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Abstract. Identification of the tensile force in slender axially-loaded structural elements,
such as stay cables, metallic bars and tie-rods, is of paramount importance for health mon-
itoring and safety assessment purposes. Dynamic testing techniques provide the ground
for quick and cheap identification strategies, based on the knowledge of: (a) a set of iden-
tified natural frequencies, and (b) a structural model that relates natural frequencies to
the axial-force value. Within this framework, reliability of the identified axial force values
depends, among other factors, on the predictive capabilities of the underlying structural
model. Errors may arise, in particular, from the modeling of boundary conditions. The
present paper analytically investigates the effect of boundary conditions on the modal prop-
erties of axially loaded Euler-Bernoulli beam elements. Starting from theoretical results
obtained on this archetypal structural model, a numerical procedure for the identification
of the axial force in beam elements with unknown bending stiffness and boundary condi-
tions is then presented. Parametric analyses are carried out to quantitatively assess the
accuracy of the proposed identification algorithm in the case of frequencies contaminated
by measurement errors.
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1 INTRODUCTION

Dynamic testing techniques are widely used to get estimates of the modal properties of
slender axially-loaded one-dimensional structural elements, such as stay cables, diagonal
braces, truss elements and tie-rods of vaulted historical masonry structures. Knowledge
of a set of measured natural frequencies of the beam, along with a suitable structural
model updating strategy, then, can be used to identify the value of the axial force acting
on the element, which is of paramount importance for structural health monitoring and
safety assessment purposes. Within this framework, reliability of the identified axial force
values depends, among the other factors, on the predictive capabilities of the underlying
structural model.

Frequency-based axial force identification procedures often rely on the assumption of
ideal boundary conditions, in the form of either perfectly hinged or perfectly clamped end
sections (see e.g. [1, 7]). A more realistic structural scheme could be defined, however,
by considering equivalent translational and rotational springs at the beam end sections
to model the flexibility of the restraint devices and of the support structures (e.g. deck
and tower for cables in stayed bridges). Proper definition of equivalent springs strongly
depends on the particular technology adopted to realize the restraints and is inherently
related to several different sources of uncertainties, such as those related to geometric
imperfections and aging of the support devices.

The present paper presents an analytical investigation of the effects of the bound-
ary conditions on the modal properties of axially-loaded Euler-Bernoulli beam elements
whose end sections are restrained by rotational springs. Starting from theoretical results
obtained on this archetypal structural model, a numerical procedure for the identification
of the axial force in beam elements with unknown bending stiffness and boundary condi-
tions is then presented. Parametric analyses are carried out to quantitatively assess the
accuracy of the proposed identification algorithm in the case of frequencies contaminated
by measurement errors.

2 FORMULATION OF THE PROBLEM

2.1 Free-vibrations of the Euler-Bernoulli beam model

Let us consider a straight axially-loaded one-dimensional structural element, with con-
stant bending stiffness (EI) and mass per unit of length (m). Transverse displacements
of the centerline are described through the function v = v (x, t), where x ∈ [0, l] is a
coordinate spanning the free length (l) of the element and t is the time. By neglecting
sag-extensibility and shear deformability effects, undamped planar transverse vibrations
are governed by the partial differential equation (see e.g. [8]):

EI∂4
xv − T∂2

xv +m∂2
t v = 0 (1)

where T > 0 is the axial force (see Fig. 1).
By introducing the characteristic frequency ω0 and the non-dimensional bending stiff-

ness ε:

ω0 =
√

T

ml2
, ε =

√
EI

T l2
, (2)
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the Eq. (1) can be re-stated in the following non-dimensional form:

ε2∂4
ξ v̄ − ∂2

ξ v̄ + ∂2
τ v̄ = 0 (3)

where ξ = x
l
∈ [0, 1], τ = ω0t and v̄ (ξ, τ) = v(x(ξ),t(τ))

l
.

Figure 1: Schematic representation of a straight one-dimensional structural element subject to a tensile
load T .

Values of ε typical of slender structural elements, such as stay cables and masts, are
lower than 2% (see e.g. [1, 7, 15]). Thicker structural elements such as diagonal braces,
truss elements, short cables and tie-rods of vaulted historical masonry structures, instead,
can be characterized by values of non-dimensional bending stiffness in the broader range:
0.02 . ε . 1 (see e.g. [11, 12, 13, 17]). It’s worth noting that the governing equation
(3) is singularly perturbed for small values of ε, typical of slender elements, hinting the
existence of boundary layers in the mode shapes and possible ill-conditioning of numerical
solvers (see e.g. [10, 5]).

