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Abstract

This work aimed at the modeling the interaction between corrosion diffusion and
the mechanical behavior of metallic alloys, by the development of a coupling
finite element method model. A non-fickian diffusion process was considered to
interact with a two-dimensional mechanical model, assuming a plane stress state.
Both models were coupled in a linear differential system solved by an approached
implicit integration scheme.

The validation of the model was performed based on experimental results
of metallic alloys submitted to hot corrosion, without mechanical loading. The
numerical predictions matched the experimental results with a maximal error
reaching 25%.

Corrosion induced damage was modeled by a damage law, modeling a lin-
ear degradation of the Young’s modulus with the corrosion rate. The diffusion
of the corrosion was therefore inducing stress redistribution around the softened
material, which in turn increased the peak of hydrostatic pressure. Stress-driven
diffusion, whose amplitude was conditioned by a pressure factor, was found to
accelerate or decelerate the natural corrosion diffusion process depending on the
nature of the stress. This phenomenon was specifically observed in zones submit-
ted to high gradient of hydrostatic pressure.
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Introduction

Context of the study

Numbers of applications in engineering are expected nowadays to achieve pro-
gressively higher levels of performance in terms of yields, fuel economy, noise
and pollutant emissions, etc. Such challenges require materials to be continu-
ally solicited by higher pressures, at higher temperatures, and sometimes also
in more hostile chemical environments. Various studies have shown that metal
alloys at high temperature were subjected to accelerated corrosion whose effects
are increasing with operational temperature. Corrosion induced by aggressive en-
vironments such as molten salts, hydroxides, sulfates, etc. are also well known to
impact negatively the proper functioning of many engineering systems and hold
subsequently a prominent role in material selection.

Readers will have understood that corrosion phenomenon represents a signifi-
cant stake for such applications as corrosion induced damage, if not taken into
account, can lead to unrealistic predictions of the life time of certain pieces of
equipment or even worse, to unconservative design of them.

If mechanical and corrosion problems have been investigated independently
trough various studies, it exists however few models accounting for both me-
chanical behavior and corrosion effects. Such coupling models are indeed rarely
observed in the literature. [2] studied a mechanical-corrosion coupling with an
approach based on cristal-plasticity, while [3] opted rather for a macroscopic ap-
proach. The purpose of this study is to develop another macroscopic model using
finite element method, dedicated to a coupling model between corrosion and me-
chanical problems.

The present study takes place more precisely further to the project Solar

Perform [4] where the nonlinear mechanical behavior of nickel based alloys ded-
icated to heat exchanger of solar towers. In the frame of this project, corrosion
effects have been left apart to focus exclusively on the material behavior (influence
of temperature, creep, cyclic loading, etc.). A second project, Solar Gnext [5],
is starting in August 2019 and is dedicated prediction of corrosion effects for the
same applications. The pursued objective is thus to perform a full integration
of the effects of corrosion in the previous model. This master thesis constitutes
hence an introduction to project Solar Gnext.

This study is about numerical modeling and is consequently not a study of the
corrosion phenomenon itself. Of course, such numerical development is not prac-
ticable without few physical and chemical considerations, especially for validation

1



2 INTRODUCTION

purposes.

In the frame of this project, numerical calculations are carried out through a
code entirely developed in Fortran 90. The choice of the language was motivated
by the future integration of the routines in Lagamine [6], which is entirely written
in Fortran.

Targeted applications

As briefly mentioned this master thesis falls within the continuity of Solar
Perform project and as a introduction to Solar Gnext. The central application
explored by these projects was the design of heat exchanger of solar thermal power
plants. The context of this study is presented more in detail in this section in
order to highlight the challenges issues tackled by these projects.

Solar thermal power plants are made up of a central tower overhung by a solar
receiver where are concentrated all incident solar radiation reflected by heliostats
(mirrors). As the entire solar power are concentrated on the solar receiver, it
operates at high temperature nearby 700◦C and transfers a major part of the
incident heat to heat exchangers [7]. While classical solar power plants use water
as heat transfer fluid, other projects [8] have used molten salts instead (water was
still used in secondary circuit for steam production). Figure 1 shows a simplified
functioning of a such solar power plant.

Im
ag
e
ta
ke
n
fr
om

[9
]

Figure 1: Schematic functioning of a solar thermal power plant with molten salts

The targeted objective of molten salt power plants is to take benefit of their
high specific heat and hence to enable thermal energy storing. If energy storage
doesn’t increase the productivity of the plant (even worse, it deteriorates the
global yield), it makes however possible a regulation of the energy production.
That is, the output is no more entirely dependent on the incident radiation at a
given moment of the day. This is especially profitable nowadays, where regulation
of energy production has become a key issue for the energetic question. For
example, molten salt solar power plants can manage a continuous generation of
energy even during the night (when the source of energy has disappeared).

Unfortunately, the use of molten salts has serious negative impacts on heat
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exchanger materials, which from now on have to operate in a highly corrosion
environment. On top of that, heat exchangers are still subjected to diverse severe
solicitations inherent to the functioning of solar power plants itself: cyclic loading,
fatigue, creep, thermal gradients, etc. Note also that heat exchangers are not the
single parts submitted to corrosion (e.g. steam generator which also perform at
high temperature).

Hence, the integration of corrosion induced damage into the material behavior
is even more important to consider that the aggressive potential of the working
environment changes drastically.

We conclude this section mentioning that a such coupling model could find its
use in various other applications involving corrosion and strength of materials.
For example, in high pressure compressors and turbine design for civil aviation,
higher levels of performance are reached by increasing the pressure ratios and
higher turbine entry temperatures.

Procedure

During this study, the global problem has been split into several but simpler
problems in order to facilitate the development. We have started with a one-
dimensional model for corrosion diffusion, and extend it to two-dimensions. In
parallel, the model for mechanical behavior (classical mechanics of solids) is de-
veloped. Once each model is validated, the coupling model is investigated. Each
new model integrate thus an additional difficulty.

For each developed model, we tried to stick the following procedure

i Development: The equations are derived. Starting from an differential
equation, the weak form of the problem is determined and subsequently the
expressions of stiffness matrix and nodal load vector.

ii Coding: This stage is about pure numerical developments in Fortran
and are not detailed in this report.

iii Verification: During this step, we will address the question to know if the
equation are mathematically properly solved. Do we converge to a unique
solution if the mesh is refined? Is the method sufficiently stable? Verifica-
tion is hence about mathematics and practical and physical considerations
will be meanwhile left apart1.

iv Validation: The validation step adds the physical aspects of the phe-
nomenon into consideration. These validation step is hence dedicated to
determine whether the equation chosen are well adapted to model the con-
sidered physical phenomenon. For this purpose, numerical predictions will
be compared with experimental results: if predictions match experimental
data, the numerical model will be considered as validated.

1In the verification step, constants and physical quantities will be chosen to illustrate inves-
tigated phenomena and not necessarily to model the reality (for example, the reader should not
be surprise to see that corrosion is fully developed in a 1 m long bar after several seconds)



4 INTRODUCTION

Regarding the tools used for the coding stage, we used gmsh [10] for mesh
generations. All calculations are carried on in Fortran 90, excepted for the
post-processing stage, where a Python code has been developed. This code uses
the vtk library for creating an unstructured grid exploitable by Paraview [11],
which provides a convenient interface for data visualization.



Chapter 1

Transient model of corrosion
diffusion in one dimension

1.1 Equation for corrosion diffusion

According to [2,3] the diffusion of corrosion is governed by the following equation

∂c

∂t
= ∇ · (D∇c−DMc∇p) (1.1)

Where c represents a relative concentration in oxygen, p the isotropic pressure,
D the diffusivity of the corrosion and M the pressure factor. In this first chapter,
the only focus will be on the diffusion of the corrosion, neglecting all potential
influences of the mechanical solicitations. Subsequently, a pressure factor of M =
0 will be assumed, in which case (1.1) is simplified to a purely diffusion equation
(also called fickian diffusion) whose form is given by

∂c

∂t
= ∇ · (D∇c) (1.2)

A constant diffusivity D will also be assumed everywhere inside the studied do-
main. In that case, the following equation will be obtained, which is analogous
to the one describing transient heat conduction

∂c

∂t
= D · ∇2c (1.3)

Finally, the model studied in this section assumes the phenomenon to be uni-
dimensional, that is

∂c

∂t
= D · ∂

2c

∂x2
(1.4)

This last equation is a purely natural diffusive partial differential equation and
highlights that the time derivative of the oxygen concentration is proportional
to its Laplacian: the higher the average corrosion concentration around a given
point, the faster the corrosion variation at this point. In other words, the value
of c in one point will converge even faster to the steady state solution as the
surroundings points are close to this solution.

5
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1.2 Solving of the partial differential equation

by finite elements method

1.2.1 Derivation of the weak form of the problem

The weak form of the problem can be obtained using the weighted residual
method. We will search for an approximation function c̃(x) ≈ c(x). The weighted
residual will be formed by considering this approximation function, multiplying
equation (1.4) by one weighting function δc̃(x), and integrating it over the studied
volume V . These operations lead to the following equation

WR =

∫
V

D · ∂
2c̃

∂x2
· δc̃ dV −

∫
V

∂c̃

∂t
· δc̃ dV (1.5)

If the cross section A of the 1D studied body is constant along the length of
the body, the integration over the volume results in the following expression

⇔ WR = D ·
∫ L

0

∂2c̃

∂x2
· δc̃ dx−

∫ L

0

∂c̃

∂t
· δc̃ dx (1.6)

The right hand side expression can be integrated by parts, which leads to

WR = D ·
[
∂c̃

∂x
· δc̃
]L

0

−D ·
∫ L

0

∂c̃

∂x
· ∂δc̃
∂x

dx−
∫ L

0

∂c̃

∂t
· δc̃ dx (1.7)

We finally impose the weighted residual WR to be equal to zero, to get

WR = 0 ⇔ D ·
[
∂c̃

∂x
· δc̃
]L

0

−D ·
∫ L

0

∂c̃

∂x
· ∂δc̃
∂x

dx−
∫ L

0

∂c̃

∂t
· δc̃ dx = 0 (1.8)

The last equation defines the weak form of the problem. The first term represents
the effects of boundary conditions, and will be discussed more in detail in section
1.2.7. Meanwhile, it will be assumed to be zero. Thus, the weak form takes the
following expression

−D ·
∫ L

0

∂c̃

∂x
· ∂δc̃
∂x

dx−
∫ L

0

∂c̃

∂t
· δc̃ dx = 0 (1.9)

1.2.2 Derivation of the expressions of local stiffness ma-
trix and local nodal load vector

Everywhere inside a given finite element, the unknown field c(x) is approximated
by a continuous field c̃(x), expressed as a linear combination of the chosen shape
functions:

c(x) ≈ c̃(x) =

ndof∑
i=1

Ni(x) · qi (1.10)

Where Ni(x) represents the shape function associated to the degree of freedom
i, while qi is the nodal unknown associated to the same degree of freedom. This



1.2. APPLICATION TO F.E.M. 7

equation may be rewritten on a vectorial form that will be preferred for conve-
nience in this document:

c̃(x) = Nq (1.11)

In this particular case with one single unknown by node, the matrix N is a row
vector of ndof components (size 1 × ndof ), while q is a column vector with the
same number of components (size ndof × 1), where ndof is the number of degree
of freedom linked to an element. Therefore, we have:

N =
[
N1(x) N2(x) · · · Nndof

(x)
]
, q =


q1

q2
...

qndof


Before substituting the approximation function c̃ in the weak form, several addi-
tional quantities need to be expressed as a function on these Ni(x). Similarly to
(1.11), it is assumed that the weighting function δc̃(x) can be expressed as

δc̃(x) =

ndof∑
i=1

Ni(x) · δqi = N · δq (1.12)

From (1.11), it is readily proven that

∂c̃

∂x
=

ndof∑
i=1

∂Ni

∂x
· qi (1.13)

Once more, the vector notation will be preferred,

∂c̃

∂x
= Bq where Bi =

∂Ni

∂x
(1.14)

And as previously, it is proven that

∂δc̃

∂x
= Bδq (1.15)

Finally, note that because c(x) and δc(x) are scalar quantities, their transpos is
equal to themselves, that is : δcT = δc and cT = c and subsequently : δqTNT =
Nδq and qTNT = Nq. Substituting all these previous quantities into (1.9), we
get

−D
∫ L

0

δqTBTBq dx− ∂

∂t

∫ L

0

δqTNTNq dx = 0 (1.16)

⇔ δqT
[
−D

∫ L

0

BTBq dx− ∂

∂t

∫ L

0

NTNq dx

]
= 0 (1.17)

The time derivative can be derived using first order backward finite difference:

∂f

∂t
=
f t − f t−∆t

∆t
(1.18)

Because N are only functions of x, the single variable affected by the time deriva-
tive are the nodal unknowns q.

⇔ δqT
[
−D

∫ L

0

BTBqt dx−
∫ L

0

NTN

(
qt − qt−1

∆t

)
dx

]
= 0 (1.19)
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Note that in this expression and the following, subscript t refers to the time t,
while capital T denotes the transpose operation.

⇔ δqT
[(
−
∫ L

0

D∆t BTB + NTN dx

)
qt +

(∫ L

0

NTN dx

)
qt−1

]
= 0 (1.20)

Noting that δq is arbitrary, the equation may be simplified as follow

⇔
(∫ L

0

D∆t BTB + NTN dx

)
qt =

(∫ L

0

NTN dx

)
qt−1 (1.21)

This last equation highlights the expressions of stiffness matrix and nodal loads
vector. The expression may then be rewritten as

Ke qte = gte (1.22)

With Ke the elementary stiffness matrix and ge the elementary consistent nodal
loads vector whose expressions are given by

Ke =

∫ L

0

D∆t BTB + NTN dx (1.23)

gte =

∫ L

0

NTNqt−1 dx (1.24)

Equation (1.22) shows that the approximation solution can be found by solving
a linear system where the independent term changes at each iteration (because
dependent of the solution q at previous step).

1.2.3 Stability requirements

This section is dedicated to the study of the integration scheme described previ-
ously.

By inspection, equation (1.17) may be written on the following very general
form,

Cq̇ + Kq = g (1.25)

We assumed that the time derivative was discretized according the a backward-
euler finite differences,

C

(
qt+1 − q

∆t

)
+ Kq = g (1.26)

However, the discretization scheme gives no information on the time at which
should be calculated Kq. In fact two, choices are possible{

Cqt+1 = Cqt −∆tKtqt + gt

Cqt+1 = Cqt −∆tKt+1qt+1 + gt+1

(1.27a)

(1.27b)

The first one is called an explicit integration scheme, the nodal unknown at time
qt+1 depends only on the nodal unknown at previous time qt. One of its main
advantage is that the iteration can be evaluated based on a iteration matrix.
Provided that the stiffness matrix K is constant over time, explicit discretization
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schemes require to determine an iteration matrix once by solving a linear system,
and after, the nodal unknown at time t + 1 are simply obtained from a matrix
multiplication. This explicit discretization scheme is however assorted to stability
conditions [12], stating that the chosen ∆t should not exceed the value of a
critical time step. The second option is an implicit integration scheme. This
one is unconditionally stable, but requires a higher computational cost. The
discretization schemes chosen for all models of this work will be implicit.

1.2.4 Derivation of the expressions of global stiffness ma-
trix and global load vector

Now that the expressions of local stiffness matrix and local nodal consistent load
vector are derived, the studied domain can be extended to a mesh of finite ele-
ments: that is, the studied domain can be discretized in finite elements whose
stiffness matrices and nodal loads vectors are known by (1.23) and (1.24). To
build the global stiffness matrix knowing each local stiffness matrix Ke, it is nec-
essary to perform an assembling operation over each Ke. The same operation is
executed to get gt

K =

Nel

A
el=1

Ke =

Nel

A
el=1

(∫ L

0

D∆t BT
e Be + NT

e Ne dx

)
(1.28)

gt =

Nel

A
el=1

ge =

Nel

A
el=1

(∫ L

0

NT
e Neq

t−1
e dx

)
(1.29)

1.2.5 Shape functions

Because the weak form of the problem (1.9) involves first order spatial derivative,
the shape functions used to build the approximation must be at least linear to
build a sufficiently rich polynomial approximation of c(x). A generic example of
linear shape functions associated to element i are illustrated in Figure 1.1, for a
one-dimensional structured mesh. Their mathematical expressions are given by

N1(x) =
x

l
N2(x) = 1− x

l

With x ∈ [0, l]. Alternatively, the shape functions can be derived as functions
of an adimensional variable ξ ∈ [−1, 1] in order to facilitate the numerical inte-

gration that will be performed in the further steps. Assuming ξ =
2x

L
− 1, we

get

N1(ξ) =
1

2
(1− ξ) N2(ξ) =

1

2
(1 + ξ)

Using the adimensional coordinate system, the first derivative of the shape func-
tion matrix N can be derived using chain rule derivative,

Bi (ξ) =
∂Ni (ξ)

∂x
=
∂Ni

∂ξ
· ∂ξ
∂x

(1.30)
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N1(x) N2(x)•1 • 1

ξx

•· · ·
dof i− 1 dof i+ 2

•· · ·•
dof i
dof (1)

El. i
•

dof i+ 1
dof (2)

L

Figure 1.1: Linear shape functions associated to element i (between brackets,
local node numbering relative to an element)

After calculation of first derivatives, we will obtain the expressions of the matrices
N and B

for x ∈ [0, L]: N =
[x
L

1− x

L

]
B =

1

L

[
−1 1

]
(1.31)

for ξ ∈ [−1, 1]: N =
1

2
·
[
1− ξ 1 + ξ

]
B =

1

L

[
−1 1

]
(1.32)

Using adimensional coordinate system with variable ξ, the expression of the local
stiffness matrix Ke (1.28) can be transformed into

Ke =

∫ 1

−1

(
D∆t BTB + NTN

)
· J dξ (1.33)

Where the jacobian J of the regular transformation can be determined noting
that

ξ =
2x

L
− 1 −→ dξ =

2

L
dx

And then, we get the final expression of the local stiffness matrix

Ke =
L

2

∫ 1

−1

(
D∆t BTB + NTN

)
dξ (1.34)

Moreover, using the same change of variable than in (1.29),

gte =
L

2

∫ 1

−1

NTNqt−1 dξ (1.35)

1.2.6 Numerical Integration

The evaluation of local stiffness matrices and nodal load vectors through equations
(2.37) and (2.38) require both the calculation of an integral. For this purpose, the
Gauss quadrature (also known as Gaussian-Legendre quadrature if the integral
bounds are [−1, 1]) is chosen. This method is more efficient than the ”classical”
trap method because of its ability to integrate exactly polynomial functions, pro-
vided that a sufficient number of Gauss points are chosen, and benefits a higher
accuracy for fewer functions calls.

Figure 1.2 compares the integration of a given 3rd order polynomial by both
methods. It shows that an optimal choice of evaluation points, as suggested by
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the Gauss quadrature method (rather than equally spaced points), improves the
results of the calculation. Further information concerning numerical integration
may be found in [13,14].

− 1√
3

1√
3

ξ

f(ξ)

•
•

•

•

Trap

Gauss Quad2

Figure 1.2: Gauss-Legendre quadrature with 2 Gauss points vs. trap method
illustrated on function f(ξ) = 7ξ3 − 8ξ2 − 3ξ + 3 with ξ ∈ [−1, 1].

The Gauss quadrature method states that a single variable function f(ξ) can
be integrated as follow

I(η) =

∫ 1

−1

f(ξ) dξ ≈
n∑
i=1

H∗i · f(ξ∗i ) (1.36)

Where ξ∗i (with i = 1, . . . , n) are n abscissa defining the location of the n Gauss
points. These abscissa and associated weights are related to the Legendre poly-
nomials: the abscissa ξ∗1 , ξ

∗
2 , . . . , ξ

∗
n are the roots of the nth Legendre polynomial

Pn(ξ) while the associated weights H∗i are defined by

H∗i =

∫ 1

−1

n∏
j=1
j 6=i

t− ξi
ξi − ξj

dt (1.37)

The calculation of these roots and weights for low order Legendre polynomials
offers nowadays little interest as numerous tables already extensively set them
out. Hence, Table 1.1, adapted from [14] will be used in this work.

