Exocomets: A spectroscopic survey

I. Rebollido ${ }^{1}$, C. Eiroa ${ }^{1,2}$, B. Montesinos ${ }^{3}$, J. Maldonado ${ }^{4}$, E. Villaver ${ }^{1}$, O. Absil ${ }^{5}$, A. Bayo ${ }^{6,7}$, H. Canovas ${ }^{8}$, A. Carmona ${ }^{9}$, Ch. Chen ${ }^{10}$, S. Ertel ${ }^{11}$, Th. Henning ${ }^{12}$, D. P. Iglesias ${ }^{6,7}$, R. Launhardt ${ }^{12}$, R. Liseau ${ }^{13}$, G. Meeus ${ }^{1}$, A. Moór ${ }^{14,15}$, A. Mora ${ }^{16}$, J. Olofsson ${ }^{6,7}$, G. Rauw ${ }^{5}$, and P. Riviere-Marichalar ${ }^{17}$
${ }^{1}$ Dpto. Física Teórica, Universidad Autónoma de Madrid, Cantoblanco,28049 Madrid, Spain, e-mail: isabel.rebollido@uam. es
${ }^{2}$ Observatorio Astrónomico de Calar Alto, CAHA, 04550 Gérgal, Almería, Spain
${ }^{3}$ Centro de Astrobiología (CAB, CSIC-INTA), ESAC Campus Camino Bajo del Castillo, s/n, Villanueva de la Cañada, 28692, Madrid, Spain
${ }^{4}$ INAF, Osservatorio Astronomico di Palermo, Piazza del Parlamento 1, 90134 Palermo, Italy
${ }^{5}$ STAR Institute, Université de Liège, F.R.S.-FNRS, 19c Allée du Six Août, B-4000 Liège, Belgium
${ }^{6}$ Instituto de Física y Astronomía, Facultad de Ciencias, Universidad de Valparaíso, 5030 Casilla, Valparaíso, Chile
7 Núcleo Milenio de Formación Planetaria - NPF, Universidad de Valparaíso, Av. Gran Bretaña 1111, Valparaíso, Chile
${ }^{8}$ European Space Astronomy Centre (ESA), PO Box, 78, 28691 Villanueva de la Cañada, Madrid, Spain
${ }^{9}$ Université de Toulouse, UPS-OMP, IRAP, Toulouse F-31400, France
${ }^{10}$ Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21212, USA
11 Steward Observatory, Department of Astronomy, University of Arizona, Tucson, AZ 85721, USA
12 Max-Planck-Institut für Astronomie (MPIA), Königstuhl 17, D-69117 Heidelberg, Germany
${ }^{13}$ Department of Space, Earth and Environment, Chalmers University of Technology, Onsala Space Observatory, 43992 Onsala, Sweden
14 Konkoly Observatory, Research Centre for Astronomy and Earth Sciences, Konkoly-Thege Miklós út 15-17, 1121 Budapest, Hungary
15 ELTE Eötvös Loránd University, Institute of Physics, Pázmány Péter sétány 1/A, 1117 Budapest, Hungary
16 Aurora Technology B.V. for ESA, ESA-ESAC, Villanueva de la Cañada, 28691, Madrid, Spain
${ }^{17}$ Observatorio Astronómico Nacional (OAN-IGN)-Observatorio de Madrid, Alfonso XII, 3, 28014 Madrid, Spain

Abstract

Context. While exoplanets are now routinely detected, the detection of small bodies in extrasolar systems remains challenging. Since the discovery of sporadic events interpreted as exocomets (Falling Evaporating Bodies) around β Pic in the early 80 s, only ~ 20 stars have been reported to host exocomet-like events. Aims. We aim to expand the sample of known exocomet-host stars, as well as to monitor the hot-gas environment around stars with previously known exocometary activity. Methods. We have obtained high-resolution optical spectra of a heterogeneous sample of 117 main-sequence stars in the spectral type range from B8 to G8. The data have been collected in 14 observing campaigns expanding over 2 years from both hemispheres. We have analysed the Ca II $\mathrm{K} \& \mathrm{H}$ and Na i D lines in order to search for non-photospheric absorptions originated in the circumstellar environment, and for variable events that could be caused by outgassing of exocomet-like bodies. Results. We have detected non-photospheric absorptions towards 50% of the sample, attributing a circumstellar origin to half of the detections (i.e. 26% of the sample). Hot circumstellar gas is detected in the metallic lines inspected via narrow stable absorptions, and/or variable blue-/red-shifted absorption events. Such variable events were found in 18 stars in the Ca it and/or Na i lines; 6 of them are reported in the context of this work for the first time. In some cases the variations we report in the Ca in K line are similar to those observed in β Pic. While we do not find a significant trend with the age or location of the stars, we do find that the probability of finding CS gas in stars with larger $v \sin i$ is higher. We also find a weak trend with the presence of near-infrared excess, and with anomalous (λ Boo-like) abundances, but this would require confirmation by expanding the sample.

Key words. stars: general - planetary systems - comets:general - ISM: clouds - circumstellar matter

1. Introduction

Main sequence (MS) stars are known to host a complex circumstellar (CS) environment populated by a plethora of planets, debris discs, and minor bodies, inherited from the physics that regulates the formation of stars. Later, the mutual dynamical interaction among those bodies and their host stars determines the evolution of the planetary systems.

Since the discovery of a giant planet orbiting the solar-type star 51 Peg (Mayor \& Queloz 1995), thousands of planets have been detected, which make up planetary systems with diversi-
fied architectures (see e.g. The Extrasolar Planets Encyclopaedia ${ }^{1}$). Minor bodies, such as asteroids and comets, are expected in these planetary systems. Their study is relevant as they provide clues for understanding the formation and dynamical evolution of planetary systems (e.g. Armitage 2010). However, evidences of their presence are practically limited to indirect observations, such as the detection of circumstellar dust and gas in debris discs and, to a considerable less extent, to more direct evidences such as observations of some metallic line absorptions.
${ }^{1}$ exoplanet.eu

Hundreds of debris discs are currently known to surround MS stars across practically all spectral types, and ages from around 10 Myr to several Gyr. Debris discs are detected as thermal emission at mid-/far-IR/(sub-)mm wavelengths, as well as scattered light in the optical and near-IR, from small dust particles, which are mainly originated in collisions among km-sized planetesimals and other destructive processes (e.g Matthews et al. 2014, and references therein). It has been suggested that at least a fraction of debris discs posseses both warm (T ~ 200 K) and cold ($\mathrm{T} \lesssim 100 \mathrm{~K}$) dust belts (e.g. Ballering et al. 2013; Chen et al. 2014; Kennedy \& Wyatt 2014; Pawellek et al. 2014; Morales et al. 2016), reminiscent of the Solar asteroid and Kuiper belts respectively. The two-belt structure could be created by a chain of planets, while comets scattered by those planets could constitute a relevant source feeding the warm exozodiacal belt (Schüppler et al. 2016; Geiler \& Krivov 2017; Marino et al. 2018). In our own solar system cometary material from Jupiter family comets is responsible for replenishing the zodiacal cloud (Nesvorný et al. 2010).

Interferometric studies (Absil et al. 2006, 2013; Ertel et al. 2014; Nuñez et al. 2017) have revealed near-IR excesses also attributed in most cases to the combination of thermal emission and scattered light from small submicron-sized, hot ($\mathrm{T} \sim$ $1500-2000 \mathrm{~K}$) dust particles located within $\sim 0.01-1$ AU from the stars (depending on the luminosity, see Kirchschlager et al. 2017), very close to the dust sublimation zone. Again, cometary bodies scattered inwards from an outer reservoir is a likely scenario for the origin and persistence of the hot dust (Beust \& Morbidelli 2000; Thébault \& Beust 2001; Bonsor et al. 2014; Marboeuf et al. 2016; Faramaz et al. 2017; Marino et al. 2018; Sezestre et al. 2019).

Significant amounts of cold gas at several tens AU from the central stars (most young A-type stars) have been detected around ~ 20 bright debris discs (e.g. Moór et al. 2015a, 2017; Riviere-Marichalar et al. 2012, 2014; Roberge et al. 2013; Greaves et al. 2016; Lieman-Sifry et al. 2016; Marino et al. 2016).

The cold gas most likely has a secondary origin (e.g. Marino et al. 2016; Matrà et al. 2017; Kral et al. 2019), but in some cases a remnant of the primordial protoplanetary disc has been suggested (Kóspál et al. 2013; Moór et al. 2015a; Kral et al. 2017). A variety of physical processes, including outgassing of cometary objects, have been invoked to explain the secondary cold gas, all of them related to the presence of planetesimals (e.g. Matthews et al. 2014, and references therein). In parallel, UV/optical high resolution spectroscopy reveals non-photospheric stable absorption features of elements such as $\mathrm{C}, \mathrm{O}, \mathrm{Ca}, \mathrm{Na}$ or Fe at or close to the radial velocity of the star, as well as weak sporadic redor blue-shifted absorption events with respect to the stellar radial velocity (Vidal-Madjar et al. 1994, 2017; Lagrange et al. 1998; Brandeker et al. 2004; Roberge et al. 2006; Iglesias et al. 2018; Rebollido et al. 2018). This gas would be hot with temperatures $\sim 1000-2000 \mathrm{~K}$ (Hobbs et al. 1988; Beust et al. 1998; Vidal-Madjar et al. 2017). The transient absorptions have been interpreted as hot gas released by the evaporation of exocomets grazing or falling onto the star, the "Falling Evaporating Bodies" scenario or FEBs (e.g. Ferlet et al. 1987; Beust et al. 1990), while additionally grain evaporation in the circumstellar disc has also been proposed to explain the stable absorption components (e.g. Fernández et al. 2006). A trend between the detection of this hot gas and the edge-on orientation of cold-gas-bearing debris discs has been found by Rebollido et al. (2018), who attributed it to a geometrical effect. It is remarkable that this hot gas would be lo-
cated at distances $\lesssim 0.5 \mathrm{AU}$ from the star, i.e., at similar distances as the hot exozodiacal dust.

The first direct evidence for the presence of exocomets (FEBs) was found around β Pic, which remains unique and the best studied theoretically and observationally (e.g. Ferlet et al. 1987; Beust et al. 1991; Kiefer et al. 2014b; Vidal-Madjar et al. 2017, and references therein). Several hundreds of cometary transits in β Pic have been detected, revealing two families of exocomets with distinct dynamical and compositional properties; one likely formed by old comets strongly depleted in volatiles, and a second one related to the recent fragmentation of one or few parent bodies (Kiefer et al. 2014b). It is worth to note that very recently β Pic transiting exocomets have likely been detected by means of TESS broadband photometry (Zieba et al. 2019). Those exocomets would have been driven into the vicinity of the star by a larger body, i.e., a planet (Beust et al. 1991; Beust \& Morbidelli 2000). Thus, FEBs constitute an indicator of the plausible presence of planets; we recall that the Jupiter-like planet β Pic b , was later revealed by imaging (Lagrange et al. 2010).

In addition to β Pic, absorption events, mainly in the $\mathrm{Ca}_{\text {II }}$ K line accompanied in most cases by a stable component, have been detected towards more than 20 stars (e.g. Redfield 2007; Kiefer et al. 2014a; Welsh \& Montgomery 2015, 2018). Those stars are usually young ($<100 \mathrm{Myr}$) A-type stars, but transient features have also been found around older stars. Also, Welsh \& Montgomery (2019) have recently reported the first detection of an exocomet-like event with a 2.9σ signal around the F2 V type star η Crv. In addition, Kepler photometric light curves have been explained as due to transiting exocomets in a few F- and later spectral type stars (Rappaport et al. 2018; Ansdell et al. 2019) and maybe Boyajian's star (Boyajian et al. 2016). Exocomet-host stars have large projected rotational velocities, most with $v \sin i \gtrsim 100 \mathrm{~km} / \mathrm{s}$, in principle suggesting that the systems are viewed close to edge-on, which is the favoured orientation to detect non-photospheric absorptions from cometlike bodies passing in front of the star, and consistent with the trend suggested by Rebollido et al. (2018). In some cases, the stars hosting exocomets are associated with a debris disc. We note, however, that scattering of exocomets by eccentric planets can take place in planetary systems with low luminous, nondetectable debris discs with flux levels comparable to the Kuiper belt (Faramaz et al. 2017).

This work presents the observational results of a high spectral resolution survey of a large sample of stars with the primary aim of detecting and monitoring non-photospheric absorption features due to the passing of exocomets in front of the stars, and as secondary goal to assess any potential trend between the presence of exocomets and the properties of the host stars. The paper is structured as follows. Section 2 describes the sample of stars, the criteria to select them, and some basic properties. Section 3 presents our spectroscopic observations and data analysis. Section 4 presents our spectroscopic results concerning non-photospheric stable and variable features, their plausible interstellar (ISM) or circumstellar (CS) origin, and comments to some individual stars. Section 5 discusses the detection of the non-photospheric absorptions regarding some stellar properties, as well as with respect to the selection criteria. Finally, Section 6 presents the conclusions of this work.

2. Sample

As mentioned above the primary goals of our study are the detection and monitoring of variable, non-photospheric absorption
features that, as in the case of β Pic, could be attributed to the evaporation of solid bodies in the immediate surroundings of main-sequence stars. The observed stellar sample is formed by a heterogeneous and biased set of 117 MS stars in the spectral type range from B8 to G8, aiming at optimising those goals. The targets have been selected according to the following criteria: i) stars with previously reported $\mathrm{Ca}_{\text {II }} \mathrm{H} \& \mathrm{~K}$ and/or Na i D events attributed to exocomets; ii) debris disc stars, seen edge-on when known; iii) debris disc stars where the presence of cold gas has been detected at far-IR and (sub-)mm wavelengths; iv) stars with near-IR excesses that could be due to hot dust; v) stars belonging to young associations, namely Upper Scorpius (UpSco), Tucana-Horologium (Tuc-Hor), and the β Pictoris moving group (BPMG); vi) shell stars with circumstellar Ti II absorptions; vii) λ Bootis stars. The Ti in stars have been selected because those lines denote the presence of discs seen at nearly right angles to the rotational axes (Abt \& Moyd 1973; Abt et al. 1997), i.e. hot discs seen near edge-on - we note that in general shell stars are a heterogenous group of late B- to early F-type with the distinct characteristic of enhanced lines of $\mathrm{Fe}_{\text {II }}$ and $\mathrm{Ti}_{\text {II }}$ denoting the presence of a gaseous circumstellar shell (Gray \& Corbally 2009, and references therein). In addition, λ Bootis stars are A and early F spectral type stars strongly depleted in heavier elements (such as $\mathrm{Fe}, \mathrm{Al}, \mathrm{Mg}, \mathrm{Ca} . .$.), and relatively normal abundances of volatile elements like C, N, O, and S (Paunzen 2004), and some of them show clear evidences of accreting CS gas in their UV/optical spectra (Grady et al. 1996a; Holweger et al. 1999). The λ Bootis abundance pattern is most likely due to selective accretion of the volatile elements onto the star, material that could be provided by exocomets, although other sources could also be an alternative (Jura 2015; Draper et al. 2016). We note that some stars in the sample share several of the selection criteria.

Table B. 1 lists the observed stars. Columns 1 to 9 provide HD number, other names, 2000.0 equatorial coordinates, spectral types, distances, apparent V-magnitudes, $B-V$ colour indexes, and radial velocities $\mathrm{v}_{\mathrm{rad}}$, all taken from SIMBAD (Wenger et al. 2000). In addition, column 10 gives ages; column 11 gives the fractional luminosity of the dust, $\mathrm{L}_{\mathrm{IR}} / \mathrm{L}_{\text {star }}$, for those stars where a debris disc has been detected; column 12 gives the corresponding stellar association; and column 13 gives the primary selection criteria. The corresponding references for columns 10-13 are given within brackets. Fig. 1 shows the spatial distribution of the sample in galactic coordinates. Given the characteristics of the selection criteria, there is no preferencial location with the exception of stars in the UpSco and Tuc-Hor young associations, although most stars are in the Southern Hemisphere.

3. Observations and data analysis

High-resolution observations were taken in a series of campaigns from August 2015 to September 2017 from both the Northern and Southern hemispheres, using different fiber-fed spectrographs and telescopes. The spectrographs HERMES (Raskin et al. 2011) attached at the 1.5 m Mercator Telescope, and FIES (Frandsen \& Lindberg 2000) at the 2.5 m Nordic Optical Telescope (NOT) were used in El Roque de los Muchachos Observatory (Canary Islands, Spain). In La Silla Observatory (Chile), the FEROS spectrograph (Kaufer et al. 1999) at the MPG/ESO 2.2 telescope was used. Complementary observations were obtained at La Luz Observatory (México) with the TIGRE telescope and the HEROS spectrograph (Schmitt et al. 2014). Table 1 summarizes the resolutions and wavelength ranges of the various instruments, and the observing campaigns. A total of 1575

Fig. 1: All sky plot of the sample in galactic coordinates. Although most stars are in the Southern Hemisphere, there is no preferential spatial location, with the exception of stars in the UpSco and Tuc-Hor young associations.
spectra for the 117 stars were obtained; a detailed observing log with the specific dates (UT) of the spectra for each star and the corresponding spectrograph is given in the Appendix in Table C.1. Due to the nature of the irregular, sporadic exocometarylike events, we aimed at obtaining time-series spectra, with at least one spectrum per night per object when possible. Integration times never exceeded 30 minutes and were mainly selected depending on the telescope and brightness of the star with the general goal of obtaining a S / N ratio $\gtrsim 100$ in the Ca iI $\mathrm{H} \& \mathrm{~K}$ lines. That goal was not always achieved due to either poor weather conditions or the faintness of the star. Signal to noise $(\mathrm{S} / \mathrm{N})$ of the median spectra for each star measured in the continuum close to Ca II K line is given in Table C.1.

Data reduction was performed by the available pipelines of the different spectrographs. The reduction includes the usual steps for echelle spectra as bias subtraction, flat-field correction, cosmic ray removal, and order extraction; wavelength calibration is carried out by means of Th-Ar lamp spectra. In addition, barycentric corrections for the HERMES and FIES spectra were carried out as the corresponding pipelines do not include such correction. All spectra were normalised and the continuum set to 1.0 in the regions between spectral lines.

3.1. Telluric subtraction

The observed wavelength range includes regions of the visible spectra heavily affected by telluric lines; in particular the region around the 5890/5896 A Na I D lines, which are highly relevant for both interstellar and circumstellar absorptions. Removal of telluric lines was performed by means of MOLECFIT ${ }^{2}$ (Smette et al. 2015, Kausch et al. 2015), a tool that generates an atmosphere model accounting for the most common absorbing molecules in the optical range $\left(\mathrm{H}_{2} \mathrm{O}, \mathrm{O}_{2}, \mathrm{O}_{3}\right)$. Residuals after subtraction of the atmosphere model in the telluric line region are comparable to the noise level, and therefore negligible. An example of telluric subtraction is shown in Fig. 2.

3.2. Stellar parameters

Stellar parameters $T_{\text {eff }}, \log g$ and $v \sin i$ for the early type stars (up to F2) in the sample were computed using the procedure described by Rebollido et al. (2018). Solar abundances were used

[^0]Table 1: Instruments and observing campaings.

	HERMES	FIES	FEROS	HEROS!
Resolution	~ 85000	~ 67000	~ 48000	~ 20000
Range (nm)	$377-900$	$364-736$	$352-920$	$374-884$
Observations	$03-06 / \mathrm{Sep} / 2015$	26-27/Jan/2016	$21-24 / \mathrm{Oct} / 2015$	Aug 2015
	20-23/Dec/2015	16-19/Jul/2016	25-28/Mar/2016	Sept 2015
	27-30/Jan/2016	03/Mar/2016*	$31 / \mathrm{Mar}-08 / \mathrm{Apr} / 2017$	Oct 2015
	$03-06 / \mathrm{Mar} / 2016$	21/Mar/2016*	23/Sep-01/Oct/2017	Nov 2015
	$08-11 / \mathrm{May} / 2016$			Dec 2015
	$11-14 / \mathrm{Jul} / 2016$			Jan 2016
	$06-03 / \mathrm{Apr} / 2017$			
	28/Mar-03/Apr/2017			

$\left(^{*}\right)$ On March $3^{r d}$ and $21^{s t}$ during service mode only one spectrum was obtained each night. (!) HEROS spectra were taken in robotic mode during several months as complementary observations.

Fig. 2: Example of telluric subtraction in HD 21620 in the $\mathrm{Na}_{\mathrm{I}} \mathrm{D}$ spectral region. Black line shows the MOLECFIT atmospheric model; grey line shows the observed spectrum; and red line shows the final telluric-free HD 21620 spectrum.
initially to iterate the solutions for all objects, the solutions being consistent with that metallicity for most of the stars. For the 15 objects with $[\mathrm{M} / \mathrm{H}] \leq-0.5$ according to our estimates, eight of them, namely HD 31295, HD 74873, HD 110411, HD 125162 (λ Boo), HD 183324, HD 198160 (HR 7959), HD 198161 (HR 7960) and HD 221756, were classified as λ Boo stars by Murphy et al. (2015a), consistently with their expected underabundace in heavier elements.

For cooler stars (later than F2), a different approach was used to calculate parameters. In those cases we have followed the procedure described in detail by Maldonado \& Villaver (2017) and Maldonado et al. (2018), which is based on the iron ionisation and excitation equilibrium, and match of the curve of growth conditions.

Radial velocities ($\mathrm{v}_{\mathrm{rad}}$) were estimated by measuring the shift between the synthetic spectrum, which is computed using a database of rest wavelengths, and the observed spectrum, corrected for barycentric velocity. Individual shifts were measured for the Balmer lines from $\mathrm{H} \gamma$ to H 9 . $\mathrm{H} \epsilon$, which is blended with $\mathrm{Ca}_{\text {II }} \mathrm{H}$, was excluded. Lines bluer than H 10 were discarded since the lower part of the absorptions were usually noisy. Most of the stars have large values of the projected rotational velocity, $v \sin i$,
therefore the cores of the lines, and in particular the Balmer ones, are fairly rounded; thus, a direct evaluation of the wavelength at which the minimum intensity occurs introduces large uncertainties. The procedure we have followed is to slightly smooth the spectra, and then take as the reference wavelength that of the bisector corresponding to 10% of the line intensity measured from the bottom of the absorption. The same was done on the synthetic profile and the difference was converted into $\mathrm{v}_{\mathrm{rad}}$; the results do not change significantly if instead of using the synthetic spectrum, the rest laboratory wavelength of the particular Balmer line was taken as reference. The $\mathrm{v}_{\mathrm{rad}}$ uncertainties come from the standard deviation of the set of displacements. Fig. 3 shows the method explicitly.

Fig. 3: Radial velocities are measured as the difference between the synthetic model at rest (blue line) and the smoothed spectra at the radial velocity of the star (red line). The method is illustrated in the plot by means of the observed $\mathrm{H} \gamma$ line in the star HD 158352 (black line). A detailed description is given in the text.

3.3. Non-photospheric absorptions

The Ca II $\mathrm{H} \& \mathrm{~K}$ and Na i D lines were visually inspected to search for the presence of non-photospheric, stable or variable, absorption features at the core of the photospheric lines, which would suggest the presence of circumstellar gas. A median spectra (when data from different telescopes were available, all spec-
tra were converted to the FEROS resolution in order to construct the median) was constructed for each star to improve the signal to noise ratio in order to analyse the potential stable absorption, This analysis has been carried out by estimating the photospheric contribution with splines fitted to the bottom of the lines, and then dividing the observed profiles by the estimated photospheric lines, and finally fitting Gaussians to the residuals.

A total of 60 stars show stable, non-photospheric $\mathrm{Ca}_{\text {II }}$ and/or Na i absorptions (Table B.3); at the same time, irregular, variable features are seen in individual spectra of 18 stars (Table 2). For these latter stars, when no variations were detected in a range of hours/days, a median was constructed including all the consecutive non-variating spectra. The stable absorptions, when arising in the CS environment (see Sect 4.1.1), appear at the radial velocity $\left(\mathrm{v}_{\mathrm{rad}}\right)$ of the stars or close to it, while the variable ones appear red- and/or blue-shifted.

In the following we present a separate analysis for stars only showing stable non-photospheric absorptions, and stars with variable components regardless of whether they also have stable absorptions.

4. Results

4.1. Narrow, stable absorption features

As mentioned above, a total of 60 out of the 117 stars in the sample show narrow, stable absorption features superimposed on the photosphere, either in the Ca II and/or the Na I lines. Fig. 1 (Cont.) shows the observed line profiles for both the Ca II $\mathrm{H} \& \mathrm{~K}$ and Na I D lines of the 60 stars, along with their residuals, once the photosphere has been divided. Table B. 3 lists radial velocities (RVs), equivalent widths (EWs), column densities (N), and the velocity dispersion (FWHM of the Gaussian fits) of the non-photospheric median stable absorptions, as estimated for the Ca II $\mathrm{H} \& \mathrm{~K}$ and Na г D lines. EWs were calculated with respect to the adjacent continuum, once divided the photospheric contribution. The EW ratio for the Ca II and Na I doublets expected from the atomic properties of the transition (range $0.5-1.0$ in both cases encompassing the optically thin and optically thick regimes) is not always maintained, due to the EW uncertainties and the very complex geometry and composition of the CS gas. Column densities were estimated following Somerville (1988) in order to deal with the saturated lines. Uncertainties for the features' radial velocities are estimated as two pixels of the median spectra corresponding to $\sim 2.5 \mathrm{~km} / \mathrm{s}$ in Ca II lines and $\sim 1.5 \mathrm{~km} / \mathrm{s}$ in Na I lines, and being this value consistent with the FWHM of the lines of the calibration lamps. In the case of the EWs, we estimate an uncertainty of 10% in our measurements. Uncertainties for column densities were calculated as propagation of the EW uncertainties according to the formulas for the nonsaturation and saturation cases (Eq. 1 and 7 in Somerville 1988, respectively). In some stars, most previously classified as shell stars, the Ca II K line has a sharp, very pronounced triangularlike profile consisting in a very narrow core and broader wings, which cannot be fitted by either a Gaussian or a Voigt profile; in those cases, we have measured the EWs of the excess absorption with respect to the photospheric line and the velocity dispersion as the FWHM of the mentioned excess absorption, i.e., the velocity dispersion at one half of the absorption depth.

4.1.1. Origin of the non-photospheric stable absorptions

Stable non-photospheric absorption features might originate in the close-in CS environment of the star, or in the warm and cold
clouds of the local interstellar medium, ISM (e.g. Redfield \& Linsky 2008a). In order to try to decipher the origin, we have compared the radial velocity of those features with the radial velocities ($\mathrm{v}_{\mathrm{rad}}$) of the corresponding stars (Table B. 2 and Table B.3) and with the velocity vectors of the local ISM ($\mathrm{v}_{\text {ISM }}$) towards the line of sight of each star, as given for the ISM clouds in Redfield \& Linsky's Colorado model ${ }^{3}$. Velocities and names of the clouds are also given in Table B.3. Nonetheless, a sound ascription to any of both CS or ISM origins is ambiguous in some cases; for instance, when the stellar $\mathrm{v}_{\mathrm{rad}}$ and the ISM $\mathrm{v}_{\text {ISM }}$ along its line of sight are very close, or when there is no identified ISM Colorado cloud along the line of sight towards some stars with narrow Ca II and Na I absorptions. Further, the properties of the non-photospheric absorptions do not clearly discriminate the plausible origin (Redfield et al. 2007) since the observed EWs in the ISM of the Ca iI $\mathrm{H} \& \mathrm{~K}$ and of the Na i D lines and their ratios vary by several orders of magnitude (e.g Welty et al. 1996; Redfield \& Linsky 2008a; Welsh et al. 2010). We note that Na I is found in cold ISM gas ($\sim 50 \mathrm{~K}$) typically at distances larger than $\sim 80 \mathrm{pc}$ (Welsh et al. 2010), although is also occasionally found at shorter distances (e.g. Bertin et al. 1993; Welty et al. 1994); whereas Ca II appears in much warmer medium ($\sim 5000 \mathrm{~K}$) and is usually detected at much shorter distances (e.g. Redfield \& Linsky 2008b).

In this context, and taking into account the mentioned caveats, we identify stars with CS gas those that satisfy any of the following criteria: i) stars with variable absorptions (see section 4.2); ii) stars where the non-photospheric absorption shares its velocity with the radial velocity of the star but not with any ISM Colorado cloud; iii) stars with Ti II absorption lines and shell stars where the $\mathrm{Ca}_{\text {II }} \mathrm{K}$ line has a sharp, triangular-like profile. We point out that some stars have more than one nonphotospheric feature that can be independently identified with the velocity of the star or of the ISM. Also, for some stars the absorptions neither coincides with $\mathrm{v}_{\text {rad }}$ nor with $\mathrm{v}_{\text {ISM }}$. When possible, an inspection for nearby stars was made in a field of 5° in radius and distances $\pm 20 \mathrm{pc}$ around each star. A column in Table B. 3 shows our guess for the origin of the non-photospheric absorptions.

4.1.2. Comments on individual stars

In this section we discuss the plausible origin of the stable nonphotospheric absorptions for some individual stars or group of stars. Stars with variable absorption features detected in this work are discussed in section 4.2. HD 9672 (49 Cet), HD 32297, HD 110058, HD 131488, HD 131835, HD 138813, HD 146897, HD 156623, HD 172555 and HD 181296 (η Tel) were analysed in Rebollido et al. (2018); therefore, we do not repeat the discussion here. We note, however, that Na I D features in the stars HD 9672, HD 156623, and HD 172555 were erroneously omitted by Rebollido et al. (2018). A corrigendum can be found in Rebollido et al. (2019). We point out that this mistake does not affect the main conclusions of Rebollido et al. (2018). The Na I D features are nonetheless included in Table B. 3 and shown in Fig. 1 (Cont.). In HD 9672 the Na i D absorption appears at the velocity of the $\mathrm{Ca}_{\text {II }}$ feature, the radial velocity of the star and the velocity vector of the local interstellar cloud (LIC) cloud. In the case of HD 156623 the Na I D feature appears in emission at the stellar $\mathrm{v}_{\mathrm{rad}}$. For HD 172555 two Na I D2 components appear, one close to the G cloud in agreement with Kiefer et al. (2014a), and a second one very broad and variable (see section 4.2).

