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INTRODUCTION
When carrying out an EEG experiment for source reconstruction, one has 
to provide both accurate geometry and electrical properties of the head 
tissues. Authors usually set the electrical conductivities based on values 
reported in the literature which have been shown to vary widely[1] (Fig. 1).

Here we propose a method to assess the sensitivity of the EEG forward 
problem to those parameters using a realistic finite element (FEM) head 
model including white matter anisotropic tensor. The chosen sensitivity 
descriptor are the first and total order Sobol indices.

Global sensitivity analysis of the
EEG forward problem
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We generated the model using the following steps:

●The structural T1 image was segmented using a combination of MARS[2] 
and Unified Segmentation[3].

●The mesh was generated using both CGAL[4] and Gmsh[5] directly from the 
segmented volume (Fig. 2).

●White matter anisotropic conductivity was approximated by the diffusion 
tensor derived from dw-MRI[11].

●Sensors were added based on the 10-10 electrode system for EEG 
recording.

The continuous ranges recorded for each tissue electrical conductivity 
defined a 5D space Ω. As it is impossible to compute the EEG leadfield 
matrix for each point of Ω, we produced a surrogate model.

●The design points were selected using a Leja adaptative quadrature 
rule[6] considering uniform distributions for all the tissues electrical 
conductivity.

●The EEG leadfield matrices have been computed using the reciprocity 
principle[7] implemented in GetDP[8] for each design point.

●Because of the very large number of elements in the FEM, we reduced 
the size of the obtained matrices by keeping equidistant elements with a 
fixed distance of 5 [mm].

●The surrogate model was generated using Gaussian processes[9] with a 
radial basis function kernel.

Using the surrogate model, we computed the first and total order Sobol 
indices[10] using Monte Carlo integration on the expression:

where L
ref

 is the leadfield matrix computed using the midrange electrical 

conductivity. 

METHODS

CONCLUSION
The present method provides a workflow not only to generate a parametric leadfield matrix which can produce any specific leadfield when given a set of 
electrical conductivities but also to perform a global sensitivity analysis.

The results obtained for the considered finite element model and the chosen electrical conductivity ranges demonstrate that, globally, the uncertainty on 
the electrical conductivity of the tissues has a large impact resulting in a high standard deviation. In addition to that, the Sobol indices show which is the 
main parameter responsible for the variability (here it is the conductivity of gray matter). Focusing on reducing the range for te parameters with the highest 
indices would reduce the variability and thus result in more accurate leadfield matrices.

RESULTS
As a result of this pipeline, we got both a surrogate model allowing us to generate any leadfield matrix for a set of electrical conductivities and statistical 
descriptors. The surrogate model showed an overall standard deviation of Δ of 28%. Moreover, the first and total order Sobol indices (Fig. 3) provide 
information on how to reduce the sensitivity by giving the parameters inducing the biggest variability in the results.
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Δ=
‖L−Lref‖F

‖Lref‖F
Fig. 3: First order (a) and total order (b) Sobol indices computed for the five 
tissue classes included in the finite element model shown in Fig. 2 for the 
value ranges recorded in Fig. 1.

Fig. 1: Electrical conductivity σ 
[S/m] ranges for the five tissues 
included in the finite element 
model. Those ranges were 
extracted from the literature. 
The mid-range values denoted 
by blue lines were used as the 
reference values for the 
sensitivity analysis.

Fig. 2: Finite element model 
generated from the segmented 
structural T1 image. The model 
includes the five main tissue 
classes (a), the diffusion tensor 
of the white matter[11] (b) and 
the sensors (c) placed with 
regard to the 10-10 electrode 
system for EEG (64 sensors).
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