Regarding the precision of the integration, it is known by [13, 15] that if n
refers to the number of Gauss points used, the integration of a single variable
polynomial of degree of at most p = 2n− 1 is exactly performed. In the present
case, the highest order terms of the polynomial f(ξ) originate from the product
NTN appearing in both (1.34) and (1.35). Because the shape function matrix
N contains linear polynomial, the highest order of f(ξ) is quadratic in ξ. Hence,
the highest order is given by p = 2 and a minimum of 2 Gauss points (n = 2) are
required to perform an exact calculation of the integral following equation (2.39).
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n Roots ξ∗i Weight H∗i

2 0.5773502692 1.0000000000

-0.5773502692 1.0000000000

3 0.7745966692 0.5555555556

0.0000000000 0.8888888889

-0.7745966692 0.5555555556

4 0.8611363116 0.3478548451

0.3399810436 0.6521451549

-0.3399810436 0.6521451549

-0.8611363116 0.3478548451

5 0.9061798459 0.2369268850

0.5384693101 0.4786286705

0.0000000000 0.5688888889

-0.5384693101 0.4786286705

-0.9061798459 0.2369268850

Table 1.1: Roots and weights of nth Legendre polynomials for n = 2, 3, 4 and 5.

1.2.7 Boundary Conditions

Reminding that (1.9) has been obtained neglecting the contribution of boundary
conditions, it is now necessary to formalize the reasons of this choice. The strong
form governs the behavior of the body in any point of an infinite one dimensional
domain. Since the studied domain is finite, this equation can no longer be rep-
resentative for the extremities of the bar. This shortcoming is made up by the
weak form statement (1.8) which accounts for the exchanges with the exterior
domain trough the boundaries. In the present applications, exchanges with the

exterior are modeled by a corrosion flux1 ∂c

∂x
.

If the situation is such that there is no exchange of energy with the exterior (for
example if a half part of an axi-symmetrical body, with axi-symmetrical loading
are studied), the flux will be zero. Otherwise, the exchange is modeled by a non

zero D

[
∂c̃

∂x
· δc̃
]
. The value of

∂c

∂x
is an input of the code, specified by user who

model the influence of the external world at appropriate (and chosen) locations.

Mathematically, the influence of boundary condition may be summarized as
follow

D
∂c̃

∂x
· δc̃ = DδqTNT ∂c̃

∂x
(1.38)

Substituted back in the weak form statement (1.8), and performing the same
operations as the ones done previously on (1.9) leads to

Keqe = gte +D∆tφc (1.39)

1A corrosion flux is strictly speaking meaningless, at least for physical considerations: it
is certainly more suitable to speak about a oxygen flux. But since the fundamental variable
chosen for corrosion diffusion is the corrosion rate c itself, the denomination of corrosion flux
will be kept, bearing in mind that both fluxes are strongly related.
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With φci is a row vector containing the fluxes
∂c̃

∂x
injected in node i from outside

of the domain. This vector is empty except for at most two components (those
related with the nodes located at both extremities). Fluxes are then considered
as loads and simply added to the nodal load vector.

1.3 Model verification

This section is dedicated to the study of the numerical results provided by the
implemented code. This verification focuses only on mathematical aspects and
will not consider the physical aspects of the problem. The aim of this
section is to address the ability of the code to solve the equation (1.4) properly.

1.3.1 Reference solutions

In order to assess the quality of the solution provided by the model detailled
in the previous section, the present solution will be compared with a reference
solution. Since the studied problem is uni-dimensional, it is still reasonable to
search for an analytical solution. The analytic development explained hereafter
depends on the type of boundary conditions enforced: in order to assess the ability
of the developed model to accommodate both essential and natural boundary
conditions, two test cases will be considered and confronted with their respective
analytical solution. For this reason, the analytical developments will be split into
two sections.

First solution (essential BC’s)

We are searching for a the function c(x, t) such that

∂c

∂t
= D · ∂

2c

∂x2
(1.40)

With initial conditions given by a general function of x and constant boundary
conditions 

c(0, t) = cx0
c(L, t) = cxL
c(x, 0) = f(x)

(1.41a)

(1.41b)

(1.41c)

The non-homogeneous initial and boundary conditions add a certain complexity
to this problem. To make it simpler, it is suggested to split it into two independent
and simpler problems. Firstly a non-homogeneous steady state problem, whose
solution is given by function d(x)and with boundary conditions:

d(0) = cx0 d(L) = ccL (1.42)

The second problem is a homogeneous transient problem whose solution is de-
scribed by function c∗(x, t) with initial conditions

c∗(x, 0) = F (x) = f(x)− d(x) c∗(0, t) = 0 c∗(L, t) = 0 (1.43)
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The two previous problems are coupled by the following equation, expressing that
the solution of problem (1.40) is the sum of a spatial and time-dependent function
and a purely spatial function.

c(x, t) = d(x) + c∗(x, t) (1.44)

Substituting c(x, t) into (1.40), we get

∂d

∂t
+
∂c∗

∂t
= D ·

(
∂2d

∂x2
+
∂2c∗

∂x2

)
This equation is split into a system of two equations, each of them addressing
one of the two problems described previously

∂2d

∂x2
= 0

∂c∗

∂t
= D · ∂

2c∗

∂x2

(1.45a)

(1.45b)

Equation (1.45a) is readily solved by,

d(x) = Ax+B

Enforcing the boundary conditions (1.42),

d(x) = (ccL − cx0) ·
x

L
+ Cx0 (1.46)

The time-dependent function (1.45b) can now be solved. Assuming the separation
of variable

c∗(x, t) = φ (x) · Γ(t) (1.47)

where the concentration is a function of x whose amplitude is modulated by Γ(t),
a time-dependent function (principle analogous to the one followed in the theory
of vibration of continuous systems [16]). Substituting (1.47) into (1.45b), we get

DΓ(t) · ∂
2φ

∂x2
= φ(x) · ∂Γ

∂t
⇔ D

φ(x)
· ∂

2φ

∂x2
=

1

Γ(t)
· ∂Γ

∂t
(1.48)

As φ is a function of x only, the left hand side of (1.48) is only a function x,
while the right hand side must be a function of t. Given that (1.48) imposes both
terms to be equal, it results that they are both constant. Assuming this constant
to be −ω2,

D

φ(x)
· ∂

2φ

∂x2
=
∂Γ

∂t
· 1

Γ(t)
= −ω2 (1.49)

Last equation can be one transformed into te following system,
D
∂2φ

∂x2
+ ω2φ(x) = 0

∂Γ

∂t
+ ω2Γ(t) = 0

(1.50a)

(1.50b)

Both equations can be solved independently using classical method for linear
differential equations, to get{

φ(x) = A∗ · sin(kωx) +B∗ cos(kωx)

Γ(t) = C∗ · exp
(
−ω2t

) (1.51a)

(1.51b)
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with k = 1/
√
D. Substituting these solutions in (1.47), one get

c∗(x, t) = [A · sin(kωx) +B · cos(kωx)] · exp
(
−ω2t

)
(1.52)

After, the boundary conditions (1.43) are imposed: from c∗(0, t) = 0, we get
B = 0. The second boundary conditions c∗(L, t) = 0 gives2

A · sin(kωL) = 0 ⇒ kωL = nπ (n = 0, 1, . . . ) (1.53)

Hence, at each value of n corresponds one solution of the boundary conditions.
As a result, it exists an infinite number of solution cn(x) of (1.40):

cn(x, t) = An · sin (ωnkx) · exp
(
−ω2

nt
)

(1.54)

With
ωn =

nπ

kL
(n = 0, 1, . . . ) (1.55)

The superposition of every cn(x) gives

c∗(x, t) =
∞∑
n=1

c∗n(x, t) =
∞∑
n=1

An sin
(nπx
L

)
· exp

(
−n

2π2

k2L2
t

)
(1.56)

The constants An are then determined imposing the initial conditions,

c∗(x, 0) = F (x) =
∞∑
n=1

An · sin
(nπx
L

)
(1.57)

This last equation is by definition the Fourier sine series of function F (x) and An
is therefore expressed by

An =
2

L

∫ L

0

F (x) · sin
(πnx
L

)
dx (1.58)

Finally, substituting into (1.44) gives the final solution

c(x, t) = cx0 + (cxL − cx0) ·
x

L
+
∞∑
n=1

An · sin
(nπx
L

)
· exp

(
−n

2π2

k2L2
t

)
(1.59)

Second solution (natural BC+essential BC)

A second study case will be considered with one boundary condition of type
”flux”, i.e. such that 

∂c

∂x
(0, t) = φ0

c(L, t) = cxL
c(x, 0) = f(x)

(1.60a)

(1.60b)

(1.60c)

In that case, the solution is derived in an analogous manner, and takes the final
form,

c(x, t) = cxL +φ0 (x− L)+
∞∑
n=1

An · cos

[(
n− 1

2

)
πx

L

]
· exp

[
−
(
n− 1

2

)2
π2

k2L2
t

]
(1.61)

2The solution A = 0 is set apart because trivial and non interesting.
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With

An =
2

L

∫ L

0

F (x) · cos

[(
n− 1

2

)
πx

L

]
dx (1.62)

Note that both equations (1.59) and (1.61) include a Fourier series. Because it
is numerically impossible to deal with a semi infinite sum, a truncation of these
sums must be operated. In that case, a deterioration of the analytical solution will
appear, especially in zone of discontinuities or brutal changes of c(x) (describing
the initial conditions). This phenomenon, well known when working with Fourier
series is called Gibbs phenomenon and causes larger deterioration of the solution
as the truncation in n increases and as the variation of the function is steep.
Subsequently, it must be borne in mind that the analytical solution can be less
reliable in zones where the corrosion level c is expected to change rapidly. This
phenomenon is illustrated in Figure 1.3 for two different time values. As it can be
seen, its effects become rapidly negligible once the discontinuities in c have been
softened (in the situation illustrated, after 0.001 seconds, the Gibbs phenomenon
is no more detectable for n = 2000).
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(b) At t = 10−3 s

Figure 1.3: Illustration of Gibbs phenomenon at different time values, and for
different truncation of the Fourier series ( used: cx0 = 100%, cxL = 25% and
c0 = 0% and D = 0.1 m2 s−1)

1.3.2 Study case 1

The first study case consists in a one meter long bar, subjected to two essential
boundary conditions. The situation is schematically shown in Figure 1.4. The

c(x, 0) = 0%•c(0,t) =
100%

• c(L,t) =
40%

L = 1 m

Figure 1.4: Initial and boundary conditions for study case 1

results are directly obtained from Fortran code, before being submitted to post
processing in Matlab. They are displayed in Figure 1.5 and compared to the
analytical solution (1.61), for 4, 10 and 25 elements.
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(a) With 4 elements
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(b) With 10 elements
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(c) With 25 elements

Figure 1.5: Comparison between analytical and numerical solutions for study case
1 (∆t = 0.02, D = 0.1 m2 s−1 )
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Figure 1.6: Evolution of the error with the time for first test case with t ∈ [0, 1]
(Parameters used in this Figure have been adapted because error definition is
not defined if c0 = 0. The initial and boundary conditions have all been slightly
shifted by c = 10. Thus parameters used for this figure are: c1 = 110%, c2 = 50%,
c0 = 10%, D = 0.1 m2 s−1)
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Some observations can be made when comparing these 3 figures.

• The higher the number of elements, the closer the results of the FEM
method to the analytical solution. This is of course expected, as a finer
mesh must provide a more accurate solution.

• As the time increases, the transient term of (1.4) becomes more and more
negligible and one progressively tends to the steady state solution. For such
boundary conditions, this solution is linear.

• For a small number of elements (e.g. Figure 1.5 (a)), the results are less
accurate for small values of t (i.e. the first iterations). In these time regions,
the actual state of the system (=initial state) is far from the steady state
regime, and the evolution is governed by the transient term. Mathemati-

cally, the quantity
∂2c

∂x2
in equation (1.40) generates a large time variation

in corrosion rate to satisfy the equality. There is an analogy with mechan-
ical systems: a large force will generate a large acceleration of the mass.
The use of a small ∆t would therefore be suggested to model properly the
motion in time zones where rapid changes are expected.

However, this is not the case as the integration scheme is not responsible
for these errors. For further explanations, Figure 1.6 will be considered,
where an evolution of the error is displayed as a function of time. The error
chosen to characterize the quality of the numerical solution is

Error(t) =

√√√√ 1

Ndofs

Ndofs∑
i=1

(
cth(t)− cFEM(t)

cth(t)

)2

(1.63)

The 3 solutions (for 5, 10 and 25 elements) experience all a large error for
small values of time, indicating incontestably that the FEM solution is less
reliable in this time regions. Comparing the different curves shown in Fig-
ure 1.6 shows that opting for a smaller ∆t does not change the amplitudes
of the peaks3. The errors are however considerably minimized increasing
the number of elements in the mesh. It results that the most efficient way
to minimize the error is to refine the spatial mesh, rather than the time
step.

Notice that, since we are trying to estimate an error for small values of time,
a special attention has been payed to the n number of coefficients in the
Fourier series during the computation of Figure 1.6 (cfr. (1.59) and (1.61)).
A value of n = 300 has been chosen, higher values leading to unnecessary
calculations in the post-processing. Figure A.1 at page A1 illustrates the
Gibbs phenomenon for several values of n at t = 4×10−3 (i.e. the first time
value that we considered in Figure 1.6) and prove that n = 300 gives entire
satisfaction.

• The differences in amplitudes of the peaks show how important adopting a
fine mesh to approach the analytical solution is, especially in zones of high

3A direct comparison of the amplitudes of the peaks may be confusing at the first glance, as
the time step is coarser for the dotted lines and the error is represented with a lower resolution.
This low resolution averages the amplitude of the real peak: some differences are hence observed
in amplitudes with curves related to ∆t = 0.004 but we can not guarantee that they are ”real”
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corrosion gradient. Remember that the finite element method imposes the
weak form equation to be satisfied on average inside an element: if a coarse
mesh is chosen, the approximate solution will inadequately represent zones
of high corrosion gradient. As a results: the error will always be negatively
affected by a peak whose amplitude can be bounded by an adequate choice
of ∆x.

• Another interesting feature to note from Figure 1.5, is that the error com-
mitted during the first iterations do not compromise the quality of the
approximated solution further in the iterations: the higher the time the
closer to the analytical solution. The error is then not accumulated with
the time. This can also be observed in Figure 1.6, with the horizontal
asymptotic behavior for t tending to infinity.

1.3.3 Study case 2

The first study case examined a situation with only essential boundary condi-
tions. Here, we will a study another situation mixing both essential and natural
boundary conditions. As a reminder, essential boundary conditions are condi-
tions applied on unknown field (so one value of c is imposed at one boundary)
while natural boundary conditions are applied on its first spatial derivative (flux
boundary condition). The scheme represented at Figure 1.7 represents the con-
sidered case. A flux of 2.5m−1 and a constant corrosion rate c = 25% are applied
respectively at the left and right boundaries of the one dimensional bar.

c(x, 0) = 25% • c(L,t) = 25%∂c
∂x (0, t) = 2.5m−1 −→

Figure 1.7: Initial and boundary conditions for study case 2

Results obtained from the code are shown in Figure 1.8. For 5 elements meshes
or more, it provides nearly superimposed curves so that it is nearly impossible
to distinguish theoretical from numerical curve especially for times far from the
initial time. Once more, the numerical solution is less accurate in zones where
the corrosion gradient appears to be high. The closer the corrosion rate from the
steady state solution, the smaller the gradient and the smaller the error. Thus,
here again, the code accommodates better gradients of corrosion when a finer
mesh is chosen. Figure 1.9 displays the time evolution of the RMS global error,
for 3, 5 and 10 elements meshes. The error is larger for the 3 nodes meshes as
expected. The graph is also marked by peaks similar to the ones observed in
Figure 1.6: their presence must be attributed to the same reasons mentioned
earlier.

The presence of a flux at the left boundary increases gradually the corrosion
rate c. This increase in c propagates trough the whole domain excepted at the
right boundary where a corrosion rate is imposed constant at 25%. Corrosion
increases up to a certain point, when the steady state solution is reached: the
final distribution of c is linear across the domain (the slope is given by φ/D with
φ the global flux resulting from the essential and natural boundary conditions
applied on both extremities).
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Figure 1.8: Comparison between analytical and numerical solutions for study case
2 (parameters: ∆t = 0.02 s, D = 0.1 m2 s−1, c(L, t) = 25%, c(x, 0) = 25% and
flux φc(0, t) = 2.5 m−1 )
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Figure 1.9: Time evolution of global RMS error for study case 2(parameters:
∆t = 0.2 s, D = 0.1 m2 s−1, c(L, t) = 25%, c(x, 0) = 25% and flux φc(0, t) = 2.5
m−1 )

Note finally that several easy but fast checks can be done on the aspect (and
also values) of both numerical results and analytical solution (at least regarding
the steady state solution), by using an analogy with heat transfer equation. The
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fundamental equation of heat diffusion, which is identical to (1.4), is:

k · ∂
2T

∂x2
=
∂T

∂t
(1.64)

In the particular case of a steady state regime, the Fourier law is recovered by
integration, which establishes [17] a link between the gradient of temperature (by
analogy with the gradient of corrosion) and the heat flux (by analogy with the
corrosion flux)

qx = k
dT

dx
⇒ ∆T =

qx
k
·∆x (1.65)

Applied to our study case, we obtain in steady state:

φc = D · ∂c
∂x
⇒ ∆c =

φc
D

∆x =
2.5

0.1
= 25 (1.66)

Which is indeed the difference in c observed in Figure 1.8. This analogy can be
useful to perform fast physical checks of the obtained results (example: steady
state linear distribution as in Figure 1.8, etc, . . . ) and is of course valid whatever
the study case, because it is inherent to the natural diffusion phenomenon.

1.4 Model validation

In this section, numerical results provided by the implemented code will be com-
pared with experimental results: whilst the question addressed in section 1.3 was
to determine whether the code was correctly implemented (i.e. the mathematical
problem was correctly solved), this section focuses on determining if the natural
diffusion process does correctly match with the corrosion diffusion phenomenon.

Due to the short duration of this master thesis, it was not envisaged to carry
out experiments. Therefore experimental data have been obtained from literature
where several references used to study hot corrosion of superalloys.

1.4.1 Few comments about experimental data

All the reviewed experiments consist of samples placed in a furnace at various
constant temperatures for different periods of time. Therefore, corrosion takes
place uniformly from all the boundaries of the sample and diffuses directly into
the core, which consists in one-dimensional corrosion diffusion process. Such
studies may then only be used to validate the 1D model, as they involve only 1D
diffusion.

In time, corrosion progress is usually quantified by measuring the evolution of
a weight gain [18] and a descaling loss. The descaling weight4 (or weight loss) is
the mass per unit (mg cm−2) of area lost during the descaling operation which
consists in the removal of all corrosion products present on the sample surface
(such as sulfides, oxides, . . . ). Thus, this descaling operation does not affect
the precipitates present in the metal matrix (internal oxides), but only oxides

4The term ”weight” is commonly employed in the literature, even if improper.
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concerned by spallations. Figure 1.10 shows a photograph of the oxide layer and
of the internal oxides present in the metal matrix of a a TI-15-3 alloy, after 3
hours at 700 ◦C. The weight gain (mg cm−2) refers to the change in mass due to

P
h
ot
og
ra
p
h
ta
ke
n
fr
om

[3
]

Figure 1.10: S.E.M. photograph of the oxide layer thickness, with internal oxides
formed after 3h in 700 ◦C

oxidation and is mathematically expressed as

∆m =
mf −mi

S0

(1.67)

With mf and mi respectively the final and initial mass of the sample, and S0 the
initial sample surface5. This weight gain is hence a measure of the mass gain due
to internal corrosion. Such approach can not directly be used, as our numerical
model predicts corrosion rate evolution: it provides thus information regarding
the oxygen concentration rather than about the mass of oxides formed during
the corrosion process. However, a relationship between corrosion rate and oxides
mass can be found [1], accounting for the density of the formed oxides.