[^1]- HD 2884, HD 2885, and HD 3003 are members of the TucHor association. All three stars have similar proper motions, radial velocities and parallaxes. The projected angular separation between HD 2884 and HD 2885 is ~ 27" while the one between HD 2884 and HD 3003 is $\sim 9^{\prime}$. Thus, they likely form a physical multiple system (see also Eggleton \& Tokovinin 2008; Tokovinin 2008; Howe \& Clarke 2009). HD 2885 itself is a binary candidate (Lagrange et al. 2009). Our spectra show a weak narrow $\mathrm{Ca}_{\text {II }} \mathrm{K}$ absorption in HD 2884, a weak Na i D absorptions towards HD 2885, and weak Ca II K and Na I D absorptions towards HD 3003 (see also Iglesias et al. 2018). All these absorptions are close to the velocity vector of the Vel cloud and do not coincide with the $\mathrm{v}_{\mathrm{rad}}$ of the stars (Table B. 3 and Fig. 1 (Cont.)). HD 224392 is another Tuc-Hor star located at a similar distance from the Sun as the multiple system and at an angular separation of ~ 4 deg. Its spectrum shows non-photospheric absorptions of both $\mathrm{Ca}_{\text {II }}$ and Na I. The velocity of the Ca ir feature is close to the Vel cloud and to the Ca II absorptions in HD 2884 and HD 3003; the velocity of the Na is close to the Cet Colorado cloud that passes at $<20^{\circ}$ the line of sight of HD 224392. All these facts suggest an ISM origin for the Ca it and Na i features; however, this ascription is controversial. First, we note that neither Ca if nor Na I non-photospheric features appear simultaneously in HD 2884 and HD 2885. At the same time, Na I is detected towards HD 3003 but not towards HD 2884. Thus, since all three stars are located very close, in particular HD 2884 and HD 2885, a CS origin for the observed features cannot be excluded. Given all these facts, we find ambiguous to ascribe the non-photospheric features in all 4 stars to either a CS or ISM origin and further observations are needed to elucidate their origin.
- HD 5267 has a strong non-photospheric feature at $\sim-5.0 \mathrm{~km} / \mathrm{s}$ in both $\mathrm{Ca}_{\text {II }}$ and Na I lines. The velocity of this feature does not coincide with $\mathrm{v}_{\mathrm{rad}}(9.5 \mathrm{~km} / \mathrm{s})$ or with the $\mathrm{v}_{\text {ISM }}$ of any Colorado cloud. At the same time, there is a weak Ca iI K feature at $\sim 10.0 \mathrm{~km} / \mathrm{s}$, also tentatively detected in the Na i D2 line, close to stellar radial velocity and the velocity vector, $11.44 \mathrm{~km} / \mathrm{s}$, of the LIC cloud (Table B.3). Unfortunately there are no spectra of field stars in the ESO archive that can be used to discriminate the origin of the component at $-5 \mathrm{~km} / \mathrm{s}$. We note, however, that this feature is $\sim 15 \mathrm{~km} / \mathrm{s}$ blue-shifted relative to the radial velocity of the star, and that HD 5267 has a similar effective temperature as HD 181296, $\mathrm{T}_{\text {eff }} \sim 10500 \mathrm{~K}$. HD 181296 has a stable component $\sim 20 \mathrm{~km} / \mathrm{s}$ blue-shifted relative to the stellar velocity, most likely of CS origin as suggested in Rebollido et al. (2018) (see Chen \& Jura 2003, for other examples). Thus, while the origin of the $\sim 10 \mathrm{~km} / \mathrm{s}$ component is ambiguous, the origin of the $-5 \mathrm{~km} / \mathrm{s}$ is unknown.
- HD 16978 is another Tuc-Hor star reported by Welsh \& Montgomery (2018) as having a variable non-photospheric Ca iI K profile within 3 observations. Our spectra show such absorption with a similar EW but does not show the mentioned variability. The radial velocity of the feature coincides with the stellar $v_{\text {rad }}$, and it differs $\sim 4 \mathrm{~km} / \mathrm{s}$ from the $\mathrm{v}_{\text {ISM }}$ of the Vel cloud. Given the variability of the feature profile noted by Welsh \& Montgomery (2018), which might be indicative of a transient event, the more plausible origin is CS, although we cannot definitively exclude an ISM origin.
- The stars HD 71043, HD 71722, and HD 105850 have $\mathrm{Ca}_{\text {II }}$ and Na i features close to the velocity vectors of Colorado clouds, and far away form the stellar $\mathrm{v}_{\mathrm{rad}}$, supporting an ISM origin, in agreement with Iglesias et al. (2018). This is also
the case for the star HD 188228 where only a weak Na I absorption is seen close to the velocity of the G and Vel clouds.
- HD 118232 (24 CVn), HD 125162 (λ Bootis), and HD 221756 have non-photospheric absorption features not coinciding either with the stellar radial velocities or any known ISM Colorado clouds. Due to their high declinations ($>$ $+40^{\circ}$) we have not found any spectra of field stars in ESO archive which could help to elucidate the origin of the absorptions. Nonetheless, we find an ISM origin is the most plausible one given the remarkable shift in velocity between the features and the photospheric lines.
- HD 145689 (HIP 79797) is a member of the Argus association and shows a weak $\mathrm{Ca}_{\text {II }}$ absorption at a velocity of -11.9 km / s, between the radial velocity of the star at $-7.1 \mathrm{~km} / \mathrm{s}$ and the velocity of the G Colorado cloud at $-17.21 \mathrm{~km} / \mathrm{s}$. The F0 V field star HD 147787, located at a distance of 40 pc and a projected separation of $\sim 4^{\circ}$ from HD 145689, does not show any non-photospheric feature in its spectrum. Thus, given this fact and since the difference between the $\mathrm{Ca}_{\text {II }}$ feature and the stellar $\mathrm{v}_{\mathrm{rad}}$ is $\sim 2 \sigma$ we cautiously assign a CS origin to the $\mathrm{Ca}_{\text {II }}$ absorption.
- HD 158352 (HR 6507) has two Ca ii H\&K and Na i D absorption components relatively close to the stellar $\mathrm{v}_{\mathrm{rad}}$. There are no Colorado clouds along the line of sight of the star, but it passes near ($<20^{\circ}$) several clouds with similar velocity vectors. Our spectra reveal a faint narrow Ca II $8542 \AA$ absorption, and several faint $\mathrm{Fe}_{\text {II }}$ and Ti II lines characteristics of shell stars. Iglesias et al. (2018) assign the Ca it H\&K absorptions an ISM origin based on two field stars, HD 156208 and V 2373 Oph, that have absorptions similar to those of HD 158352. We find, however, that the ISM origin is ambiguous. HD 156208 and V 2373 Oph are at distances ~ 217 pc and $\sim 476 \mathrm{pc}$, respectively, i.e. considerably larger than the distance to HD 158352 of $\sim 63 \mathrm{pc}$. Therefore, while an ISM cloud could be located closer than 63 pc , it cannot be excluded that some ISM clouds responsible for the $\mathrm{Ca}_{\text {II }} \mathrm{H} \& \mathrm{~K}$ and Na i D are located between HD 158352 and the other two stars. On the other hand, Welsh \& Montgomery (2015) observed two $\mathrm{Ca}_{\text {II }} \mathrm{K}$ absorption components and attributed one of them a CS origin as it coincides with the stellar $\mathrm{v}_{\mathrm{rad}}$. Thus, while CS gas is certainly present around the star, the origin of the Ca iI $\mathrm{H} \& \mathrm{~K}$ and Na i D absorptions is not completely obvious. We note that Lagrange et al. (2009) identify this star as a binary candidate.
- HD 168646 (HR 6864) has a pronounced triangular profile in the Ca II at the bottom of the stellar lines, as well as many strong shell lines of $\mathrm{Ti}_{\text {II }}, \mathrm{Fe}_{\text {II }}$, and strong cores in the Balmer lines. The Na i D lines present a strong feature close to the Ca iI one, and a weaker one at a velocity of $\sim-22 \mathrm{~km} / \mathrm{s}$, away from the Aql cloud. A very weak third component might appear only in the D2 line at a velocity of $\sim 11 \mathrm{~km} / \mathrm{s}$. If real, this weak feature seems to have small variations in flux; we cannot make, however, any sound statement as we only have spectra taken in a single epoch. All features have velocities far away from any ISM Colorado cloud. In any case, the strong shell spectrum clearly traces the presence of CS gas.
- HD 177724 ($\zeta \mathrm{Aql})$ and HD 210418 have weak Ca II nonphotospheric absorptions, each at their respective stellar radial velocities and close to some Colorado clouds. We have not found any useful field star in the ESO archive which could help to elucidate the origin of the features. Thus, the ascription to any of both CS or ISM origins is ambiguous .
- HD 196724 is a candidate shell star (Hauck \& Jaschek 2000) with low rotational velocity, which shows a weak Ca II $\mathrm{ab}-$ sorption at the stellar $\mathrm{v}_{\mathrm{rad}}$ and also close to the $\mathrm{v}_{\text {ISM }}$ of the

Mic and Aql clouds. It might have weak Na I absorption but the spectra are too noisy to make a firm conclusion. The weak Ca is feature does not reveal a sharp, pronounced profile as it is seen in the Ca II $\mathrm{K} \& \mathrm{H}$ lines in other shell stars. Thus, we find ambiguous the origin of the $\mathrm{Ca}_{\text {II }}$ (and Na I if real) absorptions.

- HD 198160 (HR 7959) is a λ Bootis type star with a very weak $\mathrm{Ca}_{\text {II }} \mathrm{K}$ absorption at the stellar $\mathrm{v}_{\mathrm{rad}}$ and the Vel cloud $\mathrm{v}_{\text {ISM }}$. It forms a binary system with another λ Bootis star, HD 198161 (Holweger \& Rentzsch-Holm 1995; Faraggiana \& Bonifacio 1999), both components at a projected angular separation of just $2.3^{\prime \prime}$. Weak Ca II K and Na I absorptions are detected towards HD 198161. We also note that a very weak Na i absorption is present towards HD 198160. Thus, while a CS origin cannot be excluded, we find an ISM origin more realistic given the fact that we detect very similar absorptions towards both stars. However, we note that Holweger \& Rentzsch-Holm (1995); Holweger et al. (1999) favour a CS origin around the binary.
- Stars belonging to the Upper Scorpius subgroup in the Scorpius-Centaurus association deserve particular attention. There are 13 stars in our sample belonging to this subgroup (Table B.1). All of them are located in a region of 5 sq. deg., and between 110 and 150 pc. The stars show non-photospheric Ca iI and Na I absorption components which tend to be grouped around $\sim-9 \mathrm{~km} / \mathrm{s}, \sim-15 /-23 \mathrm{~km} / \mathrm{s}$, and $\sim-28 \mathrm{~km} / \mathrm{s}$ (Table B.3), in agreement with Welty et al. (1994). Most of the stars, with few exceptions, have two features with similar velocities in both $\mathrm{Ca}_{\text {II }}$ and Na I lines; depending on the star those two features are distributed among the three mentioned velocity ranges. The more blue-shifted components at $\sim-28 \mathrm{~km} / \mathrm{s}$ are close to the G cloud velocity vector; the least blue-shifted components at $\sim-9 \mathrm{~km} / \mathrm{s}$ are often close to the radial velocities of the stars. The fact that similar features, including those in the range $\sim-15 /-23$ km / s, are shared in one way or another by all stars strongly suggests their ISM origin, as already noticed by Rebollido et al. (2018) for HD 138813 and HD 146897. In general, the strongest feature is the less blue-shifted one, i.e., the one close to the stars' $\mathrm{v}_{\mathrm{rad}}$; this trend holds irrespectively of whether one or two absorption features are detected in any of the $\mathrm{Ca}_{\text {II }}$ and/or Na i; exceptions to this general trend are HD 146606, and HD 145964 - we refer to this star again in section 4.2 as it has a non-photospheric event identified by Welsh \& Montgomery (2013). The above results point evidently out that the ISM towards Upper Scorpius is not homogeneous, but with a notorious complexity likely structured in clumps or relatively small cloudlets, with different properties and located at different distances, discernibles along very nearby lines of sight. Finally, we note that a faint emission feature at $\sim-1.2 \mathrm{~km} / \mathrm{s}$ is detected in both lines of the Na i doublet towards HD 138813. As shown in Fig. 4, the emission is not related to the telluric subtraction. The emission feature is at the radial velocity of the star, and is similar to the emission feature detected towards HD 156623 , a star with $\mathrm{Ca}_{\text {II }}$ variable events (Rebollido et al. 2018, 2019). These emissions are most likely originated in the CS medium, as they are observed in every spectra, regardless of the observing campaign or atmospheric conditions.

4.2. Variable gas detection

Sixteen stars in our sample were selected because of variable, β Pic-like events of their Ca iI $\mathrm{H} \& \mathrm{~K}$ and/or Na I D lines. The stars

Fig. 4: Na i D lines of HD 138813, where the emission near the radial velocity of the star is easily recognisable and clearly present in the uncorrected spectra (grey line), and not originated as an over subtraction of the atmospheric model (black line). Red line shows the telluric corrected spectrum.

HD 56537 (λ Gem), HD 108767 (δ Crv), HD 109573 (HR 4796), and HD 148283 (HR 6123) also present optical (or UV) events (e.g. Grady et al. 1996b; Welsh \& Montgomery 2015; Iglesias et al. 2018) although they were included on the basis of other criteria (Table B.1). These stars are listed in Table 2 together with five new stars showing variability in non-photospheric features found in the frame of this work - HD 36546, HD 37306, HD 39182 (HR 2025), HD 98058 (ϕ Leo), and HD 156623 (HIP 84881). We also include in Table 2 the star HD 132200; although this star was not included in our sample and has not directly been observed by us, a variable Ca II K absorption feature was found by Rebollido et al. (2018). Our results on ϕ Leo, HD 156623 and HR 10 have already been discussed in Eiroa et al. (2016), Rebollido et al. (2018, 2019), and Montesinos et al. (2019), respectively.

Comments on individual stars

- HD 9672 (49 Cet), HD 32297, HD 50241, HD 56537 (λ Gem), HD 64145 (ϕ Gem), HD 108767 (δ Crv), and HD 148283 (HR 6123) do not present any apparent transient event in our time series spectra (Table 2). Also, while we do not see any variability in HD 138629 (HR 5774) our spectra differ from previous ones (see below). Further, we note that the stars HD 56537, HD 64145, HD 110411, and HD 183324 do not present any stable, narrow absorption at the core of the photospheric line, although HD 110411 and HD 183324 seem to present variability at the bottom of the $\mathrm{Ca}_{\text {II }}$ K line (Fig. 5, (see also Iglesias et al. 2018)).
- HD 21620 presents one stable non-photospheric absorption in both $\mathrm{Ca}_{\text {II }}$ and Na I at $\sim 4 \mathrm{~km} / \mathrm{s}$ (Fig. 1 (Cont.) and Table B.3). This feature does not coincide either with the radial velocity of the star or any of the Colorado ISM clouds; it has, however, a plausible ISM origin as several neighbouring stars have similar Na i absorptions (Génova \& Beckman 2003; Welsh \& Montgomery 2013). A weak absorption detected in $\mathrm{Ca}_{\text {II }} \mathrm{K}$ at $\sim 16 \mathrm{~km} / \mathrm{s}$ is close to the ISM velocity of the LIC cloud. Nonetheless the variability of this feature,

Fig. 5: Photospheric profile of $\mathrm{Ca}_{\text {II }} \mathrm{K}$ spectra of HD 110411 and HD 183324. Dates and instruments are colour-coded as indicated in the legend. The core of the line varies although neither a narrow feature nor transient events are clearly distinguished. The red dashed vertical line marks the radial velocity of the star. The red error bar shows the 3- σ standard deviation in the region close to the bottom of the line. This applies to all upcoming figures.
also noted by Welsh \& Montgomery (2013) (see their Fig. 1 and 2), is remarkable and we attribute it a CS origin. Fig. 6 shows the Ca II K line of HD 21620 during the campaigns of 2015 and 2016. We detect mostly red-shifted variations in the range of $\sim 10-30 \mathrm{~km} / \mathrm{s}$, with a tentative, weak blueshifted event on 04-05/09/2015 at $\sim 0 \mathrm{~km} / \mathrm{s}$ (top left panel of Fig. 6), and a potential red-shifted event at $\sim 50 \mathrm{~km} / \mathrm{s}$ in the NOT median spectra of 07/2016 (bottom left panel of Fig. 6). We note that Welsh \& Montgomery (2013) also detected a feature at a velocity close to this last event together with several blue-shifted ones. Some dynamical evolution might be traced by the $\sim 16 \mathrm{~km} / \mathrm{s}$ events observed in January 2016 as suggested by their changes in velocity and depth along three consecutive nights. All Ca II K events we detect are very weak with no detectable counterpart in the Ca ii H line, which suggests that the gas is optically thin. As an example, Fig. 7 shows both $\mathrm{Ca}_{\text {II }}$ lines as observed on Dec 23rd, 2015. The K line can be fitted with two Gaussians at velocities 4.3 and and $16.8 \mathrm{~km} / \mathrm{s}$, and equivalent widths of 14.2 and 3.3 $\mathrm{m} \AA$, respectively; at the same time, the $4.3 \mathrm{~km} / \mathrm{s}$ H absorption, which is the stable one, has an $E W=7.2 \mathrm{~m} \AA$, i.e., this feature is optically thin, while the $16.8 \mathrm{~km} / \mathrm{s}$ variable one is embedded in the noise, also suggesting optically thin gas.

- HD 36546 presents a narrow feature at a velocity of ~ 15 km / s visible in both $\mathrm{Ca}_{\text {II }}$ and $\mathrm{Na}_{\text {I }}$ lines (Fig. 1 (Cont.)). The origin of the feature is most likely CS as it coincides with the radial velocity of the star and is far from the ISM cloud along the line of sight (Table B. 3 and Fig. 1 (Cont.)). A red-shifted event at a velocity of $\sim 20 \mathrm{~km} / \mathrm{s}$ is detected in the $\mathrm{Ca}_{\text {II }} \mathrm{K}$ spectrum of $6 / 3 / 2017$, apparently evolving in the following dates and practically disappearing in the spectrum of 8/3/2017 (Fig. 8, left panel). A Gaussian deconvolution of the $6 / 3 / 2017 \mathrm{Ca}$ II K absorption (Fig.9) gives an EW of $8.4 \pm 0.9 \mathrm{~m} \AA$ for the $20 \mathrm{~km} / \mathrm{s}$ event, and $24.8 \pm 2.5 \mathrm{~m} \AA$ for the narrow stronger feature centered at $15 \mathrm{~km} / \mathrm{s}$, which is similar to the EW of $27.1 \pm 2.7 \mathrm{~m} \AA$ of this narrow feature in the spectrum of $8 / 3 / 2017$. We note that the weak feature at $20 \mathrm{~km} / \mathrm{s}$ is not discernible from the noise in the $\mathrm{Ca}_{\text {II }} \mathrm{H}$ line (not shown) suggesting that the gas is optically thin, somehow similar to the case of HD 21620. We also point out that the Na I D2 line

Fig. 6: $\mathrm{Ca}_{\text {II }} \mathrm{K}$ line of different epochs of HD 21620. Spectra plotted in the panels at the top and lower left were obtained with HERMES. Lower right panel shows median spectra of indicated period and telescope. FEB-like events appear at $\sim 16 \mathrm{~km} / \mathrm{s}$ and tentatively at 0 (blue-shifted, top left panel), and $50 \mathrm{~km} / \mathrm{s}$ (redshifted, bottom right). The events of January 2016 appears to present some dynamical evolution. Vertical red and grey dashed lines show the stellar and ISM radial velocities respectively.
presents as well an asymmetry in the red wing, with a small change of slope when comparing the different dates (Fig. 8, right panel).
HD 36546 hosts a bright debris disc (Table B.1) seen near edge-on with an inclination angle $i \sim 70-75^{\circ}$ (Currie et al. 2017), following the trend suggested by Rebollido et al. (2018) between the disc inclination and the presence of narrow non-photospheric absorptions at the radial velocity of the star. Lisse et al. (2017) found evidence of a C-rich CS environment which makes HD 36546 similar to β Pic and 49 Cet (Roberge et al. 2006, 2014). Thus, it can be another example of an enhanced carbon abundance acting as a braking mechanism of the hot inner ($<1 \mathrm{AU}$) CS gas released by evaporation of exocomets, dust grains or grain-grain collisions (Fernández et al. 2006; Brandeker 2011).

Table 2: Stars with variable non-photospheric absorption features. References are within brackets.

Name	Prev. Detected	Det. in this work
HD 256 (HR 10)*	Yes (1,12,15)	Yes
HD 9672 (49 Cet)	Yes (2)	No
HD 21620	Yes (3)	Yes
HD 32297	Yes (4)	No
HD 36546	No	Yes
HD 37306	No	Yes
HD 39182 (HR 2025)	No	Yes
HD 42111	Yes $(5,12)$	Yes
HD 50241	Yes $(5,11)$	No
HD 56537 (λ Gem)	Yes (6)	No
HD 64145 (ϕ Gem)	Yes (6)	No
HD 80007 (HR 3685)	Yes (11,15)	Yes
HD 85905	Yes $(7,15)$	Yes
HD 98058 (ϕ Leo)*	No	Yes
HD 108767 (δ Crv)	Yes (6)	No
HD 109573 (HR 4796)	Yes (6,16)	Yes
HD 110411	Yes (3)	Yes
HD 138629 (HR 5774)	Yes (8)	No
HD 132200*	No	Yes
HD 145964	Yes (3)	Yes
HD 148283 (HR 6123)	Yes $(5,13)$	No
HD 156623 (HIP 84881)*	No	Yes
HD 172555	Yes (9)	Yes
HD 182919 (5 Vul)	Yes (2)	Yes
HD 183324	Yes (10,16)	Yes
HD 217782	Yes (2,5,14)	Yes

(*) Results have been presented by Eiroa et al. (2016), Rebollido et al. (2018), and Montesinos et al. (2019, A\&A in press).
References: (1) Lagrange-Henri et al. (1990a); (2) Montgomery \& Welsh (2012); (3) Welsh \& Montgomery (2013); (4) Redfield (2007); (5) Roberge \& Weinberger (2008); (6) Welsh \& Montgomery (2015); (7) Welsh et al. (1998); (8) Lagrange-Henri et al. (1990b); (9) Kiefer et al. (2014a); (10) Montgomery \& Welsh (2017); (11) Hempel \& Schmitt (2003); (12) Lecavelier Des Etangs et al. (1997); (13) Grady et al. (1996b); (14) Cheng \& Neff (2003); (15) Redfield et al. (2007); (16) Iglesias et al. (2018)

- HD 37306 presents two stable narrow Ca II and Na i absorptions (Fig. 1 (Cont.)) at velocities $\sim 11 \mathrm{~km} / \mathrm{s}$ and $\sim 32 \mathrm{~km} / \mathrm{s}$, while the stellar $\mathrm{v}_{\mathrm{rad}}$ is $25.1 \mathrm{~km} / \mathrm{s}$. Nonetheless, the most remarkable and striking behaviour is the strong shell-like spectrum that appeared on the spectra of September 2017. The Са ї $\mathrm{H} \& \mathrm{~K}$ lines developed a strong, symmetric, triangular profile superimposed on the photospheric lines and the two narrow interstellar features, together with narrow shell-like absorptions in the $\mathrm{Ca}_{\text {II }}$ triplet or in several $\mathrm{Fe}_{\text {II }}$ and Ti II lines (see Fig. 10). At the same time, photospheric lines as e.g. the $\mathrm{Mg}_{\text {II }} 4481 \AA$ or the $\mathrm{O}_{\text {I triplet }}$ at $7750 \AA$ remained constant, as well as the Na i D lines. Further, the strong shell spectrum fully vanished in additional spectra taken in November 28, 2018 with the CARMENES spectrograph in Calar Alto Observatory (Quirrenbach et al. 2016), and from December 14 to 18, 2018 with HERMES. This behaviour has also been observed by Iglesias et al. (2019) partly using the same spectra. Due to the in principle unusual nature of this phenomenon, we have checked possible sources of contamination, such as instrumentation issues or additional sources in the fiber, but we have discarded these scenarios.

Fig. 7: The $\mathrm{Ca}_{\text {II }} \mathrm{K}$ and H lines as observed on 23/12/2015 using HERMES. Two Gaussians are fitted to the K non-photospheric feature with velocities $4.3 \mathrm{~km} / \mathrm{s}$ (red continuous line) and 16.8 km / s (blue continuous line). The strongest, stable $4.3 \mathrm{~km} / \mathrm{s} \mathrm{ab}-$ sorption is clearly detected in the H line, but the weakest, variable absorption at $16.8 \mathrm{~km} / \mathrm{s}$ is embedded in the noise of the H spectrum. Vertical red and grey dashed lines show the stellar and ISM radial velocities respectively.

Fig. 8: Left panel: Ca iI K line. A transient event is seen at $\sim 20 \mathrm{~km} / \mathrm{s}$ superimposed on the red wing of the narrow nonphotospheric absorption at $\sim 15 \mathrm{~km} / \mathrm{s}$. No obvious event is seen in 08/03/2017. Right panel: Na i D2 line. Dates are as indicated, and all spectra were obtained using HERMES. Red and grey vertical lines mark the radial velocity of the star and of the ISM respectively.

Thus, the appearance/disappearance of the shell-like profiles does point out to the presence of CS gas, but no blue-/redshifted FEB-like events are detected in any of our spectra. We note that variability of shell spectra and even its appearance/disappearance in some stars is well known (e.g. Jaschek et al. 1988). At the same time, and despite the lack of any identified ISM clouds in the line of sight, the fact that no remarkable changes are seen in the mentioned $\sim 11 \mathrm{~km} / \mathrm{s}$ and $\sim 32 \mathrm{~km} / \mathrm{s}$ narrow features during the 8 days of observations in September 2017, while drastic changes are seen in the CS (shell-type) environment, suggests an ISM origin as the more plausible alternative for those two absorptions, in agreement with Iglesias et al. (2018).

- HD 39182 (HR 2025), one of the selected Ti ir stars, has a sharp triangular-like absorption (Fig. 1 (Cont.)) with two narrow Ca II components; one is found at $\sim-22 \mathrm{~km} / \mathrm{s}$, centred

Fig. 9: The $\mathrm{Ca}_{\text {II }} \mathrm{K}$ spectra of the HD 36546 non-photospheric absorption for the day where the event in the red wing is most conspicuous ($06 / 03 / 2016$, black line) and when it is practically undetectable (08/03/2016, red dashed line). As in the previous figure, both spectra were obtained with HERMES. Blue solid line shows a fit of the $06 / 03 / 2016$ spectrum with two Gaussians, each one plotted as dotted blue lines.

Fig. 10: $\mathrm{Fe}_{\text {II }}\left(4583.83 \AA\right.$), $\mathrm{Ti}_{\text {II }}\left(4443.80 \AA\right.$) and $\mathrm{Ca}_{\text {II }} \mathrm{K}$ lines of HD 37306. While most of the spectra, represented by the median spectrum in the plot (black line), do no vary and show two Ca II non-photospheric absorptions, a strong shell-like profile appeared in September 2017 (red line, FEROS). It was not observed again in later spectra of November and December 2018, not shown in the figure. Red vertical line marks the radial velocity of the star.
in the photospheric line coinciding with the stellar $\mathrm{v}_{\mathrm{rad}}$, and varies significantly; the second, strongest one at $\sim 13 \mathrm{~km} / \mathrm{s}$ is clearly displaced from the line center (Fig. 11). A weak extra absorption at $\sim-41 \mathrm{~km} / \mathrm{s}$ is present in some spectra, i.e., in the blue wing of the $-22 \mathrm{~km} / \mathrm{s}$ component (Figs. 1 (Cont.) and 11). The Na I D lines only show a strong narrow absorption

Fig. 11: Са II K spectra of HD 39182 grouped by observing dates obtained with HERMES. In all panels, the median spectra is also plotted. The red and grey vertical lines correspond to the radial velocity of the star and the velocity vector of the LIC Colorado cloud, respectively.
at $\sim 14 \mathrm{~km} / \mathrm{s}$, coinciding with the strongest $\mathrm{Ca}_{\text {II }}$ component. None of the velocity components coincides with the velocity vector ($\mathrm{v}_{\text {ISM }}=21.62 \mathrm{~km} / \mathrm{s}$) of the LIC cloud, which is seen along the line of sight to the star. As an example of the observed Ca II variability Fig. 12 shows both H and K lines taken in two consecutive nights, where remarkable variations of the depth and profile of both non-photospheric features are observed. We also note that our spectra differ from the one reported by Lagrange-Henri et al. (1990c). Their spectrum shows a strong $\mathrm{Ca}_{\text {II }}$ feature at the bottom of the stellar line, i.e., like our $-22 \mathrm{~km} / \mathrm{s}$ feature, but the strong $13 \mathrm{~km} / \mathrm{s}$ absorption in our spectra, if present, is much weaker. Further, Lagrange-Henri et al. (1990c) do not report any Na i component. Thus, all these results suggest that the origin of all absorptions are CS.

- HD 42111 (HR 2174) is a shell star with strong Ca II and Na I absorptions in the median spectrum close to the radial velocity of the star and of the Aur cloud velocity (Fig. 1 (Cont.) and Table B.3), which have previously been reported by Lagrange-Henri et al. (1990c). Those authors attributed a CS origin (at least partially) to the Ca ir absorption based on a comparison of the dispersion velocities (FWHMs) of Ca II K and Na I lines; this result was later confirmed by LagrangeHenri et al. (1991) by comparing the non-photospheric features of HD 42111 and of the nearby star HD 42092. Further, the (at least partly) $\mathrm{Ca}_{\text {II }} \mathrm{CS}$ origin is corroborated by the fact that the EW and FWHM of the Ca iI K absorption, as estimated with our spectra, are much larger that the ones reported in those works, while at the same time the EWs and FWHM of the strong Na I absorptions are similar - a small change of the $\mathrm{Ca}_{\text {II }} \mathrm{K}$ absorption was also pointed out by Welsh \& Montgomery (2013). Individual spectra of HD 42111 show that the Ca II K feature is formed by two components at velocities $\sim 25 \mathrm{~km} / \mathrm{s}$ and $27.5 \mathrm{~km} / \mathrm{s}$, supporting the suggestion made by Lagrange-Henri et al. (1990c) concerning the plausible blend of two distinct features. Both Ca II K components have very similar strength (Fig. 13), although the feature at $\sim 25 \mathrm{~km} / \mathrm{s}$ varies in depth while the one at ~ 27.5 km / s appears distinctly only in some selected dates as a kind of β Pic-like events, e.g. 03/03/2016 or 08/03/2017 (Fig. 13), likely with a small dynamical evolution, at least in the March 2016 spectra, (see top-right panel of Fig. 13). In this respect,

Fig. 12: Ca iI K and H lines of HD 39182 colour-coded for two different observing dates obtained with HERMES. Spectra have been shifted 0.05 units in the Y-axis aiming to facilitate the visualisation of the variability. The red and grey vertical lines correspond to the radial velocity of the star and the velocity vector of the LIC Colorado cloud, respectively.

Fig. 13: Ca ${ }_{\text {II }} \mathrm{K}$ spectra of HD 42111 obtained with HERMES and grouped by observing dates. Spectra have been shifted 0.05 units in the Y-axis. The red and grey vertical lines correspond to the radial velocity of the star and the velocity vector of the ISM in the line of sight.
we note that Welsh \& Montgomery (2013) reported a FEBlike $\mathrm{Ca}_{\text {II }} \mathrm{K}$ event at $75 \mathrm{~km} / \mathrm{s}$, and that Grady et al. (1996b) and Lecavelier Des Etangs et al. (1997) detected gas in UV lines of $\mathrm{Fe}_{\text {II, }} \mathrm{Mn}$ II, and $^{\mathrm{Mg} \text { II, interpreted as CS clumps }}$ falling onto the star. With respect to the $\mathrm{Ca}_{\text {iI }} \mathrm{H}$ feature, our individual spectra do not resolve both K components, and are all well represented by their median profile; also, the peak of the H line feature is slightly red-shifted with respect to the K absorption. As an example, Fig. 14 plots the Ca iI H and K lines of the two consecutive nights where that behaviour can be seen. This could be due to the fact that the broad Ca ${ }_{\text {II }} \mathrm{H}$ feature is severely blended with the strong triangularlike profile at the core of the Balmer $\mathrm{H} \epsilon$ line - such strong

Fig. 14: $\mathrm{Ca}_{\text {II }} \mathrm{H} \mathrm{\& K}$ spectra of HD 42111 obtained with HERMES and grouped as observed in the indicated consecutive dates. The photospheric contribution has not been removed in this plot.The vertical lines correspond to the radial velocity of the star and the velocity vector of the ISM in the line of sight.
triangular-like profiles are clearly present in all Balmer lines. Obviously, additional higher resolution spectra are needed in order to attempt to resolve the $\mathrm{Ca}_{\text {II }} \mathrm{H}$ absorption without the interference of the $\mathrm{H} \epsilon$ line, and to study its plausible variability. We further note that a weak, but very broad, absorption is observed in both Na 1 D lines producing the observed secondary peak (Fig. 1 (Cont.). That absorption, present in all individual and the median spectrum of HD 42111, is not evident in the spectra by Lagrange-Henri et al. (1990c), Lagrange-Henri et al. (1991), or the high-resolution, unpublished spectrum obtained by EXPORT (Mora et al. 2001).

- HD 80007 has very weak Ca ir K and Na i D2 absorptions at the stellar $\mathrm{v}_{\mathrm{rad}}$ (Table B. 3 and Fig. 1 (Cont.)). The corresponding Ca II H and $\mathrm{Na}_{\text {I }} \mathrm{D} 1$ might be present in our median spectrum but at the noise level (Fig. 1 (Cont.)); and new spectra are required before a sound confirmation can be made. Hempel \& Schmitt (2003) noticed a change in the equivalent width, shape, and velocity of the $\mathrm{Ca}_{\text {II }}$ absorption. Redfield et al. (2007) also found variability in the velocity while the column density of the $\mathrm{Ca}_{\text {II }}$ absorption remains relatively constant; in contrast, those authors found more remarkable variability in the velocity (two absorptions at ~-7 km / s and $\sim 7 \mathrm{~km} / \mathrm{s}$) and column densities of the Na I feature. Further, Welsh \& Montgomery (2015) found a quasi twocomponent $\mathrm{Ca}_{\text {II }} \mathrm{K}$ feature in two consecutive nights and one single-component absorption in two other nights, with changes in the equivalent width. In addition, Wood \& Hollis (1971) found a quasi-periodic oscillation in the strength of the $\mathrm{H} \beta$ Balmer line, and suggested it could be due to flares generated by acoustic oscillations of the stellar atmosphere. Our spectra show new aspects of both Ca II and Na 1 absorptions as well as in the stellar radial velocity. Firstly, the radial velocity of the star shows a regular variation of the order of $\sim 1.5 \mathrm{~km} / \mathrm{s}$ per day in both 2016 and 2017 observing periods, Fig. 15. A possibility is that HD 80007 is a binary system and that the radial velocity variability is induced by an un-

Fig. 15: Radial velocity variation of HD 80007 in both observing periods. The observations suggest the presence of an unseen companion.
seen companion. Secondly, the Ca II K absorption shows a "central" feature with small changes in its strength accompanied in some spectra with blue- and red-shifted components (Fig. 16, top panel). At the same time the Na i D2 feature presents two components. One is a broad, variable feature centred at $\sim 2 \mathrm{~km} / \mathrm{s}$, i.e., the velocity of the star and the Ca in feature, with a red-shifted wing up to $\sim 18.5 \mathrm{~km} / \mathrm{s}$ even discernible in the median spectrum (Fig. 16, bottom panel). Further, one red-shifted event at $\sim 10 \mathrm{~km} / \mathrm{s}$ and extending up to $\sim 22 \mathrm{~km} / \mathrm{s}$ might tentatively be present in the spectrum of 2016 March 27 . The second Na I D2 component at a velocity $\sim-11.5 \mathrm{~km} / \mathrm{s}$ appears in all spectra but it varies its depth. We note that the velocity difference between both features is approximately the same as the ones sporadically observed by Redfield et al. (2007).

