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Abstract

Background

The intestinal barrier is immature in newborn mammals allowing for transfer of bioactive

macromolecules, e.g. protecting antibodies, from mother’s milk to the blood circulation and

in neonatal rodents lasts until weaning. This passage involves the neonatal-Fc-receptor

(FcRn) binding IgG in the proximal and highly endocytic vacuolated enterocytes in the distal

immature small intestine (SI). Recent studies have suggested an involvement of the tran-

scription factor B-lymphocyte-induced maturation-protein-1 (Blimp-1) in the regulation of SI

maturation in mice. Hence, the objective of the present study was to monitor the develop-

ment of the intestinal barrier function, in relation to Blimp-1 expression during both natural

and precociously induced intestinal maturation in rats.

Results

During the suckling period IgG plasma levels increased, while after gut closure it temporar-

ily decreased. This corresponded to a high expression of FcRn in the proximal SI epithelium

and the presence of vacuolated enterocytes in the distal SI. The immature foetal-type epi-

thelium was replaced after weaning or induced precocious maturation, by an adult-type epi-

thelium with FcRnneg cells in the proximal and by non-vacuolated enterocytes in the distal

SI. In parallel to this epithelial shift, Blimp-1 expression decreased in the distal SI.

Conclusion

The switch from foetal- to adult-type epithelium, with decreased proximal expression of

FcRn and distal replacement of vacuolated enterocytes, was concurrent in the two SI

regions and could be used for monitoring SI maturation in the rat. The changes in expres-

sion of Blimp-1 in the distal SI epithelium followed the maturation pattern.
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1. Introduction

The stage of gastrointestinal maturation at birth varies among different mammalian species
and rodents are altricial species born immature with final structural and functional organ
development taking place postnatally [1, 2]. Thus, the neonatal rat is suitable as a model for the
study of the barrier function and immune system in the gut and their possible connections dur-
ing maturation [3, 4].

In neonatal rats the immature gastrointestinal tract is adapted to the digestion of milk but
permeable to essential milk-borne bioactivemacromolecules like antibodies, growth factors
and cytokines.Macromolecules are transferred through the SI epithelium via transcellular
endocytosis from the lumen into the blood circulation [5]. Receptor-mediated transcytosis of
milk-borne immunoglobulinG (IgG) for acquisition of passive maternal immunity takes place
under protection from degradation by binding to the neonatal-Fc-receptor (FcRn) [6–8]. The
presence of FcRn in the epithelium of proximal SI has been shown by measurement of the
receptor’s binding capacity for IgG [8, 9] and mRNA quantification [10], but protein expres-
sion and localisation of FcRn in the SI has not yet beenmonitored during postnatal develop-
ment. The presence of enterocytes with a large supranuclear digestive vacuole is an evident
morphological feature of the distal SI in suckling rats [11] and non-selective endocytosismight
also contribute to the trans-epithelial passage of macromolecules affecting the SI barrier prop-
erties [1].

During the third week of life in the rat, when the transition from a milk-based to a solid
food diet commences (the weaning period), gut growth and maturation accelerate involving
both functional and structural changes in the SI epithelium [12]. During this process the intes-
tinal barrier properties increase resulting in a markedly reduced permeability to macromole-
cules known as gut closure. This is demonstrated by the ceased uptake of proteins, like bovine
serum albumin and IgG, as well as non-protein macromolecularmarkers, i.e. FITC-dextrans
[13–15]. To study these ontogenic changes, gut maturation can be induced precociously before
natural weaning and we have shown that this is possible in a dose-dependent and irreversible
manner by feeding suckling rats with a lectin from red kidney beans (PHA) or pancreatic (or
pancreatic-like) proteases [14, 15].

The transcription factor B lymphocyte-inducedmaturation-protein-1 (Blimp-1) was
recently shown expressed in the intestinal epithelium of mice during the foetal and neonatal
periods, while at weaning the expression of Blimp-1 abruptly decreased [16, 17]. Blimp-1 was
suggested to play a key-role in repressing the intestinal epithelial maturation until weaning.
However, the expression of Blimp-1 and its role during postnatal maturation of the SI epithe-
lium has not yet been studied in other species, such as rats.