Alternatively, the depth of corrosion can be determined by focused ion beam
(FIB) measuring the thickness of oxide layer or even by spectroscopy giving the
EDS map. These two methods provide a local information for both the internal
oxides depth and oxidation layer thickness.

In order to proceed to a relevant the comparison with experimental data, two
last issues need to be discussed. The first is about the type of boundary condi-
tions. Several authors [19], [3] and [20] have opted for specifying c at the boundary
(essential boundary conditions) while [2] described that the corrosion process is
instigated by a time-dependent flux imposed at the boundary. The expression of
this flux is readily determined from the oxidation kinetics which obeys a logarith-
mic law at low temperatures or follows a parabolic law at high temperatures [21].
Starting from this last parabolic law, [2] derived an expression of oxygen flux:

(∆m)2 = kpt ⇒ φO2 =
d

dt
(∆m)2 =

1

2

√
kp
t

(1.68)

with ∆m the mass gain and kp the parabolic oxidation growth rate. Even if both
types of boundary conditions have been implemented in the code (and verified in

5this definition assumes that the sample is prismatic
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section 1.3), the second option will be preferred as they are more widely covered
by scientific literature.

As explained previously, the experimental results are giving the time evolution
of the oxide layer thickness. Our model currently predicts the distribution of the
corrosion rate (i.e. the oxygen concentration) but not explicitly the oxide layer
thickness. As the diffusion process is slow (D ∼ 10−6 µm s−2), the oxidation
reaction may be assumed to take place instantaneously [3], [22] and it exists
henceforth a threshold beyond which the alloy matrix can be supposed completely
oxidized. [3] suggested to take this upper bound limit as 65% of the boundary
condition value (for example, if c(x = 0, t) = c0 is imposed at the boundary, all
points characterized by c > 0.65c0 will be completely oxidized).

1.4.2 Results

The first set of data is taken from [1] who studied hot corrosion for hardened
nickel based RR1000 alloy from 700◦C to 800◦C. For each temperature, the mass
change was measured every 10h to reach the 200 hours of testing. The oxide layer
thickness was then calculated assuming that 1 mg cm−2 represents6 an increase by
6.08 µm. Thus, oxide layer depth was determined by calculations and not directly
measured.
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Figure 1.11: Comparison of numerical and experimental results taken from [1].
Parameters used for simulation in Table 1.2.

Figure 1.11 compares the numerical and experimental results for 700, 750 and
800◦C. Parameters used in the simulation are displayed in Table 1.2. Unfortu-
nately, the constants D have not been measured in [1], and consequently, chosen
value of D have been taken from [2] who studied the same alloy at the same
temperature. As it can be seen in Figure 1.11, the numerical curve fits the
experimental data fairly well for the lowest temperature 700◦C. However, the
predictions are less accurate for higher temperatures, sometimes overestimating
the actual layer depths, sometimes underestimating it. In all cases, the global
square root time evolution is well captured, despite of the errors that reach more
or less 30%. This indicates surely a bad parameters fitting (D in our case which

6based on atomic weight of oxygen and chromium and assuming that the oxidized matrix
contains no pores (i.e. the calculated oxide layer thickness could be slightly underestimated)
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Parameter Value Unit

c(x, 0) 0 %
c(0, t) 100 %
cox 65 %

D (T = 700◦C) 1.397× 10−6 µm s−2

D (T = 750◦C) 5.859× 10−6 µm s−2

D (T = 800◦C) 14.23× 10−6 µm s−2

∆t 100 s
∆x 0.125 µm

MaxTime 200 h

Table 1.2: Parameters used for simulation Figure 1.11

regulates the propagation speed). We should not be surprised that the values of
D picked from [2] do not match exactly those from [1] if they had been calculated.
Indeed, as the experimental protocol is not exactly the same in both experiments,
measurements of D are inevitably impacted.

Another way to convince the reader that the code predicts correctly the evolu-
tion of the oxide layer depth is to proceed to an a posteriori fitting with exper-
imental data to determine D. Results shown in Figure 1.12 have been obtained
with a such fitting for D: the diffusivities were determined to fit properly the
first 5 experimental data (0 < t < 40h) for each temperature. As the behavior
for 0 < t < 40h is imposed by the fitting, observations that are made in this time
region are skewed, and we must rather pay attention to experimental data with
t > 40. Numerical predictions for t > 40h are rather accurate, indicating that,
with a single suitable coefficient D, the corrosion propagation is well modeled.
This also proves once more that the natural diffusion process is well adapted to
the corrosion diffusion phenomenon.
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Figure 1.12: Comparison of numerical and experimental results taken from [1].
Parameters used for simulation in Table 1.2, and D for each temperature in
Table 1.3 (a posteriori fitting for D)
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T [◦C] D [µm s−2]

700 1.75× 10−6

725 2.55× 10−6

750 3.73× 10−6

775 11.0× 10−6

800 21.7× 10−6

Table 1.3: Diffusion coefficient D determined by a posteriori fitting used in sim-
ulation Figure 1.12

1.4.3 About determination of diffusivity

The numerical curves are, as shown previously, relatively sensitive to the diffusion
constant D whereas a certain uncertainty remains about its real value7. In order
to exploit even more the available data, and discuss in detail the capabilities
of the numerical model, several ways to determine the constant D have been
investigated, based on the available data.

Several authors [21] proposed relationships linking the oxide layer thickness with
time t and diffusivity D. In general, these relationships repose on the kinetics of
the oxidation reaction. In the study case [1], oxidation kinetics is of second order
and the relationship is given by the following equation

X2 = Dt (1.69)

with X the oxide layer thickness (including both external and internal damage)
that can be measured from F.I.B. microscopy. Since F.I.B. analysis provides local
rather than global value for X, it is necessary to perform several measurements
of X all along the sample surface, to approach an average value for X (and D
consequently). Instead of an averaged value of X, it may be preferred to seek
for the maximal X, as it constitutes the most conservative value. Study [1] has
determined from F.I.B. microscopy maximal values of X after 200 hours at 700,
750 and 800◦C. Starting from these values, the corresponding diffusion coefficients
D have been calculated with (1.69) (values are exposed in Table 1.4).

T [◦C] X [µm] D [µm s−2]

700 1.45 2.901× 10−6

750 2.1 6.125× 10−6

800 3.9 21.13× 10−6

Table 1.4: Upper values of internal oxidation depth from FIB examination (taken
from [1]) and corresponding diffusion coefficients D, for different temperatures

The numerical results superimposed with experimental data are shown in Fig-
ure 1.13. The 3 numerical curves experience the same global shape but are not
completely in accordance with experimental data, by overestimating the real ox-
ide layer thickness. The overestimation arises especially for T = 700◦C and 750◦C.

7D being function of the surface state [23], the alloy composition and thus the oxide content
[3] but is also strongly influenced by temperature, etc.
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For 700◦C for example, the numerical solution predicts an oxide layer 30% thicker
as it is, after 200 hours. Compared with the previous simulation (Figure 1.11),
diffusion coefficient D is more than twice the value referenced by [2]. Conse-
quently, as the numerical model strongly depends on the diffusivity, a certain
non negligible error can be induced by an inadequately chosen constant D. If a
maximal value for X is considered, it must be kept in mind that this will result
in a overestimation of the oxide layer thickness.
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Figure 1.13: Comparison of numerical and experimental results taken from [1].
Parameters used for simulation in Table 1.2, and D for each temperature in
Table 1.4.

It has been said before thatD is strongly dependent of the working temperature.
Authors [24] and [21] suggested that a standard relationship between D and
temperature T was given by Arrhenius equation:

D(T ) = D0 · exp

(
−Q
RT

)
(1.70)

where Q is the activation energy, R the universal gas constant and D0 a constant.
[24] warned however that this equation should be considered as a basic standard
rather than a usual generality. This last equation provides indeed a convenient
way to extrapolate value of D for different temperatures, as long as D0 and
Q are known. For example, experimental data for T = 725◦C are available
in [1] but D is not known at this temperature. Using D at 700◦C as it was
done in Figure 1.11 (which has led to a good fitting), we can calculate D0 and
subsequently extrapolate D from (1.70) at chosen temperature. Extrapolated
values of D are given in Table 1.5 and corresponding numerical results are shown
in Figure 1.14. Results for 700◦C and 750◦C are overevaluated by about 30% and
are more accurate for 800◦C. As stated by [24], diffusivity extrapolation from
(1.70) gives indicative yet not perfectly reliable outputs as it may result in an
overestimation.

Finally, it must be held in mind that the numerical model does not account for
material variability in its current development: D is kept constant everywhere
and at all times. This is of course never observed in reality as the oxygen diffu-
sivity is larger in oxides products than in alloy matrix. Keeping D constant over
both oxidized and sane matrix will hence lead to an underestimation of oxide
layer thickness and therefore to unconservative results. No paper about study
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T [◦C] D [µm s−2]

725 3.2238× 10−6

750 7.1415× 10−6

775 15.231× 10−6

800 31.358× 10−6

Table 1.5: Extrapolated values of D from (1.70) for different temperatures
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Figure 1.14: Comparison of numerical and experimental results taken from [1].
Parameters used for simulation in Table 1.2, and D for each temperature in
Table 1.5.

of diffusivity in oxidized matrix have been found in the literature. [3] considered
all the same two distinct diffusivities D1 and D2 in his model for oxidized (or
non-oxidized) domains. Even if the lack of reference for diffusivity in oxidized
matrix prevents to perform a relevant comparison between experimental data
and numerical results (generated by the code involving 2 distinct constants D1

and D2), this functionality has nevertheless been developed in the code.

1.5 Conclusion

As a conclusion of this chapter dedicated to the first one-dimensional model, some
conclusion must be retained.

The code developed numerically assumed that corrosion diffusion was a purely
diffusive phenomenon. The diffusivity D was kept constant in the equations
development, even if the code can accommodate a non-uniform distribution of D
(for example for oxidized domain and alloy matrix).

Regarding the verification, it has been shown that

• Refining the mesh lead to a smaller error and then a more accurate solution.

• Even for coarse meshes, the numerical solution provides acceptable results.
Results become truly accurate from 10 elements, even if the situation in-
volves brutal changes in c.
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• The largest errors are experienced at the instant following immediately the
initial time, and more generally anywhere where the gradient of corrosion
is high. This error can be decreased by opting for a finer mesh rather
than decreasing the time step. Moreover, refining the time step has not
led to a smaller error, indicating that the time integrating scheme is not
questioned. The problem was rather due to finite element method who
enforce the weak form to be satisfied on average in an element, and if a
coarse mesh was chosen, the numerical model was not sufficiently reach to
accommodate high gradients of c (and even less so for brutal discontinuities
such as imposed at the beginning of the first test case). Finally these errors
do not affect the quality of the approximation solution for larger values of
time (i.e. these errors are relative and not absolute and are consequently
not accumulated).

• The code can model essential as well as natural boundary conditions.

Based on of these considerations, the code is considered as verified.

Regarding the validation step, it was firstly investigated whether essential or
natural boundary conditions should be considered to model the inflow of oxygen
into the solid. Only essential boundary conditions have been considered in the
validation step.

In order to compare our numerical predictions with experimental data, it has
been assumed that the alloy matrix was fully oxidized as soon as the corrosion
rate c reached 65% of the value c0 at the boundary. According to the transient
diffusion pattern (the closer to the boundaries, the higher the corrosion rate),
this assumptions induces a systematic splitting of the solid into two domains:
one fully oxidized and one alloy matrix. The diffusivity is not the constant across
both domains but was assumed to be in the validation process (the considered
experiment was not providing value of D in oxidized matrix). However, this
feature has been implemented in the code (it can thus accommodate non uniform
distribution of D).

The present analysis finally proved that the natural diffusion equation de-
veloped in this model was appropriately chosen to predict the oxide layer
depth time evolution provided that the constantD was known. Several difficul-
ties were experienced to match completely the experimental data as no perfectly
consistent values for D were provided in the considered experiment. Hence, the
question of the determination of the diffusion coefficient D was investigated.

Several methods for determination of D have been approached in the previous
section. One of them resulted in a conservative overestimation of D and subse-
quently an overestimation of the oxide layer thickness. This was likely caused by
FIB microscopy analysis protocol that was only retaining the maximal values
of depths of internal oxidation (= X). More realistic (but less conservative)
values of D could be approached by considering averaged values of depths of
internal oxidation (not communicated in the reviewed experiments). Arrhe-
nius equation was used to extrapolated D at different temperatures and has led
to rather uncertain results providing sometimes fairly accurate results, sometimes
overestimates by about 30%.



Chapter 2

Two-Dimensional and transient
corrosion diffusion model

This chapter is dedicated to the extension of the first model to a two dimension
space.

2.1 Derivation of the differential equation

As it has been done previously, it will be assumed, in accordance with [2], that
the corrosion diffusion follows a purely diffusive law.

∂c

∂t
= ∇ · (D∇c−MDc∇p) (2.1)

If the diffusivity D is constant and the pressure factor is neglected, one have

∂c

∂t
= D∇2c = D∆c (2.2)

Or alternatively,
∂c

∂t
= D

(
∂2c

∂x2
+
∂2c

∂y2

)
(2.3)

Once more, this last equation is a purely natural diffusive partial differential
equation and represents the propagation of the corrosion inside the material.

2.2 Solving of the partial differential equation

by finite elements method

2.2.1 Derivation of the weak form of the problem

The weak form of the problem can be derived using the weighted residual method.
An approximation function c̃(x, y) ≈ c(x, y) will be looked for. The weighted

29
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residual is formed by considering this approximation function and introducing
one weighting function δc̃(x, y), and integrating over a studied volume

WR =

∫
V

D ·
(
∂2c̃

∂x2
+
∂2c̃

∂y2

)
· δc̃ dV −

∫
V

∂c̃

∂t
· δc̃ dV (2.4)

The thickness e of the considered plate is supposed to be constant, the integra-
tion over the volume gives the following expression

⇔ WR = eD ·
∫

Ω

(
∂2c̃

∂x2
+
∂2c̃

∂y2

)
· δc̃ dΩ− e ·

∫
Ω

∂c̃

∂t
· δc̃ dΩ (2.5)

The Green-Ostrogradski’s theorem enables to transform the first integral over a
surface in (2.5) into a line integral performed over the surface boundaries plus an
integral over the same surface:∫

Ω

φ
∂ψ

∂x
dΩ =

∮
Γ

(φψ) dΓ−
∫

Ω

ψ
∂φ

∂x
dΩ

Applied to (2.5), with ψ = ∂c̃
∂x

and φ = δc̃, this gives

WR = eD·
∮

Γ

(
∂c̃

∂x
+
∂c̃

∂y

)
·δc̃ dΓ−eD·

∫
Ω

(
∂c̃

∂x
· ∂δc̃
∂x

+
∂c̃

∂y
· ∂δc̃
∂y

)
dΩ−e

∫
Ω

∂c̃

∂t
·δc̃ dΩ

(2.6)
Finally, the weighted residual WR is equaled to zero.

D ·
∮

Γ

(
∂c̃

∂x
+
∂c̃

∂y

)
· δc̃ dΓ−D ·

∫
Ω

(
∂c̃

∂x
· ∂δc̃
∂x

+
∂c̃

∂y
· ∂δc̃
∂y

)
dΩ−

∫
Ω

∂c̃

∂t
· δc̃ dΩ = 0

(2.7)
Equation (2.8) defines the weak form of the problem. The first term represents
the boundary conditions while the second and third terms describe the diffusion
phenomenon respectively in terms of space (inside the studied space) and in terms
of time.

For convenience, the boundary conditions term of (2.7) will be treated apart in
section 2.2.6, assuming here that it has no influence on the weighted residual. In
other words, the weak form will be considered as:

−D ·
∫

Ω

(
∂c̃

∂x
· ∂δc̃
∂x

+
∂c̃

∂y
· ∂δc̃
∂y

)
dΩ−

∫
Ω

∂c̃

∂t
· δc̃ dΩ = 0 (2.8)

2.2.2 Derivation of the expressions of local stiffness ma-
trix and local nodal load vector

Everywhere inside a finite element, the continuous scalar field c(x, y) is approxi-
mated by c̃(x, y), which can be expressed as a linear combination of a chosen set
of shape functions:

c(x, y) ≈ c̃(x, y) =

ndof∑
i=1

Ni(x, y) · qi (2.9)
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Where Ni(x, y) represents the shape function associated to degree of freedom i,
while qi is the nodal unknown associated to the same degree of freedom. Note
that ndof refers to the number of degree of freedom of the considered element.
This equation may be rewritten on a vectorial form

c̃(x, y) = Nq (2.10)

The shape function vector N is a 1-by-ndof vector while q is a column vector with
as many components. Subsequently:

N =
[
N1(x) N2(x) · · · Nndof

(x)
]
, q =


q1

q2

· · ·
qndof


Before substituting the approximation function c̃(x, y) in the weak form, several
additional quantities need to be expressed as a function on these Ni(x, y). The
vector weighting function δc̃(x, y) can be expressed as

δc̃(x, y) =

ndof∑
i=1

Ni(x, y) · δqi = N · δq (2.11)

From (2.9), it is easy to prove that

∂c̃

∂x
=

ndof∑
i=1

∂Ñi

∂x
· qi

∂c̃

∂y
=

ndof∑
i=1

∂Ñi

∂y
· qi (2.12)

Once more, the vectorial formalism will be preferred,

∂c̃

∂x
= Bxq

∂c̃

∂y
= Byq (2.13)

where

Bx,i =
∂Ni

∂x
By,i =

∂Ni

∂y
(2.14)

It can be proven in the same way that

∂δc̃

∂x
= Bxδq

∂δc̃

∂y
= Byδq (2.15)

And because δ̃c is a scalar quantity: δc̃T = δc̃ and c̃T = c̃ and subsequently :
δqTNT = Nδq and qTNT = Nq. Substituting all these previous quantities into
the weak form (2.8) gives the following:

−D
∫

Ω

BxqBxδq + ByqByδq dΩ− ∂

∂t

∫
Ω

NqNδq dΩ = 0 (2.16)

⇔ −δqT
(
D

∫
Ω

BT
xBx + BT

y By dΩ

)
q− δqT ∂

∂t

∫
Ω

NTNq dΩ = 0 (2.17)

The time derivative can be derived using first order backward finite difference:

∂f

∂t
=
f t − f t−∆t

∆t
(2.18)
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Because N are only functions of x, the single variable affected by the time deriva-
tive are the nodal unknowns q.

⇔ −DδqT
(∫

Ω

BT
xBx + BT

y By dΩ

)
qt − δqT

∫
Ω

NTN

(
qt − qt−1

∆t

)
dΩ = 0

(2.19)
With several operations,

δqT
(
−
∫

Ω

D∆tBT
xBx +D∆tBT

y By + NTN dΩ

)
qt + δqT

∫
Ω

NTN dΩ qt−1 = 0

(2.20)
Noting that δq contains only arbitrary components, the equation may be simpli-
fied as follows(
−
∫

Ω

D∆tBT
xBx +D∆tBT

y By + NTN dΩ

)
qt +

∫
Ω

NTN dΩ qt−1 = 0 (2.21)

This last equation highlights the expressions of stiffness matrix and nodal loads
vector. This expression may then be rewritten as

Ke qte = gte (2.22)

With Ke the elementary stiffness matrix and g the elementary consistent nodal
loads vector whose expressions are given by

Ke =

∫
Ω

D∆tBT
xBx +D∆tBT

y By + NTN dΩ (2.23)

gte =

∫
Ω

NTN dΩ qt−1 (2.24)

Equation (2.22) shows that an approximating solution of (2.3) can be found by
solving a linear system where the independent term changes at each iteration (is
dependent of the solution q at previous step).