- HD 85905 is a shell star whose median spectrum shows a sharp triangular-like $\mathrm{Ca}_{\text {II }}$ absorption with two components at velocities at $\sim 8.4 \mathrm{~km} / \mathrm{s}$ and $\sim 25.0 \mathrm{~km} / \mathrm{s}$, and one Na I feature at $\sim 8.1 \mathrm{~km} / \mathrm{s}$. The feature at $\sim 8 \mathrm{~km} / \mathrm{s}$ coincides with the radial velocity of the star and is also close to the velocity vector of the G cloud (Fig. 1 (Cont.) and Table B.3). Nonetheless, individual spectra from the different epochs show remarkable variability; Fig. 17 shows some examples. During December 2015 both $\mathrm{Ca}_{\text {II }} \mathrm{K}$ components experienced noticeable variations, while the corresponding Na I $8.0 \mathrm{~km} / \mathrm{s}$ feature remained constant. However, there is a relatively strong feature at a velocity of $\sim 23.7 \mathrm{~km} / \mathrm{s}$ in both Na I D lines, (i.e. close to the $\mathrm{Ca}_{\text {II }} 25.0 \mathrm{~km} / \mathrm{s}$ component) visible in all dates of that period (December 2015) but not in any other of our observing epochs. The lower panel of Fig. 17 shows the median of December 2015 spectra of both Na i D lines where this result can be appreciated. Further, while during the periods of December 2015, January and March 2016 both Ca iI components were present, only the component at $\sim 8 \mathrm{~km} / \mathrm{s}$ was visible during the two different campaigns of 2017 (March 8 to 11, and March 29 to April 8). During these campaigns, a strong absorption appeared as well in the blue wing of the

Fig. 16: Top panel: $\mathrm{Ca}_{\text {II }} \mathrm{K}$ line of HD 80007 for the selected days, observed with FEROS. Spectra have been shifted 0.01 units in the Y-axis aiming to facilitate the visualisation of the variability. The central absorption is seen at $\sim 2 \mathrm{~km} / \mathrm{s}$, as well as blue- and red-shifted variable absorptions. Bottom panel: Na I D2 line of HD 80007 for the selected days. Variability is seen at ~-10 and $\sim 2 \mathrm{~km} / \mathrm{s}$. In both panels it is noticeable the slight shift at the bottom of the narrow absorptions presumably produced by a companion.

Ca if K, while the red-shifted $25.0 \mathrm{~km} / \mathrm{s}$ feature practically disappears. Fig. 18 shows the profiles of both the $\mathrm{Ca}_{\text {II }} \mathrm{H}$ and K lines of the median spectra of the three previously mentioned periods where changes of the H line profile can also be appreciated. The above results clearly suggest a CS origin of the non-photospheric absorptions observed in HD 85905, maybe related to a variability of the CS shell as suggested by the variations observed in other shell lines of e.g. Fe in, but not in photospheric lines as $\mathrm{Mg}_{\text {II }} 4481 \AA$ or the $\mathrm{O}_{\text {I triplet }}$ at $7775 \AA$ (not shown). A detailed analysis will be published elsewhere. Welsh et al. (1998) and Redfield et al. (2007) also attributed a CS origin to the $\mathrm{Ca}_{\text {II }}$ and Na I absorptions they detected.

- HD 109573 (HR 4796) has two very weak Ca it $_{\text {I }} \mathrm{K}$ absorptions at ~-14.2 and $-4.7 \mathrm{~km} / \mathrm{s}$ in the median spectrum (Fig. 1 (Cont.)). The one at $-14.2 \mathrm{~km} / \mathrm{s}$ is not detected in the $\mathrm{Ca}_{\text {II }}$ H line, suggesting the gas is optically thin, as it is the -4.7 km / s feature. This latter absorption is also present in the Na I D lines. None of these features coincides with the radial velocity of the star. Fig. 19 shows details of the Ca II K line on different dates (the $\mathrm{Ca}_{\text {II }} \mathrm{H}$ line is only revealed with the me-

Fig. 17: Top panel: Days 21, 23 and 24 of December 2015 where variability of the $\sim 25 \mathrm{~km} / \mathrm{s}$ Ca ${ }_{\text {II }} \mathrm{K}$ feature can be seen. Middle panel: $\mathrm{Ca}_{\text {II }} \mathrm{K}$ median spectra of three different campaigns using HERMES where the variability in the triangular profile is seen. The absorption at $\sim 25 \mathrm{~km} / \mathrm{s}$ disappears in March 2017. Lower panel: Na i D lines of December 2015 where the absorption at $\sim 23 \mathrm{~km} / \mathrm{s}$ is visible. The median of all spectra in the Na I D2 line where the absorption is no longer present is also shown. The vertical lines correspond to the radial velocities of the star and of the ISM.
dian spectra of all 23 individual spectra of HR 4796). Both Ca if K components vary in depth and shape, in some cases close to the noise level. Nonetheless, a discernible variability is seen, e.g. the $-14.2 \mathrm{~km} / \mathrm{s}$ component of March 2016 26th and 29th is distinctively weaker than of March 2016 27th, 28th. or the median of April 2017. Our spectra and the variability of the $\mathrm{Ca}_{\text {II }} \mathrm{K}$ features are quite similar to those in Welsh \& Montgomery (2015), strongly suggesting a CS origin. Nonetheless, Iglesias et al. (2018) attribute the $-5 \mathrm{~km} / \mathrm{s}$ feature an ISM origin, as the field star 1 Cen (HD 110073; 30 pc behind HR 4796) also has a similar absorption feature. Welsh \& Montgomery (2015) detected a faint FEB-like event at $\sim 60 \mathrm{~km} / \mathrm{s}$ in two spectra of a single night; and Iglesias et al. (2018) report a faint variable feature at the velocity of the star. None of these are apparent in our spectra.

- HD 138629 (HR 5774) has three non stellar Ca if features at velocities $-31.8,-22.9$, and $-13.8 \mathrm{~km} / \mathrm{s}$ with no sign of

Fig. 18: $\mathrm{Ca}_{\text {II }} \mathrm{H}$ and K median spectra of the campaigns indicated in the labels obtained using HERMES, where the variability of both lines can be appreciated. Spectra have been shifted 0.05 units in the Y-axis The photospheric contribution has not been removed in this plot. The vertical lines correspond to the radial velocities of the star and of the ISM.

Fig. 19: Са ї K line of HD 109573. A shift of 0.005 has been added to the Y -axis in order to help differentiate the variations. All spectra were obtained using FEROS. The red vertical line corresponds to the radial velocity of the star. Ca iI K line shows two absorptions not coincident with the radial velocity of the star but with variations in their strength.
variability, none of them clearly coincident with $\mathrm{v}_{\mathrm{rad}}$ or with $\mathrm{v}_{\text {ISM }}$. The Na I D lines also present three absorptions, two of them coinciding with two Ca II ones (Fig. 20). Our spectra differ from the two and four Ca II components, and from one Na i feature, reported by Lagrange-Henri et al. (1990b). We attribute at least partially a CS origin due to the apparent changes with previous works, but an ISM origin can not be excluded at least for the features at $\sim-22 \mathrm{~km} / \mathrm{s}$ and ~-12 km/s.

- HD 145964 is one of the Upper Scorpius stars. Two absorption components at velocities $\sim-9.5 \mathrm{~km} / \mathrm{s}$ and $\sim-25 \mathrm{~km} / \mathrm{s}$ are detected in $\mathrm{Ca}_{\text {II }}$ and Na I lines (Fig. 1 (Cont.) and Table B.3). Those components can in principle be attributed to the ISM medium as they are also detected in many other UpSco stars (see Sect. 4.1.2). However, while the profile of Ca II

Fig. 20: Median HERMES spectra of Ca II K and $\mathrm{Na}{ }_{1}$ D2 nonphotospheric absorption features observed towards HR 5774. Dashed lines correspond to the radial velocity of the star (red) and the velocity vector of the interstellar NGP cloud (blue).

K feature at $-9.0 \mathrm{~km} / \mathrm{s}$, which is the velocity of the star, remains practically constant, the asymmetric blue wing of the $-25 \mathrm{~km} / \mathrm{s}$ absorption shows a weak $\sim-30 \mathrm{~km} / \mathrm{s}$ component in most spectra of all observing runs, but not e.g. in both the Hermes and FEROS spectra taken during the same dates in April 2017 (Fig. 21). We also note that a marginal variation in the relative depth of the $-9.0 \mathrm{~km} / \mathrm{s}$ and $-25 \mathrm{~km} / \mathrm{s}$ features might be present. The same behaviour is observed in the Ca if H line (Fig. 22).
Thus, a CS contribution is suggested, in particular for the -25 km / s and $-30 \mathrm{~km} / \mathrm{s}$ absorptions. Similar $\mathrm{Ca}_{\text {II }} \mathrm{K}$ absorptions were detected by Welsh \& Montgomery (2013), who also reported a weak FEB-like event at a velocity of $\sim 50 \mathrm{~km} / \mathrm{s}$ that is not detectable in our data.

Fig. 21: $\mathrm{Ca}_{\text {II }} \mathrm{K}$ spectra of HD 145964 as indicated in the labels, obtained using HERMES. An offset of 0.04 was introduced in the Y-axis to better perceive the variations. The red and grey vertical lines correspond to the radial velocity of the star and the velocity vector of the G Colorado cloud, respectively

- HD 172555 was already discussed by Rebollido et al. (2018) as one of the debris disc stars with both cold and hot gas in its circumstellar environment (see also the first paragraph of Sect. 4.1.2). Here we want to stress that a weak ISM feature is detected in both $\mathrm{Ca}_{\text {II }}$ lines at a velocity of $\sim-20 \mathrm{~km} / \mathrm{s}$, in good agreement with Kiefer et al. (2014a). In addition, our spectra reveal a weak, broad Na i D 2 feature centred at $\sim 15.3 \mathrm{~km} / \mathrm{s}$ and extending from $\sim-5 \mathrm{~km} / \mathrm{s}$ up to $\sim 35 \mathrm{~km} / \mathrm{s}$. Although the individual spectra are relatively noisy we are confident on this detection as it appears in all spectra. The top panel of Fig. 23 shows the Na i D2 median spectrum, and spectra of 08/03/2016, 08/04/2017. The broad Na i D2 feature presents a clear variability, denoting its CS nature. The bottom panel of Fig. 23 shows the telluric subtraction for the indicated dates, where it is clear the variability is not related to telluric lines. Fig. 23 (top panel) also shows the median of all Na I D1 line spectra, where the ISM feature is clearly visible but not the broad CS one. We note that Grady et al. (2018) detected some UV broad, variable absorptions of ions like e.g. CiI.
HD 182919 (5 Vul) has a weak, narrow absorption feature at $\sim-18.5 \mathrm{~km} / \mathrm{s}$, close the velocity of the star and to the G, Mic, and Aql clouds (Table B. 3 and Fig. 1 (Cont.)). The feature varies its depth $(\sim 6.0 \sigma)$ when analysing the median spectra of different epochs (Fig. 24); thus, it most likely has a CS origin, at least partly. During the 2016 July observing run at Mercator a very weak $\mathrm{Ca}_{\text {II }} \mathrm{K}$ blue-shifted absorption with an EW of $1.3 \mathrm{~m} \AA$ is apparent at a velocity of $\sim-35 \mathrm{~km} / \mathrm{s}$; in addition, the spectrum of 2016-07-14 shows a Ca iI K redshifted event at $\sim 25 \mathrm{~km} / \mathrm{s}$ and EW $1.6 \mathrm{~m} \AA$. This absorption is not detected in the $\mathrm{Ca}_{\text {II }} \mathrm{H}$ line. Since its value is consistent with a 3.1σ detection, we consider the detection tentative. We note that Montgomery \& Welsh (2012) also noticed the variability of the narrow absorption as well as the presence of a FEB-like event with a velocity range $15-60 \mathrm{~km} / \mathrm{s}$ in one of their spectra.
- HD 217782 (2 And) has three Ca II absorptions at velocities $\sim-17.1 \mathrm{~km} / \mathrm{s},-9.2 \mathrm{~km} / \mathrm{s}$, and $5.2 \mathrm{~km} / \mathrm{s}$ (see Fig. 1 (Cont.)).

Fig. 22: Spectra of HD 145964 colour coded as indicated in the labels for Ca II $\mathrm{K} \& \mathrm{H}$ lines (continuous and dashed lines, respectively), and obtained with HERMES. An offset of 0.05 was introduced in the Y -axis to better perceive the variations between both dates, and 0.02 between the K and H lines. The red and grey vertical lines correspond to the radial velocity of the star and the velocity vector of the G Colorado cloud.

Fig. 23: Top panel: Absorptions detected in the Na i D2 line of HD 172555. Black lines corresponds to the median of all spectra for Na I D2 (solid line) and D1 (dotted line). Blue and red lines correspond to two different dates, where the variations in the ~ 15 $\mathrm{km} / \mathrm{s} \mathrm{Na}_{\text {I }} \mathrm{D} 2$ component can be perceived. Bottom panel: Examples of the telluric subtraction are plotted, in order to show that this process it is not the source of the variability. In both cases, spectra were obtained using FEROS. Red and grey vertical lines mark the stellar and ISM radial velocities respectively.

Two of them, blue-shifted with respect to the radial velocity of the star, are also detected in Na i. The weakest feature at $5.1 \mathrm{~km} / \mathrm{s}$ is at the stellar $\mathrm{v}_{\mathrm{rad}}$ and the velocity vector of the Hyades ISM cloud (Table B.3). While the stronger and narrower $-9.3 \mathrm{~km} / \mathrm{s}$ Ca iI K feature remains unchanged (variations below 1σ), the -16.5 and likely the $5.1 \mathrm{~km} / \mathrm{s}$ components present some variability (Fig. 25). Particularly, the $-16.5 \mathrm{~km} / \mathrm{s}$ feature seems to experience some dynamical evolution changing its depth and velocity within hours, e.g. up to 3σ EW variation along the night $6^{\text {th }} / 7^{\text {th }}$ September 2015, as well as a shape and depth change (Fig. 25, bottom left panel). Similar changes are also seen on other nights. Those changes, although much less remarkable, can tentatively be present in the weaker $\mathrm{Ca}_{\text {II }} \mathrm{H}$ feature, as seen in Fig. 26 where both Ca II non-photospheric lines of the mentioned night are shown. These results suggest the presence of CS gas around 2 And. Cheng \& Neff (2003); Montgomery \& Welsh (2012); Welty et al. (1996) found similar UV/optical results.

4.3. Summary of CS gas detections

Fig. 1 (Cont.) shows the observed median $\mathrm{Ca}_{\text {II }} \mathrm{K} \& \mathrm{H}$ and Na I D lines and the non-photospheric residuals, once the stellar contribution has been subtracted, of the 60 stars that have narrow stable absorptions; radial velocities of the stars and the velocity vector of the ISM Colorado clouds velocities are also plotted. Table B. 3 gives radial velocities, FWHM, equivalent widths, and column densities of the narrow features. Table 2 lists the stars

Fig. 24: Са п I K spectra of HD 182919 (5 Vul) taken with HERMES in the dates indicated in the labels. Top panel shows the variation of the features at ~-18 and $\sim-35 \mathrm{~km} / \mathrm{s}$. In the bottom panel it is visible a possible FEB-like event at $\sim 25 \mathrm{~km} / \mathrm{s}$. The red and grey lines correspond to the radial velocity of the star and the velocity vector of Colorado clouds, respectively.
showing variable absorptions detected in this work, and also the stars reported in the literature as hosting sporadic events but not detected by us.

We find evidence of hot CS gas in 32 objects out of the initial sample of 117 stars, being 30 in the form of stable nonphotospheric components, and variable absorptions in the other two cases. Variable red- and/or blue-shifted events with respect to the radial velocity of the stars have been detected in 18 objects, including the serendipitous detection of HD 132200, which was not in the initial sample (Rebollido et al. 2018). Among those 18 objects, all but HD 110411 and HD 183324, also have stable narrow features. These figures mean we have found evidence of a close-in gaseous CS environment in $\sim 27 \%$ of the sample. We note, however, that it is not statistically significant as the selection criteria were highly biased, for instance includ-

Fig. 25: Са II K spectra of HD 217782 as indicated in the labels. In the bottom right panel the labels indicate the instrument used in each case. The rest of the spectra were obtained with HERMES. The dashed red and grey lines correspond to the radial velocity of the star and the velocity vector of Colorado clouds, respectively.

Fig. 26: $\mathrm{Ca}_{\text {II }} \mathrm{H}$ and K non-photospheric features of HD 217782 taken during the night indicated in the labels. All spectra were taken using HERMES. A shift of 0.2 was introduced in the Yaxis to help differentiate the variations. The dashed red and grey lines correspond to the radial velocity of the star and the velocity vector of Colorado clouds, respectively.
ing stars for which the presence of hot or cold CS gas was already known. Nonetheless, the figure does indicate that a nonnegligible amount of stars, particularly A-type (see below), are surrounded by CS gas which can be detected by means of high resolution optical spectroscopy. We note that we are not considering the 8 stars where the detected narrow feature has a dubious origin as we are unable to soundly attribute it either to a CS or/and ISM environment.

The detected CS gas clearly has distinct origins. Red- and blue-shifted events are plausibly linked to the presence of FEBs, as in the well known case of β Pic; even in some cases our spectra likely trace the dynamical evolution of those exocomets, i.e., a change in depth and velocity. In none of the cases the exocomet activity is as rich as in β Pic, which remains unique in this context. Stable absorption features in some stars are also likely related to exocomets and/or evaporation of grains in the immediate CS environment. In the case of shell stars, the non-photospheric
stable features, including many metallic shell lines of species like $\mathrm{Fe}_{\text {II }}$ or Ti II, are related to the shell itself, and likely arising from mass loss phenomena experienced by the central star. Nonetheless, some shell stars also present sporadic red- or blueshifted absorption events in $\mathrm{Ca}_{\text {II }}$ reminiscent of exocomets. HD 37306 represents an extreme case, where we detected the appearance and disappearance of a strong shell spectrum but no trace of any exocomet-like event.

5. Discussion

While our stellar sample is heterogeneous and highly biased we can still try to find some trends among the incidence of CS gas and some general properties of the stars, and the different groups of stars according to the selection criteria.

Fig. 27 shows the HR diagram of the sample where the absolute magnitude M_{V} and colour index $\mathrm{B}-\mathrm{V}$ are estimated from the magnitudes and parallaxes given in SIMBAD; the MS track is taken from Pecaut \& Mamajek (2013). To estimate M_{V} we have not taken into account the potential extinction towards the stars; nonetheless, the true loci of the individual stars in the HR diagram would not significantly alter the conclusions. Objects with evidence of hot CS gas (variable or stable) are A-type stars, and are therefore located in the upper-left region of the diagram. This is in line with previous works, although as far as we know they have only been concentrated in the study of A-type stars (e.g. Holweger et al. 1999; Welsh \& Montgomery 2018, and references therein). We only know of one later spectral type star, HD 109085 (η Crv, F2 V) for which one exocometary-like event has recently been reported although it requires confirmation (Welsh \& Montgomery 2019); while cold CO is most likely present in this system (Marino et al. 2017), we do not find any trace of CS gas associated with this star (Rebollido et al. 2018, this work). In this respect, photometric transits are more efficient than spectroscopy to detect exocomets around later type stars (e.g. Rappaport et al. 2018; Ansdell et al. 2019). The inability, at least up to now, of spectroscopy to detect exocomet signatures in late-type stars might be due to the concurrence of several causes, e.g. stellar activity that makes it extremely difficult to detect faint variable events superimposed on the profiles of the chromospheric active $\mathrm{Ca}_{\text {I }}$ and Na I lines; also, late type stars usually have small rotational velocities so that narrow stable absorptions are practically indiscernible from the core of the narrow stellar lines.

It is obvious from Fig. 27 that stars with both stable and/or sporadic CS features tend to be in many cases located above the main sequence, in the δ Scuti instability strip of the HR diagram (Breger 1979; Rodriguez et al. 1994). A few of the hot-gas-bearing stars in our sample are identified as δ Scuti stars in SIMBAD - HD 110411, HD 183324, and HD 192518; recently, Mellon et al. (2019) have found that HD 156623 is also a δ Scuti star; we also point out that β Pic itself has δ Scuti pulsations (Koen 2003; Mékarnia et al. 2017). In addition, the CS gas stars have distinctly larger $v \sin i$. As expected, (e.g. Nielsen et al. 2013), the highest $v \sin i$ values are found for the earlier spectral types (symbol sizes in Fig. 27 are proportional to v $\sin i)$. Excluding stars later than F2, Fig. 28 shows the cumulative distribution functions (CDF) of the projected rotational velocity of the early type stars without non-photospheric features, stars with features identified as ISM absorptions, and stars with variable events. It is evident from Fig. 28 that stars with non-photospheric ISM features or with variable CS events, have larger $v \sin i$ values than stars without non-photosperic features. Table 3 shows the results of a Kolmogorov-Smirnov test separating those three subsamples. We refer to Maldonado et al. (2012)

Fig. 27: Colour-Magnitude diagram of the whole sample. Colours represent stars with different non-photospheric features while the size of the symbols is proportional to $v \sin i$.
for the meaning of the parameters D , p -value, and $\mathrm{n}_{\text {eff }}$ in that table. In particular, the p -value indicates that the subsample of stars with ISM absorptions differ with a probability of $\sim 97 \%$, of the stars without non-photospheric absorptions; for the case of stars with variable events the probability is practically 100%. At the same time, the results of the Kolmogorov-Smirnov test indicates that the ISM and variable events subsamples do not differ significantly. Nonetheless, a visual inspection of Fig. 28 suggests that there might be a paucity of the variable hot-gas-bearing stars with $v \sin i$ up to $\sim 150 \mathrm{~km} / \mathrm{s}$ with respect to the sample of stars with ISM absorptions, which is lost in the statistical test when comparing the whole range of $v \sin i$.

Fig. 28: Cumulative distribution functions of the subsamples labelled in the plot.

When considering the age of all stars with non-photospheric CS and ISM absorptions, $\sim 58 \%$ have ages below 100 Myr (Table B.1). If we just consider stars plausibly hosting CS features that figure is $\sim 51 \%$, and reduces $\sim 42 \%$ (11 out of the 26 stars) when the stars with variable features are considered. Thus, although ages of field stars might be highly uncertain and the nature of

Table 3: Kolmogorov-Smirnov test comparing the projected rotational velocity distribution of the subsample of stars earlier than F2 without non-photospheric features, stars with absorptions with an ISM origin, and stars with variable events.

Sample 1	Sample 2	D	p -value	$\mathrm{n}_{\text {eff }}$
ISM absorp.	No absorp.	0.39	0.030	12.52
CS Var. absorp.	No absorp.	0.66	$6.376 \mathrm{e}-06$	12.20
ISM absorp.	CS Var. absorp.	0.30	0.222	10.98

the variability of the features is not always due to exocomet-like events, e.g. the case of HD 37306, stars with FEB-like events do not tend to be young objects but they are distributed in a wide range of ages, from $\sim 10 \mathrm{Myr}$ to $\sim 1 \mathrm{Gyr}$. All this is clearly recognized in Figure 29 where a plot of the rotational velocity of the stars (up to F2) versus age is shown. Stars with non-photospheric features are all younger than 1000 Myr , and its distribution is clearly modulated by stars in young clusters - mainly UpSco, UCL, BPMG and Tuc-Hor. Stars with CS features are found among the whole range of ages, and have higher rotational velocities than stars without non-photospheric features. They also appear to have higher rotational rotational velocities than stars with ISM features, in fact reflecting the results of the KolgomorovSmirnov test above, and the mentioned paucity of CS-feature stars with low $v \sin i$.

Fig. 29: Age versus $v \sin i$ of the stars in the sample. Symbols mark the type of absorptions detected for each object. Vertical dotted lines mark the location of some of the young associations: Upper Scorpious, Upper Centaurus Lupus, Beta Pic Moving Group and Tucana-Horologium.

Out of the 32 stars in our sample with non-photospheric absorptions, we find in many cases coincident radial velocities (within the errors reported in Sect. 4.1) between the features observed in Ca and in Na . Fig. 30 shows the ratio of Ca II K and Na i D2 column densities against the Ca ir K column density, colour coded for the attributed origin. In those cases where only one of the lines was detected, an upper limit was calculated using the EW uncertainty to compute the column density. The distribution of the stars in this diagram is consistent with other works (e.g. Welsh et al. 2010; Gudennavar et al. 2012). There is no clear separation between CS or ISM absorptions, i.e., the ratios of their column densities do not show any significant trend when comparing them regarding their origin, in agreement with previous
results (see section 4.1.1, first paragraph). It is worth noticing though, that it seems that the presence of both Ca and Na components is more common in ISM absorptions. HD 42111 seems to behave as an extreme outlier in our sample as it has a large $\mathrm{N}_{\text {Caii K }}$. However, this shell star has two practically blended narrow, absorptions (not discernible in the median spectrum), which might explain the large $\mathrm{N}_{\text {Caii K }}$.

Fig. 30: Column densities of $\mathrm{Ca}_{\text {II }} \mathrm{K}$ and ratio of column density of Ca ir K and $\mathrm{Na}_{\text {I }} \mathrm{D} 2$ of those absorptions of similar radial velocities. For the case where an absorption was detected in only one of the lines, triangles pointing up are upper limits and triangles pointing down are lower limits. The outlier in the upper-left corner of the plot is HD 42111. Colour denotes the suggested origin as in the legend.

While objects in the sample are distributed in the sky without preferential locations (Fig. 1), we find a possible trend when examining distances. Stars without narrow absorptions (either CS or ISM) are located at $<50 \mathrm{pc}$, but there is no clear differentiation between stars with CS and ISM narrow absorptions. This could be due to the lower frequency of interstellar clouds at shorter distances, and the exponential growth of the number of stars with distance.

5.1. Stars with debris discs

To our knowledge, 76 out of the 117 stars in the sample are associated with a known debris disc (Table B.1). We find that 35 out of those 76 debris discs have at least a non-photospheric narrow feature (Table B. 3 and Table 4), and 15 among these 35 debris disc stars plausibly have at least one CS component - this figure does not include stars with an ambiguous origin of the detected non-photospheric absorptions. Stable CS features at the velocity of the star have been interpreted as proof of a CS gas disc, and its persistence requires the presence of a braking mechanism that prevents the hot gas from being blown away by the strong radiation pressure from the star (e.g. Lagrange et al. 1998). Fernández et al. (2006) suggested that in β Pic such mechanism could be exerted by the observed enhanced carbon abundance (see also Roberge et al. 2006; Brandeker 2011), a fact also suggested for HD 9672 (Roberge et al. 2014). Among the stars in our sample with stable features, in addition to HD 9672 and HD 36546 (see section 4.2), that scenario might be at work for HD 32297, where

Table 4: Debris disc stars in the sample with narrow nonphotospheric features. Bold-faced stars have features of CS origin, and those in italics also have variable absorptions. HD 110411 and HD 183324 do not have narrow absorptions but have CS gas.

HD 3003	HD 118232	HD 146897
HD 5267	HD 125162	HD 147137
HD 9672	HD 131488	HD 156623
HD 21620	HD 131835	HD 158352
HD 32297	HD 138813	HD 172555
HD 36546	HD 142315	HD 181296
HD 37306	HD 144587	HD 182919
HD 71043	HD 144981	HD 183324
HD 71722	HD 145554	HD 188228
HD 105850	HD 145631	HD 198160
HD 109573	HD 145689	HD 221756
HD 110058	HD 145964	
HD 110411	HD 146606	

a carbon overabundance is suggested by the the 3.7σ Herschel detection of [$\left.\mathrm{C}_{\mathrm{II}}\right]$ emission at $158 \mu \mathrm{~m}$ (Donaldson et al. 2013).

Concerning variable absorptions, 12 out of the total 18 stars showing variability either in one or both of the Ca iI $\mathrm{H} \& \mathrm{~K}$ lines or in one or both of the Na I D lines, have as well excesses associated with the presence of a debris discs (Table 4 and Table 2). All these stars are younger than 200 Myr .

In all cases, but HD 37306, transient red- or blue-shifted events attributed to exocomets have been observed. The observed variability in HD 37306 is due to the appearance, and later disappearance, of a strong shell spectrum (see above). Complementary to these results, the rest of the stars with variable features listed in Table 2, i.e. 14 stars, do not host a debris disc, and are older than 200 Myr . We point out, however, that in four cases - HD 39182, HD 64145, HD 132200, and HD 138629 - there is no observational information concerning the potential presence of a debris disc, and in two cases - HD 132200 and HD 138629 - we do not have information about their age.

In parallel, to our knowledge 36 out of the 76 debris discs have been spatially resolved after the compilations by N . Pawellek and A. Krivov ${ }^{4}$, and C. McCabe, I.H. Jansen, and K. Stapelfeldt ${ }^{5}$. Further, 28 out of those 36 resolved debris disc stars have spectral types earlier than F2 and, therefore, sensitive to show the presence of exocometary signals. Also, Moór et al. (2017) reported inclinations for the A1 stars HD 121617 and HD 131488. Table 5 lists the early-type 30 resolved debris discs together with their corresponding inclination angles, taken from the mentioned catalogues. Among the resolved discs, 17 have non-photospheric features (Table 5). In 6 cases the absorption features are more plausibly interstellar or ambiguous - HD 71722, HD 125162, HD 131835, HD 138813, HD 146897, and HD 188228. In 11 stars, a CS origin seems to be the most reasonable one, for at least one of the observed non-photospheric absorption features; 8 out of these 11 stars have variable absorptions. Although based on a relatively low number of objects, an inspection of the inclination angles in Table 5 reveals: i) there is no a preferential distinction between discs seen edge- or polaron for those debris discs without non-photospheric absorptions;

[^2]Table 5: Resolved debris discs and inclination angles. Boldfaced are those with narrow non-photospheric absorption features while those in italics have at least one component attributed to a CS origin. HD 110411 and HD 183324 do not have narrow absorptions but have CS gas.

Star	i^{o}	star	i^{o}	star	i^{o}
$\boldsymbol{H D ~ 9 6 7 2}$	79	HD 71722	78	HD 131488	82
HD 14055	83	HD 74873	27	HD 131835	75
HD 15115	80	HD 95418	84	HD 139006	80
HD 21997	26	HD 102647	30	HD 138813	28
HD 27290	69	HD 109085	35	HD 146897	84
HD 28355	76	HD 109573	76	HD 156623	30
HD 31295*,1		HD 110058 \dagger	50	HD 172555	75
HD 32297	90	HD 110411	70	HD 181296	90
HD 36546	75	HD 121617	37	HD 183324	2
HD 38206	60	HD 125162	48	HD 188228	49

$\left.{ }^{*}\right)$ resolved debris disc with unreported inclination angle; (\dagger) Kasper et al. (2015) report an edge-on inclination
(1) Draper et al. (2016); (2) Moór et al. (2017)
ii) similar result is seen for those stars with ISM features; and iii) the trend is clearly different when we inspect debris discs with CS absorptions, i.e., most of them are clearly seen at $i>70^{\circ}(\sim$ 72%), and this trend is reinforced when only those discs with variable features are considered. In other words, debris discs associated with stars hosting CS absorptions tend to be seen edge-on, while debris discs associated with stars without nonphotospheric absorptions or stars with ISM features do not show a preferential inclination. This result is consistent with the fact that the detection of CS features, i.e. hot gas, is favoured when the systems are seen close to edge-on, as well as with the large projected rotational velocities shown by the stars with CS gas compared to those without such gas. We note that the observed trend, which is just a geometrical effect, does not exclude the existence of hot gas, i.e. the eventual existence of comet-like bodies around the debris discs systems seen away from edge-on. A similar trend was already pointed out by Rebollido et al. (2018) in their analysis of debris discs with measurable amounts of cold gas seen in emission in the far-IR and (sub-) mm wavelength regimes.

5.2. Near infra-red excesses

There are 22 stars (Table B.1) in our sample explicitly taken from the literature searching for hot excesses in the $\mathrm{H}(1.6 \mu \mathrm{~m})$ and $\mathrm{K}(2.2 \mu \mathrm{~m})$ bands (Table B.1). In addition, HD 172555 also presents such excess (Absil et al. 2013; Ertel et al. 2014, 2016; Nuñez et al. 2017).

Within the stars in our sample with near-IR excesses plausibly due to hot dust (i.e., excluding stars where binarity is the cause of the excess), 11 stars have spectral types earlier than F2, and 6 out of those 11 stars present non-photospheric features, either detected in this work or in previous ones (Table 6).

To assess the significance of the incidence of CS absorption around hot dust stars we consider all reported 31 near-IR excess stars (Absil et al. 2013; Ertel et al. 2014; Nuñez et al. 2017). Excluding the binaries, 14 stars - the 11 studied by us plus Vega, β Pic, and HD 210049 (μ PsA) - have spectral types earlier than F2. Among those 14 stars, 5 have variable absorptions features (HD 2262, HD 56573, HD 108767, HD 172555, and β Pic); 2 stars have an ambiguous CS/ISM narrow feature (HD 177724, and HD 210418); 2 stars are associated with pole-

Table 6: Stars showing near-IR excesses.

Name	Non-photospheric absorption	H/K excess
HD 2262	Yes*(1)	(2)
HD 28355	No	(2)
HD 40136	No	(1)
HD 56537	Yes(2)	(1)
HD 102647	No	(1)
HD 108767	Yes(2,3)	(2)
HD 172555	Yes(3,4)	(2)
HD 177724	Yes(3)	$(1,3)$
HD 187642	No	$(1,3)$
HD 203280	No	(1)
HD 210418	Yes(3)	(3)

*Not clear if exocomet-like or stellar mass loss events. References for non-photospheric absorptions: (1): Welsh \& Montgomery (2018); (2): Welsh \& Montgomery (2015); (3) This work ; (4) Kiefer et al. (2014a)
References for H / K excess: (1): Absil et al. (2013), (2): Ertel et al. (2014), (3) Nuñez et al. (2017)
on debris discs (HD 102647 and Vega), i.e. an unfavourable orientation to detect CS features; 1 star (HD 28355) has a resolved debris disc with an inclination angle $i=70^{\circ}$, but our spectra do no reveal any non-photospheric absorption; for the last 4 stars (HD 40136, HD 187642, HD 203280, and HD 210049) the orientation of the system is unknown. If we assume random orientations, the probability to observe a system with an inclination larger than $65^{\circ}-70^{\circ}$, i.e., edge-on or close to it, lies between $\sim 42 \%$ and 34%, respectively, which is similar to the percentage of stars with hot CS gas among the hot dust stars. We also note that it agrees with the percentage of edge-on discs, either debris or other type of disc, that can be found in the Catalogue of Resolved Discs compiled by C. McCabe, I.H. Jansen, and K. Stapelfeldt. Given those figures, a relationship between hot dust and hot CS gas is suggested, which should be confirmed by increasing the sample of stars with the appropriate near-IR interferometric and UV/optical spectroscopic data.