General solutions of Eq. (3) can be expressed as v̄ (ξ, τ) = φ (ξ) sin (ω̄τ − θ), where ω̄ is
a non-dimensional vibration frequency, θ is a phase angle depending on initial conditions
and φ(ξ) is a mode shape function. The vibration frequencies ω̄ and shape functions
φ(ξ) are the solutions of a fourth order boundary value problem defined by the ordinary
differential equation:

ε2φIV − φII − ω2φ = 0, ξ ∈ [0, 1] (4)

along with suitable conditions modeling the cable restraints.
Ideal boundary conditions are often introduced, in the form of either perfectly hinged

or perfectly clamped cable end sections. In many practical circumstances, however, this
modeling strategy can lead to an oversimplified representation of the structural dynamics,
naturally claiming for the adoption of elastically supported beam models (see e.g. [14, 16,
2]). In the present work, two rotational springs with stiffness Ki (i = 1, 2) are assumed
to be attached at the end sections of the element (see Fig. 1). The degree of fixity of the
rotational restraints is then defined by introducing the non-dimensional parameters:

ρi = Ki

Ki + εT l
, i = 0, 1 (5)

It is worth noting that the parameter ρi can take values in the unit interval [0,1], being
strictly equal to zero for Ki = 0, i.e. for a perfectly hinged end section. The upper bound
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limit case ρi = 1, instead, is asymptotically approached as Ki → ∞, i.e. for a perfectly
clamped end section.

By accounting for the definitions in Eq. (5), the boundary conditions associated to Eq.
(4) read: 

φ(0) = 0
φ(1) = 0
(1− ρ0) ε2φ′′(0)− ρ0εφ

′(0) = 0
(1− ρ1) ε2φ′′(1) + ρ1εφ

′(1) = 0

(6)

The general solution of Eq. (4) can be expressed as a combination of trigonometric
and exponential functions:

φ (ξ; z1, z2) = a1 sin (z1ξ) + a2 cos (z1ξ) + a3 exp (−z2ξ) + a4 exp (−z2 (1− ξ)) (7)

where ai (i = 1, ..., 4) are real integration constants and the arguments zk (k = 1, 2) are
defined as:

zi (ω̄; ε) = 1
ε
√

2

√
(−1)i +

√
1 + 4ε2ω̄2, i = 1, 2 (8)

Notice that the use of exponential instead of hyperbolic functions in Eq. (7) is more
appropriate to highlight the existence of two boundary layers when ε << 1.

Substitution of Eqs. (7) and (8) in (6) yields the algebraic eigenvalue problem:

B (ω̄; ε, ρ0, ρ1) a = 0 (9)

where a = (A1, ..., A4)T , 0 is a null column matrix of size 4×1, and B is a 4×4 boundary
condition matrix whose entries depend on both the non-dimensional bending stiffness ε
and the degree of fixity parameters ρi (i = 0, 1).

The non-dimensional natural frequencies ω̄k (k ∈ N+) coincide with the roots of
the characteristic equation det (B (ω̄; ε, ρ0, ρ1)) = 0. Generally speaking, they will be
a function of the non-dimensional bending stiffness ε and of the two variables ρ0 and ρ1,
i.e. ω̄k = ω̄k (ε, ρ0, ρ1), k ∈ N+. Symmetry, however, allows to conclude that the non-
dimensional natural frequencies ω̄k should depend on a symmetric transformation of the
variables ρ0 and ρ1 that can be arbitrarily, but conveniently, defined as:

p = 1
2 (ρ0 + ρ1) , 0 ≤ p ≤ 1 (10)

Dependency of the non-dimensional natural frequencies on p, then, can be fully high-
lighted by writing: ω̄k = ω̄k (ε, p), k ∈ N+. It’s worth noting that the ideal limit cases of
doubly-hinged and doubly-clamped elements correspond, respectively, to set p = 0 and
p = 1.