2.2.3 Derivation of the expressions of global stiffness ma-
trix and global load vector

Now that the expressions of local stiffness matrix and local nodal consistent load
vector have been derived, the studied domain can be extended to a mesh of finite
elements. The studied domain can be discretized in finite elements whose stiffness
matrices and nodal loads vectors are known. To build the global stiffness matrix
K knowing each local stiffness matrix Ke, it is necessary to perform an assembling
operation over each Ke. The same operation is executed to get gt

K =

Nel

A
el=1

Ke =

Nel

A
el=1

D

∫
Ω

∆tBT
xBx + ∆tBT

y By + NTN dΩ (2.25)

gt =

Nel

A
el=1

ge =

Nel

A
el=1

(∫
Ω

NTN dΩ qt−1

)
(2.26)

By solving the following linear system for qt

Kqt = gt

the approximating solution c̃(x, y) of equation (2.3) can be found all across the
domain considering

c̃(x, y) = Nqt
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2.2.4 Shape functions

As the weak form of the problem (2.8) involves first order spatial derivative,
the shape functions used to build the approximation must be at least linear.
Therefore, two dimensional finite elements with 4 nodes1 (= quad4 element, see
Figure 2.1-(a)) are used.

To describe the shape function, only the reduced dimensionless coordinates
system will be used in order to facilitate the integration of the local stiffness ma-
trices. The associated elementary shape functions expressed in the dimensionless
coordinates system are given by

N1(ξ, η) =
1

4
(1− ξ) (1− η)

N2(ξ, η) =
1

4
(1− ξ) (1 + η)

N3(ξ, η) =
1

4
(1 + ξ) (1 + η)

N4(ξ, η) =
1

4
(1 + ξ) (1− η)

With ξ ∈ [−1, 1] and η ∈ [−1, 1] . These shape functions are represented in
Figure 2.1.

Still in the same dimensionless coordinate system, the first derivative of the
shape functions matrix N with respect to the global variables x and y can be
derived using chain rule derivative,

Bx,i (ξ, η) =
∂Ni

∂x
=
∂Ni

∂ξ
· ∂ξ
∂x

+
∂Ni

∂η
· ∂η
∂x

(2.27)

By,i (ξ, η) =
∂Ni

∂y
=
∂Ni

∂ξ
· ∂ξ
∂y

+
∂Ni

∂η
· ∂η
∂y

(2.28)

In these last two equations, the first derivatives of Ni can be directly calculated
from the definition of Ni:

∂N1

∂ξ
= −1

4
(1− η)

∂N1

∂η
= −1

4
(1− ξ) (2.29)

∂N2

∂ξ
= −1

4
(1 + η)

∂N2

∂η
=

1

4
(1− ξ) (2.30)

∂N3

∂ξ
=

1

4
(1 + η)

∂N3

∂η
=

1

4
(1 + ξ) (2.31)

∂N4

∂ξ
=

1

4
(1− η)

∂N4

∂η
= −1

4
(1 + ξ) (2.32)

In order to ease the readability, the elementary matrices Bξ and Bη are also
introduced

Bξ =

[
∂N1

∂ξ

∂N2

∂ξ

∂N3

∂ξ

∂N4

∂ξ

]
Bη =

[
∂N1

∂η

∂N2

∂η

∂N3

∂η

∂N4

∂η

]
1It means then ndof = 4 in (2.9)
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(a) Quad4 isoparametric element and local
numbering
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(b) Shape function 1 : N1(ξ, η)
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(c) Shape function 2 : N2(ξ, η)

•
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•4

1

(d) Shape function 3 : N3(ξ, η)

•
1

•2

•3

•4

1

(e) Shape function 4 : N4(ξ, η)

Figure 2.1: Shape functions associated to an element of the mesh

The second factor of each term of (2.27) and (2.28)(
∂η

∂(.)
and

∂ξ

∂(.)
) are not directly

known, but can be evaluated using the jacobian matrix of the regular change of
variable. Indeed, starting from the basic principle of mapped finite element, x
and y inside a considered element are expressed as a linear combination of shape
functions and adjacent nodal coordinates xi and yi (i = 1, . . . , 4).


x =

4∑
i=1

Ni (ξ, η) · xi = f (ξ, η)

y =
4∑
i=1

Ni (ξ, η) · yi = g (ξ, η)

(2.33)
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By definition of a total derivative:
dx =

∂x

∂ξ
dξ +

∂x

∂η
dη

dy =
∂y

∂ξ
dξ +

∂y

∂η
dη

(2.34)

Or alternatively, dx
dy

 =


∂x

∂ξ

∂x

∂η

∂y

∂ξ

∂y

∂η


︸ ︷︷ ︸

=J

dξ
dη

 (2.35)

The matrix on the right hand side defines the jacobian matrix J. The 4 compo-
nents of the matrix are given by

∂x

∂ξ
=
∂N

∂ξ
· x = Bξ · x

∂x

∂η
=
∂N

∂η
· x = Bη · x

∂y

∂ξ
=
∂N

∂ξ
· y = Bξ · y

∂y

∂η
=
∂N

∂η
· y = Bη · y

The inverse J−1 of the jacobian matrix contents the 4 searched partial derivatives:

JJ−1 = 1 ⇒ J−1 =


∂ξ

∂x

∂ξ

∂y

∂η

∂x

∂η

∂y

 (2.36)

Combining (2.27), (2.28) and (2.36), the first derivatives Bx and By of the shape
function matrix N can now be determined.

Using dimensionless coordinate system with variables ξ and η to evaluate the
integral, the local expression of the elementary stiffness matrix (2.23) can be
expressed as follow

Ke = D∆t

∫ 1

−1

∫ 1

−1

(
BT
xBx + BT

y By + NTN
)
· J dξ dη (2.37)

Where J is the jacobian of the regular change of variable. These operations are
repeated to get gte:

gte =

∫ 1

−1

∫ 1

−1

NTN · J dξ dη qt−1
e (2.38)

2.2.5 Numerical Integration

The evaluation of local stiffness matrices and nodal load vectors through equa-
tions (2.37) and (2.38) require both the calculation of a surface integral. As the
expressions of the integrant can be slightly complicated, it is that time highly
relevant to relinquish the analytical development and perform a numerical inte-
gration. As it has been done previously in section 1, the Gaussian quadrature
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will be chosen. Extended to 2 dimensions, this method states that a function of
2 independent variables f(ξ, η) can be integrated as follow

I =

∫ 1

−1

∫ 1

−1

f(ξ, η) dξ dη ≈
n∑
i=1

n∑
j=1

H∗iH
∗
j · f

(
ξ∗j , ξ

∗
i

)
(2.39)

This equation is easily demonstrated recalling from 1D that:

I1(η) =

∫ 1

−1

f(ξ, η) dξ ≈
n∑
i=1

H∗i · f(ξ∗i , η) (2.40)

During the calculation of this integral, the variable η is treated as a constant. I1

becomes then a single variable function and I is finally given by the integral

I =

∫ 1

−1

I1(η)dη ≈
n∑
j=1

H∗j · I1(η∗j ) (2.41)

Substituting the expression of I1 into 2.41, the equation 2.39 is well recovered.

To keep the vision of a surface integral rather than two successive integrals,
equation (2.39) can be rewritten as

I =

∫ 1

−1

∫ 1

−1

f(ξ, η) dξ dη =
n∑
i=1

Hi · f (ξ∗i , η
∗
i ) (2.42)

Where ξ∗i and η∗i (with i = 1, . . . , n) are n couples of coordinates defining the
location of the n Gaussian in the two dimensional space. This formulation is
exactly the same as the one used in section 1.2.6.

Regarding the precision of the integration, it is known by [25] that for linear
shape function, a minimum of 2 Gauss points (n = 2) are required to perform an
exact calculation of the integral following equation (2.39).

If the second formulation (2.42) is preferred, 22 = 4 Gauss points are required
the perform an exact calculation of the surface integral stated by (2.37) and
(2.38). These 4 Gauss points are shown in Figure 2.2 and their coordinates and
associated weights are detailed in Table 2.1.

Gauss Point Abscissa: ξ∗i [-] Ordinate: η∗i [-] Weight [-]

G1 − 1√
3

− 1√
3

1

G2 − 1√
3

1√
3

1

G3
1√
3

1√
3

1

G4
1√
3

− 1√
3

1

Table 2.1: Coordinates of Gauss points and associated weights
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ξ
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•
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•
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•
(2)

•
G2 •

G3

•
G4•

G1

Figure 2.2: Gauss points representation inside a mapped element in reduced
coordinates system

2.2.6 Boundary Conditions

As this section extends the remarks previously made in 1.2.7 for the 2D case, only
the mains ideas will be summarized and the reader is invited to refer to 1.2.7 for
additional justifications.

The main novelty in 2D is that boundary conditions, no matter their nature,
may be applied on both nodes and lines: both features are handled by the code.

Boundary can be either applied on c or on its derivative, defining respectively
essential and natural boundary conditions. Essential boundary conditions are
directly applied to the generalized displacements vector qt (influencing the nodal
load vector at time t + 1). For natural boundary conditions, fluxes are directly
added to the nodal load vector after being multiplied by ∆t. For fluxes applied on
line elements, a consistent nodal load vector is first determined and then treated
similarly as a set of nodal loads:

Keqe = gte +D∆tφc (2.43)

2.3 Model verification

Since the diffusion takes now place in 2D, it becomes unreasonable to seek for an
analytical solution as reference solution. Alternatively, it is proposed to analyze
the results along a line parallel or perpendicular to x or y axis, and see if the
results from 1D model are recovered. The verification step is thus conducted on
the same basis than for 1D model, and for the same test cases, adapted to 2D
space. Direct comparison between 1D and 2D are only possible if corrosion flux
or corrosion rate are uniformly distributed along one direction y (or x): in that
case, there is no diffusion in y direction, while diffusion in x takes place uniformly
over the height of the plate (diffusion in x and y are thus decoupled).
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All the cases presented below have been tested on structured and unstructured
meshes. Figure 2.3 presents the different meshes used in this section.

(a) Structured Mesh 1 (25 nodes, 16 cells)

(b) Structured Mesh 2 (81 nodes, 64 cells)

(c) Structured Mesh 3 (289 nodes, 256 cells)

(d) Unstructured Mesh 4 (29 nodes, 20 cells)

(e) Unstructured Mesh 5 (77 nodes, 60 cells)

(f) Unstructured Mesh 6 (665 nodes, 600 cells)

Figure 2.3: Used meshes

2.3.1 Test Case 1

The situation is summarized in the Figure 2.4: corrosion rate of 100% is applied
at each lateral edges of the plate, while an initial rate of 0% is initially assigned
to the entire body.

c(x, y, 0) = 0%•c(0,y,t) =
100%

• c(L,y,t) =
100%

L = 1 m

• •• •• •• •• •

Figure 2.4: Initial and boundary conditions for study case 1

Numerical results obtained from the code are shown in Figure 2.5 for the 6
considered meshes. All nodal values for c are plotted at the right x position
(corresponding the node coordinates), but indifferently from their y posi-
tion. Figure 2.5 (a),(b) and (c) describes the behavior for structured meshes and
shows that all nodes located at the same x coordinates have identical nodal values
(square markers are superimposed). This indicates that the results are uniform
over the height of the plate (y direction), which was expected since the boundary
conditions are also uniformly imposed on y. Thus, the 2D code does not generates
parasitic diffusion into y direction. However, Figure 2.5 (d)-(e)-(f) does not show
superimposed nodes anymore: this is justifiable noting that unstructured meshes
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(a) Mesh 1
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(b) Mesh 2
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(c) Mesh 3
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(d) Mesh 4
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(e) Mesh 5
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(f) Mesh 6

Figure 2.5: Results obtained from 2D-diffusion code, superimposed indifferently
of their y position for each 6 meshes considered in test case 1 ((parameters: ∆t =
0.01 s, D = 0.5 m2 s−1, c(L, y, t) = 100%, c(x, y, 0) = 0% and flux c(0, y, t) = 100
m−2 ))

do not have necessarily multiple nodes at a same x coordinate (for example com-
pare meshes in Figure 2.3(c) and (f)). It results that for unstructured meshes,
more points are represented and the approximation seems to be better, which is
of course deceptive2 as all points are not located at the same y coordinate (and
thus, no interpolations between all points can be made).

2Note that this 1D representation has no other purposes than enabling a comparison with
an analytical solution, which has only been derived in 1D.
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Other general observations can be made: refining the meshes leads to better
results and maximal errors are observed in zones of high gradient of corrosion
rate, as previously discussed.

2.3.2 Test Case 2

The test case 2 consist in a plate of dimensions 1 × 0.25 m subjected at its left
edge, to a flux of 25 m−2 and to a constant corrosion rate of 25% at the right edge.
The results shown in Figure 2.7 are very close to the analytical solution even for a
coarse mesh. Results similar to those analyzed in 1D have indeed been recovered,
which shows a proper behavior of the code. As each observations carried out in
section 1.3.3 are still applicable, we invite the reader to report to this section for
further discussions.

c(x, y, 0) = 25% • c(L,y,t) = 25%∂c
∂x (0, y, t) = 25 m−2

L = 1 m

••
••
•

Figure 2.6: Initial and boundary conditions for study case 2

2.3.3 Conclusion

Refining the meshes leads indeed to better results and maximal errors are observed
in zones of high gradient of corrosion rate, as previously discussed. The code
accommodates unstructured meshes as well as structured ones. Both natural
and essential boundary conditions have correctly been implemented as provided
results match analytical solutions for both of them.

Note that the plots presented in this section are in 1D form for convenience
purposes, in order to ease the comparison with analytical results. In the next
section of this report, the results for corrosion will be presented in the form of a
colormap, with a linear interpolation between values at nodes.

2.4 Validation of 2D model

Because no experimental results have been found in the literature3, a proper val-
idation has not been performed for this two dimensional model. The assumption
that the diffusive behavior along the first dimension can be translated to the sec-
ond dimension will therefore be relied on. This hypothesis is consistent with the
assumed isotropic property of the body.

3Recall from section 1.4 that the experiments were modeling 1D diffusion as the literature
study cases consisted in samples uniformly immersed in a furnace.
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(b) Mesh 2
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(c) Mesh 3
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(d) Mesh 4
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(e) Mesh 5
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(f) Mesh 6

Figure 2.7: Results obtained from 2D-diffusion code, superimposed indifferently
of their y position for each 6 meshes considered in test case 2 (parameters: ∆t =
0.01 s, D = 0.5 m2 s−1, c(L, y, t) = 25%, c(x, y, 0) = 25% and flux φc(0, y, t) = 25
m−2 ).
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Chapter 3

2D Mechanical Model

In this chapter, a code to predict the behavior of the body under constraints
will be implemented. These constraints can take the form of nodal or line loads,
pressures, thermal strains, . . . There exist of course many private and opensource
codes/softwares that are able to compute finite elements and already provide very
convenient ways to study the mechanical response of a solid to given constraints.
A legitimate question that can arise is why then develop another code. In fact, the
development described in this section have no other objective than facilitate the
coupling between mechanical behavior and corrosion diffusion. Once verified and
validated, the code will be particularized in the next chapters and its integration
with the corrosion will then be eased.

3.1 Differential equation and body equilibrium

Starting from the general equations of equilibrium in a elementary volume in 3D,

∂σxx
∂x

+
∂τxy
∂y

+
∂τxz
∂z

+ bx = ρax

∂σyy
∂y

+
∂τxy
∂x

+
∂τyz
∂z

+ by = ρay

∂σzz
∂z

+
∂τxz
∂y

+
∂τyz
∂z

+ bz = ρaz

(3.1)

Where bi and ai are respectively the acceleration and volumic load directed along
direction i and ρ the body density. Assuming no dynamic and a plane stress state
in xy, ax = ay = az = 0 and τyz = τxy = σzz = 0 are successively obtained. The
system (3.1) becomes 

∂σxx
∂x

+
∂τxy
∂y

+ bx = 0

∂σyy
∂y

+
∂τxy
∂x

+ by = 0

bz = 0

(3.2)

The last equation is trivial so it will not be considered in the further development;
it will just be imposed to ensure that no force is acting out of plane. Finally, the
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equations of static in plane stress state [26] are reduced to the following system
∂σxx
∂x

+
∂τxy
∂y

+ bx = 0

∂σyy
∂y

+
∂τxy
∂x

+ by = 0

(3.3)

3.2 Application to F.E.M.

Equation (3.3) requires the determination of the 2D displacement to be solved
(the stress tensor components will be general functions of displacements). In
other words, the vector field u(x, y) = (u(x, y), v(x, y)) will be searched for such
that (3.3) is satisfied. Now 2 unknowns are present in each point of the studied
space, instead of a single unknown as in the previous chapters.

3.2.1 Constitutive law

The equation of continuity provides the expression of the strain vector ε, which
contains the 3 components of the deformation tensor εij:

εij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
In plane stress state, only 3 components of εij strain tensor are non zero. Rewrit-
ten on a matricial form, the non trivial components can be expressed as

ε =


εxx

εyy

γxy


=



∂u

∂x
∂v

∂y
∂v

∂x
+
∂u

∂y


=


∂

∂x
0

0
∂

∂y
∂

∂y

∂

∂x


︸ ︷︷ ︸

=S


u

v

 = Su (3.4)

The matrix S is called the strain operator.

Provided that (3.3) expresses an equilibrium in stresses and applied loads, and
that the system has to be solved for the displacements u(x, y) and v(x, y), it
is essential to establish relationships between the displacement and stress fields.
Such a relationship is given by the constitutive equation. In the scope of this
master thesis1, Hooke’s law will be preferred as it is widely used in classical
mechanics of solids, and the behavior of the studied body will be assumed to be
elastic and linear. Furthermore, an isotropic behavior will be assumed.