5.3. Ti ${ }_{\text {II }}$ / Shell stars

In addition to the stars selected on the basis of their Ti if lines, there is a number of stars which have been classified as shell stars (Abt 2008; Lagrange-Henri et al. 1990c; Hauck \& Jaschek 2000; Roberge \& Weinberger 2008). Table 7 lists, according to our knowledge, the shell stars in our sample. No Ca ir or Na i non-photospheric absorptions are observed towards HD 39283 and HD 77190; in the cases of HD 118232 and HD 196724 the origin of the Ca II absorption is likely ISM or ambiguous. As a matter of fact, the spectra of these four stars do not reveal any prominent shell-like characteristics. The rest of the stars show triangular-like CS absorptions (bold-faced in the table) - those stars with variable features are also emphasized. Not all absorptions can be attributed to FEB-like events; for example, the stable absorption seen towards HD 192518 is clearly formed in a gaseous shell, while as already mentioned the variability in HD 37306 is due to the appearance/disappearance of a shell around this star. Nonetheless, 11 stars do present variable events, most of them attributable to exocomets; even, our spectra might be tracing their dynamical evolution of some events by changing their depths and velocities.

Table 7: Shell stars. Stars with non-photospheric CS features are bold-faced while those with variability are emphasized.

Star	Star	Star
HD 256	HD 50241	HD 148283
HD 21688	HD 77190	HD 158352
HD 37306	HD 85905	HD 168646
HD 39182	HD 98058	HD 192518
HD 39283	HD 118232	HD 196724
HD 42111	HD 138629	HD 217782

5.4. λ Boo stars

The sample contains 12 objects previously classified as λ Boo type stars (Table 8) although three of them - HD 39283, HD 210418, and HD 217782 - have recently been considered as nonmembers of this stellar class (Murphy et al. 2015b, and references therein). Several criteria have been used to classify λ Boo stars (e.g. Murphy et al. 2015b; Gray et al. 2017); among them, optical line ratios between volatiles, like CNO, and heavier elements (e.g. Mg) are useful to ascribe stars to this stellar class (Cheng et al. 2017). This criterion is based on the basic definition of the λ Boo stars, i.e. stars with a remarkable low abundance of heavy (e.g. $\mathrm{Fe}, \mathrm{Al}, \mathrm{Mg}$) elements while volatiles as CNO have near solar abundances (Baschek \& Slettebak 1988, e.g.). In order to eventually find new λ Boo candidates, we have measured in all stars earlier than F2 in our sample the ratio of the $\mathrm{Mg}_{\text {II }}$ $4481 \AA$ and the O I $7774 \AA$ triplet, which are strong and easy to measure in our spectra.

Fig. 31 is a plot of the EW of the O_{I} line versus the ratio of $\mathrm{Mg}_{\text {II }}$ to $\mathrm{O}_{\text {I }}$ lines. All identified λ Boo stars in the sample are clearly located to the left in that plot, well separated from the bulk of the stars. The exception is HD 145964 classified as weak λ Boo by Welsh \& Montgomery (2013) based on the measurements of Abt \& Morrell (1995). The identified λ Boo stars have low metallicities ($[\mathrm{Fe} / \mathrm{H}]<-0.25$) excluding HD 145964 and HD 217782. A vertical dashed line at $\mathrm{MgII}^{2} / \mathrm{O}_{\mathrm{I}}<0.49$ marks the limit for the identified λ Boo objects in our sample. This figure is the one for the λ Boo stars HD 198160 and HD 198161, and approximately the one for those removed from the class by Murphy et al. (2015b) stars. We note that 6 stars are additionally located at similar locations in Fig. 31 as the λ Boo stars, and they also have low metallicities (Table B.2). We consider that those stars are new candidates, Table 8. In addition, 3 shell stars -HD 39182, HD 42111, and HD 168646 - have low $\mathrm{Mg}_{\text {II/ }}$ (ratio but a very high EW (O_{I}), and metallicities >0.0.

With respect to the presence of non-photospheric narrow and/or variable features, 15 out of the 18λ Boo stars (including the new candidates) listed in Table 8 present evidences of non-photospheric gas in their spectrum; in 5 cases the feature is interstellar, in 2 cases the origin is ambiguous; and the remaining 8 stars (44% of the λ Boo stars), have exocometary-like events. Comparing this figure to the 26% incidence of exocometary-like events of the whole sample, there seems to be an enhanced probability for λ Boo stars to have such events. A connection between metal-poor stars and the presence of debris discs or remainings of planet formation processes has been suggested before in the literature (Jura 2015; Murphy \& Paunzen 2017), as heavier elements are blown away by radiation pressure, while volatile elements are accreted onto the star (see Draper et al. 2016, and references therein). Therefore, exocomets represent a rather likely scenario, that could replenish the atmosphere of λ Boo stars of $\mathrm{C}, \mathrm{N}, \mathrm{O}$ and S elements.

Fig. 31: Ratio O I (7744 \AA) and $\mathrm{Mg}_{\text {II }}(4481 \AA$) versus the EW of O I. Orange dots mark stars previously classified as λ Boo stars; green dots mark new λ Boo candidates; and blue dots mark the stars with normal abundances. The vertical dashed line delimits the locus of bona fide λ Boo stars (see text).

Table 8: EW of the $\mathrm{Mg}_{\text {II }} 4481$ Åand O i 7744 Ålines of previously known λ Boo stars, together with stars of the sample with similar characteristics. The new λ Boo candidates are indicated.

Star	EW Mg II (\AA)	EW O I (\AA)	λ Böo
HD 31295	0.188	0.692	Yes
HD 32297	0.336	0.767	New
HD 36546	0.231	0.748	New
HD 39182	0.413	1.010	Shell
HD 39283	0.347	0.720	Yes
HD 42111	0.424	1.258	Shell
HD 71722	0.294	0.802	New
HD 74873	0.192	0.711	Yes
HD 110058	0.310	0.774	New
HD 110411	0.213	0.689	Yes
HD 125162	0.087	0.717	Yes
HD 145964	0.388	0.532	Yes
HD 156623	0.366	0.802	New
HD 168646	0.418	0.937	Shell
HD 177724	0.294	0.726	New
HD 183324	0.114	0.738	Yes
HD 198160	0.362	0.745	Yes
HD 198161	0.378	0.762	Yes
HD 210418	0.385	0.836	Yes
HD 217782	0.435	0.877	Yes
HD 221756	0.289	0.778	Yes

6. Conclusions

We have presented the observational results of a systematic study aiming at detecting and monitoring hot gas attributed to the presence of exocomets in the CS environment. The study has been based on the analysis of the Ca II $\mathrm{K} \& \mathrm{H}$ and Na i D lines in a heterogeneous and biased sample of 117 main-sequence late B to G type stars. This is the largest systematic study searching for exocomets carried out so far. The main results are the following.

Narrow non-photospheric ISM or CS absorptions have been detected towards $\sim 50 \%$ of the sample (60 stars). Among the stars with those absorptions, at least one of the detected narrow features can be attributed to CS gas in 30 objects, i.e., 26% of the whole sample. This figure is not statistically significant as the studied sample included stars with previously detected CS gas, but it does show that gas in the CS environment of A-type stars is relatively common. In some stars, the gas is originated in a CS shell surrounding the stars; in some other cases, the narrow absorptions can be attributed to the evaporation of exocomets or to gas released by dust grain collisions or evaporation.

Sporadic red-shifted and blue-shifted events that in some cases (but not all) might be due to β Pic-like exocomets have been found in the CS environment of 16 stars, out of which 6 are new to the literature (including HD 132200, not contained in the original sample). In a few cases, our spectra seem to trace the dynamical evolution of such events as suggested by changes in their velocity and depth. Nonetheless, the exocometary-like activity in our stars, maybe with the exception of ϕ Leo (see Eiroa et al. 2016), is very poor compared with β Pic, which remains a unique object.

The variations observed towards the two other stars, namely HD 256 (HR 10) and HD 37306 (HR 1919) do not require the presence of exocomets for their interpretation. The variability of the CS features in HR 10 is mainly due to the binary character of this star. A detailed analysis has being carried out in a separated paper (Montesinos et al. 2019). In the particular case of HD 37306, our spectra have witnessed the appearance and disappearance of a strong shell around this star. There are no hints in our data of exocometary events in this star, although we point out that some shell stars in our sample do show such events.

Hot CS gas is only detected towards stars earlier than A9, in line with previous works. The F2 V star η Crv is the only star for which β Pic-like events with a 2.9σ detection have been claimed (Welsh \& Montgomery 2019). This paucity in detecting exocometary events around late type stars might be due to the inability of spectroscopy to detect faint non-photospheric absorptions on top of cool photospheres. In this respect, photometric transits have demonstrated to be competitive and successful in detecting exocomets around late type stars.

Hot gas-bearing main sequence stars have distinctly higher projected rotational velocities, and spread over a large range of ages, from $\sim 10 \mathrm{Myr}$ up to at least $\sim 1 \mathrm{Gyr}$. Some of them are also known to present δ Scuti pulsations, as β Pic itself.

Exocometary-like events are often associated with edge-on debris disc stars, in particular towards those with cold gas (see also Rebollido et al. 2018). This result is interpreted as a geometrical effect, but it does suggest that debris disc stars with non-photospheric absorptions (i.e. hot gas) are excellent targets to search in the far-IR and (sub-)mm spectral range for the presence of cold gas released by the evaporation of solid bodies at distances relatively far from the central star. We note that not all stars with FEB-events are associated with a debris disc. It cannot be excluded that this is due to the current, limited sensitivity to detect debris discs, $\mathrm{L}_{\text {dust }} / \mathrm{L}_{*} \sim 10^{-6}$.

We find that FEB-like events are detected towards 17% of stars with near-IR excesses denoting the presence of hot exozodies. Both hot dust and gas might be related phenomena, although more observations are needed to confirm or deny the trend pointed out in our study.

Our sample includes 18λ Bootis stars, with 6 new candidates found in this work. A relevant fraction of them, 8 out the 18 stars, have FEB-like events, suggesting again that both phenomena could be related.

Acknowledgements. The authors wish to thank the careful reading of the manuscript and comments by the referee which have helped to improve the content of this work. Based on observations made with the Mercator Telescope, operated on the island of La Palma by the Flemmish Community, and the Nordic Optical Telescope, operated by the Nordic Optical Telescope Scientific Association, at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias. Based on observations made with ESO Telescopes at the La Silla Observatory under programmes 099.A-9029(A),099.A-9004(A) and 094.A-9012. Also based on observations made with the TIGRE telescope funded and operated by the Universities of Hamburg, Guanajuato and Liège. We thank David Montes for providing the December 2018 Mercator spectra and to Santos Pedraz and Ana Guijarro for the CARMENES spectra of HD 37306. We thank Sam Kim and Markus Rabus for the FEROS spectra obtained in September 2017. I.R. thanks Angela Hempel for her support with FEROS observations in March 2016 and April 2017, and the Calar Alto Observatory staff, where a large part of this paper was written. Partially based on data obtained from the ESO Science Archive Facility, programs 096.C-0876, 076.B-0055, 185.D-0056, 082.B-0610, 072.C-0488, 0100.C-0090, 093.C-0409, 081.D-0610, 080.A-9006, 184.C-0815, 077.C-0295. C.E., G.M., B.M., I.R., and E.V. are supported by Spanish grant AYA 2014-55840-P. H.C. acknowledges funding from the ESA Research Fellowship Programme. J. O., A. B., and D. I. acknowledge support from the ICM (Iniciativa Científica Milenio) via the Nucleo Milenio de Formación planetaria grant. J. O. acknowledges support from the Universidad de Valparaíso and from Fondecyt (grant 1180395). A. B. acknowledges support from Fondecyt (grant 1190748). A. M. acknowledges the support of the Hungarian National Research, Development and Innovation Office NKFIH Grant KH-130526. This research has made use of the SIMBAD database, operated at CDS, Strasbourg, France. This work has used Seth Redfield's Colorado model of interstellar clouds and his online tool "LISM Kinematic Calculator". This work has also used the debris disc catalogues "Resolved debris discs" from Jena University compiled by N. Pawellek and A. Krivov; and the one in circumstellardisks.org compiled and mantained by C. McCabe, I. H. Jansen and K. Stapelfeldt.

References

Absil, O., Defrère, D., Coudé du Foresto, V., et al. 2013, A\&A, 555, A104
Absil, O., di Folco, E., Mérand, A., et al. 2006, A\&A, 452, 237
Abt, H. A. 2008, ApJS, 174, 499
Abt, H. A. \& Morrell, N. I. 1995, The Astrophysical Journal Supplement Series, 99, 135
Abt, H. A. \& Moyd, K. I. 1973, ApJ, 182, 809
Abt, H. A., Tan, H., \& Zhou, H. 1997, ApJ, 487, 365
Ansdell, M., Gaidos, E., Jacobs, T. L., et al. 2019, MNRAS, 483, 3579
Armitage, P. J. 2010, Astrophysics of Planet Formation
Ballering, N. P., Rieke, G. H., Su, K. Y. L., \& Montiel, E. 2013, ApJ, 775, 55
Baschek, B. \& Slettebak, A. 1988, A\&A, 207, 112
Bell, C. P. M., Mamajek, E. E., \& Naylor, T. 2015, MNRAS, 454, 593
Bertin, P., Lallement, R., Ferlet, R., \& Vidal-Madjar, A. 1993, A\&A, 278, 549
Beust, H., Lagrange, A.-M., Crawford, I. A., et al. 1998, A\&A, 338, 1015
Beust, H. \& Morbidelli, A. 2000, Icarus, 143, 170
Beust, H., Vidal-Madjar, A., \& Ferlet, R. 1991, A\&A, 247, 505
Beust, H., Vidal-Madjar, A., Ferlet, R., \& Lagrange-Henri, A. M. 1990, A\&A, 236, 202
Bochanski, J. J., Faherty, J. K., Gagné, J., et al. 2018, AJ, 155, 149
Bonsor, A., Raymond, S. N., Augereau, J.-C., \& Ormel, C. W. 2014, MNRAS, 441, 2380
Boyajian, T. S., LaCourse, D. M., Rappaport, S. A., et al. 2016, MNRAS, 457, 3988
Brandeker, A. 2011, ApJ, 729, 122
Brandeker, A., Liseau, R., Olofsson, G., \& Fridlund, M. 2004, A\&A, 413, 681
Breger, M. 1979, PASP, 91, 5
Cataldi, G., Moór, A., Ohashi, N., et al. 2019, Research Notes of the American Astronomical Society, 3, 39
Chen, C. H. \& Jura, M. 2003, ApJ, 582, 443
Chen, C. H., Mittal, T., Kuchner, M., et al. 2014, ApJS, 211, 25
Chen, C. H., Patten, B. M., Werner, M. W., et al. 2005, ApJ, 634, 1372
Cheng, K.-P. \& Neff, J. E. 2003, AJ, 125, 868
Cheng, K.-P., Neff, J. E., Johnson, D. M., et al. 2017, AJ, 153, 39
Cotten, T. H. \& Song, I. 2016, ApJS, 225, 15
Currie, T., Guyon, O., Tamura, M., et al. 2017, ApJ, 836, L15
Currie, T., Lisse, C. M., Sicilia-Aguilar, A., Rieke, G. H., \& Su, K. Y. L. 2011, ApJ, 734, 115
David, T. J. \& Hillenbrand, L. A. 2015, ApJ, 804, 146
de Zeeuw, P. T., Hoogerwerf, R., de Bruijne, J. H. J., Brown, A. G. A., \& Blaauw, A. 1999, AJ, 117, 354

Desidera, S., Covino, E., Messina, S., et al. 2015, A\&A, 573, A126

Donaldson, J. K., Lebreton, J., Roberge, A., Augereau, J.-C., \& Krivov, A. V. 2013, ApJ, 772, 17
Donaldson, J. K., Roberge, A., Chen, C. H., et al. 2012, ApJ, 753, 147
Draper, Z. H., Matthews, B. C., Kennedy, G. M., et al. 2016, MNRAS, 456, 459
Duchêne, G., Arriaga, P., Wyatt, M., et al. 2014, ApJ, 784, 148
Eggleton, P. P. \& Tokovinin, A. A. 2008, MNRAS, 389, 869
Eiroa, C., Marshall, J. P., Mora, A., et al. 2013, A\&A, 555, A11
Eiroa, C., Rebollido, I., Montesinos, B., et al. 2016, A\&A, 594, L1
Ertel, S., Absil, O., Defrère, D., et al. 2014, A\&A, 570, A128
Ertel, S., Defrère, D., Absil, O., et al. 2016, A\&A, 595, A44
Faraggiana, R. \& Bonifacio, P. 1999, A\&A, 349, 521
Faramaz, V., Ertel, S., Booth, M., Cuadra, J., \& Simmonds, C. 2017, MNRAS, 465, 2352
Ferlet, R., Vidal-Madjar, A., \& Hobbs, L. M. 1987, A\&A, 185, 267
Fernández, R., Brandeker, A., \& Wu, Y. 2006, ApJ, 643, 509
Frandsen, S. \& Lindberg, B. 2000, in The Third MONS Workshop: Science
Preparation and Target Selection, ed. T. Teixeira \& T. Bedding, 163
Gáspár, A., Rieke, G. H., \& Balog, Z. 2013, ApJ, 768, 25
Geiler, F. \& Krivov, A. V. 2017, MNRAS, 468, 959
Génova, R. \& Beckman, J. E. 2003, ApJS, 145, 355
Gontcharov, G. A. 2012, Astronomy Letters, 38, 771
Grady, C. A., Brown, A., Welsh, B., et al. 2018, AJ, 155, 242
Grady, C. A., McCollum, B., Rawley, L. A., et al. 1996a, ApJ, 464, L183
Grady, C. A., Perez, M. R., Talavera, A., et al. 1996b, ApJ, 471, L49
Gray, R. O. \& Corbally, J., C. 2009, Stellar Spectral Classification
Gray, R. O., Riggs, Q. S., Koen, C., et al. 2017, AJ, 154, 31
Greaves, J. S., Holland, W. S., Matthews, B. C., et al. 2016, MNRAS, 461, 3910
Gudennavar, S. B., Bubbly, S. G., Preethi, K., \& Murthy, J. 2012, ApJS, 199, 8
Hauck, B. \& Jaschek, C. 2000, A\&A, 354, 157
Hempel, M. \& Schmitt, J. H. M. M. 2003, A\&A, 408, 971
Hobbs, L. M., Welty, D. E., Lagrange-Henri, A. M., Ferlet, R., \& Vidal-Madjar, A. 1988, ApJ, 334, L41

Holweger, H., Hempel, M., \& Kamp, I. 1999, A\&A, 350, 603
Holweger, H. \& Rentzsch-Holm, I. 1995, A\&A, 303, 819
Howe, K. S. \& Clarke, C. J. 2009, MNRAS, 392, 448
Iglesias, D., Bayo, A., Olofsson, J., et al. 2018, MNRAS, 480, 488
Iglesias, D. P., Olofsson, J., Bayo, A., et al. 2019, MNRAS, 490, 5218
Jaschek, M., Jaschek, C., \& Andrillat, Y. 1988, A\&AS, 72, 505
Jura, M. 2015, AJ, 150, 166
Kalas, P. 2005, ApJ, 635, L169
Kasper, M., Apai, D., Wagner, K., \& Robberto, M. 2015, ApJ, 812, L33
Kaufer, A., Stahl, O., Tubbesing, S., et al. 1999, The Messenger, 95, 8
Kausch, W., Noll, S., Smette, A., et al. 2015, A\&A, 576, A78
Kennedy, G. M. \& Wyatt, M. C. 2014, MNRAS, 444, 3164
Kiefer, F., Lecavelier des Etangs, A., Augereau, J.-C., et al. 2014a, A\&A, 561, L10
Kiefer, F., Lecavelier des Etangs, A., Boissier, J., et al. 2014b, Nature, 514, 462
Kirchschlager, F., Wolf, S., Krivov, A. V., Mutschke, H., \& Brunngräber, R. 2017, MNRAS, 467, 1614
Koen, C. 2003, MNRAS, 341, 1385
Kóspál, Á., Moór, A., Juhász, A., et al. 2013, ApJ, 776, 77
Kral, Q., Marino, S., Wyatt, M. C., Kama, M., \& Matrà, L. 2019, MNRAS, 489, 3670
Kral, Q., Matrà, L., Wyatt, M. C., \& Kennedy, G. M. 2017, MNRAS, 469, 521
Lagrange, A.-M., Beust, H., Mouillet, D., et al. 1998, A\&A, 330, 1091
Lagrange, A.-M., Bonnefoy, M., Chauvin, G., et al. 2010, Science, 329, 57
Lagrange, A. M., Desort, M., Galland, F., Udry, S., \& Mayor, M. 2009, A\&A, 495, 335
Lagrange-Henri, A. M., Beust, H., Ferlet, R., Vidal-Madjar, A., \& Hobbs, L. M. 1990a, A\&A, 227, L13
Lagrange-Henri, A. M., Ferlet, R., Vidal-Madjar, A., \& Beust, H. 1991, A\&A, 246, 507
Lagrange-Henri, A. M., Ferlet, R., Vidal-Madjar, A., et al. 1990b, A\&AS, 85, 1089
Lagrange-Henri, A. M., Ferlet, R., Vidal-Madjar, A., et al. 1990c, A\&AS, 85, 1089
Lecavelier Des Etangs, A., Deleuil, M., Vidal-Madjar, A., et al. 1997, A\&A, 325, 228
Lieman-Sifry, J., Hughes, A. M., Carpenter, J. M., et al. 2016, ApJ, 828, 25
Lisse, C. M., Sitko, M. L., Russell, R. W., et al. 2017, ApJ, 840, L20
Maldonado, J., Eiroa, C., Villaver, E., Montesinos, B., \& Mora, A. 2012, A\&A, 541, A40
Maldonado, J. \& Villaver, E. 2017, A\&A, 602, A38
Maldonado, J., Villaver, E., \& Eiroa, C. 2018, A\&A, 612, A93
Mamajek, E. E. \& Bell, C. P. M. 2014, MNRAS, 445, 2169
Marboeuf, U., Bonsor, A., \& Augereau, J.-C. 2016, Planet. Space Sci., 133, 47
Marino, S., Bonsor, A., Wyatt, M. C., \& Kral, Q. 2018, MNRAS, 479, 1651
Marino, S., Matrà, L., Stark, C., et al. 2016, MNRAS, 460, 2933
Marino, S., Wyatt, M. C., Panić, O., et al. 2017, MNRAS, 465, 2595
Matrà, L., Dent, W. R. F., Wyatt, M. C., et al. 2017, MNRAS, 464, 1415

Matthews, B. C., Krivov, A. V., Wyatt, M. C., Bryden, G., \& Eiroa, C. 2014, Protostars and Planets VI, 521
Mayor, M. \& Queloz, D. 1995, Nature, 378, 355
Mékarnia, D., Chapellier, E., Guillot, T., et al. 2017, A\&A, 608, L6
Mellon, S. N., Mamajek, E. E., Zwintz, K., et al. 2019, ApJ, 870, 36
Montesinos, B., Eiroa, C., Lillo-Box, J., et al. 2019, A\&A, 629, A19
Montgomery, S. L. \& Welsh, B. Y. 2012, PASP, 124, 1042
Montgomery, S. L. \& Welsh, B. Y. 2017, MNRAS, 468, L55
Moór, A., Ábrahám, P., Juhász, A., et al. 2011a, ApJ, 740, L7
Moór, A., Curé, M., Kóspál, Á., et al. 2017, ApJ, 849, 123
Moór, A., Henning, T., Juhász, A., et al. 2015a, ApJ, 814, 42
Moór, A., Kóspál, Á., Ábrahám, P., et al. 2015b, MNRAS, 447, 577
Moór, A., Pascucci, I., Kóspál, A., et al. 2011b, ApJS, 193, 4
Mora, A., Merín, B., Solano, E., et al. 2001, A\&A, 378, 116
Morales, F. Y., Bryden, G., Werner, M. W., \& Stapelfeldt, K. R. 2016, ApJ, 831, 97
Murphy, S. J., Corbally, C. J., Gray, R. O., et al. 2015a, PASA, 32, e036
Murphy, S. J., Corbally, C. J., Gray, R. O., et al. 2015b, PASA, 32, e036
Murphy, S. J. \& Paunzen, E. 2017, MNRAS, 466, 546
Nesvorný, D., Jenniskens, P., Levison, H. F., et al. 2010, ApJ, 713, 816
Nielsen, M. B., Gizon, L., Schunker, H., \& Karoff, C. 2013, A\&A, 557, L10
Nuñez, P. D., Scott, N. J., Mennesson, B., et al. 2017, A\&A, 608, A113
Paunzen, E. 2004, in IAU Symposium, Vol. 224, The A-Star Puzzle, ed. J. Zverko, J. Ziznovsky, S. J. Adelman, \& W. W. Weiss, 443-450

Pawellek, N., Krivov, A. V., Marshall, J. P., et al. 2014, ApJ, 792, 65
Pecaut, M. J. \& Mamajek, E. E. 2013, ApJS, 208, 9
Pecaut, M. J. \& Mamajek, E. E. 2016, MNRAS, 461, 794
Pecaut, M. J., Mamajek, E. E., \& Bubar, E. J. 2012, ApJ, 746, 154
Plavchan, P., Werner, M. W., Chen, C. H., et al. 2009, ApJ, 698, 1068
Quirrenbach, A., Amado, P. J., Caballero, J. A., et al. 2016, in Proc. SPIE, Vol. 9908, Ground-based and Airborne Instrumentation for Astronomy VI, 990812
Rappaport, S., Vanderburg, A., Jacobs, T., et al. 2018, MNRAS, 474, 1453
Raskin, G., van Winckel, H., Hensberge, H., et al. 2011, A\&A, 526, A69
Rebollido, I., Eiroa, C., Montesinos, B., et al. 2018, A\&A, 614, A3
Rebollido, I., Eiroa, C., Montesinos, B., et al. 2019, A\&A, 625, C2
Redfield, S. 2007, ApJ, 656, L97
Redfield, S., Kessler-Silacci, J. E., \& Cieza, L. A. 2007, ApJ, 661, 944
Redfield, S. \& Linsky, J. L. 2008a, ApJ, 673, 283
Redfield, S. \& Linsky, J. L. 2008b, ApJ, 673, 283
Riviere-Marichalar, P., Barrado, D., Augereau, J.-C., et al. 2012, A\&A, 546, L8
Riviere-Marichalar, P., Barrado, D., Montesinos, B., et al. 2014, A\&A, 565, A68
Riviere-Marichalar, P., Pinte, C., Barrado, D., et al. 2013, A\&A, 555, A67
Roberge, A., Feldman, P. D., Weinberger, A. J., Deleuil, M., \& Bouret, J.-C. 2006, Nature, 441, 724
Roberge, A., Kamp, I., Montesinos, B., et al. 2013, ApJ, 771, 69
Roberge, A. \& Weinberger, A. J. 2008, ApJ, 676, 509
Roberge, A., Welsh, B. Y., Kamp, I., Weinberger, A. J., \& Grady, C. A. 2014 ApJ, 796, L11
Rodriguez, E., Lopez de Coca, P., Rolland, A., Garrido, R., \& Costa, V. 1994, A\&AS, 106, 21
Schmitt, J. H. M. M., Schröder, K.-P., Rauw, G., et al. 2014, Astronomische Nachrichten, 335, 787
Schüppler, C., Krivov, A. V., Löhne, T., et al. 2016, MNRAS, 461, 2146
Sezestre, E., Augereau, J. C., \& Thébault, P. 2019, A\&A, 626, A2
Sibthorpe, B., Kennedy, G. M., Wyatt, M. C., et al. 2018, MNRAS, 475, 3046
Smette, A., Sana, H., Noll, S., et al. 2015, A\&A, 576, A77
Somerville, W. B. 1988, The Observatory, 108, 44
Su, K. Y. L., Rieke, G. H., Stansberry, J. A., et al. 2006, ApJ, 653, 675
Thébault, P. \& Beust, H. 2001, A\&A, 376, 621
Thureau, N. D., Greaves, J. S., Matthews, B. C., et al. 2014, MNRAS, 445, 2558 Tokovinin, A. 2008, MNRAS, 389, 925
Torres, C. A. O., Quast, G. R., Melo, C. H. F., \& Sterzik, M. F. 2008, Young Nearby Loose Associations, ed. B. Reipurth, 757
Vican, L., Schneider, A., Bryden, G., et al. 2016, ApJ, 833, 263
Vidal-Madjar, A., Kiefer, F., Lecavelier des Etangs, A., et al. 2017, A\&A, 607, A25
Vidal-Madjar, A., Lagrange-Henri, A.-M., Feldman, P. D., et al. 1994, A\&A, 290, 245
Welsh, B. Y., Craig, N., Crawford, I. A., \& Price, R. J. 1998, A\&A, 338, 674
Welsh, B. Y., Lallement, R., Vergely, J.-L., \& Raimond, S. 2010, A\&A, 510, A54
Welsh, B. Y. \& Montgomery, S. 2013, PASP, 125, 759
Welsh, B. Y. \& Montgomery, S. L. 2015, Advances in Astronomy, 2015, 980323
Welsh, B. Y. \& Montgomery, S. L. 2018, MNRAS, 474, 1515
Welsh, B. Y. \& Montgomery, S. L. 2019, Research Notes of the American Astronomical Society, 3, 25
Welty, D. E., Hobbs, L. M., \& Kulkarni, V. P. 1994, ApJ, 436, 152
Welty, D. E., Morton, D. C., \& Hobbs, L. M. 1996, ApJS, 106, 533
Wenger, M., Ochsenbein, F., Egret, D., et al. 2000, A\&AS, 143, 9
Wood, H. J. \& Hollis, J. M. 1971, A\&A, 12, 468
Zieba, S., Zwintz, K., Kenworthy, M. A., \& Kennedy, G. M. 2019, A\&A, 625, L13
Zuckerman, B. 2019, ApJ, 870, 27
Zuckerman, B. \& Song, I. 2012, ApJ, 758, 77

Appendix A: Figures

Appendix A.1: Narrow Stable Absorptions

HD 2884

Fig. A.1: Stars showing narrow non-photospheric absorptions. Top panels: Photospheric $\mathrm{Ca}_{\text {II }} \mathrm{H} \& \mathrm{~K}$ and Na I D lines with fitted modeling dashed blue line, x -axis shows the wavelength. Bottom panels: Residuals once the spectrum is divided by the photosphere, x -axis in velocity. Blue lines mark the fits to the non-photospheric absorptions. Vertical red dashed and grey dotted lines represent the stellar radial velocity and the ISM velocities respectively. Red error bars show three sigma value measured in the continuum adjacent to the photospheric line.

HD 2885

HD 3003

Fig. A.1: Stars showing narrow non-photospheric absorptions. Top panels: Photospheric $\mathrm{Ca}_{\text {II }} \mathrm{H} \& \mathrm{~K}$ and Na I D lines with fitted modeling dashed blue line, x -axis shows the wavelength. Bottom panels: Residuals once the spectrum is divided by the photosphere, x -axis in velocity. Blue lines mark the fits to the non-photospheric absorptions. Vertical red dashed and grey dotted lines represent the stellar radial velocity and the ISM velocities respectively. Red error bars show three sigma value measured in the continuum adjacent to the photospheric line.

HD 9672

Fig. 1 (Cont.): Stars showing narrow non-photospheric absorptions. Top panels: Photospheric $\mathrm{Ca}_{\text {II }} \mathrm{H} \& \mathrm{~K}$ and Na I D lines with fitted modeling dashed blue line, x -axis shows the wavelength. Bottom panels: Residuals once the spectrum is divided by the photosphere, x -axis in velocity. Blue lines mark the fits to the non-photospheric absorptions. Vertical red dashed and grey dotted lines represent the stellar radial velocity and the ISM velocities respectively. Red error bars show three sigma value measured in the continuum adjacent to the photospheric line.

HD 16978

HD 21688

Fig. 1 (Cont.): Stars showing narrow non-photospheric absorptions. Top panels: Photospheric $\mathrm{Ca}_{\text {II }} \mathrm{H} \& \mathrm{~K}$ and Na I D lines with fitted modeling dashed blue line, x -axis shows the wavelength. Bottom panels: Residuals once the spectrum is divided by the photosphere, x -axis in velocity. Blue lines mark the fits to the non-photospheric absorptions. Vertical red dashed and grey dotted lines represent the stellar radial velocity and the ISM velocities respectively. Red error bars show three sigma value measured in the continuum adjacent to the photospheric line.

HD 21620

HD 32297

Fig. 1 (Cont.): Stars showing narrow non-photospheric absorptions. Top panels: Photospheric Ca it H \& K and Na i D lines with fitted modeling dashed blue line, x -axis shows the wavelength. Bottom panels: Residuals once the spectrum is divided by the photosphere, x -axis in velocity. Blue lines mark the fits to the non-photospheric absorptions. Vertical red dashed and grey dotted lines represent the stellar radial velocity and the ISM velocities respectively. Red error bars show three sigma value measured in the continuum adjacent to the photospheric line.

HD 36546

HD 37306

Fig. 1 (Cont.): Stars showing narrow non-photospheric absorptions. Top panels: Photospheric Ca it H\& K and Na i D lines with fitted modeling dashed blue line, x -axis shows the wavelength. Bottom panels: Residuals once the spectrum is divided by the photosphere, x -axis in velocity. Blue lines mark the fits to the non-photospheric absorptions. Vertical red dashed and grey dotted lines represent the stellar radial velocity and the ISM velocities respectively. Red error bars show three sigma value measured in the continuum adjacent to the photospheric line.

HD 39182

HD 42111

Fig. 1 (Cont.): Stars showing narrow non-photospheric absorptions. Top panels: Photospheric Ca it H \& K and Na i D lines with fitted modeling dashed blue line, x -axis shows the wavelength. Bottom panels: Residuals once the spectrum is divided by the photosphere, x -axis in velocity. Blue lines mark the fits to the non-photospheric absorptions. Vertical red dashed and grey dotted lines represent the stellar radial velocity and the ISM velocities respectively. Red error bars show three sigma value measured in the continuum adjacent to the photospheric line.