Exact closed-form solutions of the characteristic equation are only available for the
doubly-hinged case (see e.g. [8]). Asymptotic closed-form solutions can also be derived,
for small values of the non-dimensional bending stiffness parameters ε typical e.g. of stay
cables. By extending the results firstly presented in [6] to deal with a beam element
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supported by rotational springs at both end sections, indeed, the following result can be
obtained:

ω̄k = kπ

[
1 + 2pε+

(
(kπ)2

2 + 4p2
)
ε2
]
, k ∈ N+ + o(ε2) (11)

For arbitrary boundary conditions and non-dimensional bending stiffness values, the
characteristic equation can be numerically solved e.g. through a sequential application of
a root finding algorithm based on the bisection method. Within this context, it is worth
noting that, thanks to the scaling of the governing equations adopted in the present work,
the determinant of the boundary condition matrix B is bounded and with leading order
terms of order one for vanishingly small values of ε. This makes simple numerical root
finding algorithms well suited to find the natural frequencies of the system for over a wide
interval of non-dimensional bending stiffness values, ranging from elements characterized
by values of ε in the order of 0.5 − 1 to very slender ones, with ε in the order of few
percents or lower.

2.2 Parameter identification algorithm

Once the eigenvalues ω̄k = ω̄k (ε, p) are known through an application of the semi-
analytic model described in Section (2.1), multiplication by the characteristic frequency
ω0 = ω0 (T,m, l) gives the natural frequencies:

ωk = ω0 (T,m, l) · ω̄k (ε, p) , k ∈ N+ (12)
Standard vibration testing techniques (see e.g. [20, 9]) can be applied to obtain the first

M natural frequencies of the beam: ω∗k (k = 1, ...,M). The difference between calculated
and measured natural frequencies, then, can be quantitatively assessed by introducing the
cost (or objective) function:

Fobj =

√√√√ M∑
k=1

(
1− ωk

ω∗k

)2

(13)

The unknown model parameters X = (ω0, ε, p)T ∈ R3 can be identified by solving the
non-linear optimization problem:

Find Xopt s.t. Fobj (Xopt) = inf {(X)} (14)
with the physical constraints: ω0 > 0, ε > 0, 0 ≤ p ≤ 1. Once the optimal parameters
ω0, ε and p are known from the solution of (14), by assuming that the length (l) and the
mass per unit of length (m) are known without uncertainties, the axial-force T can be
easily calculated (see Eq. (2)) as T = ml2ω2

0.
The non-linear optimization problem defined in Eq. (14) is characterized by several

characteristic features that should guide the selection of an appropriate solution algorithm.
Due to unavoidable measurement errors affecting the natural frequencies ω∗k (k = 1, ...,M),
the landscape of the cost function (12) is characterized, in general, by many local minima.
Moreover, the sensitivity of cost function (12) with respect to the parameter p tends to be
substantially negligible for small values of the non-dimensional bending stiffness ε typical
of slender elements, as it can be easily inferred by inspecting the asymptotic solution of
the eigenvalue problem (Eq. (11)).
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Gradient-based optimization algorithms, hence, are not well suited for the particular
problem at hand, since they are prone to get trapped in local minima and their iteration
operators could potentially be ill-conditioned for small values of ε. Within the class of
gradient-free algorithms, the family of Differential Evolution algorithms, firstly proposed
by Storn and Price [18, 19], has shown excellent performances in finding the global op-
timum of non-linear, non-convex, multi-modal and non-differentiable functions (see e.g.
the review in [3]). DE is an Evolutionary Algorithm (EA) that iteratively operates on
a population of candidate solutions made of NP parameter vectors. The initial popula-
tion is randomly chosen and offsprings are generated by perturbing trial solutions with
scaled differences of randomly selected population elements. As the number of iterations
grows, the characteristic size of these differences tend to automatically adapt to the nat-
ural scales of the objective landscape [3]. It’s worth noting that the peculiar strategy
adopted to generate offsprings and evolve the population of candidate solution makes DE
algorithms able to deal with objective functions characterized by low or moderately low
sensitivity with respect to one ore more variables of the searching space without numerical
problems. Selection of the better fitted elements of the population is performed through
a one-to-one parent/offspring competition scheme. The physical constraint are enforced
through a simple penalty criterion and the iterations are performed until a termination
criterion is satisfied.