1Remember that, as discussed in the introduction, the global purpose of this corrosion-
mechanics coupling is to integrate the model developed in the Solar Perform project [4]. We
start here to develop the mechanical behavior on its simplest form: linear elastic and isotropic.
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With ε known by (3.4), the constitutive law can be used to derived the corre-
sponding stress vector

σ =


σxx

σyy

τxy

 = D (ε− ε0) + σ0 (3.5)

Where ε0 accounts for initial strains such as shrinkage or initial temperature
(∆T0) and σ0 accounts for initial residual stress (confinement, etc, . . . ). The
matrix D can be particularized depending on the constitutive law used. In the
present case (Hooke’s law), the matrix D takes the form

D =
E

1− ν2


1 ν 0

ν 1 0

0 0 (1− ν)/2

 (3.6)

3.2.2 Derivation of the weak form of the problem

As suggested by [27], the problem defined by equation (3.3) and associated with
suitable boundary condition can be rewritten under the form of two differential
operators A(u) and B(u):

A(u) = 0 in V (3.7)

B(u) = Mu + t = 0 in Γ (3.8)

By identification

A (u) = 0 ⇔


A1

A2

 =


∂σxx
∂x

+
∂τxy
∂y

+ bx

∂σyy
∂y

+
∂τxy
∂x

+ by

 = 0 (3.9)

This set of equations has to be zero in each point of the domain V . It follows
that by multiplying each equation by respectively δu and δv, and summing the
two resulting equations, we can write:

A1δu+ A2δv = 0 (3.10)

As an approximation function ũ ≈ u that verifies (3.10) on average over a chosen
domain V is needed, it follows that:

WR =

∫
V

A1δu+ A2δv dV = 0 (3.11)

Or, by (3.9)

WR =

∫
V

(
∂σxx
∂x

+
∂τxy
∂y

+ bx

)
δu+

(
∂σyy
∂y

+
∂τxy
∂x

+ by

)
δv dV = 0 (3.12)
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Using Green’s theorem, we get

WR =

∮
Γ

(σxyδu+ τxyδv) · nx + (τxyδu+ σyyδv) · ny dΓ−
∫
V

σxx
∂δu

∂x
+ τxy

∂δv

∂x

+σyy
∂δv

∂y
+ τxy

∂δu

∂y
+ bxδu+ byδv dV = 0

(3.13)

In the previous equation, three dot products where the vectors δu and σ appear
can be identified, and

δεT =

[
∂δu

∂x

∂δv

∂y

∂δv

∂x
+
∂δu

∂y

]
The principle of virtual work statement is then recovered:

WR =

∫
V

δεTσ dV −
∫
V

δuTb dV −
∮

Γ

δuT t dΓ = 0 (3.14)

The formulation proposed by (3.13) and (3.14) are then equivalent, indicating
that the weak form has been properly derived. The line integral represents the
effects of boundary conditions and will be left for discussion to further section
3.2.7. At this stage, this term is simply neglected without more justification.
Taking into consideration this last remark, the weak form of the problem is given
by the two equivalent formulations∫

V

(
σx
∂δu

∂x
+ τxy

∂δv

∂x
+ σyy

∂δv

∂y
+ τxy

∂δu

∂y
+ bxδu+ byδv

)
dV = 0 (3.15)

∫
V

δεTσ dV −
∫
V

δuTb dV = 0 (3.16)

3.2.3 Expression of stiffness matrix and nodal load vector

To keep it as general as possible, it will be assumed that the types of element
considered are nnod nodes elements. The mathematical developments presented
in this section are then valid whatever the type of considered element (provided
that they are 2D elements). First of all, the displacement u is interpolated as

u(x, y) =

{
u(x, y)

v(x, y)

}
≈ ũ(x, y) =

{
ũ(x, y)

ṽ(x, y)

}
= Nq (3.17)

With q the nodal unknown vector that takes the form (nnod still refers to the
number of node by element)

{
ũ
ṽ

}
=

[
N1 (ξ, η) 0 N2 (ξ, η) 0 · · · Nnnod

(ξ, η) 0
0 N1 (ξ, η) 0 N2 (ξ, η) · · · 0 Nnnod

(ξ, η)

]


qu,1
qv,1
qu,2
qv,2

...
qu,nnod

qv,nnod


(3.18)
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Alternatively, the interpolated displacement can be expressed as

u(x, y) =
nnod∑
i=1

N1i(x, y) · q2i−1

v(x, y) =
nnod∑
i=1

N2i(x, y) · q2i

(3.19)

This interpolation is valid everywhere inside the considered finite element. This
time, N is not a vector, but a 2× ndof matrix. The strain ε defined at (3.4), can
also be calculated as a function of the nodal unknowns q:

ε = Su = S (Nq) = Bq (3.20)

Where B = SN is the strain shape function matrix. The same operation is
repeated with σ: from (3.17) and the simplest form of (3.5), we get

σ = Dε = DBq (3.21)

From equations (3.17) and (3.20), it comes directly that

u = Nq ⇒ δu = Nδq

ε = Bq ⇒ δε = Bδq

Substituting all these expressions into weak form (3.16),

WR =

∫
V

δqTBTDBq dV −
∫
V

δqTNTb dV = 0 (3.22)

⇔ WR = δqT e

(∫
Ω

BTDB dΩ q−
∫

Ω

NTb dΩ

)
= 0 (3.23)

Because δq are arbitrary coefficients, the last equation degenerates in∫
Ω

BTDB dΩ q =

∫
Ω

NTb dΩ (3.24)

Which is a linear system

Keq = ge

The expressions of local stiffness matrix and nodal vector are then derived:

Ke =

∫
Ω

BTDB dΩ (3.25)

ge =

∫
Ω

NTb dΩ (3.26)

Note that these expressions (3.25) and (3.26) are valid whatever the type of
elements and whatever the constitutive law.
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3.2.4 Global stiffness matrix and nodal load vector

As previously explained, knowing the stiffness matrix for each element of the
domain, the global stiffness matrix can be built performing an assembly operation:

K =

Nel

A
el=1

Ke =

Nel

A
el=1

∫
Ω

BTDB dx dy (3.27)

g =

Nel

A
el=1

ge =

Nel

A
el=1

∫
Ω

NTb dx dy (3.28)

Solving the linear system Kq = g for q provides the approximated displacement
ũ at each node of the mesh.

3.2.5 Shape functions

The weak form (3.16) involves at most the first spatial derivative of displacement
field u. If linear shape functions are used, the displacements are then linear
functions in ξ and η while strains ε are linear either in ξ or in η. It means that
linear shape functions would correctly (i.e. not trivially) represent each term of
(3.16). Linear shape functions (i.e. Quad4 mapped element) seem then to be an
appropriate choice.

Because section 2.2.4 already details the shape functions, the same information
will not be presented, and only the main points as well as what changes from
previous chapters will be mentionned.

N1(ξ, η) =
1

4
(1− ξ) (1− η)

N2(ξ, η) =
1

4
(1− ξ) (1 + η)

N3(ξ, η) =
1

4
(1 + ξ) (1 + η)

N4(ξ, η) =
1

4
(1 + ξ) (1− η)

Each shape function is associated with one node of the element and are repre-
sented in Figure 2.2. Because 2 degrees of freedom are associated with one node,
the shape function matrix contains as many zeros as shape functions:

N =

[
N1(ξ, η) 0 N2(ξ, η) 0 N3(ξ, η) 0 N4(ξ, η) 0

0 N1(ξ, η) 0 N2(ξ, η) 0 N3(ξ, η) 0 N4(ξ, η)

]
(3.29)

The strain shape function matrix B is

B = SN =


∂

∂x
0

0
∂

∂y
∂

∂y

∂

∂x


[
N1 0 N2 0 N3 0 N4 0

0 N1 0 N2 0 N3 0 N4

]
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And then,

B(ξ, η) =



∂N1

∂x
0

∂N2

∂x
0

∂N3

∂x
0

∂N4

∂x
0

0
∂N1

∂y
0

∂N2

∂y
0

∂N3

∂y
0

∂N4

∂y

∂N1

∂y

∂N1

∂x

∂N2

∂y

∂N2

∂x

∂N3

∂y

∂N3

∂x

∂N4

∂y

∂N4

∂x


(3.30)

The components of B may be determined indirectly using the jacobian of the
regular change of variables:

∂Ni

∂x
=
∂Ni

∂ξ
· ∂ξ
∂x

+
∂Ni

∂η
· ∂η
∂x

∂Ni

∂y
=
∂Ni

∂ξ
· ∂ξ
∂y

+
∂Ni

∂η
· ∂η
∂y

With ∂ξ
∂x

, ∂η
∂x

, ∂ξ
∂y

and ∂η
∂y

that can be determined by identification inverting the
jacobian matrix J

J =


∂x

∂ξ

∂x

∂η

∂y

∂ξ

∂y

∂η

 −→ J−1 =


∂ξ

∂x

∂ξ

∂y

∂η

∂x

∂η

∂y


The integration domain of (3.25) and (3.26) must be modified in accordance to
the change of variable (x, y) → (ξ, η). Furthermore, the jacobian of the regular
transformation is also introduced. Then, the expressions of stiffness matrix and
nodal load vector becomes

Ke =

∫ 1

−1

∫ 1

−1

BTDB · J dξ dη (3.31)

ge =

∫ 1

−1

∫ 1

−1

NTb · J dξ dη (3.32)

3.2.6 Numerical integration

Equation (3.31) and (3.32) both require the evaluation of a surface integral. Since
the principle has already been discussed in detail in section 2.2.5, and equations
(3.31) and (3.32) do not rise other issues than the ones addressed previously, the
reader will be referred to the aforementionned section for further information.

3.2.7 Boundary conditions

The line integral in (3.13) has been left aside in the definition of the stiffness ma-
trix and nodal load vector. This integral incorporates the effects of the boundary
condition to the linear system. For essential boundary conditions, the integral is
non zero only if a non zero displacement is imposed at one considered node.
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Nodal loads are applied on the structure directly at the adequate line of the
nodal load vector, while line loads require an equivalent nodal loads vector to
be calculated (and from that point, line loads are treated identically to common
nodal loads).

Note that the stiffness matrix as detailed by (3.27) is singular; the system
is consequently badly conditioned. It is therefore expected to enforce several
boundary conditions2 in order to avoid any rigid body mode such as translation
and rotation. At least two degrees of freedom must therefore be blocked in both
u and v direction.

3.2.8 Calculation of strains/stresses and local smoothing

Once the displacements u are known, the strains are accordingly calculated at
gauss points as suggested by (3.20)

ε̂ = Bq

And the stresses σ̂ at gauss points

σ̂ = DBq

Many authors [28] have shown that for displacements based finite element ap-
proach, stresses sampled at nodal points are usually very poor representations of
the real stress values: for any method using C0 elements, inter-element continu-
ity is respected for the displacement field only while first derivatives and thus,
strains and stress fields, experience unrealistic ”jumps”. As a result, stresses
should never be directly evaluated at nodes. The most relevant locations for the
sampled points are Gauss points. For practical considerations inherent to the
post-processing software, it is however necessary to calculate stresses sampled at
nodes rather than at gauss points. A stress recovering procedure is then required.

Numerous authors [29–31] have proposed various stress recovery procedures for
displacement based approach. [32,33] have based their simple approaches on least
square method, performing a stress extrapolation as well as a local smoothing.

Suppose that σ̃ refers to the stresses sampled at nodes (i.e. the researched vec-
tor) and σ̂ the stress sampled at gauss points. Assuming that an approximation
of the real stresses can be interpolated by a polynomial, we get

σ(ξ, η) ≈ σ∗(ξ, η) = Nσ(ξ, η)σ̃ (3.33)

In other words, it is assumed that the approximation of stresses inside a finite
element is a polynomial function whose coefficients are the value of stress at
nodes. [28, 34] suggested an obvious choice for Nσ such that Nσ = N. The
averaged error on node in sense of least square method is given by the functional

Π =

∫
Ω

(σ − σ∗)2 dΩ =

∫
Ω

(σ − σ∗)T (σ − σ∗) dΩ (3.34)

2Imposing one boundary condition reduces by 1 the rank of the stiffness matrix, and thus
removes one linear dependence of the global stiffness matrix. Mathematically, by imposing a
sufficient amount of boundary conditions, one intends removing all linear dependencies between
the lines.
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The exact solution σ is recovered if Π = 0, but because σ was assumed to be
interpolated by a finite set of polynomials Nσ, this result will never be observed.
The optimal solution corresponding to the generalized displacements q is such
that the function Π is minimal:

min [Π] = min

[∫
Ω

(σ − σ∗)2 dΩ

]
(3.35)

Substituting (3.33), we get

min

[∫
Ω

(σ −Nσσ̃)2 dΩ

]
(3.36)

The solution is found enforcing

∂Π

∂σ̃
= 0⇔

∫
Ω

σNσ −NT
σNσσ̃ dΩ = 0 (3.37)

This degenerate in a linear system to solve for σ̃∫
Ω

NT
σNσ dΩ σ̃ =

∫
Ω

σNσ dΩ (3.38)

Using dimensionless coordinate system,∫ 1

−1

∫ 1

−1

NT
σNσ · J dξ dη σ̃ =

∫ 1

−1

∫ 1

−1

σNσ · J dξ dη (3.39)

The last equation (3.39) requires at first glance to know the expression of σ
(which is naturally never achieved). However, if integrals are numerically eval-
uated through a sum over weighted integrants evaluated at gauss points (Gauss
Legendre quadrature), it is no longer required to know σ to solve the (3.39):(

n∑
i=1

n∑
j=1

NT
σ(ξi, ξj)Nσ(ξi, ξj) · wiwj · J

)
σ̃ =

n∑
i=1

n∑
j=1

σ̂(ξi, ξj)Nσ(ξi, ξj) ·wiwj · J

(3.40)
This last equation enables a local stress smoothing and extrapolation from gauss
points to nodes, in the sense of least squared.

3.3 Model verification

The model verification will be conducted on two test cases, on both regular and
irregular meshes. A patch test will also be performed for the first test case, as the
second one involves non constant strain. Note that because the chosen elements
satisfy all the continuity requirements and are exactly integrated (reduced inte-
gration was not used), this patch test may seem unnecessary [35]. Factually, it
makes sense as it gives an efficient way to check that the code has been properly
implemented.
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E = 200 000 MPa
ν = 0.3
e = 1 m

1 m

0.
25

m

q=100 MPa

Figure 3.1: Description of test case 1.

(a) Mesh 1 (16 nodes, 4 elements) (b) Mesh 2 (16 nodes, 4 elements), used for
patch test

Figure 3.2: Used meshes for the first test case

(a) Displacements u [m]

(b) Displacements v [m]

(c) Stresses σxx [MPa]

(d) Stresses σyy [MPa]

(e) Stresses τxz [MPa]

(f) Displacements u [m]

(g) Displacements v [m]

(h) Stresses σxx [MPa]

(i) Stresses σyy [MPa]

(j) Stresses τxy [MPa]

Figure 3.3: Results for test case 1
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3.3.1 Test Case 1

The first test case consists in a plate in extension: a schematic drawing of the
situation is shown at Figure 3.1. The considered meshes may be seen in Figure 3.2.

For such basic loading, the analytical solution can be expressed from Hooke’s
law:

εij =
1

E
[(1 + ν)σij − νσkkδij]

Because σ11 = 0.25f/A and σ22 = 0,

ε11 =
0.25f

EA
→ u(x) =

0.25f

EA
· x

ε22 = −ν 0.25f

EA
→ v(y) = −ν 0.25f

EA
· y

Substituting f = 100kN m−1×0.25m, E = 200000MPa and ν = 0.3, the maximal
horizontal displacement at x = L is 5×10−4 m and the maximal vertical displace-
ment at y = 0.25m is 3.7510−5m. The stresses σ11 = f · 0.25/(0.25 · 1) = 100kPa,
σ22 = τ12 = 0. These values are accurately recovered by the numerical model, as
can be observed in Figure 3.3. It can thus be concluded that the first test case is
correctly tackled by the code.

3.3.2 Test Case 2

The second test case is about in-plane plate bending. The considered situation is
shown in Figure 3.5. Here again, the situation will be assessed on two meshes. A
patch test may be carried out, since in-plane bending involves gradients of stress
that can only be correctly modeled if the mesh is sufficiently fine.

(a) Mesh 1 (289 points, 256 cells) (b) Mesh 2 (663 points, 598 cells)

Figure 3.4: Meshes used for first test case of verification step

Results are shown in Figure 3.5. Slight differences (< 2%) in displacements may
be observed between results provided by structured and unstructured meshes,
showing that unstructured meshes should be further refined to get close to the
analytical solution.

Larger differences are however observed for the stress, even if the global stress
pattern remains the same (e.g. the lower part in tension and upper part in
compression for σxx). The shear stresses are parasitized by light ”stress jumps”.
These irregularities have no physical sense and are due to the stress recovery
procedure. They occur especially in zones where quadrangle elements are close to
triangle elements. When the generated mesh is such that 3 points of a quadrangle
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E = 200 000 MPa
ν = 0.3
e = 1 m

1 m

0.
25

m

q=100 MPa

Figure 3.5: Description of test case 2.

are nearly aligned, the polynomial approximating the stress inside the element is
not of a sufficiently high degree to properly model the stress and consequently
generates inter-elements discontinuities. As these irregularities do not disturb the
interpretation of the results (the global stress pattern is still correctly identifiable),
they can be neglected. The unconvinced reader may refer to A2, where second
order shape functions were used for the same application and where smoother
stress distribution is visible in Figure A.2.

(c) Displacements u [m]

(d) Displacements v [m]

(e) Stresses σxx[MPa]

(f) Stresses σyy [MPa]

(g) Stresses τxz [MPa]

(h) Displacements u [m]

(i) Displacements v [m]

(j) Stresses σxx [MPa]

(k) Stresses σyy [MPa]

(l) Stresses τxy [MPa]

Figure 3.5: Results for test case 2

To conclude this section, it will be emphasized that the numerical developments
accommodate regular as well as irregular meshes. Numerical developments have
been derived on a displacement based approach, so it is always expected to get
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higher errors on the stress fields than on the displacements field. The accuracy of
the predictions of the stress fields are entirely dependent on the stress extrapola-
tion procedure, which aims to minimize the error on stress inside an element. As
a result, it should be kept in mind that high discontinuities in stress field, if they
exist in the real application, will be smoothed by the stress recovery process.

The presented results in Figure 3.5 for second test case have been compared
with a reference solution. This solution was obtained by simulation with the
finite elements software SAP2000, for same hypothesis. Results are not presented
in the core of the text, but may be consulted in Appendix A in Figure A.3.

3.4 Model validation

It is commonly admitted that the system (3.1) describes exactly the behavior of
deformable solids whether or not these experience elastic behavior. The use of
Hooke’s law (3.5) restricts however the use of the model for elastic behavior only.
Nevertheless, a nonlinear behavior can be simulated by adopting a variable Young
modulus E (this choice of a varying E will be discussed in the next section).

In accordance with those considerations, the code is validated keeping in mind
the restricting assumptions:

• The code neither accounts for plastic deformations nor for second order
effects

• The stress state is assumed to be plane.

• The behavior is punctually isotropic, but the code can accommodate non-
homogeneous properties distributed over the plate. It is clear that this
assumption becomes invalid if the studied domain involves a highly irregular
distribution of material properties (in which case full anisotropy should be
considered).

3.5 Conclusion

The objective of this chapter was to develop numerical model for the mechanical
behavior of studied solids, in order to facilitate the development of the coupling
model.

The code has been verified based on two test cases, with analytical solution or
a reference solution obtained by a trusted finite element analysis software. In all
cases, the developed numerical model matched the reference solutions for both
structured and unstructured meshes.

Few irregularities have been found in the stress predictions. This is due to the
fact that the developed procedure relies on a displacement based approach: the
nodal unknowns are the displacement field u and v, but not the stresses. To
predict the stresses (that are only known at integration points), it was necessary
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to develop a stress extrapolation procedure. The one considered consists in the
determination of stresses at nodes in order to minimize the averaged error inside
the element (in the least square sense). As a result, a smoothing (local smoothing)
of the stress distribution may occur if gradients of stresses are high.

Based on this consideration, the mechanical model provides entire satisfaction
and allows us to proceed with the coupling of corrosion and mechanical model.



Chapter 4

Coupling between corrosion and
mechanics

Previous chapters have developed corrosion diffusion and mechanical behavior
as independent phenomena. Now it is time to model them as interdependent,
coupling them both in a single linear system, which shall accounts for the influence
of the corrosion on the mechanical behavior as well as the influence of the stress
state on the diffusive phenomenon.

If the corrosion diffusion was assumed to follow a fickian diffusion, we will now
add one term accounting for a non fickian flux in the differential equation govern-
ing the diffusive phenomenon. Therefore, from now on, the diffusion phenomenon
is no more purely diffusive. The equations governing the mechanical behavior re-
main, for their part, unchanged. However, the constitutive law will be modified
in order to take corrosion induced damage on the material stiffness into account
(even if a linear isotropic behavior will still be assumed).

4.1 Derivation of the weak forms

4.1.1 Corrosion aspects

As suggested by [2,3,36], the mass transport phenomenon may be studied based
on equation

∂c

∂t
= ∇ · (D∇c−DMc∇p) (4.1)

With p the hydrostatic pressure p = 1
2

(σ11 + σ22) and M the pressure factor. The
first term of the right hand side is purely diffusive, also called the fickian flux JF
while the second, stress dependent, is called a non fickian flux. Such diffusion
process may be qualified as stress driven diffusion. The previous chapters have
particularized this equation assuming M = 0. In this chapter, we will integrate
the effect of this second term and hence, this equation will be considered as it
stands.