HD 50241

HD 71043

Fig. 1 (Cont.): Stars showing narrow non-photospheric absorptions. Top panels: Photospheric Ca iI H\& K and Na I D lines with fitted modeling dashed blue line, x -axis shows the wavelength. Bottom panels: Residuals once the spectrum is divided by the photosphere, x -axis in velocity. Blue lines mark the fits to the non-photospheric absorptions. Vertical red dashed and grey dotted lines represent the stellar radial velocity and the ISM velocities respectively. Red error bars show three sigma value measured in the continuum adjacent to the photospheric line.

HD 71722

HD 80007

Fig. 1 (Cont.): Stars showing narrow non-photospheric absorptions. Top panels: Photospheric $\mathrm{Ca}_{\text {II }} \mathrm{H} \& \mathrm{~K}$ and Na I D lines with fitted modeling dashed blue line, x -axis shows the wavelength. Bottom panels: Residuals once the spectrum is divided by the photosphere, x -axis in velocity. Blue lines mark the fits to the non-photospheric absorptions. Vertical red dashed and grey dotted lines represent the stellar radial velocity and the ISM velocities respectively. Red error bars show three sigma value measured in the continuum adjacent to the photospheric line.

HD 85905

HD 98058

Fig. 1 (Cont.): Stars showing narrow non-photospheric absorptions. Top panels: Photospheric Ca it H \& K and Na i D lines with fitted modeling dashed blue line, x -axis shows the wavelength. Bottom panels: Residuals once the spectrum is divided by the photosphere, x -axis in velocity. Blue lines mark the fits to the non-photospheric absorptions. Vertical red dashed and grey dotted lines represent the stellar radial velocity and the ISM velocities respectively. Red error bars show three sigma value measured in the continuum adjacent to the photospheric line.

HD 105850

HD 108767

Fig. 1 (Cont.): Stars showing narrow non-photospheric absorptions. Top panels: Photospheric Ca it H \& K and Na i D lines with fitted modeling dashed blue line, x -axis shows the wavelength. Bottom panels: Residuals once the spectrum is divided by the photosphere, x -axis in velocity. Blue lines mark the fits to the non-photospheric absorptions. Vertical red dashed and grey dotted lines represent the stellar radial velocity and the ISM velocities respectively. Red error bars show three sigma value measured in the continuum adjacent to the photospheric line.

HD 109573

HD 110058

Fig. 1 (Cont.): Stars showing narrow non-photospheric absorptions. Top panels: Photospheric Ca it H \& K and Na i D lines with fitted modeling dashed blue line, x -axis shows the wavelength. Bottom panels: Residuals once the spectrum is divided by the photosphere, x -axis in velocity. Blue lines mark the fits to the non-photospheric absorptions. Vertical red dashed and grey dotted lines represent the stellar radial velocity and the ISM velocities respectively. Red error bars show three sigma value measured in the continuum adjacent to the photospheric line.

HD 118232

HD 125162

Fig. 1 (Cont.): Stars showing narrow non-photospheric absorptions. Top panels: Photospheric Ca it H \& K and Na i D lines with fitted modeling dashed blue line, x -axis shows the wavelength. Bottom panels: Residuals once the spectrum is divided by the photosphere, x -axis in velocity. Blue lines mark the fits to the non-photospheric absorptions. Vertical red dashed and grey dotted lines represent the stellar radial velocity and the ISM velocities respectively. Red error bars show three sigma value measured in the continuum adjacent to the photospheric line.

HD 131488

HD 131835

Fig. 1 (Cont.): Stars showing narrow non-photospheric absorptions. Top panels: Photospheric Ca it H \& K and Na i D lines with fitted modeling dashed blue line, x -axis shows the wavelength. Bottom panels: Residuals once the spectrum is divided by the photosphere, x -axis in velocity. Blue lines mark the fits to the non-photospheric absorptions. Vertical red dashed and grey dotted lines represent the stellar radial velocity and the ISM velocities respectively. Red error bars show three sigma value measured in the continuum adjacent to the photospheric line.

HD 138629

HD 138813

Fig. 1 (Cont.): Stars showing narrow non-photospheric absorptions. Top panels: Photospheric Ca it H \& K and Na i D lines with fitted modeling dashed blue line, x -axis shows the wavelength. Bottom panels: Residuals once the spectrum is divided by the photosphere, x -axis in velocity. Blue lines mark the fits to the non-photospheric absorptions. Vertical red dashed and grey dotted lines represent the stellar radial velocity and the ISM velocities respectively. Red error bars show three sigma value measured in the continuum adjacent to the photospheric line.

HD 142315

Fig. 1 (Cont.): Stars showing narrow non-photospheric absorptions. Top panels: Photospheric $\mathrm{Ca}_{\text {II }} \mathrm{H} \& \mathrm{~K}$ and Na I D lines with fitted modeling dashed blue line, x -axis shows the wavelength. Bottom panels: Residuals once the spectrum is divided by the photosphere, x -axis in velocity. Blue lines mark the fits to the non-photospheric absorptions. Vertical red dashed and grey dotted lines represent the stellar radial velocity and the ISM velocities respectively. Red error bars show three sigma value measured in the continuum adjacent to the photospheric line.

HD 142705

HD 144587

Fig. 1 (Cont.): Stars showing narrow non-photospheric absorptions. Top panels: Photospheric $\mathrm{Ca}_{\text {II }} \mathrm{H} \& \mathrm{~K}$ and Na I D lines with fitted modeling dashed blue line, x -axis shows the wavelength. Bottom panels: Residuals once the spectrum is divided by the photosphere, x -axis in velocity. Blue lines mark the fits to the non-photospheric absorptions. Vertical red dashed and grey dotted lines represent the stellar radial velocity and the ISM velocities respectively. Red error bars show three sigma value measured in the continuum adjacent to the photospheric line.

HD 144981

HD 145554

Fig. 1 (Cont.): Stars showing narrow non-photospheric absorptions. Top panels: Photospheric Ca it H \& K and Na i D lines with fitted modeling dashed blue line, x -axis shows the wavelength. Bottom panels: Residuals once the spectrum is divided by the photosphere, x -axis in velocity. Blue lines mark the fits to the non-photospheric absorptions. Vertical red dashed and grey dotted lines represent the stellar radial velocity and the ISM velocities respectively. Red error bars show three sigma value measured in the continuum adjacent to the photospheric line.

HD 145631

HD 145964

Fig. 1 (Cont.): Stars showing narrow non-photospheric absorptions. Top panels: Photospheric Ca it H \& K and Na i D lines with fitted modeling dashed blue line, x -axis shows the wavelength. Bottom panels: Residuals once the spectrum is divided by the photosphere, x -axis in velocity. Blue lines mark the fits to the non-photospheric absorptions. Vertical red dashed and grey dotted lines represent the stellar radial velocity and the ISM velocities respectively. Red error bars show three sigma value measured in the continuum adjacent to the photospheric line.

HD 145689

HD 146606

Fig. 1 (Cont.): Stars showing narrow non-photospheric absorptions. Top panels: Photospheric $\mathrm{Ca}_{\text {II }} \mathrm{H} \& \mathrm{~K}$ and Na I D lines with fitted modeling dashed blue line, x -axis shows the wavelength. Bottom panels: Residuals once the spectrum is divided by the photosphere, x -axis in velocity. Blue lines mark the fits to the non-photospheric absorptions. Vertical red dashed and grey dotted lines represent the stellar radial velocity and the ISM velocities respectively. Red error bars show three sigma value measured in the continuum adjacent to the photospheric line.

HD 146897

HD 147137

Fig. 1 (Cont.): Stars showing narrow non-photospheric absorptions. Top panels: Photospheric Ca it H \& K and Na i D lines with fitted modeling dashed blue line, x -axis shows the wavelength. Bottom panels: Residuals once the spectrum is divided by the photosphere, x -axis in velocity. Blue lines mark the fits to the non-photospheric absorptions. Vertical red dashed and grey dotted lines represent the stellar radial velocity and the ISM velocities respectively. Red error bars show three sigma value measured in the continuum adjacent to the photospheric line.

HD 147220

HD 148283

Fig. 1 (Cont.): Stars showing narrow non-photospheric absorptions. Top panels: Photospheric Ca it H \& K and Na i D lines with fitted modeling dashed blue line, x -axis shows the wavelength. Bottom panels: Residuals once the spectrum is divided by the photosphere, x -axis in velocity. Blue lines mark the fits to the non-photospheric absorptions. Vertical red dashed and grey dotted lines represent the stellar radial velocity and the ISM velocities respectively. Red error bars show three sigma value measured in the continuum adjacent to the photospheric line.

HD 158352

Fig. 1 (Cont.): Stars showing narrow non-photospheric absorptions. Top panels: Photospheric Ca it H \& K and Na ı D lines with fitted modeling dashed blue line, x -axis shows the wavelength. Bottom panels: Residuals once the spectrum is divided by the photosphere, x -axis in velocity. Blue lines mark the fits to the non-photospheric absorptions. Vertical red dashed and grey dotted lines represent the stellar radial velocity and the ISM velocities respectively. Red error bars show three sigma value measured in the continuum adjacent to the photospheric line.

HD 168646

HD 172555

Fig. 1 (Cont.): Stars showing narrow non-photospheric absorptions. Top panels: Photospheric Ca it H \& K and Na i D lines with fitted modeling dashed blue line, x -axis shows the wavelength. Bottom panels: Residuals once the spectrum is divided by the photosphere, x -axis in velocity. Blue lines mark the fits to the non-photospheric absorptions. Vertical red dashed and grey dotted lines represent the stellar radial velocity and the ISM velocities respectively. Red error bars show three sigma value measured in the continuum adjacent to the photospheric line.

HD 177724

HD 181296

Fig. 1 (Cont.): Stars showing narrow non-photospheric absorptions. Top panels: Photospheric Ca it H \& K and Na i D lines with fitted modeling dashed blue line, x -axis shows the wavelength. Bottom panels: Residuals once the spectrum is divided by the photosphere, x -axis in velocity. Blue lines mark the fits to the non-photospheric absorptions. Vertical red dashed and grey dotted lines represent the stellar radial velocity and the ISM velocities respectively. Red error bars show three sigma value measured in the continuum adjacent to the photospheric line.

HD 182919

HD 188228

Fig. 1 (Cont.): Stars showing narrow non-photospheric absorptions. Top panels: Photospheric Ca it H \& K and Na i D lines with fitted modeling dashed blue line, x -axis shows the wavelength. Bottom panels: Residuals once the spectrum is divided by the photosphere, x -axis in velocity. Blue lines mark the fits to the non-photospheric absorptions. Vertical red dashed and grey dotted lines represent the stellar radial velocity and the ISM velocities respectively. Red error bars show three sigma value measured in the continuum adjacent to the photospheric line.

HD 192518

HD 196724

Fig. 1 (Cont.): Stars showing narrow non-photospheric absorptions. Top panels: Photospheric $\mathrm{Ca}_{\text {II }} \mathrm{H} \& \mathrm{~K}$ and $\mathrm{Na}_{\mathrm{I}} \mathrm{D}$ lines with fitted modeling dashed blue line, x -axis shows the wavelength. Bottom panels: Residuals once the spectrum is divided by the photosphere, x -axis in velocity. Blue lines mark the fits to the non-photospheric absorptions. Vertical red dashed and grey dotted lines represent the stellar radial velocity and the ISM velocities respectively. Red error bars show three sigma value measured in the continuum adjacent to the photospheric line.

HD 198160

HD 198161

Fig. 1 (Cont.): Stars showing narrow non-photospheric absorptions. Top panels: Photospheric $\mathrm{Ca}_{\text {II }} \mathrm{H} \& \mathrm{~K}$ and Na I D lines with fitted modeling dashed blue line, x -axis shows the wavelength. Bottom panels: Residuals once the spectrum is divided by the photosphere, x -axis in velocity. Blue lines mark the fits to the non-photospheric absorptions. Vertical red dashed and grey dotted lines represent the stellar radial velocity and the ISM velocities respectively. Red error bars show three sigma value measured in the continuum adjacent to the photospheric line.

HD 217782

Fig. 1 (Cont.): Stars showing narrow non-photospheric absorptions. Top panels: Photospheric Ca it H \& K and Na ı D lines with fitted modeling dashed blue line, x -axis shows the wavelength. Bottom panels: Residuals once the spectrum is divided by the photosphere, x -axis in velocity. Blue lines mark the fits to the non-photospheric absorptions. Vertical red dashed and grey dotted lines represent the stellar radial velocity and the ISM velocities respectively. Red error bars show three sigma value measured in the continuum adjacent to the photospheric line.

HD 224392

Fig. 1 (Cont.): Stars showing narrow non-photospheric absorptions. Top panels: Photospheric Ca it H \& K and Na i D lines with fitted modeling dashed blue line, x -axis shows the wavelength. Bottom panels: Residuals once the spectrum is divided by the photosphere, x -axis in velocity. Blue lines mark the fits to the non-photospheric absorptions. Vertical red dashed and grey dotted lines represent the stellar radial velocity and the ISM velocities respectively. Red error bars show three sigma value measured in the continuum adjacent to the photospheric line.

Appendix B: Tables

Table B.1: Sample of observed stars. Columns are self-explanatory. Numbers within parenthesis in columns 10 to 13 denote the corresponding references. Column 13 specifies the primary selection criteria as described in the text: 1. Previously detected exocomets; 2. Debris Discs; 3. Debris discs with cold gas; 4. Near-Infrared excesses; 5. Young discs;

HD	Other Name	RA(2000.0)	Dec(2000.0)	Sp. Type	$\begin{array}{r} \text { Distance } \\ (\mathrm{pc}) \end{array}$	$\begin{aligned} & \hline \mathrm{V} \\ & \text { (mag) } \end{aligned}$	$\begin{gathered} \mathrm{B}-\mathrm{V} \\ (\mathrm{mag}) \end{gathered}$	$\begin{gathered} \mathrm{V}_{\mathrm{rad}} \\ (\mathrm{~km} / \mathrm{s}) \\ \hline \end{gathered}$	$\begin{gathered} \text { Age } \\ (\mathrm{Myr}) \end{gathered}$	$\mathrm{L}_{\text {IR }} / \mathrm{L}_{*}$	Assoc.	Sel.Crit
105	HIP 490	00: 05 : 52.54	-41: $45: 11.0$	G0V	38.85	7.53	0.6	1.7	45 (9)	$2.4 \cdot 10^{-4}$ (1)	Tuc-Hor (4)	5 (1)
203	HR 9	00: 06 : 50.09	-23:06:27.1	F3V	39.96	6.19	0.344	6.5	23 (2)	$1.6 \cdot 10^{-4}(2)$	BPMG (3)	5 (2)
256	HR 10	00: 07 : 18.27	-17:23:13.2	A2IV/V	145.18	6.23	0.1	-10.2	549 (3)	$<6.1 \cdot 10^{-6}(3)$		1 (3)
1466	HIP 1481	00: 18 : 26.12	-63:28:39.0	F8V	42.97	7.46	0.54	6.4	45 (9)	$6.3 \cdot 10^{-5}(1)$	Tuc-Hor (4)	5 (1)
2262	κ Phe	00: 26 : 12.20	-43: 40 : 47.4	A5IV	23.81	3.94	0.17	11.3	200 (1)	7.4. 10^{-6} (4)	Castor (1)	4 (4)
2884	$\beta 1$ Tuc	00: $31: 32.67$	-62: 57 : 29.6	B9V	41.41	4.33	-0.045	14.0	45 (9)	$<6.7 \cdot 10^{-6}(1)$	Tuc-Hor (4)	5 (1)
2885	$\beta 2$ Tuc	00: $31: 33.48$	-62: 57 : 56.0	A2V	51.04	4.51	0.135	9.8	45 (9)	$<1.8 \cdot 10^{-5}(1)$	Tuc-Hor (4)	5 (1)
3003	$\beta 3$ Tuc	00: 32 : 43.91	-63:01:53.4	A0V	45.90	5.09	0.04	7.7	45 (9)	1.1.10-4 (1)	Tuc-Hor (4)	5 (1)
5267	66 Psc	00: 54 : 35.23	+19: $11: 18.3$	A1V	108.11	5.79	-0.03	8.5	200 (1)	$3.9 \cdot 10^{-5}$ (6)		2 (5)
5448	μ And	00: 56 : 45.21	+38: $29: 57.6$	A5V	41.26	3.87	0.12	7.2	687 (3)	<4.4. $10^{-6}(4)$		4 (6)
7788	κ Tuc	01: 15:46.16	-68: 52 : 33.3	F6V+K1V	20.96	4.25	0.48	7.7	700 (4)	$<4.4 \cdot 10^{-6}(8)$		4 (4)
9672	49 Cet	01:34:37.78	-15:40:34.9	A1V	57.07	5.62	0.062	10.3	40 (5)	$1.1 \cdot 10^{-3}(7)$	Argus (7)	1 (7)
10700	τ Cet	01: 44 : 04.08	-15:56:14.9	G8.5V	3.65	3.5	0.72	-16.62	5800 (6)	$6.1 \cdot 10^{-6}(8)$		4 (8)
12039	DK Cet	01: 57:48.98	-21:54:05.3	G4V	41.41	8.06	0.673	6.12	45 (9)	$6.3 \cdot 10^{-5}(1)$	Tuc-Hor (4)	5 (1)
14055	γ Tri	02: 17: 18.87	+33:50:49.9	A1V	34.44	4.0	0.03	9.9	300 (1)	7.4. 10^{-5} (4)		2 (9)
14412	HR 683	02: 18 : 58.50	-25:56:44.5	G8V	12.83	6.34	0.73	7.36	6540 (7)	$<2.0 \cdot 10^{-6}(9)$		4 (4)
15115	HIP 11360	02: 26 : 16.24	+06: $17: 33.2$	F2V	49.00	6.8	0.35	0.81	45 (9)	4.8. 10^{-4} (10)	Tuc-Hor (8)	2 (10)
15257	HR 717	02: 28 : 09.98	+29: $40: 09.6$	F0III	49.93	5.29	0.29	-24.8	1000 (1)	$8.6 \cdot 10^{-5}(6)$		2 (5)
16978	HR 806	02:39:35.36	-68: 16 : 01.0	B9III	46.55	4.11	-0.046	13.6	45 (9)	$<8.6 \cdot 10^{-7}(1)$	Tuc-Hor (4)	5 (1)
21688	HR 1062	03: 29 : 36.03	-12: $40: 29.1$	A5III/IV	143.21	5.58	0.152	15.1	625 (3)			6 (11)
21620	HR 1056	03: 31 : 29.34	+49: $12: 35.2$	A0V	135.00	6.28	0.07	-21.4	80 (17)	$2.5 \cdot 10^{-5}(11)$		1 (7)
21997	HR 1082	03:31:53.65	-25:36:50.9	A3IV/V	69.64	6.37	0.13	17.3	42 (9)	5.7. 10^{-4} (7)	Columba (1)	3 (10)
22484	10 Tau	03: 36 : 52.38	+00: $24: 06.0$	F8V	13.96	4.3	0.85	28.07	7500 (6)	$1.1 \cdot 10^{-5}(8)$		4 (8)
27290	HR 1338	04: 16:01.59	-51: $29: 11.9$	F1V	20.45	4.2	0.35	25.2	45 (1)	1.9. $10^{-5}(8)$	IC 2391 (1)	2 (9)
28355	b Tau	04: $28: 50.16$	+13: $02: 51.4$	A7V	48.57	5.01	0.212	37.3	600 (1)	4.7. 10^{-5} (6)	Hyades (1)	4 (4)
29391	HR 1474	04:37:36.13	-02: $28: 24.8$	Foiv	29.78	5.22	0.262	12.6	23 (2)	2.3. 10^{-6} (2)	BPMG (3)	5 (2)
30051	HIP 21965	04: 43: 17.20	-23: 37 : 42.0	F2V	63.59	7.11	0.4	19.3	45 (9)	$2.8 \cdot 10^{-5}(1)$	Tuc-Hor (4)	5 (2)
31295	$\pi 1$ Ori	04: 54 : 53.73	+10:09:03.0	A3V	35.66	4.66	0.081	11.1	123 (1)	7.6. $10^{-5}(5)$		7 (12)
32297	HIP 23451	05: 02 : 27.44	+07: $27: 39.7$	A0V	132.79	8.14	0.18	23.0	30 (10)	$4.4 \cdot 10^{-3}$ (6)		1 (13)
35850	AF Lep	05: 27 : 04.76	-11:54:03.5	F8V	26.88	6.31	0.503	17.0	23 (2)	$3.7 \cdot 10^{-5}(2)$	BPMG (3)	5 (2)
36546	HIP 26062	05: 33: 30.76	+24:37:43.7	B8V	101.35	6.95	0.07	20.4	10 (11)	$4.0 \cdot 10^{-3}(12)$		2 (14)
37286	HR 1915	05:36:10.30	-28: 42 : 28.8	A2IV	58.89	6.27	0.149	22.4	45 (9)	1.0. 10^{-4} (6)	Tuc-Hor (1)	2 (5)
37306	HR 1919	05:37:08.77	-11: $46: 31.9$	A2V	70.46	6.09	0.056	23.0	42 (9)	1.2. 10^{-4} (6)	Columba (2)	2 (5)
38206	HR 1975	05: 43 : 21.67	-18:33:26.9	A 0 V	71.41	5.73	-0.011	25.3	42 (9)	1.4. 10^{-4} (6)	Columba (1)	2 (5)
39182	HR 2025	05:52:39.67	+39:34:28.9	A2V	202.46	6.39	0.09	-14.5	407 (3)			6 (11)
39283	ξ Aur	05:54:50.78	+55:42:25.0	A2V	72.51	4.96	0.045	-11.8	540 (8)	$<3.1 \cdot 10^{-6}(11)$		6 (15)
40136	η Lep	05: 56 : 24.29	-14: $10: 03.7$	F2V	14.88	3.72	0.33	-2.14	1390 (1)	$2.6 \cdot 10^{-5}(6)$		4 (8)
42111	HR 2174	06: 08 : 57.90	+02: $29: 58.9$	A3V	178.42	5.73	0.07	25.3	319 (3)	$<1.0 \cdot 10^{-5}(11)$		1 (7)
53842	HIP 32435	06: 46 : 13.54	-83: 59 : 29.5	F5V	58.87	8.62	0.258	12.2	45 (9)	<2.1. $10^{-4}(6)$	Tuc-Hor (4)	5 (1)
50241	α Pic	06: 48 : 11.46	-61: 56 : 29.0	A8V	29.60	3.3	0.18	15.3	885 (8)	$<4.4 \cdot 10^{-6}(4)$		1 (15)
50571	HR 2562	06: 50 : 01.01	-60: 14 : 56.9	F5V	33.64	6.1	0.45	22.1	300 (1)	$1.5 \cdot 10^{-4}(10)$	B3 (1)	2 (9)
56537	$\lambda \mathrm{Gem}$	07: 18:05.58	+16:32:25.4	A4IV	30.93	3.58	0.111	-7.4	314 (1)	$<4.4 \cdot 10^{-6}(4)$	UMA (1)	4 (8)
64145	ϕ Gem	07: 53 : 29.81	+26:45:56.8	A5IV	76.31	4.96	0.097	8.0	714 (8)			1 (16)
71043	HR 3300	08:22:55.16	-52: 07 : 25.4	A0V	73.25	5.89	0.016	22.5	45 (9)	$6.7 \cdot 10^{-5}$ (6)	Tuc-Hor (2)	2 (15)
71722	HR 3341	08:26:25.21	-52: 48 : 27.0	A0V	69.33	6.05	0.057	30.2	324 (1)	$8.4 \cdot 10^{-5}(6)$		2 (9)
74873	HR 3481	08: 46 : 56.02	+12: $06: 35.8$	A1VP	56.19	5.88	0.107	23.3	539 (1)	$4.8 \cdot 10^{-5}(5)$		7 (12)
77190	67 Cnc	09: 01: 48.84	+27:54:09.3	A8Vn	59.65	6.07	0.22	12.0	19 (8)	$<1.3 \cdot 10^{-5}$ (11)		6 (15)

HD	Other Name	RA(2000.0)	Dec(2000.0)	Sp. Type	Distance (pc)	$\begin{aligned} & \hline \hline \mathrm{V} \\ & \text { (mag) } \end{aligned}$	$\begin{gathered} \text { B-V } \\ (\mathrm{mag}) \end{gathered}$	$\begin{array}{r} \mathrm{v}_{\mathrm{rad}} \\ (\mathrm{~km} / \mathrm{s}) \end{array}$	$\begin{array}{r} \text { Age } \\ (\mathrm{Myr}) \end{array}$	$\mathrm{L}_{\mathrm{IR}} / \mathrm{L}_{\star}$	Assoc.	Sel.Crit
80007	HR 3685	09: 13: 11.98	-69: 43 : 01.9	A1III	34.70	1.69	0.0	-5.1	260 (12)	$<1.7 \cdot 10^{-6}(3)$		1 (3)
85905	HR 3921	09:54:31.82	-22: $29: 14.9$	A1IV	176.03	6.23	0.044	9.2	481 (3)	$<4.8 \cdot 10^{-6}$ (3)		1 (3)
95418	β UMa	11: $01: 50.48$	+56:22:56.7	A1IV	24.45	2.37	-0.02	-13.1	320 (1)	$1.4 \cdot 10^{-5}(4)$	UMA (1)	2 (9)
98058	ϕ Leo	11: $16: 39.70$	-03: 39 : 05.8	A7IV	56.47	4.47	0.198	-3.0	921 (8)	$<7.4 \cdot 10^{-5}(23)$		6 (11)
102647	β Leo	11: 49 : 03.58	+14:34:19.4	A3Va	11.00	2.13	0.09	-0.2	45 (1)	$2.2 \cdot 10^{-5}$ (4)	IC 2391 (1)	4 (8)
104731	HR 4600	12:03:39.57	-42: $26: 02.6$	F5V	24.73	5.15	0.41	38.5	360 (6)		CANE (1)	4 (4)
104860	HIP 58876	12:04:33.73	+66:20:11.7	F8	45.20	7.91	0.59	-11.73	3140 (1)	$3.0 \cdot 10^{-4}(6)$		2 (9)
105234	EF Cha	12:07:05.52	-78: 44 : 28.0	A9III/4	104.54	7.46	0.28	0.0	10 (1)	$1.0 \cdot 10^{-3}$ (13)		2 (5)
105850	HR 4635	12: 11:03.84	-23: $36: 08.7$	A1V	58.81	5.47	0.05	11.0	45 (9)	$6.2 \cdot 10^{-5}(6)$	Tuc-Hor (2)	2 (5)
108767	δ Crv	12: $29: 51.86$	-16:30:55.6	A0IV	26.63	2.94	-0.05	13.9	216 (8)	$<4.4 \cdot 10^{-6}(4)$		4 (4)
109085	$\eta \mathrm{Crv}$	12:32:04.23	-16: $11: 45.6$	F2V	18.28	4.31	0.38	-2.8	1400 (13)	$3.4 \cdot 10^{-4}(14)$		3 (17)
109573	HR 4796	12:36:01.03	-39: $52: 10.2$	A0V	71.91	5.78	0.009	7.1	8 (1)	$4.6 \cdot 10^{-3}(15)$	TWA (1)	2 (5)
110058	HIP 61782	12:39:46.20	-49: $11: 55.5$	A0V	129.98	7.97	0.15	5.0	15 (14)	$1.4 \cdot 10^{-3}(6)$	LCC (5)	3 (18)
110411	ρ Vir	12: $41: 53.06$	+10: $14: 08.3$	A3V	38.16	4.88	0.09	-0.7	86 (1)	$6.4 \cdot 10^{-5}$ (4)		1 (7)
118232	24 CVn	13:34:27.26	+49:00:57.5	A4V	55.28	4.7	0.12	-18.3	612 (1)	$2.6 \cdot 10^{-5}(11)$		6 (15)
121191	SAO 241295	13:55:18.86	-53: $31: 43.0$	A5IV/V	132.11	8.16	0.24	12.0	16 (14)	$4.7 \cdot 10^{-3}(16)$	LCC/UCL (8)	3 (18)
121617	SAO 224570	13:57:41.13	-47: 00:34.2	A1V	116.87	7.29	0.07	7.8	16 (14)	$4.8 \cdot 10^{-3}(17)$	UCL (9)	3 (18)
125162	λ Вӧo	14: 16:23.02	+46:05: 17.9	A3	30.36	4.18	0.08	7.9	313 (1)	4.4. 10^{-5} (4)		7 (12)
131488	SAO 225290	14:55:08.03	-41: 07: 13.4	A1V	154.62	8.0	0.09	5.8	16 (14)	$5.5 \cdot 10^{-3}(16)$	UCL (8)	3 (18)
131835	HIP 73145	14:56:54.47	-35: $41: 43.7$	A2IV	133.65	7.86	0.19	0.5	16 (14)	$3.0 \cdot 10^{-3}$ (18)	UCL (5)	3 (18)
138629	HR 5774	15:31:46.98	+40:53:57.6	A5V	127.20	4.98	0.96	-16.0	,			1 (19)
139006	$\alpha \mathrm{CrB}$	15:34:41.27	+26:42:52.9	A0V	23.01	2.24	-0.02	1.4	314 (1)	$1.5 \cdot 10^{-5}(4)$	UMA (1)	2 (9)
138813	HIP 76310	15:35:16.11	-25: 44 : 03.0	A0V	137.41	7.3	0.07	4.4	10 (14)	$9.0 \cdot 10^{-4}$ (6)	US (6)	3 (18)
142097	HIP 77815	15:53:21.93	-21:58:16.7	A5V	140.92	8.39	0.41	-0.1	11 (16)	$<3.0 \cdot 10^{-4}$ (19)	US (6)	5 (20)
142315	HIP 77911	15:54:41.60	-22: $45: 58.5$	B9V	145.34	6.87	0.034	-7.4	11 (1)	$3.8 \cdot 10^{-4}(19)$	US (6)	5 (20)
142705	HIP 78099	15:56:47.85	-23: 11:02.7	A0V	144.33	7.74	0.18	-6.5	11 (16)	$<1.7 \cdot 10^{-4}$ (19)	US (6)	5 (20)
144587	HIP 78996	16:07:29.93	-23: 57 : 02.4	A9V	144.01	8.31	0.42	0.0	11 (1)	$3.2 \cdot 10^{-4}(19)$	US (6)	5 (20)
144981	HIP 79156	16:09:20.89	-19:27:25.9	A0V	150.59	8.04	0.18	-1.3	11 (1)	1.2. $10^{-4}(19)$	US (6)	5 (20)
145554	HIP 79410	16: $12: 21.83$	-19:34:44.6	B9V	136.83	7.64	0.13	-9.4	11 (1)	$1.4 \cdot 10^{-4}$ (19)	US (6)	5 (20)
145631	HIP 79439	16: $12: 44.10$	-19:30:10.3	B9V	140.72	7.6	0.13	-9.5	11 (1)	$6.3 \cdot 10^{-5}(19)$	US (6)	5 (20)
145964	HR 6051	16:14:28.88	-21:06:27.5	B9V	112.18	6.41	0.001	-7.8	11 (1)	$1.5 \cdot 10^{-5}(6)$	US (6)	1 (7)
145689	HIP 79797	16: $17: 05.41$	-67: $56: 28.6$	A6V	55.55	5.95	0.148	-9.0	40 (1)	$4.9 \cdot 10^{-5}(6)$	Argus (1)	5 (21)
146606	HIP 79878	16:18:16.16	-28:02:30.2	A0V	137.27	7.06	-0.01	0.8	11 (1)	$9.5 \cdot 10^{-5}(19)$	US (6)	5 (20)
146624	d Sco	16:18:17.90	-28:36:50.5	A0V	41.29	4.79	0.03	-13.0	23 (2)	$<5.0 \cdot 10^{-7}$ (2)	BPMG (3)	5 (2)
146897	HIP 79977	16: $19: 29.24$	-21: $24: 13.3$	F2/3V	131.50	9.11	0.47	-1.1	15 (16)	$5.6 \cdot 10^{-3}(6)$	US (6)	3 (21)
147137	HIP 80088	16:20:50.23	-22: $35: 38.8$	A9V	143.92	9.03	0.39	-0.8	11 (1)	$5.7 \cdot 10^{-4}(19)$	US (6)	5 (20)
147220	HIP 80130	16:21:21.15	-22:06:32.3	A9V	158.88	8.59	0.45	-1.0	,	$<3.3 \cdot 10^{-4}$ (19)	US (6)	5 (20)
148283	HR 6123	16:25:24.17	+37:23:38.7	A5V	77.45	5.54	0.17	-1.3	854 (8)	$<8.4 \cdot 10^{-6}$ (11)		6 (11)
156623	HIP 84881	17: 20 : 50.62	-45: $25: 15.0$	A0V	111.75	7.26	0.09	-0.2	16 (14)	$7.8 \cdot 10^{-3}(20)$	UCL (5)	3 (21)
157728	73 Her	17: $24: 06.59$	+22:57:37.0	A7V	42.75	5.72	0.21	-19.7	534 (1)	2.9. 10^{-4} (6)		2 (5)
158352	HR 6507	17: $28: 49.66$	+00: $19: 50.3$	A8Vp	63.46	5.41	0.23	-36.1	890 (1)	$9.3 \cdot 10^{-5}(11)$		2 (5)
162003	* 1 Dra A	17: $41: 56.35$	+72:08:55.8	F5IV/V	21.42	4.56	0.44	-13.3	2326 (8)	$<4.4 \cdot 10^{-6}$ (8)		4 (6)
162917	HR 6670	17:53:14.19	+06:06:05.1	F4IV/V	30.80	5.77	0.4	-29.1	1210 (1)	$6.5 \cdot 10^{-5}(6)$		2 (5)
164249	HIP 88399	18:03:03.41	-51:38:56.4	F6V+M2V	49.61	7.01	0.456	-0.4	23 (2)	$8.4 \cdot 10^{-4}(2)$	BPMG (3)	5 (2)
168646	HR 6864	18:22:00.14	-28: $25: 47.9$	A3III	191.33	6.15	0.242	-11.5	662 (3)			6 (11)
172555	HR 7012	18: $45: 26.90$	-64: $52: 16.5$	A7V	28.55	4.78	0.191	2.0	23 (2)	$7.1 \cdot 10^{-4}(4)$	BPMG (3)	1 (22)
173667	110 Her	18: $45: 39.73$	+20:32:46.7	F6V	19.21	4.19	0.46	23.05	2687 (8)	$7.0 \cdot 10^{-7}$ (9)		4 (8)
177724	$\zeta \mathrm{Aql}$	19:05:24.61	+13: $51: 48.5$	A0IV/Vn	25.46	2.99	0.01	-25.0	356 (1)	<1.6. 10^{-6}		4 (8)
181296	η Tel	19: 22 : 51.21	-54: $25: 26.1$	A0V+M7V	48.22	5.02	0.015	13.0	23 (2)	$2.4 \cdot 10^{-4}$ (6)	BPMG (3)	3 (2)
181327	HIP 95270	19: $22: 58.94$	-54:32:17.0	F5/F6V	48.21	7.04	0.46	0.2	23 (2)	$2.0 \cdot 10^{-3}$ (6)	BPMG (3)	3 (23)