In the present work, a custom implementation of a well-known variant of the DE
algorithm proposed by [4] has been adopted to solve the non-linear optimization problem
in Eq. (14). The termination criterion has been defined such that iterations are stopped
whenever one of the following conditions is satisfied: (a) the relative difference between
the best and worst objective function values ∆ = Fworst

obj −F best
obj

max{Fworst
obj

,1} of a population is below a
given threshold Toll (cf. the Diff termination criterion in [21]), (b) the value of the cost
function is lower than a prescribed value V , (c) the number of iterations NIT is equal to
the maximum number of iterations MAXIT .

3 APPLICATIONS

The performances of the proposed parameter identification strategy have been assessed
through extensive numerical testing. Results will be presented in the following for an
axially-loaded beam element characterized by ω0 = 5.66 rad/s and T = 4000 kN. Three
different values of non-dimensional bending stiffness (ε = 0.02, 0.1, 0.5) have been con-
sidered, along with five different boundary conditions: (I) p = 0 (doubly-hinged beam),
(II) p = 0.25, (III) p = 0.50, (IV) p = 0.75 and (V) p = 1 (doubly-clamped beam).

In order to simulate experimental input data, the eigenvalue problem (9) has been nu-
merically solved to get the first five natural frequencies. These frequencies, then, have been
corrupted by multiplying the nominal values by a unit-mean and low intensity Gaussian
noise, to account for the effects of measurement errors. Different values of noise inten-
sity, ranging from 0 to 2.5%, have been considered. For each noise intensity value, a
sample of 10 sets of noisy natural frequencies has been randomly generated. The opti-
mization problem (14) has been solved for each set of numerically generated input natural
frequencies by running the DE algorithm (“DEGL/SAW/bin” scheme, with scale factor
F = 0.8 and crossover parameter CR = 0.9, see [4] for further details), starting from
a population of NP = 30 trial solutions randomly chosen in the initial search space
P ⊂ R3 : 10−5 ≤ ω0 ≤ 50, 10−5 ≤ ε ≤ 5, 0 ≤ p ≤ 1. The parameters of the termination
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criterion have been set up as: V = 10−6, Toll = 10−7 and MAXIT = 1000.
Figures (2)-(4) show the results of the proposed identification algorithm as a function of

the noise intensity. The results are averaged over the number of runs NR of the algorithm
for each different noise intensity level (i.e. NR = 10) and expressed in terms of: (a)-(c)
the identified values of the parameters ω0,ave, εave and pave; (d) the relative error on the
element axial force, ∆T = Tave−T ∗

T ∗ , where Tave is the average identified value of the axial
force and T ∗ is the target value (i.e. T ∗ = 4000 kN); (e) is the average value of the cost
function associated to the identified optimal set of parameters (denoted as F best

obj in the
figures); (f) is the average number of iterations of the DE algorithm.

Figure 2 shows the results for a beam element with target bending stiffness value
ε = 0.02 typical of slender elements, such as stay cables. The identification strategy gives
fairly accurate results in terms of parameters ω0 and ε for all values of noise intensity herein
considered. As expected from the inspection of the asymptotic solution of the eigenvalue
problem (Eq. (11)), the boundary conditions do not affect significantly the cost function
of the optimization problem and, as a consequence, the identification algorithm is not able
to correctly identifying the parameter p. As already noticed by the authors in [6], the
identification procedure tends, for each value of noise intensity, to a mean value of p equal
to about 0.5. This latter value coincides with the mean value of p within the randomly
generated population members of the DE algorithm. On the overall, in spite of an highly
inaccurate identification of the degree of fixity of the beam end sections, the procedure
gives a good estimate of the axial force. Errors on the axial force obviously increase
at the increase of the noise intensity and are higher for the two boundary conditions
corresponding to the limit cases of doubly-hinged (label I, p = 0) and doubly-clamped
(label V, p = 1) beams. Figure 2(e) allows to appreciate how measurements errors,
herein associated to non-zero noise intensity values, determines a significant jump in the
estimated minimum values of the cost function. Figure 2(f) allows to appreciate how for
non-zero noise-intensity values iterations are mostly terminated because the maximum
number of iterations (MAXIT ) is reached. This is mainly due to the already discussed
lacking of convergence on the degree of restraint parameter p (see also [6]).