The weighted residual may be formed multiplying (4.1) by the weighting func-
tion δc(x, y) and integrating over the volume defined by an element of surface Ω

57
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and thickness e,

WR =

∫
V

∂c

∂t
δc dV − e

∫
V

∇ · (D∇c−DMc∇p) δc dV (4.2)

⇔ WR = e

∫
Ω

∂c

∂t
δc dΩ− e

∫
Ω

∇ · (D∇c−DMc∇p) δc dΩ (4.3)

An integration by parts combined with Gauss theorem gives

WR = e

∫
Ω

∂c

∂t
δc dΩ− e

∫
Γ

(D∇c−DMc∇p) δc dΓ

+ eD

∫
Ω

(D∇c−DMc∇p) · ∇(δc) dΩ = 0

(4.4)

The line integral represents the influences of boundary conditions and is treated in
accordance with sections 1.2.7 and 3.2.7: its value is zero if the considered element
experiences do not exchange with the external world, but must be considered as a
independent term (nodal load) for nodes subjected to incoming/outgoing fluxes.
In order to ease the readability, we will pursuit the mathematical developments
assuming that the body experiences no exchange with the exterior world (this
does not change the expressions of stiffness matrices). Effect of boundary condi-
tions will be modeled by adding an ad-hoc contribution to the nodal load vector
(natural boundary condition), as explained in section 1.2.7, and/or modifying
adequately the stiffness matrix (essential boundary condition).

Developing the expressions of gradient and assuming D constant everywhere
inside the finite element, we get

WR = e

∫
Ω

∂c

∂t
δc dΩ+eD

∫
Ω

∂c

∂x
·∂δc
∂x

+
∂c

∂y
·∂δc
∂y
−Mc

∂p

∂x
·∂δc
∂x
−Mc

∂p

∂y
·∂δc
∂y

dΩ (4.5)

Finally, the weak form statement is obtained enforcing the weighted residual WR
to 0

e

∫
Ω

∂c

∂t
δc dΩ+eD

∫
Ω

∂c

∂x
·∂δc
∂x

+
∂c

∂y
·∂δc
∂y
−Mc

∂p

∂x
·∂δc
∂x
−Mc

∂p

∂y
·∂δc
∂y

dΩ = 0 (4.6)

This last equation constitutes the weak form of the corrosion problem.

4.1.2 Mechanical aspects

Since there is nothing more to introduce in the mechanical model, we will consider
the same weak form as the one obtained at (3.16).∫

V

δεTσ dV −
∫
V

δuTb dV = 0 (4.7)

4.2 Application to FEM

4.2.1 Coupling matrix

Up to now, we considered corrosion and mechanics as independent phenomena,
using the weighted residual method to derive one stiffness matrix and one nodal
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load vector for each of them. In a coupling model, the stiffness matrix enables to
link both parts of the problem, and takes the form

Kq = g ⇔

Kcc Kcu

Kuc Kuu

qc

qu

 =

gc

gu

 (4.8)

In this global stiffness matrix, the diagonal terms Kcc and Kuu are already known,
since they have been derived in Chapter 2 and Chapter 3: the developments
carried in this chapter should then lead to the same expressions than (3.31) and
(2.25) for Kcc and Kuu respectively. The novelty tackled by this chapter are
the anti-diagonal stiffness matrices Kcu and Kuc, and the coupling on its own.
These matrices respectively account for the impact of the body stress state on
the corrosion diffusion, and vice-versa.

Equation (4.8) shows that the matrices of Kcu and Kuc can be found respec-
tively through expressions of nodal loads gc and gu. In other words, we will
start from the diffusion of corrosion equation to derive gc, and determine Kcu by
identification. Same procedure for Kuc that will be determined starting from the
mechanical behaviour equations.

Note finally, that since equation (4.1) coupled with (4.7) involves a partial time
derivative, the global differential linear system may be expressed in all generality
by Ccc Ccu

Cuc Cuu

q̇c

q̇u

+

Kcc Kcu

Kuc Kuu

qc

qu

 =

gc

gu

 (4.9)

Assuming an integration scheme (as done in Chapter 1 and 2 where we opted for
an Euler-implicit discretization scheme), this system degenerates after in linear
system Aq = f to solve, as stated by (4.8). If we did not used explicitly the
damping matrix C in previous Chapter 1 and 2, it has well been considered
implicitly (integrated to the stiffness matrix). The presentation shown in (4.9)
will be preferred in this chapter, because it is more general, and enables therefore
to use other integration schemes with unchanged expressions of stiffness matrix
and nodal load vector (even if euler-implicit is only used in this report). It also
highlights what is related to ”speed” q̇ and ”displacement” q.

4.2.2 Elementary Stiffness matrix for corrosion effects

Some adjustments regarding the notation have been done in order to prevent any
confusion within displacement and corrosion rate nodal unknowns (renamed qc
and qu respectively). We will do the same for the shape function vectors/matrices
N that will be written Nc and Nu.

As done in the previous chapter, we will seek for an approximation function ũ
for u and an approximation function c̃ for c. We remind here the expressions of
ũ, ε and σ known by the Chapter 3.

u(x, y) =

{
u(x, y)

v(x, y)

}
≈ ũ(x, y) =

{
ũ(x, y)

ṽ(x, y)

}
= Nuqu
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ε = Bqu σ = D (Bqu − ε0) + σ0

While for the corrosion scalar field c(x, y), the following relationships have been
established in Chapter 2.

c(x, y) ≈ c̃(x, y) = Ncqc

∂c̃

∂x
= Bxqc

∂c̃

∂y
= Byqc

Starting from the weak form (4.6), we get by substitution

e δqTc

∫
Ω

NT
c Nc dΩ q̇c + eDδqT

∫
Ω

BT
xBxqc + BT

y Byqc dΩ

− eD
∫

Ω

MBT
x

∂p

∂x
Nqc +MBT

y

∂p

∂y
Nqc dΩ = 0

(4.10)

With p =
1

2
(σxx + σyy). Developing the expressions of stresses:

p =
1

2
·
[
1 1 0

]
︸ ︷︷ ︸

= m

[D (Bq− ε0) + σ0] (4.11)

Hence, the spatial derivatives of pressure may be expressed as,

∂p

∂x
= m

[
D

(
∂B

∂x
qu −

∂ε0
∂x

)
+
∂σ0

∂x

]
(4.12)

∂p

∂y
= m

[
D

(
∂B

∂y
qu −

∂ε0
∂y

)
+
∂σ0

∂y

]
(4.13)

If we assume that the initial state does not involve any gradient in initial strain
or stress, theses equations may be simplified as follow

∂p

∂x
= mD

∂B

∂x
qu = mDLxqu (4.14)

∂p

∂y
= mD

∂B

∂y
qu = mDLyqu (4.15)

where we have introduced the matrices Lx and Ly as the first derivatives of the
strain matrix B with respect to x and y respectively. Substituting back the
gradients of pressure in (4.10), it is obtained

e δqTc

∫
Ω

NT
c Nc dΩ q̇c + eDδqTc

∫
Ω

BT
xBxqc + BT

y Byqc dΩ

− eDδqTc
∫

Ω

MBT
xmDLxquNqc +MBT

y mDLyquNqc dΩ = 0

(4.16)
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This equation may be even more simplified, noting that the weighting coeffi-
cients δqTc are arbitrary,

e

∫
Ω

NT
c Nc dΩ q̇c + eD

∫
Ω

BT
xBx + BT

y By dΩqc

− eDM
∫

Ω

BT
xmDLx qu N qc + BT

y mDLy qu N qc dΩ

(4.17)

This last equation raises an interesting issue: in the second line appears a prod-
uct of both nodal unknowns qu and qc. Providing that no additional simplification
can be done, it is impossible to build a linear system such as the one stated at
(4.8), which would have required a linear combination of qc and qu (instead of
this, we get a product of qu and qc). It results that the system formed by the sec-
ond line of (4.17) can be solved only if either qu or qc are known. However, none
of them are known at time t. Thus, the system defining the full coupling between
corrosion and mechanical behavior is non linear. In order to get rid off one of the
two unknowns, it is proposed to linearize the system, assuming that one of the
unknowns qu or qc appearing in the product is identical to the previous iteration
(then either1 qtu = qt+1

u either qtc = qt+1
c ). At this stage, a first hypothesis could

be made, but it is difficult to say which between the two mentioned options will
be closer to the reality or even if both approaches are feasible. Hence the most
reasonable choice is to examine them both, and decide after which one gives the
most satisfactory results. Hence, two cases will be detailed in this report.

Option #1

Option #1 relies on the assumption that qtc = qt+1
c for concerned terms of (4.17).

Accounting for this hypothesis and permuting the scalar quantities, we get

e

∫
Ω

NT
c Nc dΩ q̇tc + eD

∫
Ω

BT
xBx + BT

y By dΩ qtc

− eDM
∫

Ω

BT
xNqt−1

c mDLx + BT
y Nqt−1

c mDLy dΩ qtu

(4.18)

This equation may be rewritten as

[
Ce,cc 0

]{q̇c

q̇u

}
+
[
Ke,cc Ke,cu

]{qc

qu

}
= 0 (4.19)

1Note that only the terms containing both qu and qc in a product are concerned with this
hypothesis. (i.e. the framed quantities in (4.16)).
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Where

Ce,cc =

∫
Ω

NT
c Nc dΩ (4.20)

Ke,cc = eD

∫
Ω

BT
xBx + BT

y By dΩ (4.21)

Ke,cu = −eDM
∫

Ω

BT
xNqt−1

c mDLx + BT
y Nqt−1

c mDLy dΩ (4.22)

ge,c = 0 (4.23)

This system of equations is underspecified and needs to be supplemented by a
second system. By identification with (4.9), it is observed that (4.19) constitutes
the first equation of (4.9). The second equation of (4.9) should overcome this
lack.

We shall see in the next section 4.2.3 that the constitutive matrix D is function
of the corrosion state (and more precisely of a damage variable φ). If we assume
D to be function of qt instead of qt−1, a product of qtu and qtc will be formed
twice in (4.18), in which case the formed system could not be linearized (thus,
this is another source of nonlinearity). As a consequence, we will assume that
the constitutive matrix D is evaluated at the previous time step t− 1.

Option #2

The hypothesis carried out by the option #1 has led to a determination of Ce,cc,
Ke,cc, Ke,cu and ge,c. We will repeat here exactly the same process, but assum-
ing the complementary hypothesis, to obtain different expressions of the same
matrices.

The second option assumes that qu doesn’t change much within ∆t and then
that qtu ≈ qt−1

u . Applied to (4.17), one have

e

∫
Ω

NT
c Nc dΩq̇c + eD

∫
Ω

BT
xBx + BT

y By dΩ qtc

− eDM
∫

Ω

BT
xmDLxq

t−1
u N + BT

y mDLyq
t−1
u N dΩ qc

t

(4.24)

That becomes, under ”matrix” form

[
Ce,cc 0

]{q̇c

q̇u

}
+
[
Ke,cc Ke,cu

]{qc

qu

}
= 0 (4.25)
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With

Ke,cc = eD

∫
Ω

BT
xBx + BT

y By dΩ

− eDM
∫

Ω

BT
xmDLxq

t−1
u N + BT

y mDLyq
t−1
u N dΩ

(4.26)

Ke,cu = 0 (4.27)

Ce,cc = e

∫
Ω

NT
c Nc dΩ (4.28)

Here again, the constitutive matrix D can create a source of non-linearity. If D
is evaluated at time t instead of t − 1, the system (4.24) would be quadratic in
qtc. This assumption is identical to the one made in the option #1. Thus, to
obtain the stiffness and damping matrices stated above, we had to assume that
qtu = qt−1

u in the first instance, and qtc = qt+1
c in the second one. The assumption

qtu = qt−1
u is thus not self-sufficient to linearize the system and needs to

be supplemented by the second hypothesis qtc = qt+1
c .

4.2.3 Elementary stiffness matrix for mechanics

Restarting from the weak form stated at section 4.1.2, the weighted residual is
given by

WR =

∫
V

δqTuBTDBqu dV −
∫
V

δqTuNTb dV = 0 (4.29)

⇔ WR = δqTu e

(∫
Ω

BTDB dΩ qu −
∫

Ω

NTb dΩ

)
= 0 (4.30)

Because δqTu are arbitrary, the previous equation degenerates into the linear sys-
tem:

e

∫
Ω

BTDB dΩ qu = e

∫
Ω

NTb dΩ (4.31)

In this coupling model, we will assume that corrosion rate c influences the material
properties. Therefore, the Hooke’s matrix D is no longer constant. We will
assume in the first instance that only the Young modulus E will vary as a function
of c. To model this effect, we suggest to introduce a damage variable φ, strongly
related to c. The higher the c (or φ), the lower the Young modulus: any considered
damage law should then be a strictly decreasing function in c. The easiest law to
incorporate in our model is a linear law such as suggested in Figure 4.1, expressed
mathematically as

E(φ) = E0 ·
[(

1− Ed
E0

)
· (1− φ) +

Ed
E0

]
= E0 · [1 + φ · (α− 1)] = E0 · f ?(φ)

(4.32)
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-100
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φ [%]

c [%]

(a) Definition of the damage variable φ with
respect to c

•-Ed

-E0

-
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-
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(b) Evolution of Young modulus E as a function
of the damage ratio c for a linear damage law

Figure 4.1: Description of damage variable φ and the chosen damage law

With α = Ed/E0 and f ?(φ) = 1 + φ · (α − 1). The Hooke’s matrix is now given
by

D = f ?(φ) · E0

1− ν2

 1 ν 0
ν 1 0
0 0 (1− ν)/2


︸ ︷︷ ︸

= D0

= f ?(φ) ·D0 (4.33)

We now understand why it is required to make use of an intermediate variable
φ instead of c directly: the relative oxygen concentration c = [02]/[02]cr can
take values higher than 1, depending on the value chosen for [02]cr and lead to
negative Young modulus (or lower than residual Young modulus). The damage
variable φ is however equal to c in the bounded interval [0, 1] and admits 0 and
1 respectively as minimal and maximal value.

The function f ?(φ) can be determined with respect to the nodal unknowns qc

f ?(φ) = 1 + φ · (α− 1)⇒ f ?(ξ, η) = 1 + (α− 1) ·Ncqφ (4.34)

with

qφ = min (qc, 1) (4.35)

And the constitutive matrix takes the following expression

D = [1 + (α− 1) ·Nc min (qc, 1)] D0 (4.36)

At this stage, two problems must be pointed out.

• The first problem has been briefly discussed previously. Equation (4.36)
shows that the matrix D is function of qc. If the constitutive matrix at
time t is evaluated with the variable qc at the same time, i.e. if we assume
that

Dt =
[
1 + (α− 1) ·Nc min

(
qtc, 1

)]
D0
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equations (4.18) and (4.24), become both non-linear. As our aim in this
work is to develop a linear model, it is suggested that qtc ≈ qt−1

c and there-
fore

Dt =
[
1 + (α− 1) ·Nc min

(
qt−1
c , 1

)]
D0 (4.37)

which eliminates the non-linearity. This explains why we assumed in previ-
ous section that D should be evaluated with Young’s modulus from previous
time.

• Equation (4.36) involves the min operator applied to the unknown variable
qc (and unit vector). This operator is non-linear as well. However, this
problem is fixed by the assumption made previously: if we assume qtc ≈
qt−1
c , the minimum operator is no more applied to the nodal unknown qtc

itself but on its previous value qt−1
c . As a consequence, the damage variable

at nodes at time t will be expressed by

qtφ = min
(
Ncq

t−1
c ,1

)
(4.38)

Now that the expression of constitutive matrix D is known, it can be substituted
into (4.31). We get

e [1 + (α− 1)]

∫
Ω

BTNcq
t
φD0B dΩ qu = e

∫
Ω

NTb dΩ (4.39)

This last equation can be written as[
Ke,uc Ke,cc

]{qe,c

qe,u

}
= ge,u (4.40)

And by identification with (4.9), it is found that

Ce,uc = 0 (4.41)

Ce,uu = 0 (4.42)

Ke,uc = 0 (4.43)

Ke,uu = e [1− (1− α)]

∫
Ω

BTNcq
t
φD0B dΩ (4.44)

ge,u = e

∫
Ω

NTb dΩ (4.45)

Thus, options #1 and #2 admit common expressions for the stiffness/damping
matrices and nodal load vector given above. These expressions (4.41)-(4.45) have
been obtained using one single assumption: qtc ≈ qt−1

c .

4.2.4 Elementary coupling equations system

The mathematical developments hold in the two previous sections may be assem-
bled and summarized by building the linear differential system:[

Ccc 0

0 0

]{
q̇e,c

q̇e,u

}
+

[
Ke,cc Ke,cu

Ke,uc Ke,uu

]{
qe,c

qe,u

}
=

{
ge,c

ge,u

}
(4.46)
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The expressions of stiffness/damping matrices and nodal load vectors are sum-
marized in Table 4.1 for both examined options. Note that the hypothesis of
constant diffusivity may easily be relaxed putting D inside the integral.

We now have two differents linear differential systems of equations to model the
coupling between corrosion and mechanics. Let us now discuss the qualitative
differences between the two options.

In the first option, one single hypothesis has been made to linearize the system
(qtc ≈ qt−1

c ), while linear terms remained unaffected by this assumption. The as-
sumption was self-sufficient and did not have to be supplemented by an additional
condition, by contrast with the option #2, for which the assumption qtu ≈ qt−1

u

was not sufficient to lead to a linear system. A linearized system could be reached
for the option #2 at the expense of a second hypothesis: qtc ≈ qt−1

c , which was
assumed in the first approach. Henceforth, the first scheme is less constrained
than the second, and it appears to be more consistent. For these reasons, we will
prefer the coupling model derived in option #1 rather than in option #2.
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Option #1 Option #2

Assumptions qtc ≈ qt−1
c qtu ≈ qt−1

u and qtc ≈ qt−1
c

Ccc e

∫
Ω

NT
c Nc dΩ e

∫
Ω

NT
c Nc dΩ

Kt
e,cc eD

∫
Ω

BT
xBx + BT

y By dΩ eD

∫
Ω
BT
xBx+BT

yBy−MBT
xmDtLxq

t−1
u N−MBT

ymDtLyq
t−1
u N dΩ

Kt
e,cu −eDM

∫
Ω

BT
xNqt−1

c mDLx + BT
y Nqt−1

c mDLy dΩ 0

Kt
e,uc 0 0

Ke,uu e [1 + (α− 1)]

∫
Ω

BTNcq
t−1
c D0B dΩ e [1 + (α− 1)]

∫
Ω

BTNcq
t−1
c D0B dΩ

ge,c 0 0

ge,u e

∫
Ω

NTb dΩ e

∫
Ω

NTb dΩ

Ccc 0

0 0

q̇e,c

q̇e,u

+

Ke,cc Ke,cu

Ke,uc Ke,uu

qe,c

qe,u

 =

ge,c

ge,u


Table 4.1: Summary of the expressions of elementary stiffness matrices, damping matrices and consistent nodal load vectors for both examined
options
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4.3 Choice of shape functions

4.3.1 Position of the problem

Now that the expressions of stiffness and damping matrices are known, we must
address the question of the shape functions. In the two first chapters 1 and 2,
we only considered linear shape functions as they meet the minimal requirements
so that the convergence is assured. We have proven that the same development
can be applied to the displacement based model developed in Chapter 3. One
perfectly legitimate question may be asked at that point as if it worked well
for the 3 previous chapters, why should we reconsider the question of the shape
functions. The answer can be found in the additional non-fickian flux which has
been added in the diffusion equation (4.1), and consequently in the weak form
(4.6)

e

∫
Ω

∂c

∂t
δc dΩ + eD

∫
Ω

∂c

∂x
· ∂δc
∂x

+
∂c

∂y
· ∂δc
∂y
−Mc

∂p

∂x
· ∂δc
∂x
−Mc

∂p

∂y
· ∂δc
∂y

dΩ = 0

This latter incorporates a gradient of pressure, which is itself a first derivative of
the displacement field u. Therefore, a second order derivative is integrated to the
stiffness matrix expressions (characterized by Lx and Ly in Table 4.1).