HD	Other Name	RA(2000.0)	Dec(2000.0)	Sp. Type	Distance (pc)	$\begin{aligned} & \hline \hline \mathrm{V} \\ & \text { (mag) } \end{aligned}$	$\begin{gathered} \text { B-V } \\ (\mathrm{mag}) \end{gathered}$	$\begin{array}{r} \mathrm{v}_{\mathrm{rad}} \\ (\mathrm{~km} / \mathrm{s}) \end{array}$	$\begin{gathered} \text { Age } \\ (\mathrm{Myr}) \end{gathered}$	$\mathrm{L}_{\mathrm{IR}} / \mathrm{L}_{\star}$	Assoc.	Sel.Crit
182640	δ Aql	19: 25 : 29.90	+03: 06: 53.2	F1IV	15.53	3.36	0.32	-34.0	1385 (8)			4 (6)
182919	5 Vul	19: 26 : 13.25	+20:05:51.8	A0V	71.98	5.59	0.002	-20.9	198 (1)	$3.4 \cdot 10^{-5}(6)$		1 (7)
183324	c Aql	19: 29 : 00.99	+01: $57: 01.6$	A0IV	60.68	5.79	0.083	12.0	140 (1)	$1.8 \cdot 10^{-5}(5)$		1 (7)
187642	α Aql	19:50:47.00	+08: 52:06.0	A7V	5.13	0.76	0.22	-26.6	991 (8)	$<4.4 \cdot 10^{-6}$ (4)		4 (8)
188228	$\epsilon \mathrm{Pav}$	20: $00: 35.56$	-72:54:37.8	A0V	32.22	3.95	-0.006	-6.7	40 (1)	$4.4 \cdot 10^{-6}(4)$	Argus (7)	2 (9)
192518	HR 7731	20: 14 : 14.53	+28: $41: 41.3$	A5IV	93.37	5.2	0.17	7.0	607 (8)			6 (11)
196724	29 Vul	20: $38: 31.34$	+21: $12: 04.3$	A0	64.00	4.82	-0.02	-17.1	224 (8)	$<2.4 \cdot 10^{-6}(11)$		6 (15)
198160	HR 7959	20:51:38.47	-62: $25: 45.6$	A2III	74.00	6.21	0.14	-16.0	735 (8)	$2.0 \cdot 10^{-5}$ (5)		7 (12)
198161	HR 7960	20:51:38.76	-62: $25: 44.9$	A3III	73.90	6.56	0.18	-10.0	735 (8)			7 (12)
199143	HIP 103311	20:55:47.67	-17:06:51.0	F8V	45.66	7.32	0.52	-4.5	23 (2)	$<2.6 \cdot 10^{-6}(2)$	BPMG	5 (2)
203280	α Cep	21: $18: 34.77$	+62:35:08.1	A8V	15.04	2.46	0.22	-15.8	987 (8)	$<2.1 \cdot 10^{-6}$ (24)		4 (8)
202917	HIP 105388	21: $20: 49.96$	-53:02:03.1	G7V	46.85	8.67	0.65	-0.9	45 (9)	$2.5 \cdot 10^{-4}$ (1)	Tuc-Hor (4)	5 (1)
210302	τ PsA	22: $10: 08.78$	-32: $32: 54.3$	F6V	18.35	4.92	0.48	-16.25	3530 (7)	$<4.4 \cdot 10^{-6}(8)$		4 (4)
210418	$\theta \mathrm{Peg}$	22: $10: 11.99$	+06: 11:52.3	A1V	28.30	3.55	0.07	-7.9	545 (8)	$<4.4 \cdot 10^{-6}(4)$		4 (6)
211336	ϵ Cep	22: 15 : 02.20	+57: $02: 36.9$	FOIV	26.30	4.19	0.28	-4.7	1063 (1)	$1.9 \cdot 10^{-5}$ (6)		4 (8)
213617	39 Peg	22:32:35.48	+20: $13: 48.1$	F1V	53.58	6.44	0.33	-18.9	930 (1)	$6.5 \cdot 10^{-5}(6)$		2 (5)
217782	2 And	23: $02: 36.38$	+42: $45: 28.1$	A3V	129.20	5.1	0.08	2.1	478 (3)	$<9.6 \cdot 10^{-6}$ (11)		1 (7)
221756	15 And	23:34:37.54	+40: $14: 11.2$	A1V	77.28	5.56	0.089	13.1	613 (8)	$1.5 \cdot 10^{-5}(5)$		7 (12)
222368	ι Psc	23: 39 : 57.04	+05:37:34.6	F7V	13.71	4.12	0.5	5.67	3287 (3)	$1.1 \cdot 10^{-6}(8)$		4 (6)
224392	η Tuc	23:57:35.08	-64: 17 : 53.6	A1V	47.07	5.0	0.056	32.5	45 (9)	$<1.6 \cdot 10^{-5}(1)$	Tuc-Hor (4)	5 (1)

References for age: (1) Chen et al. (2014); (2) Mamajek \& Bell (2014); (3) Gontcharov (2012); (4) Gáspár et al. (2013); (5) Torres et al. (2008); (6) Maldonado et al. (2012); (7) Eiroa et al. (2013); (8) David \& Hillenbrand (2015); (9) Bell et al. (2015); (10) Kalas (2005); (11) Lisse et al. (2017); (12) Su et al. (2006); (13) Marino et al. (2017); (14) Pecaut \& Mamajek (2016); (15) Bochanski et al. (2018); (16) Pecaut et al. (2012); (17) Roberge \& Weinberger (2008)
References for $L_{I R} / L_{\star}$: (1) Donaldson et al. (2012); (2) Riviere-Marichalar et al. (2014); (3) Redfield et al. (2007) ; (4) Thureau et al. (2014); (5) Draper et al. (2016); (6) Chen et al. (2014); (7) Moór et al. (2015b); (8) Sibthorpe et al. (2018); (9) Eiroa et al. (2013); (10) Moór et al. (2011b); (11) Roberge \& Weinberger (2008); (12) Lisse et al. (2017); (13) Currie et al. (2011)5; (14) Duchêne et al. (2014); (15) Riviere-Marichalar et al. (2013); (16) Vican et al. (2016); (17) Moór et al. (2011a); (18) Moór et al. (2015a); (19) Donaldson et al., private communication; (20) Cotten \& Song (2016); (21) Plavchan et al. (2009); (22) Cataldi et al. (2019)
References for associations: (1) Chen et al. (2014); (2) Zuckerman \& Song (2012); (3) Riviere-Marichalar et al. (2013); (4) D
References for associations: (1) Chen et al. (2014); (2) Zuckerman \& Song (2012); (3) Riviere-Marichalar et al. (2013); (4) Donaldson et al. (2012); (5) Lieman-Sifry et al. (2016);
(6) de Zeeuw et al. (1999);(7) Zuckerman (2019); (8) Desidera et al. (2015) (6) de Zeeuw et al. (1999);(7) Zuckerman (2019); (8) Desidera et al. (2015) Nuñez et al. (2017); (7) Welsh \& Montgomery (2013); (8) Absil et al. (2013); (9) Pawellek et al. (2014); (10) Moór et al. (2011a); (11) Abt (2008); (12) Draper et al. (2016); (13) Redfield (2007); (14) Currie et al. (2017); (15) Roberge \& Weinberger (2008); (16) Welsh \& Montgomery (2015); (17) Marino et al. (2017); (18) Moór et al. (2017); (19) Lagrange-Henri et al. (1990b); (20) Donaldson et al., private communication; (21) Lieman-Sifry et al. (2016); (22) Kiefer et al. (2014a); (23) Marino et al. (2016); (24) Chen et al. (2005)

Table B.2: Stellar Parameters estimated according to Sect. 3.2.

HD	RA(2000.0)	Dec(2000.0)	Sp. Type	$\begin{gathered} v_{\mathrm{rad}} \\ (\mathrm{~km} / \mathrm{s}) \\ \hline \end{gathered}$	$\begin{aligned} & \hline T_{\text {eff }} \\ & (\mathrm{K}) \end{aligned}$	$\begin{aligned} & \hline \log g \\ & {[\mathrm{cgs}]} \\ & \hline \end{aligned}$	[M/H]	$\begin{gathered} v \sin i \\ (\mathrm{~km} / \mathrm{s}) \end{gathered}$
105	00: 05: 52.54	-41: 45: 11.0	G0V	$+1.6 \pm 0.4$	6000 ± 60	4.38 ± 0.14	-0.03	14.6
203	00: $06: 50.09$	-23:06:27.1	F3V	$+7.1 \pm 1.7$	6850 ± 200	4.25 ± 0.30	0.00	170
256	00: 07: 18.27	-17:23: 13.2	A2IV/V	-2.2 ± 0.3	8690 ± 50	3.48 ± 0.20	0.00	270
1466	00: $18: 26.12$	-63: $28: 39.0$	F8V	$+6.4 \pm 0.4$	6270 ± 60	4.45 ± 0.15	-0.01	18
2262	00: $26: 12.20$	-43: 40 : 47.4	A5IV	$+11.3 \pm 3.7$	8110 ± 30	4.01 ± 0.13	0.00	200
2884	00: $31: 32.67$	-62 : 57 : 29.6	B9V	$+8.3 \pm 1.6$	11620 ± 30	4.45 ± 0.10	-0.05	135
2885	00: $31: 33.48$	-62 : 57 : 56.0	A2V	$+13.5 \pm 3.9$	9630 ± 30	4.27 ± 0.10	+0.20	40
3003	00: $32: 43.91$	-63: 01: 53.4	A0V	$+8.2 \pm 2.3$	9490 ± 50	4.35 ± 0.14	0.00	95
5267	00: 54 : 35.23	+19: $11: 18.3$	A1V	$+9.5 \pm 1.8$	10450 ± 50	4.16 ± 0.10	0.00	144
5448	00: 56 : 45.21	+38: $29: 57.6$	A5V	$+6.4 \pm 0.6$	8590 ± 70	3.18 ± 0.10	+0.20	65
7788	01: $15: 46.16$	-68: $52: 33.3$	F6V+K1V	$+12.4 \pm 3.3$	6550 ± 200	4.30 ± 0.10	0.00	70
9672	01:34:37.78	-15: $40: 34.9$	A1V	$+10.9 \pm 2.5$	9120 ± 50	4.32 ± 0.16	0.00	186
10700	01: 44 : 04.08	-15:56:14.9	G8.5V	-16.8 ± 0.1	5330 ± 10	4.55 ± 0.10	-0.51	1.6
12039	01: 57 : 48.98	-21: 54 : 05.3	G4V	$+5.8 \pm 0.4$	5700 ± 40	4.31 ± 0.10	-0.06	15.9
14055	02: 17 : 18.87	+33: $50: 49.9$	A1V	$+7.3 \pm 0.2$	10040 ± 50	4.34 ± 0.10	0.00	254
14412	02: $18: 58.50$	-25: 56 : 44.5	G8V	$+7.3 \pm 0.2$	5310 ± 20	4.55 ± 0.10	-0.53	0.90
15115	02 : 26 : 16.24	+06: $17: 33.2$	F2V	$+6.0 \pm 2.7$	6750 ± 200	4.25 ± 0.30	0.00	89.8
15257	02: $28: 09.98$	+29: $40: 09.6$	F0III	-20.6 ± 0.2	7100 ± 200	3.50 ± 0.30	0.00	65
16978	02: 39 : 35.36	-68: 16 : 01.0	B9III	-24.8 ± 0.8	11330 ± 100	4.43 ± 0.11	0.00	96
21688	03: 29 : 36.03	-12: $40: 29.1$	A5III/IV	$+15.2 \pm 0.1$	7880 ± 90	4.52 ± 0.30	0.00	180
21620	03: $31: 29.34$	+49: $12: 35.2$	A0V	-13.9 ± 0.3	9650 ± 50	3.90 ± 0.10	0.00	260
21997	03: 31 : 53.65	-25:36:50.9	A3IV/V	$+19.0 \pm 1.5$	8520 ± 140	4.27 ± 0.31	0.00	60
22484	03: $36: 52.38$	+00: $24: 06.0$	F8V	$+27.9 \pm 0.1$	5960 ± 30	3.93 ± 0.10	-0.09	4
27290	04: $16: 01.59$	-51:29: 11.9	F1V	$+26.7 \pm 1.6$	7300 ± 200	4.25 ± 0.25	0.00	60
28355	04: $28: 50.16$	+13: $02: 51.4$	A7V	$+39.8 \pm 0.3$	8730 ± 50	3.53 ± 0.30	+0.50	105
29391	04: $37: 36.13$	-02: $28: 24.8$	FOIV	$+20.4 \pm 3.8$	7200 ± 100	4.25 ± 0.25	0.00	84
30051	04: $43: 17.20$	-23: 37 : 42.0	F2V	$+15.9 \pm 5.6$	6900 ± 200	4.25 ± 0.25	0.00	50
31295	04: 54 : 53.73	+10: $09: 03.0$	A3V	$+16.0 \pm 0.2$	9130 ± 80	4.25 ± 0.26	-1.00	120
32297	05: $02: 27.44$	+07: $27: 39.7$	A0V	$+21.0 \pm 0.9$	7980 ± 100	3.77 ± 0.30	-0.50	90
35850	05:27:04.76	-11:54:03.5	F8V	$+21.1 \pm 3.3$	6400 ± 200	4.25 ± 0.25	0.00	50
36546	05: $33: 30.76$	+24:37:43.7	B8V	$+14.7 \pm 0.6$	9510 ± 50	4.44 ± 0.10	-1.00	150
37286	05:36:10.30	-28: 42 : 28.8	A2IV	$+24.9 \pm 2.9$	8640 ± 50	4.11 ± 0.12	0.00	70
37306	05:37:08.77	-11: $46: 31.9$	A2V	$+25.1 \pm 1.3$	9600 ± 50	4.48 ± 0.10	0.00	144
38206	05: 43 : 21.67	-18:33:26.9	A0V	$+26.6 \pm 2.3$	10480 ± 100	4.50 ± 0.10	0.00	35
39182	05: 52 : 39.67	+39:34:28.9	A2V	-22.9 ± 1.0	9020 ± 80	3.42 ± 0.30	+0.20	238
39283	05: 54 : 50.78	+55: $42: 25.0$	A2V	-18.3 ± 0.6	9140 ± 40	3.91 ± 0.15	-0.25	68
40136	05: 56 : 24.29	-14: $10: 03.7$	F2V	$+1.6 \pm 0.8$	7150 ± 200	4.25 ± 0.25	0.00	18
42111	06:08:57.90	+02: $29: 58.9$	A3V	$+27.5 \pm 1.9$	9380 ± 40	3.48 ± 0.10	0.00	252
53842	06: $46: 13.54$	-83 : 59 : 29.5	F5V	$+17.0 \pm 0.5$	6500 ± 200	4.25 ± 0.25	0.00	50
50241	06: 48 : 11.46	-61: 56 : 29.0	A8V	$+13.0 \pm 2.9$	7580 ± 90	3.52 ± 0.30	-0.25	206
50571	06: 50 : 01.01	-60: 14 : 56.9	F5V	$+26.2 \pm 3.1$	6450 ± 100	4.25 ± 0.25	0.00	50
56537	07: $18: 05.58$	+16:32:25.4	A4IV	-9.6 ± 2.7	8190 ± 100	4.10 ± 0.39	0.00	154
64145	07: 53 : 29.81	+26: $45: 56.8$	A5IV	$+4.2 \pm 3.2$	8320 ± 50	3.48 ± 0.10	0.00	165
71043	08: 22 : 55.16	-52: 07 : 25.4	A0V	$+24.1 \pm 2.2$	10280 ± 50	4.51 ± 0.10	0.00	224
71722	08: 26 : 25.21	-52: 48 : 27.0	A0V	$+31.0 \pm 2.6$	8870 ± 50	4.19 ± 0.12	-1.00	220
74873	08: 46 : 56.02	+12:06:35.8	A1VP	$+23.0 \pm 0.2$	8800 ± 70	4.02 ± 0.37	-1.00	115
77190	09: $01: 48.84$	+27: $54: 09.3$	A8Vn	$+14.5 \pm 3.1$	8010 ± 120	3.41 ± 0.30	0.00	185
80007	09: 13 : 11.98	-69: 43 : 01.9	A1III	$+0.8 \pm 1.8$	9350 ± 40	3.47 ± 0.10	0.00	135
85905	09 : 54 : 31.82	-22: 29 : 14.9	A1IV	$+9.9 \pm 2.5$	9040 ± 40	3.50 ± 0.10	0.00	285
95418	11: $01: 50.48$	+56:22:56.7	A1IV	-12.2 ± 0.6	9700 ± 40	4.01 ± 0.19	0.00	46
98058	11: $16: 39.70$	-03: 39 : 05.8	A7IV	-0.3 ± 0.8	7500 ± 50	3.75 ± 0.32	0.00	230
102647	11: 49 : 03.58	+14:34:19.4	A3Va	-0.4 ± 3.5	8580 ± 50	4.14 ± 0.32	0.00	128
104731	12:03:39.57	-42: $26: 02.6$	F5V	$+38.5 \pm 0.4$	6510 ± 70	3.87 ± 0.10	-0.25	7
104860	12:04:33.73	+66:20:11.7	F8	-11.9 ± 0.4	6060 ± 70	4.48 ± 0.14	-0.01	15
105234	12:07:05.52	-78 : 44 : 28.0	A9III/4	$+15.3 \pm 1.9$	8590 ± 50	4.40 ± 0.10	+0.50	85
105850	12: $11: 03.84$	-23: $36: 08.7$	A1V	$+15.0 \pm 3.6$	9160 ± 50	4.21 ± 0.13	0.00	128
108767	12: $29: 51.86$	-16:30:55.6	A0IV	$+8.5 \pm 1.1$	10850 ± 50	4.35 ± 0.10	0.00	236
109085	12:32:04.23	-16: 11:45.6	F2V	$+0.0 \pm 0.5$	6950 ± 100	4.20 ± 0.25	0.00	60
109573	12:36:01.03	-39 : 52 : 10.2	A0V	$+7.5 \pm 2.0$	10060 ± 50	4.44 ± 0.10	-0.50	150
110058	12:39:46.20	-49: $11: 55.5$	A0V	10.6 ± 2.6	9000 ± 50	4.13 ± 0.15	-0.50	150
110411	12: 41 : 53.06	+10: $14: 08.3$	A3V	-7.9 ± 1.1	9240 ± 50	4.29 ± 0.10	-1.00	154
118232	13:34:27.26	+49:00:57.5	A4V	-16.9 ± 0.4	8130 ± 40	3.49 ± 0.10	0.00	160
121191	13:55:18.86	-53: 31: 43.0	A5IV/V	21.5 ± 1.0	7970 ± 90	4.38 ± 0.10	0.00	65
121617	13: 57 : 41.13	-47:00:34.2	A1V	$+7.0 \pm 3.7$	9160 ± 70	4.13 ± 0.36	0.00	90
125162	14: $16: 23.02$	+46:05: 17.9	A3	-10.1 ± 1.5	8660 ± 50	3.96 ± 0.23	-2.00	100
131488	14:55:08.03	-41:07: 13.4	A1V	$+4.8 \pm 0.2$	9130 ± 60	4.18 ± 0.22	0.00	120
131835	14:56:54.47	-35: $41: 43.7$	A2IV	$+2.7 \pm 2.5$	8610 ± 40	4.24 ± 0.18	0.00	105
138629	15:31:46.98	+40: $53: 57.6$	A5V	-18.7 ± 1.1	8680 ± 40	3.54 ± 0.10	+0.20	190
139006	$15: 34: 41.27$	+26: $42: 52.9$	A0V	$+9.9 \pm 01$	9780 ± 40	3.91 ± 0.10	0.00	130
138813	15:35: 16.11	-25: 44 : 03.0	A0V	$+0.3 \pm 2.1$	9620 ± 50	4.30 ± 0.11	0.00	130
142097	15:53:21.93	-21:58:16.7	A5V	-7.0 ± 2.0	8290 ± 70	3.67 ± 0.10	+0.20	45
142315	15: 54 : 41.60	-22: $45: 58.5$	B9V	-4.0 ± 2.4	12500 ± 250	4.50 ± 0.25	0.00	275
142705	$15: 56: 47.85$	-23: 11:02.7	A0V	-5.6 ± 3.0	9300 ± 50	3.97 ± 0.11	0.00	300

Continued on next page
I. Rebollido et al.: Exocomets: A spectroscopic survey

Table B. 2 - continued from previous page

HD	RA(2000.0)	Dec(2000.0)	Sp. Type	$\begin{gathered} \hline \begin{array}{c} v_{\mathrm{rad}} \\ (\mathrm{~km} / \mathrm{s}) \end{array} \\ \hline \end{gathered}$	$\begin{aligned} & \hline T_{\text {eff }} \\ & (\mathrm{K}) \end{aligned}$	$\begin{aligned} & \hline \log g \\ & {[\mathrm{cgs}]} \end{aligned}$	[M/H]	$\begin{gathered} v \sin i \\ (\mathrm{~km} / \mathrm{s}) \end{gathered}$
144587	16:07:29.93	-23: 57 : 02.4	A9V	-10.7 ± 4.7	7390 ± 250	4.50 ± 0.30	0.00	112
144981	16:09:20.89	-19:27:25.9	A0V	-5.6 ± 4.3	9950 ± 100	4.32 ± 0.22	0.00	215
145554	16: $12: 21.83$	-19:34:44.6	B9V	-7.8 ± 3.9	12030 ± 40	4.44 ± 0.10	0.00	260
145631	16: $12: 44.10$	-19:30: 10.3	B9V	-5.7 ± 2.3	11410 ± 80	4.36 ± 0.10	0.00	287
145964	16: 14 : 28.88	-21: $06: 27.5$	B9V	-6.8 ± 3.1	12080 ± 90	4.47 ± 0.13	0.00	306
145689	16: 17 : 05.41	-67: 56 : 28.6	A6V	-7.1 ± 1.7	8340 ± 50	4.04 ± 0.10	0.00	105
146606	16: $18: 16.16$	-28: $02: 30.2$	A0V	-2.3 ± 1.3	10540 ± 50	4.39 ± 0.10	0.00	165
146624	16: $18: 17.90$	-28:36:50.5	A0V	-14.0 ± 1.9	9880 ± 40	4.50 ± 0.10	0.00	34
146897	16: 19: 29.24	-21:24:13.3	F2/3V	-3.1 ± 0.9	6700 ± 200	4.30 ± 0.30	0.00	55
147137	16: $20: 50.23$	-22: $35: 38.8$	A9V	-6.6 ± 1.9	7670 ± 40	4.49 ± 0.10	0.00	82
147220	16:21:21.15	-22:06:32.3	A9V	-49.3 ± 2.0	7560 ± 80	4.12 ± 0.10	0.00	80
148283	16:25:24.17	+37:23:38.7	A5V	-0.5 ± 0.2	8380 ± 40	4.46 ± 0.30	0.00	240
156623	17: 20 : 50.62	-45: $25: 15.0$	A0V	-0.2 ± 2.1	9430 ± 80	4.48 ± 0.20	-0.30	75
157728	17: 24 : 06.59	+22:57:37.0	A7V	-21.2 ± 0.3	7690 ± 46	3.98 ± 0.10	0.00	60
158352	17: $28: 49.66$	+00: $19: 50.3$	A8Vp	-33.9 ± 0.6	7470 ± 140	3.98 ± 0.21	0.00	150
162003	17: 41 : 56.35	+72: $08: 55.8$	F5IV/V	-13.3 ± 0.2	6370 ± 50	3.62 ± 0.10	-0.15	13
162917	17: 53 : 14.19	+06:06:05.1	F4IV/V	-29.1 ± 0.9	6620 ± 220	4.28 ± 0.14	0.00	28.4
164249	18:03:03.41	-51: 38 : 56.4	F6V+M2V	-0.4 ± 0.5	6570 ± 90	4.03 ± 0.13	+0.02	21
168646	18:22:00.14	-28: $25: 47.9$	A3III	-10.8 ± 2.6	8750 ± 100	3.00 ± 0.30	0.00	260
172555	18: 45 : 26.90	-64:52: 16.5	A7V	$+1.2 \pm 2.9$	7994 ± 60	4.23 ± 0.10	0.00	107
173667	18: 45 : 39.73	+20:32:46.7	F6V	22.7 ± 0.1	6380 ± 80	3.67 ± 0.12	-0.10	18
177724	19:05:24.61	+13: 51: 48.5	A0IV/Vn	-27.3 ± 2.5	10260 ± 50	4.26 ± 0.10	-0.15	290
181296	19: 22 : 51.21	-54:25:26.1	A0V+M7V	-0.3 ± 1.9	10500 ± 170	4.57 ± 0.30	0.00	230
181327	19: 22 : 58.94	-54:32: 17.0	F5/F6V	$+0.1 \pm 0.4$	6360 ± 60	4.09 ± 0.10	-0.05	28
182640	19: 25 : 29.90	+03: $06: 53.2$	F1IV	-37.2 ± 1.8	7000 ± 200	4.25 ± 0.30	0.00	91
182919	19:26:13.25	+20: $05: 51.8$	A0V	-24.3 ± 1.4	10460 ± 80	4.47 ± 0.10	0.00	154
183324	19: 29 : 00.99	+01: $57: 01.6$	A0IV	17.4 ± 0.4	9830 ± 40	4.50 ± 0.10	-1.00	100
187642	19:50:47.00	+08: 52:06.0	A7V	-27.2 ± 0.4	7930 ± 40	4.21 ± 0.10	0.00	205
188228	20:00:35.56	-72: 54 : 37.8	A0V	-6.0 ± 3.5	10620 ± 50	4.47 ± 0.10	0.00	85
192518	20: 14 : 14.53	+28: $41: 41.3$	A5IV	$+8.1 \pm 0.3$	8020 ± 40	4.61 ± 0.10	0.00	220
196724	20:38:31.34	+21: $12: 04.3$	A0	-10.8 ± 2.4	10820 ± 80	4.35 ± 0.12	0.00	52
198160	20:51:38.47	-62: $25: 45.6$	A2III	-16.2 ± 1.9	8300 ± 40	4.15 ± 0.30	-0.50	200
198161	20:51:38.76	-62: $25: 44.9$	A3III	-13.5 ± 3.6	8160 ± 40	3.79 ± 0.30	-0.50	180
199143	20: $55: 47.67$	-17: $06: 51.0$	F8V	-4.5 ± 2.1	6200 ± 150	4.25 ± 0.30	0.00	155
203280	21: $18: 34.77$	+62:35:08.1	A8V	-11.8 ± 1.1	7800 ± 100	3.72 ± 0.26	0.00	210
202917	21: $20: 49.96$	-53: $02: 03.1$	G7V	$+0.1 \pm 0.2$	5520 ± 60	4.42 ± 0.14	-0.04	14
210302	22: $10: 08.78$	-32: $32: 54.3$	F6V	-16.4 ± 0.2	6460 ± 100	4.17 ± 0.17	+0.18	13.6
210418	22: $10: 11.99$	+06: 11:52.3	A1V	-5.1 ± 0.8	8820 ± 60	4.18 ± 0.18	-0.25	140
211336	22: $15: 02.20$	+57:02:36.9	FOIV	-5.5 ± 0.5	7400 ± 200	4.25 ± 0.30	0.20	91
213617	22:32:35.48	+20: $13: 48.1$	F1V	-13.1 ± 0.7	7200 ± 200	4.25 ± 0.30	0.00	94
217782	23:02:36.38	+42: $45: 28.1$	A3V	$+5.1 \pm 1.1$	8830 ± 40	3.45 ± 0.10	0.00	212
221756	23:34:37.54	+40: $14: 11.2$	A1V	13.5 ± 0.3	9050 ± 60	4.11 ± 0.20	-0.50	100
222368	23: 39 : 57.04	+05: $37: 34.6$	F7V	$+5.6 \pm 0.1$	6130 ± 40	3.90 ± 0.10	-0.16	6.8
224392	23:57:35.08	-64: 17 : 53.6	A1V	$+9.9 \pm 2.3$	9400 ± 40	4.25 ± 0.10	+0.10	195

Table B.3: Plausible origin of the observed narrow non-photospheric absorptions for each star. Equivalent widths (EW), radial velocities (RV), full width half maximum (FWHM), and column densities (N) are given for each absorption as estimated from the median spectra. Uncertainty estimates of these parameters are detailed in Sect. 4.1. as follows: 10% for EW; 2.5 and $1.5 \mathrm{~km} / \mathrm{s}$ for RV and FWHM in the Ca and Na regime respectively; and propagated errors of those values for N (approx. $\sim 10 \%$). Radial velocities of the stars ($\mathrm{v}_{\mathrm{rad}}$) and the radial velocity of the interstellar clouds ($\mathrm{V}_{\mathrm{ISM}}$), if present, are also given. The convention for the plausible origin is the following. CS: circumstellar; ISM. interstellar medium; CS+ISM: both types origins are plausible. A question mark indicates that the origin is ambiguous. Absorptions marked with an asterisk (*) in the EW are triangular shell-like absorptions.