Figure 3 shows the results for a beam element with target bending stiffness value
ε = 0.1. The identification algorithm gives very accurate predictions of all parameters
ω0, ε and p for small values of the noise intensity (i.e. lower than 0.5%). By increasing
the noise intensity, the accuracy in the predictions of the degree of restraint parameters p
rapidly deteriorates, while the errors on both ω0 and ε remain acceptable with maximum
discrepancies from the target values in the order of ±15%, depending on the boundary
conditions. The maximum relative errors on the identified axial force are in the order of
±15% for small values of the noise intensity (i.e. lower than 0.5%), but rapidly increase up
to about ±25% for a noise intensity value equal to 2.5%. Figures 3(a) and 3(d) also allows
one to appreciate how, for the non-dimensional bending stiffness value herein considered,
the proposed identification algorithm tends to systematically underestimate the axial force
for the boundary conditions labeled (I) and (II), i.e. for p respectively equal to 0 (doubly-
hinged beam) and 0.25; on the other hand, the axial force is systematically overestimated
for the boundary conditions labeled (IV) and (V), i.e. for p respectively equal to 0.75
and 1 (doubly-clamped beam). The opposite trend is remarked for the non-dimensional
bending stiffness ε (see Fig. 3(b)). These trends can be easily explained, through an
inspection of Fig. 3(d), by noticing that the algorithm tends to: (a) overestimate the
degree of fixity of the restraints in cases (I) and (II); and (b) underestimate the degree of
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fixity of the restraints in cases (I) and (II).
Figure 4 shows the results for a beam element with target bending stiffness value

ε = 0.5, that can be considered as representative e.g. of diagonal braces, truss elements
and tie-rods. Differently than in the previous cases, the boundary conditions are identified
with good accuracy for all values of noise intensity herein considered, except that for the
case labeled as (I), corresponding to p = 0 (doubly-hinged beam), which is associated to
errors on p in the order of 25%. More in details, the accuracy of the identified values of
p decreases with the increasing of the flexibility of the restraints. The identified values
of the parameters ω0 and ε, on the other hand, are affected in general by significant
discrepancies with respect to the target values. As a consequence, also the errors affecting
the identified axial force are relevant. More in details, it is worth noting that errors on the
non-dimensional bending stiffness parameter ε reach the 60%, depending on the boundary
conditions and on the noise intensity value. Although difficult to evaluate in slender
structural elements such as stay cables (associated to small values of ε), the bending
stiffness of thicker structural elements such as diagonal braces, truss elements and tie-
rods can often be easily estimated on the basis of available information on the geometric
and mechanical properties of the structural element. Whenever the bending stiffness is
known, however, the proposed algorithm can be easily re-formulated by assuming that ω0
and p are the only unknown parameters, leading to a more precise evaluation of the beam
axial force.

4 CONCLUSIONS

An analytical model for transverse vibrations of an axially loaded Euler-Bernoulli beam
with partially restrained end conditions has been presented and used as the basis to de-
velop a numerical parameter identification strategy. Parametric analyses have been car-
ried out to quantitatively assess the performances of the proposed identification algorithm,
for a broad range of structural configurations, characterized by different values of non-
dimensional bending stiffness ε and boundary conditions, that cover a wide spectrum of
applications, such as stay cables, diagonal braces, truss elements and tie-rods of vaulted
historical masonry structures. On the overall, the proposed procedure gives accurate es-
timates of the beam axial force for small and moderately small values of ε, in the order of
ε . 0.1. For higher values of ε, based on the critical discussion of the results of the pro-
posed identification strategy, a simplified algorithm relying on a preliminary estimation
of the bending stiffness of the beam is envisaged to reduce errors on the identified axial
force.
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Figure 2: Results of the identification algorithm, averaged on ten runs, as a function of the noise intensity.
(a) Characteristic frequency ω0 (target value: ω0 = 5.66 rad/s), (b) non-dimensional bending stiffness
ε (target value: ε = 0.02), (c) degree of fixity parameter p, (d) relative error on the axial force ∆T ,
(e) value of the cost function associated to the identified optimal set of parameters, F best

obj (f) number of
iteration (the maximum number is MAXIT = 1000).
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Figure 3: Results of the identification algorithm, averaged on ten runs, as a function of the noise intensity.
(a) Characteristic frequency ω0 (target value: ω0 = 5.66 rad/s), (b) non-dimensional bending stiffness ε
(target value: ε = 0.1), (c) degree of fixity parameter p, (d) relative error on the axial force ∆T , (e) value
of the cost function associated to the identified optimal set of parameters, F best

obj (f) number of iteration
(the maximum number is MAXIT = 1000).
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