Reminding from [25, 37, 38] that for elasticity problems, the convergence is en-
sured if both the continuity (or compatibility) and the completeness requirements
are achieved. By continuity, it is understood that the continuity of the unknown
is enforced at the interface between two elements, while the slope continuity is
not required. In other words, a C0 continuity must be enforced. The second
requirement, the completeness, imposes that the shape functions are such that a
constant strain may be modeled all inside an element. From these considerations,
we concluded that linear shape functions in ξ and η, (or of higher degree polyno-
mial shape functions) were suitable for both corrosion and mechanical models.

Let us assume that linear shape functions identical to the ones derived in section
1.2.5 a appropriate for this coupling model. The action of the non-fickian flux
are translated in the linear differential system (4.46) by the matrix Ke,cu whose
expression is given by 4.22:

Ke,cu = −eDM
∫

Ω

BT
xNqt−1

c mDLx + BT
y Nqt−1

c mDLy dΩ

It can be observed that one first derivative with respect to x or y of the strain
matrix appears in both terms of this equation. Indeed, if we focus on the first
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term for example, we get by definition of the matrix B 3.30,

Lx =
∂

∂x
B(ξ, η)

=



∂2N1

∂x2
0

∂2N2

∂x2
0

∂2N3

∂x2
0

∂2N4

∂x2
0

0
∂2N1

∂x∂y
0

∂2N2

∂x∂y
0

∂2N3

∂x∂y
0

∂2N4

∂x∂y

∂2N1

∂x∂y

∂2N1

∂x2

∂2N2

∂x∂y

∂2N2

∂x2

∂2N3

∂x∂y

∂2N3

∂x2

∂2N4

∂x∂y

∂2N4

∂x2


Its components may be determined as follow,

=
∂

∂x

(
∂Ni

∂x

)

=
∂

∂x

(
∂Ni

∂ξ

∂ξ

∂x
+
∂Ni

∂η

∂η

∂x

)

=

(
∂

∂ξ

∂ξ

∂x
+

∂

∂η

∂η

∂x

)(
∂Ni

∂ξ

∂ξ

∂x
+
∂Ni

∂η

∂η

∂x

)

=

(
∂ξ

∂x

)2
∂2Ni

∂ξ2
+

(
∂η

∂x

)2
∂2Ni

∂η2
+

(
∂η

∂x

∂ξ
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In virtue of the Schwarz’s theorem,

∂2Ni
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=

(
∂ξ
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∂2Ni
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)2
∂2Ni
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∂x
· ∂

2Ni

∂ξ∂η
(4.47)

It is proven on the same manner that,

∂2Ni

∂y2
=

(
∂ξ

∂y

)2
∂2Ni

∂ξ2
+

(
∂η

∂y

)2
∂2Ni

∂η2
+ 2 · ∂η

∂y

∂ξ

∂y
· ∂

2Ni

∂ξ∂η
(4.48)
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)
· ∂

2Ni

∂ξη
+
∂η
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∂η

∂y
· ∂

2Ni

∂η2
(4.49)

It might be useful to remind that the factors ∂(.)
∂x

and ∂(.)
∂y

in the above formula
are determined by identification with the inverse jacobian matrix 2.36.

J−1 =


∂ξ

∂x

∂ξ

∂y
∂η

∂x

∂η

∂y


If linear shape functions are used, only the second ”cross” derivative is non-zero,
admitting a constant value everywhere inside the element.

∂2Ni

∂ξ2
= 0 and

∂2Ni

∂η2
= 0 and

∂2Ni

∂ξ∂η
= Const.
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Hence, linear shape function are unable to represent any variation of gradient of
pressure inside an element. If we now assume that the mesh is regular, then it
comes that ∂ξ

∂y
= ∂η

∂x
= 0, which implies by (4.47) and (4.48) that ∂2Ni

∂x2
= ∂2Ni

∂y2
= 0.

(4.49) is also reduced to

∂2Ni

∂x∂y
=
∂ξ

∂x

∂η

∂y
· ∂

2Ni

∂ξη
= J−1

11 J
−1
22 ·

∂2Ni

∂ξη
=

1

J

∂2Ni

∂ξη
=

1

Ω

∂2Ni

∂ξη

Where Ω is the area of the finite element. And thus, for linear shape functions
the matrix Lx is

Lx =
1

Ω

0 0 0 0 0 0 0 0

0 1 0 1 0 1 0 1

1 0 1 0 1 0 1 0

 (4.50)

If the same process is applied to Ly,

Ly =
1

Ω

0 1 0 1 0 1 0 1

0 0 0 0 0 0 0 0

0 1 0 1 0 1 0 1

 (4.51)

As it can be seen in previous equations, the matrices Lx and Ly are reduced
to very simple forms and their integration in (4.22) will potentially result in a
consequent loss of information. It seems indeed that linear shape functions may
not be sufficiently rich to represent properly the evolution of the pressure gradient.
The most relevant question being to ask is to quantify this lost of information, and
to determine to which extend it can decrease the quality of the results. The answer
is not an easy one, and the most appropriate approach to tackle the problem is
to consider both linear and higher order shape functions. Opting for higher order
shape functions will indeed fill the matrix Lx and Ly on a more complete manner,
as their derivative are at least linear. Therefore, two distinct models have been
developed. The first with linear shape functions (identical to the one exposed in
previous chapters) and the second one with parabolic shape functions that will
theoretically enrich the gradient of pressure polynomial expansion.

For compatibility issues, it is proposed to adopt the same element type indif-
ferently to the problem considered (corrosion or mechanics of solids).

As the linear shape functions have already been detailed, we will not remind
here the developments held in previous chapter. Only the second order shape
functions will be covered by the next section.

4.3.2 Second order shape functions

Element types chosen for this second model are Lagrange nine-noded elements.
In terms of behavior these elements are more efficient than Surendipity elements
(8-nodes quadrangles) because of their ability to represent exactly any quadratic
function. Indeed, Surendipity elements have an incomplete polynomial expansion
[25] such that the term ξ2η2 is not represented:

u(ξ, η) = β1 + β2ξ + β3η + β4ξ
2 + β5η

2 + β6ηξ + β7ξη
2 + β8ξ

2η
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•(1)

(-1,-1)
• (2)

(1,-1)

• (3)

(1,1)
•(4)

(-1,1)

•
(5)

•(6)

•
(7)

•(8) •
(9)

ξ

η

Figure 4.2: Lagrange 9-nodes element (quad9)

It follows that lagrangian, 9-node elements are more adapted to represent highly
distorted elements and hence, model smoother solutions [25]. However, this come
at the expense of computation speed, since this 9th node adds 3 degrees of freedom
by elements.

The lagrangian 9-noded element is shown in flat adimensional coordinate sys-
tem (ξ, η) in Figure 4.2. The expressions of shape function are determined from
quadratic Lagrange polynomials extended to two-dimensions. The obtained poly-
nomials are ∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

N1(ξ, η) =
1

4
· ξη · (ξ − 1)(η − 1)

N2(ξ, η) =
1

4
· ξη · (ξ + 1)(η − 1)

N3(ξ, η) =
1

4
· ξη · (ξ + 1)(η + 1)

N4(ξ, η) =
1

4
· ξη · (ξ − 1)(η + 1)

N5(ξ, η) =
1

2
· η · (1− ξ2)(η − 1)

N6(ξ, η) =
1

2
· ξ · (1− η2)(ξ + 1)

N7(ξ, η) =
1

2
· η · (1− ξ2)(η + 1)

N8(ξ, η) =
1

2
· ξ · (1− η2)(ξ − 1)

N9(ξ, η) = (1− ξ2)(1− η2)

(4.52a)

(4.52b)

(4.52c)

(4.52d)

(4.52e)

(4.52f)

(4.52g)

(4.52h)

(4.52i)

These shape functions are represented in Figure 4.3.

Matrices B, Bx, By, Lx and Ly present in stiffness/damping matrices are de-
rived on the same manner than shown previously. Only differs the matrix sizes.
The size of stiffness and damping matrices are consequently also modified.

Finally, it is of interest to note that the upgrade of shape functions to second
order polynomial requires a higher number of gauss points for the Gauss-Legendre
quadrature. It is known by [25,35] that 3× 3 Gauss points must be used in order
to avoid formation of hourglass modes (or zero energy singular modes), which
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Figure 4.3: Shape functions for 9-node lagrangian element
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further increases the computational cost with respect to linear shape functions,
at equal number of elements.

4.4 System Resolution

Global stiffness/damping matrices and nodal load vectors are obtained performing
an assembly operation as shown in (2.25) and (2.26). The global nodal unknowns
qc and qu are obtained by solving the linear differential system (4.46), which is
of the form

Cq̇ + Kq = g with q =

{
qc

qu

}
(4.53)

Assuming an implicit first order discretization scheme for the partial derivative,
we get

C

(
qt+1 − qt

∆t

)
+ Kt+1qt+1 = gt+1 (4.54)

Which is a linear system for qt+1

(C + ∆tKt+1)qt+1 = Cqt + ∆tgt+1 (4.55)

This integration schema may be qualified as implicit, as the right hand side of
(4.54) is evaluated at t+ 1. But since the stiffness matrix K is function of Dt+1,
which itself evaluates the material properties from nodal unknown qc at previous
time step (see equation (4.37)), this is rather an approached implicit integration
schema. A fully implicit integration scheme would have required an evaluation
of the stiffness matrix at time t+ 1, relaxing the hypothesis qt+1 = qt, and thus
a non-linear system would have to be solved. A such resolution is performed
with an iterative process such as Newton-Raphson method, evaluating the exact
tangent stiffness matrix at each iteration.

Because our system has been linearized, its solution is directly obtained by
”inverting” (4.55). But it must be beard in mind that the solution qt+1 is the
solution for the linearized system. Henceforth, it shall be as away from the
actual solution of the non-linear problem as the value chosen for ∆t is indelicate
(because the stiffness matrix will deviate from the tangent stiffness matrix as ∆t
increases). The error committed on the solution is hence highly dependent on
∆t, and is a decreasing function of the chosen time step. If one wants to ensure
the convergence of the numerical scheme, one same test case can be analyzed
for decreasing values of ∆t. Once the results are close to each others, we have
reached trustful values of ∆t (because convergence is observed).

To conclude, (4.55) shall be qualified as an approached implicit discretization
scheme, and one can say that convergence can be reached if ∆t is sufficiently small.
It can be said that the scheme is stable unconditionally even if the existence of a
potential stability criterion should be investigated. The solution found by (4.55)
will match faithfully the solution of the non-linear, only provided that ∆t tends
to 0. Otherwise, deviations must be expected.
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4.5 Numerical developments

An flow-chart summarizing the main steps of the numerical code implementation
is shown in Figure 4.4.
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Figure 4.4: Flow-chart of the numerical code
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4.6 Results

The analytical solution of the system defined by the two considered equations
(3.1) and (2.3) is way too much complicated to be derived. Hence, no comparison
with a reference solution will by carried out by this section. Instead, the results
will be commented and see if they can be explained by the fundamental equations.
Also, two models have been developed based on linear and quadratic shape func-
tions. If the equations are properly solved, the 9-noded elements should provide
more accurate results, at equal number of elements.

4.6.1 Test Case 1

For the first test case, it is proposed to test the influence of the corrosion on the
mechanical problem. For this purpose, it will be assumed that the pressure factor
M = 0, in which case the stiffness matrix K becomes diagonal and the model is
reduced to a staggered coupling model. The situation consists in a rectangular
plate in extension and submitted to a corrosion rate c = 1

65
= 153.8% on its left

upper corner. The numerical results are shown in Figure 4.6 and Figure 4.8. It can

E = 200 000 MPa

ν = 0.3

e = 1 m

1 m

0.
25

m

q=100 MPa

•c = 153.8%

Figure 4.5: Description of test case 1.

be seen in Figure 4.6 that the corrosion increases significantly the displacements
at the right upper corner. The reason for this is that the corrosion induces a
material softening (remind that a linear damage law was assumed). Initially, the
isolines of displacements u(x) are rather vertical and are progressively inclined
u(x) as the corrosion diffuses, proof of the gradient of stiffness acting all along
the height of the left plate border.

In Figure 4.8, Von-Mises stresses have been plotted for 3 different times. The
stresses reaches at its lowest were the corrosion rate is the highest. A redistribu-
tion analogous to a plastic redistribution occurs then all around that point: as
the effort may not transit where the material is softened, it transits below and
the stresses are then higher at the center of the left plate border. As the corrosion
diffuses with the time increasing, the soft material zone is progressively enlarged
and the peak of stresses is pushed down. The zone defined by this stress peak
grows also gradually as the diffusion takes place, and maximal values of stress
σVM increases in parallel. This redistribution modifies also the global behavior
of the plate, which was initially under pure tension.

This non-uniform distribution of stresses σx along the border induces transverse
displacements in the neighborhood of the left extremity. It is also to interest to
note that since the tension stresses are lower at the upper right corner, they are
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(a) t = 0.15 s

(b) t = 1.8 s

(c) t = 3 s

Figure 4.6: Damage variable φ [%] obtained for Test Case 1

(a) t = 0.15 s

(b) t = 1.8 s

(c) t = 3 s

Figure 4.7: Displacement u[m] obtained for Test Case 1
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(a) σVM [Pa] at t = 0.15 s

(b) σVM [Pa] at t = 1.8 s

(c) σVM [Pa] at t = 3 s

Figure 4.8: Von Mises stresses obtained for Test Case 1

also significantly lower below: Indeed, to respect the equilibrium in rotation, the
bending moment induced by the corrosion (trough the material softening) must
be balanced by a counter-acting bending moment. This is achieved with this
decrease in stress. The body exhibits thus the behavior of a plate submitted
both tension and flexure. Diagrams of stresses σxx, σyy and τxy may be found in
Figure A.4 at page A4 in appendices.

Note that in this model, we simply took into account a damage law reducing
material stiffness to model material softening. This law highly related to plastic
behavior does not mean that accounted for ”real” plasticity! Indeed, the material
behavior was still assumed as elastic, with a lower Young modulus and hence, a
fully corroded element, can potentially reach values of stresses higher than the
yield strength of non damaged material, provided that it is sufficiently deformed.
A such case is of course not admissible if plasticity was taken into account. These
considerations may be illustrated by the steady-state solution of the problem:
once the corrosion is entirely diffused inside the material, the Young’s modulus
is uniformly distributed all over the plate. The code will provide a solution2

involving values of horizontal displacements much higher than the actual plastic
capabilities of the material.

The numerical model has also been tried on a irregular mesh. For a coarser
mesh, results obtained in term of displacements an corrosion propagation are
trustful to the results presented in this section. The stresses were however a few
less accurate especially in zones characterized by meshes disturbances, even if the
global idea was pretty well represented. Results are displayed in appendices in

2Excepted in the particular case of Ed = 0 i.e. the deteriorated material has no stiffness.
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Parameter Value Unit

c(x, y, 0) 0 %
c(0, 0.25, t) 153.8 %

ccr 100 %
D 0.1 m s−2

∆t 0.03 s
MaxTime 3 s
E0 200000 MPa
Ed 0.01E0 MPa
M 0 MPa−1

ElemType Quad4 -

Table 4.2: Parameters used for test case 1

Figure A.5.

This first test case has proven the ability to model the influence of the corrosion
to the mechanical behavior. The material softening induced by the corrosion leads
to a plastic redistribution all around the severely corroded zones, and is properly
represented by the implemented numerical model.

4.6.2 Test Case 2

The second test is the complement of the first: it will examine the other coupling
i.e. how does the model represent the influence of the mechanical loading on
the corrosion phenomenon. In order to focus on this aspect only and discard of
any parasitic phenomenon inherent to the material degradation, it is proposed to
assume that the corrosion rate c does not affect the material stiffness. Therefore,
it is assumed that Ed = E0 for this second test case.

The test case consists in a plate submitted to a vertical pressure at the right
part of its top border. This plate is supported on its lower border. A constant
corrosion rate c = 153.8% is applied at the center, all along the plate height.
A such boundary condition is of course not really physical since the corrosion is
expected to diffuse from the exterior world (i.e. a boundary), but it makes sense
as we try to model the influence of the mechanical behavior on the corrosion
diffusion, which require a situation involving high gradients of pressure. The
situation is schematically summarized in Figure 4.9 and the parameters used for
this simulation are shown in Table 4.3.

Observations

The numerical predictions are shown in Figure 4.10, where the corrosion distri-
bution is represented for 4 values of time.

At time t = 0 s, the distribution is perfectly symmetrical (enforced by the
boundary conditions). As time goes by, we deviate incontestably from a the
symmetrical distribution that the natural diffusion would have exhibited. A pref-
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E = 200 000 MPa

ν = 0.3

e = 1 m

1 m

0.
25

m

q=100 MPa

c
=

153.8%

Figure 4.9: Description of test case 2.

erential diffusion direction is clearly observed as the corrosion front progresses
faster to the left than to the right part of the plate. To a lesser degree, the
diffusion speed is also more important at the top of the plate in its left part,
by contrast with the right part where the speed is lower in the corresponding
region. As a consequence of this gradient of speed, the propagation front inclines
progressively which tends to be more visible with time increasing.

It is also of interest to note that if several zones are characterized by severe
(and ”preferential”) corrosion, it cannot be ignored that corrosion c has evolved
everywhere, and not only in the preferential zones. For instance, in Figure 4.10(c),
the minimum corrosion rate raises at 25% approximately.

Results discussion

To corroborate and understand the numerical results, let us come back to equation
(4.1). This one states that the time variation in c is influenced by both a purely
diffusive flux and a non-fickian flux. The first flux is completely independent of
the stress state and models a diffusion identical to the one described in Chapter 2,
while the non fickian-flux depends on the corrosion rate c, the pressure p, and
has a amplitude modeled by the pressure factor M . Hence, the corrosion time
evolution is governed by two sources. Based on this, we can explain the two main
observations previously made on Figure 4.10.

The first on is about the overall propagation of the corrosion, and is abso-
lutely arising from the natural diffusion term which cause to corrosion to diffuse
horizontally and indifferently from the stress state.

The reasons of the preferential directions of diffusion may be found in the second
term, the non-fickian flux, which may be written as follow, provided that D and
M are constant:

Non-Fickian flux = −∇ · (DMc∇p) = −DM

∇c · ∇p︸ ︷︷ ︸
=†

+ ∆p

 (4.56)

Before we go any further, let us consider the hydrostatic pressure distribution3

shown in Figure 4.11. The analysis of this diagram reveals three remarkable zones:

3Note that since the material properties are not influenced by the corrosion, the distribution
is constant throughout the time).
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the first one is straight vertical and is located at the half the plate. It splits the
body into two parts: the right one, which is mostly solicited by the imposed
pressure and the left one where the pressure is much less, but still positive due to
the stress diffusion pattern. The top of this line is bordered by two concentrated
zones where the pressure increases very locally4. Therefore, the plate center is
characterized by a high gradient of pressure in absolute value, which increases
progressively from bottom to top with a steeper augmentation close to the upper
border.

Also, the boundary conditions imposed on c a such that immediately left to
the plate center, ∂c

∂x
> 0 while to its right, ∂c

∂x
< 0. And by inspection with

Figure 4.11, the gradient of stress is highly negative close to the center. Hence,
it follows that 

∂c

∂x
· ∂p
∂x

< 0 (left)

∂c

∂x
· ∂p
∂x

> 0 (right)

(4.57a)

(4.57b)

Substituting these two equations into (4.56) and assuming that the term ∆p is
low, the non-fickian flux is positive in the left direction and negative in the right
direction.