Star	$\mathrm{V}_{\text {rad }}$	$\mathrm{V}_{\text {ISM }}$	Ca II K/H				Na I D2/D1				Origin
	(km/s)	(km/s)	$\begin{gathered} \text { EW } \\ (m \AA) \end{gathered}$	$\begin{gathered} \mathrm{RV} \\ (\mathrm{~km} / \mathrm{s}) \end{gathered}$	$\begin{gathered} \text { FWHM } \\ (\mathrm{km} / \mathrm{s}) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{N} \\ \left(\mathrm{~cm}^{-2}\right) \end{gathered}$	$\begin{gathered} \text { EW } \\ (m \AA) \end{gathered}$	$\begin{gathered} \mathrm{RV} \\ (\mathrm{~km} / \mathrm{s}) \end{gathered}$	$\begin{gathered} \text { FWHM } \\ (\mathrm{km} / \mathrm{s}) \end{gathered}$	$\begin{gathered} \mathrm{N} \\ \left(\mathrm{~cm}^{-2}\right) \end{gathered}$	
HD 256	-2.2 ± 0.3	$\begin{array}{r} \hline \hline 3.16 \text { (LIC) } \\ -2.73 \text { (Mic) } \\ 1.01 \text { (Cet) } \end{array}$	190.9*/180.3*	-1.8/-0.82	10.67/11.05	$4.88 \cdot 10^{12}$	1.2/0.4	3.2/3.3	4.17/1.80	$5.91 \cdot 10^{9}$	CS
HD 2884	8.3 ± 1.6	$\begin{array}{r} 13.85 \text { (Dor) } \\ 2.46 \text { (Vel) } \end{array}$	2.1/1.66	0.5/4.3	12.13/7.1	$4.28 \cdot 10^{10}$?
HD 2885	13.5 ± 3.9	$\begin{array}{r} 13.84 \text { (Dor) } \\ 2.46 \text { (Vel) } \end{array}$					56.8/52.3	-2.0/-2.5	17.68/16.1	$1.85 \cdot 10^{12}$?
HD 3003	8.2 ± 2.3	$\begin{array}{r} 13.84 \text { (Dor) } \\ 2.46 \text { (Vel) } \end{array}$	$4.5 /<1.5$	0.6/-	24.55/-	$4.82 \cdot 10^{10}$	4.8/2.9	-3.7/-3.0	6.84/6.57	$4.61 \cdot 10^{10}$?
HD 5267	9.5 ± 1.8	11.44 (LIC)	11.4/5.1	-5.0/-5.1	6.86/5.47	$1.22 \cdot 10^{11}$	34.8/20.0	-5.4/-5.3	6.00/5.80	3.79. 10^{11}	?
			2.6/<1.0	9.7/-	10.64/-	$2.78 \cdot 10^{10}$	$1.2 /<1.0$	11.7/-	12.8/-	$1.53 \cdot 10^{10}$	
HD 9672	10.9 ± 2.5	11.01 (LIC)	10.6/6.0	13.5/12.9	7.4/7.1	$1.83 \cdot 10^{11}$	16.4/9.3	11.5/10.6	4.4/4.0	$3.21 \cdot 10^{11}$	CS+ISM
HD 16978	12.9 ± 1.8	$\begin{array}{r} 2.65(\mathrm{G}) \\ 5.19(\mathrm{Cet}) \\ 8.66(\mathrm{Vel}) \end{array}$	4.9/1.6	11.6/10.8	10.57/7.98	$5.24 \cdot 10^{10}$					CS
HD 21688	15.2 ± 0.1	18.71 (LIC)	123.9*/99.84	15.7/17.9	13.92/13.45	$2.61 \cdot 10^{12}$					CS
HD 21620	-13.9 ± 0.3	18.52 (LIC)	12.4/6.7	4.0/3.9	5.67/5.50	$3.65 \cdot 10^{11}$	73.5/54.9	3.7/3.8	5.11/4.87	$6.55 \cdot 10^{11}$	CS+ISM
			2.0/1.9	15.3/15.3	7.60/6.63	$2.12 \cdot 10^{11}$					
HD 32297	21.0 ± 0.9	23.59 (LIC)	19.4/9.8	22.7/21.9	9.7/6.9	$2.08 \cdot 10^{11}$	93.0/84.0	19.7/20.8	6.69/6.23	$1.05 \cdot 10^{12}$	CS
HD 36546	14.7 ± 0.6	23.53 (LIC)	18.7/14.5	14.6/15.0	4.43/5.04	$3.74 \cdot 10^{11}$	24.3/13.9	14.1/14.33	4.01/4.02	$2.56 \cdot 10^{11}$	CS
			10.9/4.0	18.7/20.8	7.40/8.67	$1.28 \cdot 10^{11}$	12.9/6.8	18.6/18.5	6.04/6.49	$2.05 \cdot 10^{10}$	
HD 37306	25.1 ± 1.3		13.1/6.3	11.0/10.6	6.91/6.75	$1.40 \cdot 10^{11}$	4.6/2.23	10.6/10.7	6.41/5.22	$2.27 \cdot 10^{10}$	CS+ISM
			31.6/19.3	32.3/32.5	8.71/9.39	$3.38 \cdot 10^{11}$	6.7/3.17	31.2/31.6	7.95/8.08	$3.30 \cdot 10^{10}$	
HD 39182	-22.9 ± 1.0	21.62 (LIC)	19.6/14.5	13.3/13.3	6.70/8.81	$3.81 \cdot 10^{11}$	131.8/102.5	13.8/13.7	7.83/6.8	$1.21 \cdot 10^{12}$	CS
			6.9/<3.0	-21.8/-	5.92/-	$7.28 \cdot 10^{10}$					
			$103.1 * / 67.1$	-22.6/-18.3	55.43/36.49	$1.92 \cdot 10^{12}$					
HD 42111	27.5 ± 1.9	24.83 (Aur)	318.3*/285.9	27.2/29.3	25.93/26.86	$9.66 \cdot 10^{12}$	61.8/43.5	23.2/23.5	5.23/5.14	$5.40 \cdot 10^{11}$	CS+ISM
HD 50241	13.0 ± 2.9	$\begin{array}{r} 6.81 \text { (Blue) } \\ 17.9 \text { (Cet) } \\ 15.34 \text { (Vel) } \end{array}$	8.4/4.0	15.6/16.8	16.25/8.92	$9.35 \cdot 10^{10}$	113.7/55.9	27.0/27.8	58.67/52.84	$5.60 \cdot 10^{11}$	CS
HD 71043	24.1 ± 2.2	4.62 (G)	2.5/<1.5	16.0/-	10.35/-	$2.68 \cdot 10^{10}$	1.9/0.99	17.5/17.3	5.66/5.47	4.33. 10^{10}	ISM
		$\begin{aligned} & 20.5 \text { (Cet) } \\ & 15.0 \text { (Vel) } \end{aligned}$	2.5/1.9	4.5/5.4	8.28/7.10	$5.01 \cdot 10^{10}$	2.9/0.88	5.3/5.1	10.47/5.88	$1.43 \cdot 10^{10}$	
HD 71722	31.0 ± 2.6	$\begin{array}{r} 4.19 \text { (G) } \\ 19.65 \text { (Cet) } \end{array}$	7.9/3.2	11.8/11.0	16.49/16.45	$8.46 \cdot 10^{10}$	4.5/4.1	13.6/14.1	7.55/12.01	$9.56 \cdot 10^{10}$	ISM
	0.8 ± 1.8	$\begin{array}{r} 14.33(\mathrm{Vel}) \\ -2.75(\mathrm{G}) \end{array}$	1.5/<1.0	1.3/-	8.2/-	$1.51 \cdot 10^{10}$	2.7/<1.0	3.0/-	12.57/-	1.33. 10^{10}	CS
HD 80007										Continued	next page

Star

Star	$\mathrm{V}_{\text {rad }}$	$\mathrm{V}_{\text {ISM }}$		Table B. 3 - continued from previous page Ca II K/H				Na I D2/D1			Origin
	(km/s)	(km/s)	$\begin{gathered} \text { EW } \\ (m \AA) \end{gathered}$	$\begin{gathered} \mathrm{RV} \\ (\mathrm{~km} / \mathrm{s}) \end{gathered}$	$\begin{gathered} \hline \text { FWHM } \\ (\mathrm{km} / \mathrm{s}) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{N} \\ \left(\mathrm{~cm}^{-2}\right) \end{gathered}$	$\begin{gathered} \text { EW } \\ (m \AA) \end{gathered}$	$\begin{gathered} \mathrm{RV} \\ (\mathrm{~km} / \mathrm{s}) \end{gathered}$	$\begin{gathered} \hline \text { FWHM } \\ (\mathrm{km} / \mathrm{s}) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{N} \\ \left(\mathrm{~cm}^{-2}\right) \end{gathered}$	
HD 147137	-6.6 \pm-1.9	-29.12 (G)	22.6/14.1	-8.5/-8.7	7.78/10.1	$4.47 \cdot 10^{11}$	154.4/145.1	-8.6/-8.3	8.34/8.42	$5.00 \cdot 10^{12}$	ISM
							8.5/6.2	-23.7/-23.9	6.24/6.85	$7.53 \cdot 10^{10}$	
HD 147220	-49.3 ± 2.0	-29.16 (G)	62.3/34.5	-19.1/-15.0	17.21/19.49	$1.56 \cdot 10^{12}$	59.5/34.8	-20.9/-20.6	11.76/12.1	$5.93 \cdot 10^{11}$	ISM
							135.2/126.3	-8.9/-8.7	7.50/7.4	$3.31 \cdot 10^{12}$	
HD 148283	-0.5 ± 0.2	-18.54 (NGP)	203.1*/198.2*	1.3/1.6	91.50/90.12	$1.47 \cdot 10^{13}$	34.6/22.4	3.6/3.4	$34.63 / 23.51$	$2.49 \cdot 10^{10}$	CS
HD 156623	-0.2 ± 2.1	-24.89 (G)	9.0/3.7	-15.0/-16.4	18.72/8.79	$9.63 \cdot 10^{10}$	-10.6/-8.5	-1.8/0.5	13.66/17.66	$1.01 \cdot 10^{11}$	CS+ISM
			$4.3 />2.0$	8.1/-	6.00	$4.60 \cdot 10^{10}$					
HD 158352	-33.9 ± 0.6		8.6/8.3	-24.7/-25.2	3.56/5.1	$5.26 \cdot 10^{12}$	14.5/7.8	-25.0/-24.9	4.43/4.37	$1.96 \cdot 10^{11}$	CS+ISM?
			20.5/8.5	-28.9/-32.2	13.17/13.44	$2.19 \cdot 10^{11}$	3.8/1.9	-30.7/-30.0	10.46/9.92	$3.14 \cdot 10^{10}$	
HD 168646	-10.8 ± 2.6	-31.44 (Aql)	$315.4 * / 252.9$	-7.3/-6.6	16.07/17.00	$6.51 \cdot 10^{12}$	156.6/154.5	-4.8/-4.5	8.98/8.59	$2.40 \cdot 10^{12}$	CS
							$7.7 /<3.0$	11.1/-	11.51/-	$3.79 \cdot 10^{10}$	
							24.7/12.4	-21.1/-19.9	17.84/-14.77	$1.36 \cdot 10^{12}$	
HD 172555	1.2 ± 2.9	-16.84 (G)	$6.1 / 3.0$	$2.3 / 3.1$	6.8/4.94	$6.53 \cdot 10^{10}$	$8.0 /<1.0$	15.4/-	28.03/-	$3.94 \cdot 10^{10}$	CS+ISM
			$1.5 /<1.0$	-19.9/-	9.5/-	$1.61 \cdot 10^{10}$	$3.2 / 1.78$	$-20.4 /-20.3$	$9.78 / 8.88$	$3.60 \cdot 10^{10}$	
HD 177724	-27.3 ± 2.5	$-21.03(\mathrm{G})$	3.4/1.9	-25.7/-25.6	15.02/15.2	$8.25 \cdot 10^{10}$?
		$-30.96(\mathrm{Aql})$									
HD 181296	-0.3 ± 1.9		3.6/1.8	-22.7/-22.3	8.50/7.03	$4.25 \cdot 10^{11}$	2.6/1.5	-22.7/-21.9	7.11/8.83	$2.60 \cdot 10^{10}$	CS
HD 182919	-24.3 ± 1.4	-18.05 (G)	2.8/2.6	-18.5/-18.9	5.98/10.5	$1.22 \cdot 10^{11}$	1.8/0.7	-15.5/-15.5	7.13/5.81	$8.87 \cdot 10^{9}$	CS+ISM
		-24.21 (Mic)									
		$-26.30(\mathrm{Aql})$									
HD 188228	-6.0 ± 3.5	$-12.18(\mathrm{G})$	$1.3 /<0.5$	-13.9/-	8.24/-	$3.43 \cdot 10^{10}$	$3.2 /<1.5$	-13.9/-	8.26/-	$1.58 \cdot 10^{10}$	ISM
		$-15.57 \text { (Vel) }$									
HD 192518	8.1 ± 0.3	-20.08 (Mic)	5.2/3.0	-13.9/-13.8	4.79/5.49	$1.10 \cdot 10^{11}$	39.3/26.8	-14.6/-14.5	4.64/4.54	$3.44 \cdot 10^{11}$	CS+ISM
		-15.53 (Aql)	$334.5 * / 332.6$	11.9/11.6	23.8/21.10	$1.21 \cdot 10^{13}$					
HD 196724	-10.8 ± 2.3	-13.52 (Eri)	4.3/1.4	-11.7/-12.5	5.03/4.62	$3.10 \cdot 10^{10}$?
		-9.93 (Aql)									
HD 198160	-16.2 ± 1.9	-17.42 (Vel)	$3.9 /<1.5$	-14.7/-	13.96/-	$4.17 \cdot 10^{10}$	$1.2 /<0.5$	-16.4/-	6.78/-	$5.70 \cdot 10^{9}$	ISM
HD 198161	-13.5 ± 3.6	-17.41 (Vel)	$3.8 /<1.5$	-14.9/-	11.24/-	$4.07 \cdot 10^{10}$	3.4/1.0	-21.9/-18.7	18.48/3.8	$1.67 \cdot 10^{10}$	ISM
HD 210418	-5.1 ± 0.8	-5.49 (LIC)	$3.0 /<1.5$	-4.8/-	12.29/-	$3.21 \cdot 10^{10}$?
HD 217782	5.1 ± 1.1	7.63 (Hyades)	20.4/10.7	-9.2/-9.4	5.92/5.51	$7.05 \cdot 10^{11}$	53.9/36.1	-8.9/-8.6	4.80/4.64	$4.75 \cdot 10^{11}$	CS
			11.0/5.5	-17.1/-17.0	7.58/7.04	$1.18 \cdot 10^{11}$	10.6/6.2	-16.4/-16.1	7.71/9.18	$1.08 \cdot 10^{11}$	
			5.5/2.2	5.2/5.3	10.55/7.6	$5.89 \cdot 10^{10}$					
HD 221756	13.5 ± 0.3	5.88 (LIC)	6.3/2.63	-4.7/-4.8	6.12/5.92	$6.74 \cdot 10^{10}$	17.9/9.21	-2.6/-2.4	5.96/5.78	$3.70 \cdot 10^{12}$	ISM
		9.00 (Hyades)									
HD 224392	9.9 ± 2.3	-0.86 (Vel)	8.2/3.9	-1.5/-3.5	11.37/6.56	$8.78 \cdot 10^{10}$	2.9/1.6	-8.1/5.59	15.80/12.81	$3.23 \cdot 10^{10}$?

Appendix C: Observing Log

Table C.1: Instruments and observing campaigns. In brackets below the star's name SNR in the Ca ${ }_{\text {II }} \mathrm{K}$ continuum measured in the median for all the available spectra. HEROS observations were taken on service mode during several months as complementary observations. *On March $3^{\text {rd }}$ and $21^{\text {st }}$ during service mode only one spectra was obtained each night.

$\begin{gathered} \text { HD } 105 \\ (108) \end{gathered}$	20151022 T 0403	FEROS	20151023 T 0354	FEROS	20151024 T 0421	FEROS
$\begin{gathered} \text { HD } 203 \\ (212) \end{gathered}$	20150803 T 0314	HEROS	20150803 T 0400	HEROS	20150804 T 0427	HEROS
	20150805 T 0311	HEROS	20150806 T 0230	HEROS	20150919T2344	HEROS
	20150920 T 2324	HEROS	20150923 T 2307	HEROS	20150924 T 2300	HEROS
	20151022 T 0401	FEROS	20151023 T 0338	FEROS	20151024 T 0428	FEROS
$\begin{gathered} \hline \text { HR } 10 \\ (287) \end{gathered}$	20150904 T 0007	HERMES	20150904 T 0020	HERMES	20150904 T 0051	HERMES
	20150904 T 0217	HERMES	20150904 T 0336	HERMES	20150905 T 0012	HERMES
	20150905 T 0033	HERMES	20150905 T 0054	HERMES	20150905 T 0314	HERMES
	20150906 T 0024	HERMES	20150906 T 0045	HERMES	20150906 T 0353	HERMES
	20150906 T 0414	HERMES	20150907 T 0016	HERMES	20150907 T 0036	HERMES
	20150907 T 0257	HERMES	20150907 T 0317	HERMES	20151022 T 0402	FEROS
	20151023 T 0102	FEROS	20151023T0439	FEROS	20151220T1943	HERMES
	20151220 T 2004	HERMES	20151220 T2025	HERMES	20151222 T 2034	HERMES
	20151222 T 2100	HERMES	20151223 T 1951	HERMES	20151223 T 2017	HERMES
	20151223 T 2145	HERMES	20160712 T 0447	HERMES		
$\begin{gathered} \text { HD } 1466 \\ (316) \end{gathered}$	20151023 T 0126	FEROS	20151023 T 0521	FEROS	20151024 T 0456	FEROS
$\begin{aligned} & \kappa \text { Phe } \\ & (247) \end{aligned}$	20151023 T 0112	FEROS	20151024 T 0517	FEROS		
$\begin{gathered} \text { HD } 2884 \\ (251) \end{gathered}$	20151023 T 0134	FEROS	20151023 T 0457	FEROS	20151024 T 0505	FEROS
	20170924 T 0543	FEROS				
$\begin{gathered} \text { HD } 2885 \\ (141) \end{gathered}$	20151023 T 0138	FEROS	20151023T0501	FEROS	20151024 T 0508	FEROS
$\begin{gathered} \text { HD } 3003 \\ (160) \end{gathered}$	20151023 T 0141	FEROS	20151024 T 0513	FEROS		
$\begin{gathered} \text { HD } 5267 \\ (419) \end{gathered}$	20160126 T 2012	FIES	20160127T1958	FIES	20160712 T 0427	HERMES
	20160713 T 0301	HERMES	20160714 T 0300	HERMES	20160715 T 0315	HERMES
	20160717T0301	FIES	20160717 T 0516	FIES	20160718 T 0259	FIES
	20160718 T 0449	FIES	20160719T0258	FIES	20160719T0501	FIES
	20160720 T0316	FIES	20170924 T 0513	FEROS	20170924 T 0701	FEROS
	20170926T0639	FEROS	20170927 T 0619	FEROS	20170930 T0457	FEROS
	20171001 T 0435	FEROS				
$\begin{gathered} \text { HD } 5448 \\ (301) \end{gathered}$	20151220T1914	HERMES	20160126 T 2026	FIES	20160127T2011	FIES
	20160713 T 0253	HERMES	20160714 T 0414	HERMES	20160717 T 0255	FIES
	20160718 T 0310	FIES	20160718 T 0509	FIES	20160719T0308	FIES
	20160720 T 0355	FIES				
$\begin{aligned} & \kappa \text { Tuc } \\ & (381) \end{aligned}$	20151023 T 0146	FEROS	20151023T0704	FEROS	20151024 T 0501	FEROS
$\begin{aligned} & 49 \text { Cet } \\ & (405) \end{aligned}$	20150904 T 0107	HERMES	20150904 T 0143	HERMES	20150904 T 0318	HERMES
	20150904 T 0539	HERMES	20150905 T 0117	HERMES	20150905 T 0133	HERMES
	20150905 T 0335	HERMES	20150905 T 0523	HERMES	20150906 T 0126	HERMES
	20150906 T 0134	HERMES	20150906 T 0221	HERMES	20150906 T 0237	HERMES
	20150906 T 0529	HERMES	20150907 T 0113	HERMES	20150907 T 0129	HERMES
	20150907 T 0414	HERMES	20150907 T 0430	HERMES	20151220 T 2058	HERMES
	20151220 T 2119	HERMES	20151222 T 2135	HERMES	20151222 T 2201	HERMES
	20151222 T 2227	HERMES	20151223 T 2113	HERMES	20151223 T 2246	HERMES
	20160126T1956	FIES	20160126T2041	FIES	20160127 T 1936	FIES
	20160127 T 1945	FIES	20160127 T 1948	HERMES	20160127 T 2001	HERMES
	20160128T1928	HERMES	20160128 T 1941	HERMES	20160130T1958	HERMES
	20160130 T 2011	HERMES	20160714 T 0500	HERMES	20160715 T 0449	HERMES
	20160717 T 0506	FIES	20160718 T 0458	FIES	20160719T0448	FIES
	20170923 T 0919	FEROS				
τ Cet(481)	20151023 T 0152	FEROS	20151023 T 0540	FEROS		
	20151023 T 0604	ROS				

Star	Date (UT)	Instrument	Date (UT)	Instrument	Date (UT)	Instrument
(453)						
HD 14055	20150831T0123	HEROS	20150831 T 0533	HEROS	20151024 T 2225	HEROS
(412)	20151025 T 2057	HEROS	20151027 T 2014	HEROS	20151028 T 0235	HEROS
	20160126 T 2033	FIES	20160127 T 2204	FIES	20160127 T 2207	FIES
	20160303 T 2020	HERMES	20160303 T 2024	HERMES	20160304 T 2018	HERMES
	20160304 T 2022	HERMES	20160305 T 2012	HERMES	20160306 T 2038	HERMES
	20160712 T 0505	HERMES	20160713 T 0506	HERMES	20160714 T 0351	HERMES
	20160715 T 0403	HERMES	20160717T0349	FIES	20160718T0359	FIES
	20160719 T 0404	FIES	20160720T0359	FIES		
$\begin{gathered} \text { HD } 14412 \\ (401) \end{gathered}$	20151023 T 0218	FEROS	20151023 T 0659	FEROS		
HD 15115	20160126 T 2103	FIES	20160127 T 2134	FIES	20160717 T 0429	FIES
(166)	20160718 T 0418	FIES	20160719 T 0410	FIES		
HD 15257	20160126 T 2315	FIES	20160127 T 2217	FIES	20160127 T 2314	FIES
(149)	20160713 T 0418	HERMES	20160714 T 0421	HERMES	20160715 T 0411	HERMES
	20160717 T 0340	FIES	20160718 T 0326	FIES	20160719 T 0324	FIES
HD 16978	20151023 T 0229	FEROS	20151024 T 0534	FEROS	20170923 T 0845	FEROS
(309)	20170924 T 0534	FEROS	20170925 T 0654	FEROS		
HR 1062	20150904 T 0301	HERMES	20150904 T 0518	HERMES	20150905 T 0254	HERMES
(257)	20150905 T 0504	HERMES	20150906 T 0317	HERMES	20150906 T 0332	HERMES
	20150906 T 0548	HERMES	20150907 T 0339	HERMES	20150907 T 0355	HERMES
	20151220 T 2142	HERMES	20151220 T 2203	HERMES	20151222 T 2336	HERMES
	20151224 T 0030	HERMES	20160127 T 2131	HERMES	20160128 T 2134	HERMES
	20160130 T 2109	HERMES				
HD 21620	20150904 T 0123	HERMES	20150904 T 0244	HERMES	20150905 T 0153	HERMES
(411)	20150905 T 0209	HERMES	20150905 T 0400	HERMES	20150906 T 0257	HERMES
	20150906 T 0607	HERMES	20150907 T 0149	HERMES	20150907 T 0204	HERMES
	20150907 T 0533	HERMES	20150907 T 0549	HERMES	20151220 T2336	HERMES
	20151221 T 0002	HERMES	20151221 T 0253	HERMES	20151223 T 0005	HERMES
	20151223 T 0031	HERMES	20151224 T 0103	HERMES	20151224 T 0129	HERMES
	20160127 T 2147	HERMES	20160127 T 2355	HERMES	20160128T0030	HERMES
	20160128 T 2105	HERMES	20160128 T 2319	HERMES	20160130 T 2130	HERMES
	20160130 T 2320	HERMES	20160303 T 2106	HERMES	20160304 T 2116	HERMES
	20160305 T 2103	HERMES	20160306 T 2119	HERMES	20160714 T 0435	HERMES
	20160715 T 0425	HERMES	20160717T0442	FIES	20160718 T 0430	FIES
	20160719 T 0421	FIES	20160720 T 0453	FIES	$20170306 T 1957$	HERMES
	20170308 T 2024	HERMES	20170309 T 2044	HERMES	20170310 T 2046	HERMES
	20170311 T 1944	HERMES	20170313 T 2028	HERMES		
HD 21997	20150904 T 0503	HERMES	20150905 T 0422	HERMES	20150905 T 0443	HERMES
(594)	20150906 T 0448	HERMES	20150906 T 0508	HERMES	20150907 T 0451	HERMES
	20150907 T 0512	HERMES	20150919 T 0453	HEROS	20150920 T 0251	HEROS
	20150924 T 0340	HEROS	20150925 T 0311	HEROS	20150926 T 0440	HEROS
	20151023 T 0225	FEROS	20151023 T 0611	FEROS	20151024 T 0526	FEROS
	20151110 T 2302	HEROS	20151111T2230	HEROS	20151114 T 0058	HEROS
	20151114 T 2216	HEROS	20151220 T 2236	HERMES	20151220 T 2307	HERMES
	20151223 T 2320	HERMES	20160127 T 2016	HERMES	20160128 T 1956	HERMES
	20160130 T 2035	HERMES	20170923 T0436	FEROS	20170923 T 0612	FEROS
	20170923T0859	FEROS	20170924 T 0522	FEROS	20170924 T 0810	FEROS
	20170925 T 0634	FEROS	20170926 T 0652	FEROS	20170926 T 0828	FEROS
	20170927T0631	FEROS	20170929T0505	FEROS	20170930 T 0505	FEROS
	20170930 T 0927	FEROS	20171001 T 0426	FEROS		
10τ	20150919 T 0519	HEROS	20150920 T 0148	HEROS	20150924 T 0133	HEROS
(919)	20150925T0131	HEROS	20151023 T 0246	FEROS	20151109 T 2223	HEROS
	20151109 T 0111	HEROS	20151114 T 2100	HEROS	20151114 T 0130	HEROS
	20151221 T 0017	HERMES				
$\begin{gathered} \text { HD } 27290 \\ (199) \end{gathered}$	20151023 T 0359	FEROS	20151024 T 0538	FEROS	20160328 T 0051	FEROS
B τ	20150930 T 0259	HEROS	20151001 T 0235	HEROS	20151003T0340	HEROS
(148)	20151004 T 0217	HEROS	20151209T2056	HEROS	20151209 T 0017	HEROS
	20151221 T 0035	HERMES				
HD 29391	20151023T0404	FEROS	20160127 T 0033	FIES		

Star	Date (UT)	Instrument	Date (UT)	Instrument	Date (UT)	Instrument
(191)						
HD 30051	20151023 T 0416	FEROS	20160126 T 2240	FIES	20160127 T 2239	FIES
(291)	20160127 T 2324	FIES	20160328 T 0027	FEROS	20160329 T 0008	FEROS
$\begin{gathered} \text { HD 31295 } \\ \text { (209) } \\ \hline \end{gathered}$	20151221 T0049	HERMES	20151224 T 0142	HERMES	20160128 T 2254	HERMES
	20160128 T 0034	HERMES	20160130 T 2159	HERMES		
$\begin{gathered} \text { HD } 32297 \\ (223) \end{gathered}$	20150904 T 0405	HERMES	20150904 T 0436	HERMES	20151221 T 0122	HERMES
	20151221 T 0153	HERMES	20151221 T 0224	HERMES	20151223 T 0106	HERMES
	20151223 T 0136	HERMES	20151224 T 0215	HERMES	20151224 T 0246	HERMES
	20160126 T 2133	FIES	20160126 T 2205	FIES	20160127 T 2022	FIES
	20160127 T 2053	FIES	20160127 T 2216	HERMES	20160127 T 2246	HERMES
	20160128 T 2149	HERMES	20160128 T 2220	HERMES	20160130 T 2216	HERMES
	20160130 T 2247	HERMES	20170924 T 0726	FEROS	20170926T0704	FEROS
	20170926 T 0847	FEROS	20170927 T 0703	FEROS	20170927 T 0847	FEROS
	20170929 T 0740	FEROS	20170930 T 0705	FEROS	20170930 T 0825	FEROS
	20171001 T 0651	FEROS				
$\begin{gathered} \text { HD } 35850 \\ (190) \end{gathered}$	20151015 T 0217	HEROS	20151016 T 0230	HEROS	20151017 T 0545	HEROS
	20151019 T 0440	HEROS	20151020 T 0246	HEROS	20151023 T 0619	FEROS
	20151210T0041	HEROS	20151210 T 0143	HEROS	20151210T0308	HEROS
	20151213 T 2132	HEROS	20151217 T 2152	HEROS	20151218 T 2157	HEROS
	20160127 T 0043	FIES	20160128 T 0054	FIES	20160329 T 0101	FEROS
$\begin{gathered} \text { HD } 36546 \\ (221) \end{gathered}$	20170306 T 2017	HERMES	20170307 T 1952	HERMES	20170307 T 2122	HERMES
	20170308T1951	HERMES	20170309 T 2056	HERMES	20170310 T 2013	HERMES
	20170312 T 2003	HERMES	20170401 T 2046	HERMES		
$\begin{gathered} \text { HD } 37286 \\ (160) \end{gathered}$	20151023T0422	FEROS	20151024 T 0545	FEROS	20160329 T 0115	FEROS
$\begin{gathered} \text { HD } 37306 \\ (441) \end{gathered}$	20151023T0751	FEROS	20151023T0831	FEROS	20160303 T 2040	HERMES
	20160303 T 2218	HERMES	20160303 T 2239	HERMES	20160304 T 2043	HERMES
	20160304 T 2230	HERMES	20160304 T 2251	HERMES	20160305 T 2031	HERMES
	20160305 T 2227	HERMES	20160306T2059	HERMES	20160321 T 2023	FIES
	20160328 T 0036	FEROS	20160329 T 0017	FEROS	20170307 T 2047	HERMES
	20170308 T 2038	HERMES	20170309 T 2016	HERMES	20170310 T 2059	HERMES
	20170311 T 2053	HERMES	20170312 T 2128	HERMES	20170313 T 2051	HERMES
	20170923 T 0630	FEROS	20170923 T 0908	FEROS	20170924 T 0709	FEROS
	20170925 T 0711	FEROS	20170925 T 0719	FEROS	20170926T0743	FEROS
	20170927T0655	FEROS	20170930 T0914	FEROS		
$\begin{gathered} \text { HD } 38206 \\ (353) \end{gathered}$	20151023T0428	FEROS	20151023T0757	FEROS	20160303T1955	HERMES
	20160303 T 2009	HERMES	20160303 T 2129	HERMES	20160303 T 2142	HERMES
	20160304 T 1949	HERMES	20160304 T 2005	HERMES	20160304 T 2141	HERMES
	20160304 T 2154	HERMES	20160305 T 1953	HERMES	20160305 T 2157	HERMES
	20160306 T 2019	HERMES	20160326T0131	FEROS	20160328 T0044	FEROS
	20160328 T 0128	FEROS	20160329 T0026	FEROS	20160329 T 0124	FEROS
	20161230 T0024	FIES	20170307 T 2103	HERMES	20170308 T 2100	HERMES
	20170309 T 2031	HERMES	20170310 T 2114	HERMES	20170311 T 2007	HERMES
	20170312 T 2036	HERMES	20170313 T 2005	HERMES		
$\begin{aligned} & \text { HR 2025 } \\ & \text { (243) } \end{aligned}$	20170307 T 2024	HERMES	20170307 T 2155	HERMES	20170308 T 2113	HERMES
	20170309 T 2129	HERMES	20170310 T 2126	HERMES	20170311 T 2029	HERMES
	20170312 T 2054	HERMES	20170313 T 2119	HERMES	20170331 T 2037	HERMES
	20170403 T 2029	HERMES				
$\begin{aligned} & \hline \xi \text { Aur } \\ & (219) \end{aligned}$	20170401 T 2007	HERMES	20170402 T 2007	HERMES		
	20151015 T 0342	HEROS	20151016T0304	HEROS	20151017T0650	HEROS
(212)	20151019 T 0512	HEROS	20151023 T 0451	FEROS	20151210 T 0125	HEROS
	20151213 T 2157	HEROS	20151217 T 2217	HEROS	20151218 T0306	HEROS
	20151223 T 0147	HERMES	20160328 T 0056	FEROS		
$\begin{gathered} \text { HD } 42111 \\ (446) \end{gathered}$	20150904 T 0528	HERMES	20150905 T 0542	HERMES	20150905 T 0558	HERMES
	20151221 T 0321	HERMES	20151223 T 0215	HERMES	20151224 T 0314	HERMES
	20160128 T 2302	HERMES	20160128 T 0043	HERMES	20160130 T 2359	HERMES
	20160303 T 2159	HERMES	20160304 T 2210	HERMES	20160305 T 2131	HERMES
	20160305 T 2329	HERMES	20160306 T 2246	HERMES	20170308 T 2136	HERMES
	20170309 T 2152	HERMES	20170311 T 2110	HERMES	20170311 T 2128	HERMES

Star	Date (UT)	Instrument	Date (UT)	Instrument	Date (UT)	nstrument
	20170312 T 2151	HERMES	20170313 T 2152	HERMES	20170329 T 2013	HERMES
	20170330 T 2009	HERMES	20170402 T 2017	HERMES	20170403 T 2012	HERMES
	20170404 T 0131	FEROS	20170405 T 0042	FEROS	20170406 T 0050	FEROS
	20170408 T 0101	FEROS	20170409T0050	FEROS		
$\begin{gathered} \text { HD } 53842 \\ (102) \end{gathered}$	20151023 T 0633	FEROS	20160328 T 0232	FEROS		
$\begin{gathered} \text { HD } 50241 \\ (617) \end{gathered}$	20151023 T 0526	FEROS	20160326 T 0144	FEROS	20160326T0304	FEROS
	20160326 T 0305	FEROS	20160327 T 0229	FEROS	20160327 T 0230	FEROS
	20160328 T 0102	FEROS	20160328 T 0159	FEROS	20160328 T 0322	FEROS
	20160329 T0031	FEROS	20160329 T0153	FEROS	20160329 T 0314	FEROS
	20170924 T 0806	FEROS				
$\begin{gathered} \text { HD 50571 } \\ (165) \end{gathered}$	20151023T0532	FEROS	20160326 T 0232	FEROS		
$\begin{gathered} \lambda \mathrm{Gem} \\ (186) \end{gathered}$	20151221 T 0433	HERMES	20160131 T 0049	HERMES	20160328 T 0108	FEROS
$\begin{gathered} \phi \mathrm{Gem} \\ (238) \\ \hline \end{gathered}$	20170328 T 2002	HERMES	20170331 T 2012	HERMES	20170402 T 2028	HERMES
HD 71043	20151023T0640	FEROS	20160326 T 0238	FEROS	20170923T0852	FEROS
(302)	20170924 T 0923	FEROS	20170925 T 0704	FEROS	20170927 T 0829	FEROS
$\begin{gathered} \text { HD } 71722 \\ (461) \end{gathered}$	20151023 T0648	FEROS	20160326 T 0151	FEROS	20160326 T 0326	FEROS
	20160326 T 0447	FEROS	20160327 T 0238	FEROS	20160327 T 0504	FEROS
	20160328 T 0118	FEROS	20160328 T 0332	FEROS	20160329T0041	FEROS
	20160329 T 0203	FEROS	20160329 T 0324	FEROS	20160329 T 0440	FEROS
$\begin{gathered} \text { HD } 74873 \\ (299) \end{gathered}$	20151221 T 0450	HERMES	20151221T0506	HERMES	20151224 T 0516	HERMES
	20160129T0451	HERMES	20160131 T 0029	HERMES	20160304 T 0011	HERMES
	20160304 T 0027	HERMES	20160304 T 0203	HERMES	20160305 T 0020	HERMES
	20160305 T 0203	HERMES	20160305 T 2352	HERMES	20160306T0211	HERMES
	20160307 T 0052	HERMES				
$\begin{gathered} 67 \text { Cnc } \\ (194) \end{gathered}$	20170401 T 2020	HERMES	20170402 T 2041	HERMES		
$\begin{gathered} \text { HR } 3685 \\ (738) \end{gathered}$	20160326 T 0156	FEROS	20160326 T 0157	FEROS	20160326T0331	FEROS
	20160326 T 0332	FEROS	20160326T0541	FEROS	20160326 T 0542	FEROS
	20160327 T 0242	FEROS	20160327 T 0244	FEROS	20160327 T 0508	FEROS
	20160327 T 0510	FEROS	20160328 T0133	FEROS	20160328 T 0134	FEROS
	20160328 T0336	FEROS	20160328 T 0338	FEROS	20160328 T 0537	FEROS
	20160328 T 0538	FEROS	20160329 T 0045	FEROS	20160329 T0047	FEROS
	20160329 T 0208	FEROS	20160329T0209	FEROS	20160329T0330	FEROS
	20160329 T 0332	FEROS	20160329 T 0512	FEROS	20160329 T 0513	FEROS
	20170402 T 0048	FEROS	20170402 T 0049	FEROS	20170403 T 0100	FEROS
	20170403 T 0101	FEROS	20170405 T 0057	FEROS	20170405 T 0058	FEROS
	20170406 T 0035	FEROS	20170406 T 0037	FEROS	20170407 T 0157	FEROS
	20170407 T 0158	FEROS	20170408 T 0128	FEROS	20170408 T 0129	FEROS
$\begin{aligned} & \text { HD } 85905 \\ & (593) \end{aligned}$	20151221 T 0534	HERMES	20151221 T0600	HERMES	20151223 T 0453	HERMES
	20151223 T0606	HERMES	20151223 T0654	HERMES	20151224 T 0453	HERMES
	20151224 T 0558	HERMES	20151224 T 0701	HERMES	20160127 T 0340	FIES
	20160129 T 0314	HERMES	20160129T0357	HERMES	20160131T0157	HERMES
	20160131 T 0313	HERMES	20160303 T 2304	HERMES	20160303 T 2326	HERMES
	20160304 T 0050	HERMES	20160304 T 0116	HERMES	20160304 T 2315	HERMES
	20160304 T 2338	HERMES	20160305 T 0055	HERMES	20160305 T 0121	HERMES
	20160305 T 2300	HERMES	20160306T0051	HERMES	20160306 T 0122	HERMES
	20160306 T 2317	HERMES	20160306 T 2348	HERMES	20160307 T 0127	HERMES
	20170308 T 2148	HERMES	20170310 T 2144	HERMES	20170311 T 2147	HERMES
	20170311 T 2337	HERMES	20170312 T 0021	HERMES	20170329 T 2234	HERMES
	20170331 T 2231	HERMES	20170401 T 2225	HERMES	20170402 T 0029	FEROS
	20170402 T 0416	FEROS	20170402 T 2227	HERMES	20170403 T 0114	FEROS
	20170403 T 2216	HERMES	20170404 T 0145	FEROS	20170405 T 0111	FEROS
	20170406 T 0104	FEROS	20170407 T 0209	FEROS	20170408 T 0113	FEROS
	20170408 T 0513	FEROS	20170409 T 0104	FEROS		
HD 95418	20160108 T 0034	HEROS	20160127 T 0212	FIES	20160127 T 0214	FIES
(426)	20160127T0530	FIES	20160127T0531	FIES	20160128 T 0129	FIES

