics,
are important to characterize and to follow the dynamics of
bacterial microbiota and metabolites in complex food matrices.
New generations of predictive models will probably need to
be developed, by considering the results provided by these

Frontiers in Microbiology | www.frontiersin.org 19 April 2020 | Volume 11 | Article 639



  Annexes 

   348 

 

fmicb-11-00639 April 7, 2020 Time: 17:4 # 20

Cauchie et al. Development of Three-Species Spoilage Models

techniques. These models will provide a better understanding of
the interactions between microorganisms and food, and micro-
organisms between them.
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