Therefore, the time variation in c which is the sum of the two sources contribut-
ing to the diffusion process will be lower in the right part than in the left one.
The module of the gradient of pressure determines the magnitude of the term † of
(4.56). As ∂p

∂x
increases as we get closer to the top, the non-fickian flux will have

even more impact at the top of the plate. This is why a accelerated corrosion is
observed on the left, and a slower corrosion on the right.

Beyond these considerations, the pressure laplacian ∆p adds also a contribution.
It takes high positive values when evaluated at a local pressure minimum, and
low negative values close to maximums. Initially, the points located at half plate
are rather far from the pressure extrema, and the assumption of a small laplacian
was therefore certainly fair. However, at immediate proximity of the pressure
maximum (resp. a minimum), it is sure that the pressure laplacian takes an
important role accelerating (resp. decelerating) the diffusion process via the non-
fickian flux. It is therefore difficult to identify which term between ∇c · ∇p and
∆p are responsible to the accelerated corrosion, but the truth lies surely in a
combination of both actions.

A interesting observation can also be made in Figure 4.10: the corrosion rate
raises in some places values higher than the source corrosion rate (Figure A.7
illustrate the phenomenon without legend trimming). It is difficult to identify
the mechanism that makes that the corrosion increases in a such extend, but this
one is surely set on by the non-fickian flux as it vanishes for lower pressure factor,
or lower applied load.

4This is indirectly induced by the asymmetrical loading conditions (which generates posi-
tive/negative horizontal stresses in these regions)
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(a) t = 0.09 [s]

(b) t = 0.3 [s]

(c) t = 0.6 [s]

(d) t = 1.8 [s]

Figure 4.10: Time evolution of corrosion rate for Test Case 2 (Quad4 Elements)

Conclusions

This objective of this test case was to assess the ability of the developed code to
model the a stress-driven diffusion phenomenon. The corrosion has experienced
a diffusion into a well determined preferential direction, even if each solid particle
has raised its corrosion rate. A comparison with the governing equation (4.1) has
corroborated the main features represented in the numerical predictions.

The test case 2 has shown that the corrosion diffuses faster (resp. slower) in
zones characterized by pressure maximums (resp. minimums). An accelerated
(resp. decelerated) diffusion was also observed toward directions where the corro-
sion decreases (resp. increased) with the pressure. One main common observation
is that the diffusion took place faster in zones where the material was subjected
to tension.
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Parameter Value Unit

c(x, y, 0) 0 %
c(0.5, y, t) 153.8 %

ccr 100 %
D 0.1 m s−2

∆t 0.03 s
MaxTime 3 s
E0 200000 MPa
Ed E0 MPa
M 0.3 MPa−1

ElemType Quad4/Quad9 -

Table 4.3: Parameters used for test case 2

Figure 4.11: Hydrostatic pressure distribution (Quad4 Elements)

4.6.3 Test Case 3

For this last test case, it is proposed to consider the full coupling system: then,
both the influence of the corrosion on the mechanical behavior and vice-versa will
be modeled. It consists in a cantilever plate, subjected to a constant transverse
loading applied on its lower border, as shown in Figure 4.12.

E = 200 000 MPa

ν = 0.3

e = 1 m

1 m

0.
25

m

q=1 MPa

c = 153.8%

Figure 4.12: Description of test case 3.

Figure 4.13 presents the time evolution of the displacements. The plate behaves
initially as a common cantilever plate, but the high corrosion rate imposed at the
top causes the neutral axis to be shifted down. As the corrosion diffuses toward
the bottom of the plate, the material is progressively soften and the compression
zone is gradually enlarged, by opposition to the tensile zone which becomes more
concentrated.

The diagrams of the hydrostatic pressure p are shown in Figure 4.14, for at
3 different time values. It is majorly conditioned by the axial stresses. Univer-
sal considerations of mechanics of materials state that the bending moment is
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(a) t = 0.45 [s]

(b) t = 1.2 [s]

(c) t = 1.8 [s]

Figure 4.13: Time evolution of horizontal displacements for Test Case 3 (Quad4
Elements)

quadratic and reaches its maximal value qL2/2 at the support, and is zero at the
other extremity. Classical beam theory, even if not completely valid for lower
aspect ratio plates, tell us that

σxx =
My

I
(4.58)

This feature is well recovered on each pressure diagram (as σx are the dominant
stresses), showing two zones in tension or compression separated by a neutral axis
gradually pushed down as the corrosion progresses.

The evolution of the corrosion rate c is shown in Figure 4.15. Initially, the
diffusion seems to take place on a natural manner (i.e. the diffusion front is
straight): the zones of high stress variation are located lower in the plate and
therefore, do not influence the diffusion process. The influence of the minimal
pressure (highest compression zone) is visible few after (around 1s) and is per-
ceptible in Figure 4.15(b). A zoom of the corrosion level in the minimal pressure
neighborhood is shown in Figure A.6, where it is seen that the corrosion is slower.

Below this zone, the pressure reaches a maximum, and this induces an acceler-
ated corrosion diffusion. Certainly because the pressure laplacian is here negative.
Remember from second test case that the directions in which the corrosion rate
decreases and in which the pressure increases are favored for accelerated corrosion.
These diffusion scheme is well observed in Figure 4.15.

It is of interest to compare the present results with by Figure 4.16 where the
same test case was simulated, but with a reversed loading. The pressure diagram,
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(a) t = 0.45 [s]

(b) t = 1.2 [s]

(c) t = 1.8 [s]

Figure 4.14: Time evolution of the pressure for test Case 3 (Quad4 Elements)

combined with the enforced boundary conditions suggest that only the right upper
part of the plate is likely to experience accelerated corrosion. This is well observed
in the corrosion graph showing that the corrosion front is deeper on the right.
This front appears also to be lower than what was identified in Figure 4.15, and
for good reason because the pressure gradient is much less.

The analysis of Figure 4.12 shows that the corrosion induced damage and the
associated stress redistribution results in the accentuation of the pressure peaks,
which in turn tends to accelerate the diffusion phenomenon. For comparative
purposes, Figure 4.17 shows the corrosion distribution at time t = 1.5 s for Ed =
E0 (i.e. the corrosion does not induce any damage and thus, stress redistribution).
Even if well perceptible, the accelerated corrosion occurs to a smaller extent than
in the full coupling model.

The conclude this test case, we note that the results integrated the main features
of the observations made in the two first test cases: the accelerated corrosion and
the stress redistribution. In this full coupling model, stress redistribution caused
displacement of peak of pressure, but above all, was found to accentuate the
maximum of pressure, and subsequently the gradient of pressure. Since pressure
gradients are known to influence majorly the non-fluckian flux, this full coupling
model has shown faster corrosion propagation due to material damage.
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(a) t = 0.45 [s]

(b) t = 1.2 [s]

(c) t = 1.5 [s]

(d) t = 1.8 [s]

Figure 4.15: Time evolution of corrosion rate for Test Case 3 (Quad4 Elements)

(a) Corrosion rate

(b) Pressure diagram (legend was trimmed for illustration purposes)

Figure 4.16: Corrosion and pressure diagram at t = 1.8 s assuming that the load
applied in test case 3 is reversed.
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Figure 4.17: Corrosion state at t = 1.5 s assuming no corrosion induced damage
(E0 = Ed)

(a) t = 1.2 [s]

(b) t = 1.5 [s]

(c) t = 1.8 [s]

Figure 4.18: Time evolution of corrosion rate for Test Case 3 (Quad9 Elements)

4.6.4 Influence of the element type

One concerning issue mentioned in the establishment of the equations was the
ability of the quad4 elements to represent trustfully a gradient of stresses. To
compare the results obtained from 4 and 9-noded elements, the test case 3 has
been considered with the same parameters.

Light differences are observed between Figure 4.15 and Figure 4.18. The quad4

elements predicts a slightly faster diffusion but the diffusion pattern remains
however highly similar. The gain in accuracy appears then to be very derisory
compared to the dramatic increase in computational cost. For this study case,
the calculation time was approximately 20 times slower, for a same number of
elements.

As a conclusion, 9-noded elements were found to be unnecessary for this situa-
tion. Gradients of stresses in any direction are properly modeled by linear finite
elements and therefore the use of quadratic elements is not a necessary condition
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Figure 4.19: Results for Test case 3 with unstructured mesh at t = 2.04 s

to meet the requirements of this stress-driven diffusion model.

Nevertheless, it must be noted that 9-noded elements may be helpful to avoid
highly refined meshes in critical zones.

4.6.5 Influence of mesh

Up to now, the test cases have only been studied on structured meshes. The code
has indeed experienced several difficulties to work with unstructured meshes. In
cause, the non-fickian flux which is very sensitive to variation of pressure. The
element mismatch orientation inherent to unstructured mesh causes some troubles
for the pressure calculation. Firstly, small deviations are punctually observed in
several critical points of the mesh. This creates artificial gradients of pressures
that influence the corrosion diffusion, which in turn induces a material softening.
Stress redistribution occurs around, and the pressure evolves even more: a self-
catalyzed diverging process is then triggered. A u − p mixed-formulation FEM
model should be investigated to ensure a C0 continuity on the pressure field and
therefore smoothing the pressure field.

Figure 4.19 shows the results obtained for an unstructured mesh tested on the
third test case. Same kind of instabilities have been observed for quad9 elements,
but the system started diverging later in the simulation.
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Chapter 5

Conclusions and Perspectives

The work aimed at modeling the interaction between corrosion diffusion and
mechanical behavior of metallic alloys by the development of a FEM coupling.
Several models have been developed in the frame of this master thesis, each
integrating an additional difficulty or aspect of the problem. The working process
followed during the establishment of all models was based on 4 key steps: the
development, the coding, the verification and the validation. All the numerical
calculations were carried out in Fortran 90 to facilitate the potential future
model integration with already developed models.

A one-dimensional model for diffusion was firstly developed, assuming that the
corrosion was governed by a natural diffusion phenomenon. Even if relatively
basic, this first code enabled to build the main structure of the code. Beyond
these practical considerations, it initiated the discussion of the stability of the
system. The partial time derivative was discretized following an implicit integra-
tion scheme, whose main advantage with respect to explicit ones was the absence
of stability requirements of any kind. This choice penalized the computational
cost.

The verification of this model has been performed based on the analytical so-
lution of the differential equations derived for two particular test cases involving
both essential and natural conditions. The evolution of an RMS error has been
studied for multiple numbers of finite elements. A convergence was well obtained,
since the error was progressively tending to zero. The time evolution of the same
error has also been studied, and was marked by a peak of error at the beginning of
the simulation. This was due to the brutal changes in concentration imposed by
the boundary conditions. This peak vanished immediately once the distribution
was smoothed. The obtained errors were entirely dependent on the mesh finesse,
and indifferent from the chosen time step.

For this one-dimensional model, the validation step (i.e. the comparison of
numerical predictions with experimental results) was performed based on exist-
ing literature [1, 3], were experiments have been carried out on hot-temperature
oxidation of RR1000 and titanium alloys. Unfortunately, some information were
missing to obtain a perfect matching between empirical and numerical results (for
example corrosion diffusivity D was not evaluated). A literature research [1,20,21]
provided some more or less accurate methods to determine the missing pieces of
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information. It was concluded that the code was able to predict the time evo-
lution the oxidation layer depth, for suitable value of diffusivity D. Despite of
errors reaching sometimes 25% with respect to the experimental results, a good
correlation of the numerical results was always observed, indicating that the nat-
ural diffusion equation assumed at the beginning was well adapted to model the
diffusion of corrosive components into non-stressed materials.

Secondly, the model has been extended to the two-dimensional space. A post-
processing environment has been developed in Python to enable visualization of
2D-data in Paraview. Similarly to the first model, linear shape functions have
been used. In this model however, isoparametric elements have been considered
(quad4). For verification purposes, two test cases have been considered to assess
the ability of the code to model the diffusion with both essential and natural
boundary conditions. These test cases were such that 1D-diffusion only was
experienced, and the results were confronted to the 1D analytical solution. The
code was verified on this basis, with regular as well as highly irregular meshes.
Due to the absence of references for 2D corrosion diffusion, the validation was
performed based on physical intuition.

In parallel, the model of mechanical behavior in two dimensions has been de-
veloped. Starting from the 3D-equilibrium equations for classical mechanics, the
weak form of the problem was derived to recover the virtual work statement.
This displacements-based model was build under the assumptions of a linear
elastic behavior of solids in plane stress state, with isoparametric linear elements
(quad4). Afterwards, a stress recovery procedure including a local smoothing
was implemented in the code: Indeed, after resolution of the linear system, the
displacements at nodes are known, and the stresses may be accordingly calcu-
lated at gauss points, but should never be directly extrapolated at nodes to avoid
unrealistic stress jumps troubling the results interpretation. This stress recovery
procedure aims to decrease the error of a polynomial recovered stress field over
each finite element, in sense of root mean square and discards the irrelevant stress
discontinuities at the element interfaces.

The mechanical model was tested on two situations. The first one, a plate in
pure extension, served as patch test and passed the validation; the constant strain
was properly modeled, matching the analytical solution. The second envisaged
test case was a cantilever plate subjected to bending. The results were compared
to a trustfully structural analysis software, under the same assumptions of plane
stress state and linear shape functions. Displacements were exactly recovered
while the stresses values experienced slight acceptable deviations, surely due to
the difference in stress recovery procedures.

The last part of the work was dedicated to the coupling of the two previous
models. The diffusion process, so far considered as purely diffusive, was enriched
by a second non-fickian flux, which models the influences of the stress state on
the diffusion phenomenon. Such process was qualified as stress-driven corrosion
process. The equation describing the material behavior remained unchanged,
as an linear elastic behavior was still assumed. However, the corrosion induced
damage was taken into account by means of a linear damage law. This latter law
established a relationship between the material Young’s modulus and a damage
variable φ, defined as the minimum between the corrosion rate and 100%: the
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closer φ to 100%, the lower the Young’s modulus. This ends up to each residual
stiffness from which the stiffness does not evolve anymore (φ has there reached
100%). The existence of this residual stiffness should not be expected in reality,
but is necessary to avoid numerical divergence.

The scope of this work has been initially defined in a such way that non-linear
analysis will not be performed: it was indeed decided to harness and assess the
available possibilities involving the resolution of a linear system. However, it
turned out that the coupling system of equations formed by the stress-driven dif-
fusion and the mechanical behavior was non linear. The sources of non-linearities
were found in the stress-driven diffusion equation (4.1) itself, but were also in-
corporated by the expression of the variable Young’s modulus. To linearize the
formed differential system of equations, two hypothesis were investigated. The
first one assumed qt+1

c ≈ qtc, and was auto-sufficient to linearize the system. The
second option relied on the assumption qt+1

u = qtu. This latter assumption needed
to be supplemented by the same hypothesis as done in the previous option. The
system was then degenerated into a diagonal system matrix, and thus a staggered
coupling model. It was relinquished for the benefit of the first one, which was
judged as more consistent.

Regarding the solving of the differential equation system, we preferred an im-
plicit integration scheme rather than an explicit one for its unconditional stability,
and also because the explicit schemes have lost their interest now that our stiff-
ness matrix are now dependent on c, which varies in time (and therefore, the
iteration matrix must be re-calculated at each iteration). The linearization per-
formed to derive the expression of the first coupling option has weakened the
integration scheme stability that we took benefit so far: as the scheme is no more
fully implicit, the stability is associated to the time step, which should not be
taken too large to avoid high deviations from the tangent stiffness matrix. A
deeper study of the approached implicit scheme used should be carried out on its
stability. Failing that, a trustful value of ∆t was derived for a given situation by
decreasing progressively its value until convergence was observed.

The numerical model was finally tested on three situations. The first one aimed
to model the corrosion induced damage on the mechanical behavior. It was
mainly observed that the material softening induced by corrosion caused a stress
redistribution in stiffer zones. Asymmetrical boundary conditions enforced on c
have shown to modify the overall behavior of the solid: initially in pure tension,
the stresses redistribution caused the apparition of vertical and shear stresses,
that take more and more importance as the redistribution takes place.

Plasticity was not taken into account in this work. Instead we assumed a linear
elastic behavior, with variable stiffness. This hypothesis may lead to unrealistic
results for example when corrosion tends to be locally or globally generalized.
In such case, stress redistribution allows unrealistic deformations of the body to
satisfy the equilibrium equations, even if the material properties are outrageously
violated. A strain limit at material failure, putting an end to the simulation,
should at least be considered to avoid unreasonable results.

The second test case studied a stress-driven corrosion phenomenon. The cor-
rosion was found to diffuse faster into directions where the pressure gradient was
increasing with a decreasing corrosion rate. Local maximum of positive pressure
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were also accelerating the diffusion process. By opposition with zones marked
with a peak of compression which was decelerating the process. For high pres-
sure factor (M > 0.3MPa−1), non-fickian flux became prominent on the fickian
flux, and corrosion rate higher than the source values was sometimes observed.
Further research on this phenomenon should be carried out.

The full coupling model was finally tested on the third test case. The softening
induced by the corrosion led to a stress redistribution which increased further the
gradient of pressure, displaced the location of the pressure extrema and increased
maximal pressure values. As a consequence, the corrosion diffusion modeled in
this test case was strongly influenced by the stress state. This became even more
evident as the corrosion was spreading out and the stress redistribution took
place.

It was also proven that the 4-noded quadrangles are suitable for this coupling
model, and represent properly a variation of hydrostatic pressure, provided that
the mesh is sufficiently fine, especially in zones where the pressure may be ex-
pected to vary rapidly. 9-noded elements have shown few improvements of the
transient solution, corroborating with light deviation the predictions of the quad4
elements.

The full coupling model experienced a bad behavior with unstructured meshes,
diverging when the stress-driven diffusion was starting to influence the corrosion
evolution. Further studies should be carried out on a u − p mixed-formulation
model, to determine if a smoothed pressure field could not fix the phenomenon
observed. As the targeted applications involve mechanical parts of complex ge-
ometries, it is paramount that the code is able to handle unstructured meshes,
before to be extended to the 3 dimensional space.

Several additional perspectives can also be considered. For instance, the mate-
rial swelling inherent to the chemical corrosion reaction could be integrated to the
model. A correlation describing the evolution of the diffusivity D as a function
of the oxygen rate could also be incorporated.
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[6] University of Liège. Lagamine. https://www2.uee.uliege.be/cms/c_

2383455/nl/lagamine.
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Figure A.1: Illustration of Gibbs phenomenon at time t = 0.004 s, and for dif-
ferent truncation of the Fourier series (parameters used: cx0 = 100%, cxL = 25%
and c0 = 0% and D = 0.1 m2 s−1)
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A2 APPENDIX A.

(a) Displacements u [m]

(b) Displacements v [m]

(c) Stresses σxx [MPa]

(d) Stresses σyy [MPa]

(e) Stresses τxy [MPa]

Figure A.2: Results for test case 2 with second order polynomial shape functions
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(a) Displacements u [m]

(b) Displacements v [m]

(c) Stresses σxx [kPa]

(d) Stresses σyy [kPa]

(e) Stresses τxy [kPa]

Figure A.3: Results for test case 2, obtained from SAP2000 simulation.
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(a) σx [Pa]

(b) σy [Pa]

(c) τxy [Pa]

Figure A.4: Stresses obtained for Test Case 1 at time t = 3 s

(a) u[m]

(b) σx [Pa]

(c) σVM [Pa]

Figure A.5: Several results for first Test Case 1 at time t = 3 s, for an irregular
mesh
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Figure A.6: Zoom on the decelerated corrosion experienced in test case 3

Figure A.7: Corrosion rate is higher than the source value in several locations of
the domain