Star	Date (UT)	Instrument	Date (UT)	Instrument	Date (UT)	Instrument
	20160128 T 0143	FIES	20160128 T 0145	FIES	20160303 T 0228	FIES
	20160303 T 2356	HERMES	20160303 T 2358	HERMES	20160304 T 0215	HERMES
	20160304 T 0218	HERMES	20160305 T 0007	HERMES	20160305 T 0143	HERMES
	20160305 T 0146	HERMES	20160306T0008	HERMES	$20160306 T 0249$	HERMES
	20160307 T 0107	HERMES	20160711 T 2057	HERMES	20160718 T 2134	FIES
	20160719 T 2137	FIES	20170307 T 0154	HERMES	20170307 T 0157	HERMES
	20170307 T 0202	HERMES	20170307 T 0317	HERMES	20170307 T 0318	HERMES
	20170307 T 0345	HERMES	20170307 T 0348	HERMES	20170307 T 0510	HERMES
	20170307 T 0514	HERMES	20170307 T 2115	HERMES	20170307 T 2117	HERMES
	20170308 T 0410	HERMES	20170308 T 2212	HERMES	20170308 T 2214	HERMES
	20170309 T 2204	HERMES	20170309 T 2206	HERMES	20170311 T 0455	HERMES
	20170311 T 2328	HERMES	20170311T2331	HERMES	20170312 T 2209	HERMES
ϕ Leo	20151221 T 0627	HERMES	20151223T0501	HERMES	20151223 T0614	HERMES
(1934)	20151223 T 0706	HERMES	20151223 T 0715	HERMES	20151224 T 0524	HERMES
	20160127 T 0411	FIES	20160127 T 0536	FIES	20160128 T 0114	HERMES
	20160128 T 0126	HERMES	20160129T0339	HERMES	20160129 T0510	HERMES
	20160129 T 0623	HERMES	20160131T0220	HERMES	20160131T0344	HERMES
	20160131T0451	HERMES	20160303 T 2343	HERMES	20160303 T 2348	HERMES
	20160304 T 0300	HERMES	20160304 T 0306	HERMES	20160304 T 2354	HERMES
	20160304 T 2359	HERMES	20160305 T 0307	HERMES	20160305 T 0314	HERMES
	$20160306 T 0016$	HERMES	$20160306 T 0257$	HERMES	20160307 T 0010	HERMES
	20160307 T 0213	HERMES	20160307 T 0224	HERMES	20160326 T0138	FEROS
	20160326 T 0312	FEROS	20160326 T 0315	FEROS	20160326 T 0553	FEROS
	20160327 T 0252	FEROS	20160327T0449	FEROS	20160327T0454	FEROS
	20160327T0601	FEROS	20160328 T0153	FEROS	20160328 T0346	FEROS
	20160328 T 0548	FEROS	20160329T0218	FEROS	20160329T0340	FEROS
	20160329 T 0522	FEROS	20160511 T 2021	HERMES	20160511 T 2044	HERMES
	20160511 T 2054	HERMES	20160511 T 2105	HERMES	20160511 T 2116	HERMES
	20160511 T 2127	HERMES	20160511T2138	HERMES	20160511 T 2151	HERMES
	20160511 T 2202	HERMES	20160511 T 2213	HERMES	20160511 T 2224	HERMES
	20160511 T 2234	HERMES	20160511 T 2245	HERMES	20160511 T 2317	HERMES
	20160511 T 2327	HERMES	20160511 T 2338	HERMES	20160511 T 2349	HERMES
	20160512 T 0000	HERMES	20160512 T 0011	HERMES	20160512 T 0020	HERMES
β Leo	20151221 T0631	HERMES	20160115 T 0157	HEROS	20160116 T 0157	HEROS
(326)	20160127 T 0220	FIES	20160127 T 0221	FIES	20160127 T 0640	FIES
	20160127 T 0642	FIES	20160127 T 0644	FIES	20160129 T0517	HERMES
	20160131T0446	HERMES	20160131T0447	HERMES	20160326 T0209	FEROS
	20160326 T 0211	FEROS	20160329 T 0130	FEROS	20160329 T0131	FEROS
	20160711 T 2053	HERMES	20160712 T 2055	HERMES	20160713 T2057	HERMES
	20160717 T 2129	FIES	20160718 T 2130	FIES	20160719 T 2133	FIES
$\begin{gathered} \text { HD } 104731 \\ (271) \\ \hline \end{gathered}$	20160326 T 0217	FEROS	20160329 T 0140	FEROS		
$\begin{gathered} \text { hd } 104860 \\ (154) \\ \hline \end{gathered}$	20160127 T 0233	FIES	20160127T0305	FIES		
$\begin{aligned} & \text { EF Cha } \\ & (375) \end{aligned}$	20170402T0343	FEROS	20170403 T 0155	FEROS	20170404 T 0206	FEROS
	20170405 T 0150	FEROS	20170406 T 0238	FEROS	20170407T0304	FEROS
	20170408T0159	FEROS	20170409 T 0314	FEROS		
HD 105850	20160326 T 0222	FEROS	20160329 T 0147	FEROS	20170309 T 0219	HERMES
(311)	20170329 T 0244	HERMES	20170331 T 0326	HERMES		
δ Crv	20151221 T0636	HERMES	20151223 T 0619	HERMES	20160115 T 0245	HEROS
(324)	20160116 T 0513	HEROS	20160127 T 0407	FIES	20160129 T0521	HERMES
	20160131 T 0253	HERMES	20160304 T 0149	HERMES	20160304 T 0151	HERMES
	20160305 T 0138	HERMES	20160305 T 0345	HERMES	20160305 T 0348	HERMES
	20160306 T 0142	HERMES	20160307 T 0146	HERMES	20160307 T 0204	HERMES
	20170307 T 0311	HERMES	20170329 T 0259	HERMES		
η crv	20151221 T0647	HERMES	20151223T0623	HERMES	20160129 T 0526	HERMES
(138)	20160131 T 0302	HERMES				
HR 4796	20160326T0205	FEROS	20160326 T 0343	FEROS	20160327 T 0259	FEROS
(714)	20160327 T 0704	FEROS	20160327 T 0947	FEROS	20160328 T0145	FEROS
	20160328 T 0356	FEROS	20160328 T 0734	FEROS	20160328 T1012	FEROS
	20160329T0229	FEROS	20160329T0354	FEROS	20160329 T0802	FEROS

Star	Date (UT)	Instrument	Date (UT)	Instrument	Date (UT)	Instrument
	20170402 T 0210	FEROS	20170402 T 0712	FEROS	20170403 T 0352	FEROS
	20170404 T 0346	FEROS	20170405 T 0449	FEROS	20170405 T 0621	FEROS
	20170406 T 0318	FEROS	20170407T0402	FEROS	20170407T0709	FEROS
	20170408 T 0238	FEROS	20170409 T 0339	FEROS		
$\begin{gathered} \hline \text { HD } 110058 \\ (383) \end{gathered}$	20170402 T 0440	FEROS	20170403 T 0414	FEROS	20170404 T 0402	FEROS
	20170405 T 0329	FEROS	20170406T0331	FEROS	20170407 T 0418	FEROS
	20170408 T 0251	FEROS	20170409 T0410	FEROS		
$\begin{aligned} & \text { HD } 110411 \\ & (625) \end{aligned}$	20151221 T 0615	HERMES	20151221 T0702	HERMES	20151221 T 0715	HERMES
	20151223 T 0513	HERMES	20151223 T0537	HERMES	20151224 T 0612	HERMES
	20160127 T 0423	FIES	20160127T0559	FIES	20160115 T 0201	HEROS
	20160116 T 0201	HEROS	20160129 T0347	HERMES	20160129 T0543	HERMES
	20160131T0231	HERMES	20160131T0238	HERMES	20160131T0359	HERMES
	20160131T0405	HERMES	20160131T0512	HERMES	20160131T0519	HERMES
	20160304 T 0135	HERMES	20160304 T 0142	HERMES	20160304 T 0314	HERMES
	20160304 T 0321	HERMES	20160304 T 0644	HERMES	20160305 T 0036	HERMES
	20160305 T 0325	HERMES	20160305 T 0336	HERMES	20160305 T 0626	HERMES
	20160306 T 0027	HERMES	20160306 T 0151	HERMES	20160306 T 0311	HERMES
	20160306 T 0327	HERMES	20160307 T 0021	HERMES	20160307 T 0032	HERMES
	20160307 T 0155	HERMES	20160711 T 2100	HERMES	20160712 T 2206	HERMES
	20160713 T 2124	HERMES	20160714 T 2054	HERMES	20160716 T 2231	FIES
	20160718 T 2137	FIES	20160719 T 2147	FIES	20170307 T 0220	HERMES
	20170307 T 0231	HERMES	20170307 T 0242	HERMES	20170307 T 0602	HERMES
	20170307 T 0613	HERMES	20170308 T 0519	HERMES	20170309 T 0455	HERMES
	20170312 T 0442	HERMES	20170313 T 0437	HERMES	20170329 T0311	HERMES
	20170331T0341	HERMES	20170401T0312	HERMES	20170402 T 0151	FEROS
	20170403 T 0221	FEROS	20170404 T 0243	FEROS	20170404 T 0325	HERMES
	20170405 T 0216	FEROS	20170406 T 0303	FEROS	20170407 T 0329	FEROS
	20170408 T 0224	FEROS	20170409 T 0354	FEROS		
$\begin{gathered} \hline 24 \mathrm{CVn} \\ (148) \end{gathered}$	20170402 T 0318	HERMES	20170403 T 0320	HERMES		
$\begin{gathered} \text { HD } 121191 \\ (193) \\ \hline \end{gathered}$	20170601 T 0121	FEROS				
$\begin{gathered} \text { HD } 121617 \\ (161) \end{gathered}$	20170409 T 0238	FEROS	20170409 T 0611	FEROS		
$\begin{aligned} & \lambda \text { Böo } \\ & (221) \end{aligned}$	20151223 T 0524	HERMES	20151224 T 0627	HERMES	20160127 T 0435	FIES
	20160127T0724	FIES	$20160711 T 2048$	HERMES	20160711 T 2353	HERMES
$\begin{gathered} \text { HD } 131488 \\ (172) \end{gathered}$	20170409 T 0219	FEROS	20170409 T 0551	FEROS		
$\begin{gathered} \text { HD } 131835 \\ (568) \end{gathered}$	20160326T0408	FEROS	20160326 T 0755	FEROS	20160327 T 0322	FEROS
	20160327 T 0544	FEROS	20160327 T 0754	FEROS	20160328 T0315	FEROS
	20160328 T 0455	FEROS	20160328T0808	FEROS	20160329 T0304	FEROS
	20160329 T0429	FEROS	20160329 T0836	FEROS	20170403 T 0519	FEROS
	20170407 T 0456	FEROS	20170408 T 0322	FEROS		
$\begin{gathered} \text { HR } 5774 \\ (427) \end{gathered}$	20170307 T 0324	HERMES	20170307 T 0445	HERMES	20170307 T 0455	HERMES
	20170308T0359	HERMES	20170308 T0615	HERMES	20170309 T 0237	HERMES
	20170310 T 0508	HERMES	20170311 T 0502	HERMES	20170312T0505	HERMES
	20170313 T 0455	HERMES	20170329 T0330	HERMES	20170331 T 0359	HERMES
	20170401 T 0330	HERMES	20170402 T 0613	HERMES	20170404 T 0541	HERMES
$\begin{gathered} \alpha \mathrm{CrB} \\ (326) \end{gathered}$	20160127 T 0442	FIES	20160127 T 0444	FIES	20160127 T 0656	FIES
	20160127 T 0657	FIES	20160711 T 2359	HERMES	20160714 T 0041	HERMES
	20160716 T 2314	FIES	20160717 T 2356	FIES	20160718 T 2220	FIES
	20160719 T 0055	FIES	20160719 T 2331	FIES		
HIP 76310(450)	20160304 T 0412	HERMES	20160304 T 0443	HERMES	20160305 T 0407	HERMES
	20160305T0438	HERMES	20160305 T 0509	HERMES	20160306 T 0418	HERMES
	20160306 T 0449	HERMES	20160326 T 0424	FEROS	20160326 T 0817	FEROS
	20160327 T 0336	FEROS	20160327 T0626	FEROS	20160327 T 0828	FEROS
	20160328 T 0421	FEROS	20160328 T0833	FEROS	20160329 T0506	FEROS
	20160329 T 0901	FEROS	20160711 T 2124	HERMES	20160712 T 2218	HERMES
	20160712 T 2249	HERMES	20160713 T 2133	HERMES	20160713 T 2204	HERMES
	20160714 T 2102	HERMES	20160716 T 2118	FIES	20160717 T 2133	FIES
	20160718 T 2147	FIES	20160719 T 2215	FIES	20170309 T 0503	HERMES

Star	Date (UT)	Instrument	Date (UT)	Instrument	Date (UT)	Instrument
	20170310 T 0555	HERMES	20170310T0626	HERMES	20170314 T 0437	HERMES
	20170314 T 0508	HERMES	20170314 T 0539	HERMES	20170403T0452	FEROS
	20170404 T 0421	HERMES	20170405 T 0505	FEROS	20170406 T 0443	FEROS
	20170408 T 0354	FEROS				
$\begin{gathered} \text { HIP } 77815 \\ (127) \end{gathered}$	20160326 T 0649	FEROS	20160716 T 2153	FIES	20170308 T 0415	HERMES
	20170308 T 0446	HERMES	20170313 T 0555	HERMES	20170329 T 0356	HERMES
	20170330 T 0337	HERMES	20170330T0408	HERMES	20170331T0425	HERMES
	20170401T0452	HERMES	20170402 T 0636	FEROS	20170405T0401	FEROS
	20170406 T 0402	FEROS	20170407 T 0547	FEROS	20170408 T 0415	FEROS
$\begin{gathered} \text { HIP } 77911 \\ (372) \end{gathered}$	20160711 T 2107	HERMES	20160326T0701	FEROS	20170401 T 0419	HERMES
	20170401 T 0557	HERMES	20170402 T 0342	HERMES	20170402 T 0412	HERMES
	20170402 T 0540	FEROS	20170405 T 0532	FEROS		
$\begin{aligned} & \text { HIP } 78099 \\ & (123) \end{aligned}$	20160326 T 0719	FEROS	20160327T0354	FEROS	20160714 T 2145	HERMES
	20160714 T 2216	HERMES	20170403T0344	HERMES	20170404 T 0440	FEROS
$\begin{gathered} \text { HIP } 78996 \\ (167) \end{gathered}$	20160327 T 0424	FEROS	20160717 T 2210	FIES	20170311 T0619	HERMES
	20170330 T0546	HERMES	20170403T0638	FEROS	20170409T0652	FEROS
$\begin{gathered} \text { HIP } 79156 \\ (168) \end{gathered}$	20160328 T0724	FEROS	20160717 T 2255	FIES	20160719 T 2335	FIES
	20170406 T 0532	FEROS				
$\begin{aligned} & \text { HIP } 79410 \\ & (150) \end{aligned}$	20160329 T 0556	FEROS	20160714 T 2248	HERMES	20160714 T 2319	HERMES
	20170402 T 0445	HERMES				
$\begin{aligned} & \text { HIP } 79439 \\ & (212) \end{aligned}$	20160329 T0630	FEROS	20160716T2251	FIES	20170309T0553	HERMES
	20170329 T0541	HERMES	20170329 T 0612	HERMES	20170330 T 0513	HERMES
	20170402 T 0824	FEROS				
$\begin{gathered} \text { HD } 145964 \\ (576) \end{gathered}$	20160304 T 0514	HERMES	20160304 T 0540	HERMES	20160305 T 0542	HERMES
	20160306 T 0522	HERMES	20160306 T 0553	HERMES	20160326 T 0614	FEROS
	20160327T0649	FEROS	20160328 T0622	FEROS	20160329 T0747	FEROS
	20160711 T 2330	HERMES	20160713 T 2101	HERMES	20160713 T 2340	HERMES
	20160716 T 2054	FIES	20160717 T 2056	FIES	20160718 T 2056	FIES
	20160719 T 2058	FIES	20170307 T 0529	HERMES	20170307 T 0545	HERMES
	20170308 T 0541	HERMES	20170308 T 0557	HERMES	20170309 T 0536	HERMES
	20170310 T 0516	HERMES	20170311 T 0514	HERMES	20170312 T 0524	HERMES
	20170329T0428	HERMES	20170330T0441	HERMES	20170331T0458	HERMES
	20170402 T 0516	FEROS	20170402 T 0517	HERMES	20170403 T 0435	HERMES
	20170403 T 0614	FEROS	20170404 T 0349	HERMES	20170404 T 0453	HERMES
	20170404 T 0540	FEROS	20170404 T 0745	FEROS	20170405 T 0635	FEROS
	20170405 T 0824	FEROS	20170406 T 0603	FEROS	20170407 T 0528	FEROS
	20170408 T 0602	FEROS	20170409 T 0627	FEROS		
$\begin{gathered} \text { HIP } 79797 \\ (324) \end{gathered}$	20160328 T0530	FEROS	20170404 T 0630	FEROS	20170405 T 0605	FEROS
	20170407 T 0716	FEROS	20170408T0544	FEROS		
$\begin{gathered} \text { HIP } 79878 \\ (150) \end{gathered}$	20160711 T 2225	HERMES	20160719 T 2249	FIES	20170403 T 0555	FEROS
	20170409 T0435	FEROS				
	20160328 T0650	FEROS	20160716 T 2141	FIES	20170405 T 0553	FEROS

HIP 79977	20160712 T 2100	HERMES	20160712 T 2131	HERMES	20170405 T 0702	FEROS
(165)	20170405 T 0733	FEROS	20170407 T 0726	FEROS	20170407 T 0756	FEROS
	20170930 T0017	FEROS	20170930 T0048	FEROS	20171001 T 0012	FEROS
	20171001 T 0042	FEROS				
$\begin{gathered} \text { HIP } 80088 \\ (220) \end{gathered}$	20160326 T 0522	FEROS	20160718 T 2224	FIES	20160718 T 2256	FIES
	20170406 T 0709	FEROS	20170406 T 0735	FEROS	20170408 T 0730	FEROS
	20170408 T 0756	FEROS				
HIP 80130	20160713 T 2236	HERMES	20160713 T 2307	HERMES	20170401 T 0525	HERMES
(139)	20170403 T 0759	FEROS	20170409 T 0726	FEROS	20170409 T0747	FEROS
HR 6123	20150903 T 2033	HERMES	20150903 T 2133	HERMES	20150903 T 2235	HERMES
(642)	20150903 T 2336	HERMES	20150904 T 2032	HERMES	20150904 T 2130	HERMES
	20150904 T 2222	HERMES	20150904 T 2230	HERMES	20150905 T 2036	HERMES
	20150905 T 2043	HERMES	20150905 T 2141	HERMES	20150905 T 2148	HERMES
	20150905 T 2315	HERMES	20150905 T 2321	HERMES	20150906 T2028	HERMES
	20150906 T 2034	HERMES	20150906 T 2145	HERMES	20150906 T2152	HERMES

Star	Date (UT)	Instrument	Date (UT)	Instrument	Date (UT)	Instrument
	20170407 T 0840	FEROS	20170408 T 0652	FEROS	20170924 T 0132	FEROS
	20170928 T 0143	FEROS	20171001 T 0122	FEROS		
HD 181327	20170403 T 0731	FEROS	20170404 T 0713	FEROS	20170406T0806	FEROS
(221)	20170407 T 0845	FEROS	20170408 T 0657	FEROS		
$\begin{aligned} & \delta \mathrm{Aql} \\ & (206) \end{aligned}$	20160328 T 0957	FEROS	20160711 T 2303	HERMES		
$\begin{aligned} & 5 \mathrm{Vul} \\ & (438) \end{aligned}$	20150905 T 2209	HERMES	20150905 T 2216	HERMES	20150905 T 2331	HERMES
	20150905 T 2338	HERMES	20150906 T 2044	HERMES	20150906 T 2051	HERMES
	20150906 T 2203	HERMES	20150906 T 2210	HERMES	20150906 T 2334	HERMES
	20150906 T 2341	HERMES	20160304 T 0602	HERMES	20160304 T 0614	HERMES
	20160305T0649	HERMES	20160306T0639	HERMES	20160712 T 0016	HERMES
	20160712 T 0400	HERMES	20160712 T 2341	HERMES	20160713 T 0236	HERMES
	20160714 T 0027	HERMES	20160714 T 0246	HERMES	20160715 T 0005	HERMES
	20160715 T 0219	HERMES	20160716 T 2341	FIES	20160717 T 0231	FIES
	20160717 T 0417	FIES	20160717 T 2337	FIES	20160718 T 0315	FIES
	20160719 T 0059	FIES	20160719 T 0314	FIES	20160720 T 0432	FIES
	20170307 T 0627	HERMES	20170307T0638	HERMES	20170308 T 0626	HERMES
	20170309 T 0626	HERMES	20170311T0604	HERMES	20170312 T 0617	HERMES
	$20170313 T 0537$	HERMES	20170407 T 0914	FEROS	20170409 T 0922	FEROS
$\begin{gathered} \text { HD } 183324 \\ (337) \end{gathered}$	20160711 T 2202	HERMES	20160712 T 0043	HERMES	20160712 T 0341	HERMES
	20160713 T 0004	HERMES	20160714 T 0044	HERMES	20160714 T 0337	HERMES
	20160715 T 0018	HERMES	20160715 T 0301	HERMES	20160716 T 2241	FIES
	20160717 T 0130	FIES	20160717T0330	FIES	20160718 T 0208	FIES
	20160718 T 0406	FIES	20160718 T 2339	FIES	20160719 T 0229	FIES
	20160719 T 2321	FIES	20160720 T 0201	FIES	20170329 T 0514	HERMES
	20170331 T 0526	HERMES	20170404 T 0530	HERMES	20170404 T 0819	FEROS
	20170405 T 0807	FEROS	20170407T0831	FEROS	20170409T0851	FEROS
$\begin{aligned} & \alpha \text { Aql } \\ & (329) \end{aligned}$	20150903 T 2058	HERMES	20150903 T 2200	HERMES	20150903 T 2309	HERMES
	20150904 T 2045	HERMES	20150904 T 2046	HERMES	20150904 T 2148	HERMES
	20150904 T 2150	HERMES	20150905 T 2058	HERMES	20150905 T 2059	HERMES
	20150906 T 2105	HERMES	20150906 T 2106	HERMES	20150907 T 0001	HERMES
	20150907 T 0002	HERMES	20160711 T 2308	HERMES		
HD 188228	20151022T0359	FEROS	20151023 T 0252	FEROS	20151024 T 0328	FEROS
(147)	20160328T1019	FEROS				
$\begin{gathered} \text { HR } 7731 \\ (410) \end{gathered}$	20150903 T 2244	HERMES	20150903 T 2355	HERMES	20150904 T 0202	HERMES
	20150904 T 2250	HERMES	20150904 T 2256	HERMES	20150904 T 2348	HERMES
	20150904 T 2354	HERMES	20150905 T 0224	HERMES	20150905 T 0231	HERMES
	20150905 T 2244	HERMES	20150905 T 2250	HERMES	20150906 T 0001	HERMES
	20150906 T 0006	HERMES	20150906 T 2234	HERMES	20150906T2239	HERMES
	20150906 T 2350	HERMES	20150906 T 2356	HERMES	20150907 T 0219	HERMES
	20150907 T 0225	HERMES	20151223 T 1911	HERMES	20151223 T 1922	HERMES
	20160711 T 2317	HERMES	20160713 T 0022	HERMES	20160715 T 0031	HERMES
	20160716 T 2352	FIES	20160718 T 0001	FIES	20160719 T 0111	FIES
	20160720T0442	FIES	20170329 T 0454	HERMES	20170330 T 0614	HERMES
	20170403T0503	HERMES	20170404 T 0558	HERMES		
29 Vul	20170402T0559	HERMES	20170403 T 0526	HERMES	20170404 T 0550	HERMES
(329)	20170924 T 0139	FEROS				
HR 7959	20170404 T 0800	FEROS	20170405 T 0854	FEROS	20170407 T 0905	FEROS
(297)	20170924 T 0158	FEROS				
HR 7960	20170404T0809	FEROS	20170924 T 0213	FEROS	20170926 T 0754	FEROS
(190)	20170927 T 0742	FEROS				
HD 199143	20151022T0358	FEROS	20151023T0054	FEROS	20160326 T 0917	FEROS
(353)	20160327 T 0936	FEROS	20160328 T 0933	FEROS	20160329 T 1016	FEROS
α Cep	20150903 T 2103	HERMES	20150903 T 2150	HERMES	20150903 T 2251	HERMES
(285)	20150904 T 2053	HERMES	20150904 T 2055	HERMES	20150904 T 2144	HERMES
	20150904 T 2302	HERMES	20150904 T 2304	HERMES	20150905 T 2104	HERMES
	20150905 T 2105	HERMES	20150905 T 2224	HERMES	20150905 T 2225	HERMES
	20150906 T 2111	HERMES	20150906 T 2112	HERMES	20150906 T 2225	HERMES
	20150906 T 2227	HERMES	20160711 T 2312	HERMES		
$\begin{gathered} \text { HD } 202917 \\ (248) \end{gathered}$	20151022T0359	FEROS	20151023 T 0325	FEROS	20151024 T 0402	FEROS

Star	Date (UT)	Instrument	Date (UT)	Instrument	Date (UT)	Instrument
$\begin{aligned} & \tau \text { PsA } \\ & (351) \end{aligned}$	20151022 T 0400	FEROS	20151023T0332	FEROS	20151024 T 0408	FEROS
$\begin{gathered} \text { HD } 210418 \\ (558) \end{gathered}$	20160712 T 0336	HERMES	20160712T0442	HERMES	20160713T0339	HERMES
	20160715 T 0254	HERMES	20160717 T 0204	FIES	20160717 T 0412	FIES
	20160717 T 0502	FIES	20160718 T 0202	FIES	20160718 T 0354	FIES
	20160719T0149	FIES	20160719T0434	FIES	20160720 T 0343	FIES
$\begin{aligned} & \epsilon \text { Cep } \\ & (363) \end{aligned}$	20150903 T 2107	HERMES	20150903 T 2123	HERMES	20150903 T 2225	HERMES
	20150903 T 2327	HERMES	20150903 T 2347	HERMES	20150904 T 0156	HERMES
	20150904 T 2100	HERMES	20150904 T 2104	HERMES	20150904 T 2157	HERMES
	20150904 T 2310	HERMES	20150904 T 2315	HERMES	20150905 T 0239	HERMES
	20150905 T 2111	HERMES	20150905 T 2116	HERMES	20150905 T 2231	HERMES
	20150905 T 2236	HERMES	20150905 T 2347	HERMES	20150905 T 2352	HERMES
	20150906 T 2117	HERMES	20150906 T 2122	HERMES	20150906 T 2248	HERMES
	20150906 T 2253	HERMES	20150907 T 0053	HERMES	20150907 T 0058	HERMES
	20160712 T 0134	HERMES				
$\begin{gathered} \text { HD } 213617 \\ (177) \end{gathered}$	20160712 T 0307	HERMES	20160713T0344	HERMES	20160714 T 0221	HERMES
	20160715 T 0330	HERMES	20160717 T 0146	FIES	20160717T0354	FIES
	20160718 T 0144	FIES	20160719 T 0211	FIES	20160720 T 0325	FIES
$\begin{gathered} \text { HD } 217782 \\ (526) \end{gathered}$	20150903 T 2114	HERMES	20150903 T 2208	HERMES	20150903 T 2318	HERMES
	20150904 T 0232	HERMES	20150904 T 2114	HERMES	20150904 T 2120	HERMES
	20150904 T 2205	HERMES	20150904 T 2212	HERMES	20150904 T 2323	HERMES
	20150904 T 2329	HERMES	20150905 T 2124	HERMES	20150905 T 2130	HERMES
	20150905 T 2259	HERMES	20150905 T 2305	HERMES	20150906 T 0103	HERMES
	20150906 T 0108	HERMES	20150906 T 0431	HERMES	20150906 T 2130	HERMES
	20150906 T 2136	HERMES	20150906 T 2318	HERMES	20150906 T 2324	HERMES
	20150907 T 0233	HERMES	20150907 T 0239	HERMES	20151222T1949	HERMES
	20151222 T 2005	HERMES	20151223 T 2044	HERMES	20160712 T 0030	HERMES
	20160712 T 0413	HERMES	20160713 T 0143	HERMES	20160713T0432	HERMES
	20160714 T 0206	HERMES	20160714 T 0358	HERMES	20160715 T 0240	HERMES
	20160717 T 0108	FIES	20160717 T 0312	FIES	20160718 T 0126	FIES
	20160718 T 0336	FIES	20160719 T 0129	FIES	20160719 T 0335	FIES
	20160720 T 0151	FIES	20160720T0405	FIES		
$\begin{gathered} \text { HD } 221756 \\ (326) \end{gathered}$	20151222 T 2302	HERMES	20151223 T 2212	HERMES	20151223 T 2354	HERMES
	20151224 T 0034	HERMES	20160130T1926	HERMES	20160130T1943	HERMES
	20160712 T 0057	HERMES	20160713 T 0158	HERMES	20160713 T 0445	HERMES
	20160714 T 0316	HERMES	20160714 T 0515	HERMES	20160715 T 0152	HERMES
	20160715 T 0508	HERMES	20160717 T 0120	FIES	20160717T0321	FIES
	20160718 T 0135	FIES	20160718 T 0345	FIES	20160719 T 0138	FIES
	20160719 T 0350	FIES	20160720 T 0139	FIES	20160720 T 0414	FIES
$\begin{gathered} \text { HD } 222368 \\ (335) \end{gathered}$	20160712 T 0330	HERMES	20160713 T 0210	HERMES	20160713 T 0459	HERMES
	20160714 T 0330	HERMES	20160715 T 0232	HERMES	20160717 T 0247	FIES
	20160717 T 0455	FIES	20160718 T 0219	FIES	20160718 T 0443	FIES
	20160719 T 0154	FIES	20160719T0439	FIES	20160720T0348	FIES
$\begin{gathered} \text { HD } 224392 \\ (280) \end{gathered}$	20151023 T 0108	FEROS	20151023 T 0444	FEROS	20151024 T 0437	FEROS
	20170923 T 0446	FEROS	20170924 T 0146	FEROS	20170925T0649	FEROS
	20170925T0658	FEROS				

[^0]: ${ }^{2} \mathrm{http}: / / \mathrm{www}$. eso.org/sci/software/pipelines/skytools/molect

[^1]: ${ }^{3}$ http://sredfield.web.wesleyan.edu/

[^2]: ${ }^{4} \mathrm{https}: / / \mathrm{www} . a s t r o . u n i-j e n a . d e / i n d e x . p h p / t h e o r y / c a t a l o g-o f-r e s o l v e d-~$ debris-disks.html
 ${ }^{5} \mathrm{https}: / / \mathrm{www} . c i r c u m s t e l l a r d i s k s . o r g /$