The aim of the present study was to follow the maturation process in the SI during natural
and precociously inducedmaturation in the rat, by monitoring the intestinal barrier properties
as well as changes in the epithelial expression of FcRn and the presence of vacuolated cells in
relation to the transcriptional repressor Blimp-1.

2. Material and Methods

2.1. Animals

The Malmö-Lund’s Ethical Committee on Animal Experiments approved the study (Permit
number:M228–11) designed according to the European Parliament and Council Directive
(2010/63/EU) and the Swedish AnimalWellfare Act (SFS 1988:539). The study was performed
on rats (Rattus Norvegicus) of the Sprague-Dawley strain (Mol:SPRD Han; Taconic M & B A/S,
Denmark) which were bred in the departmental animal facility using an open-cage system
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under specific pathogen-free conditions (20 ± 1°C, 50 ± 10% RH and a 12:12 hours light-dark
cycle). The rats were kept in polycarbonate cages (Macrolon III) on a chopped aspen wood
bedding (Beekay B & K Universal AB, Sweden) enriched with paper-nesting material and with
free access to tap water and a laboratory rodent chow (RM1, SDS, England) from a lid feed
hopper. The dams were individually housed from one week before parturition, the date of birth
of the rat pups was designated as day 0 and the litter size was restricted to 10–12 pups within
1–3 days. The pups were kept with their dam until postnatal day 21, after which the dam was
separated from her litter.

2.2. Experimental Design

The experiments were performed in a split-litter manner where the rat pups were randomly
divided into different experimental groups within the litters. Natural development of the SI
was studied in five age groups of litter-mates from 3 litters: suckling rats, 7 days (n = 6), 14
days (n = 6), and 21 days old (n = 6), which coincided with the day of separation from their
dam, and two post-weaning age groups at 28 days (n = 7) and 35 days old (n = 6). In addition,
42, 49 and 56 days old rats (n = 6–10) were included for blood plasma collection.

Induced precociousmaturation was studied in 17 days-old litter-mates, from 2 litters and
included two treatment groups and one control group. Fourteen day-old suckling rats were
gavaged once a day for three days (14–16 days of age) with either a proteinase from Aspergillius
melleus (type XXIII, Sigma-AldrichCo, USA) [15] at a dose of 0.4 mg/g b.wt. (n = 6) or the
purified lectin PHA from red kidney beans (Phaseolus vulgaris) [14, 18] at a dose of 0.05 mg/g
b.wt. (n = 6) [14, 18] dissolved in water while the control group only received water (n = 6).
During the study period a 7 cm wall extender was inserted into the cage to prevent pups from
reaching the solid food in the lid hopper.

2.3. Material Collection

At the day of euthanasia the rats were anesthetized with a subcutaneous injection of a mixture
of ketamine (Ketalar1, Pfizer, USA; 0.17 mg/g b.wt.) and azaperone (Stresnil1, Janssen Phar-
maceutica, Belgium; 0.03 mg/g b.wt.) prior to sample collection. To ensuring deep anesthesia
the eyelid and withdrawal reflex were checked before opening the thorax. Then, 1 ml of blood
was collected via cardiac-puncture into a syringe containing a mixture of 1.5 mg EDTA and 20
KIU of a protease inhibitor (Trasylol1, Bayer HealthCare AG, Germany). The bloodwas cen-
trifuged at 3000 x g for 15 min at + 4°C, the plasma was harvested and stored at—20°C until
analysis. Next, the SI was dissected from the pylorus to the ileo-cecal junction and divided into
a proximal and a distal half. The luminal content was flushed out with ice cold 0.9% NaCl.
Intestinal samples, approximately 1 cm-long, were taken from the middle of each region, fixed
in 10% neutral buffered formalin for 24 hours at room temperature and then kept in 70% etha-
nol until paraffin embedding, according to the standard procedure.

2.4. Histology and Immunohistochemistry

The intestinal samples were sliced into 5 μm-thick sections, deparaffinizedand stained with
haematoxylin and eosin (H & E) according to standard procedures. Prior to each immunohis-
tostaining procedure the endogenous peroxidase activity was blocked by incubation with Per-
oxidized 1 reagent and with Background Sniper to reduce the background (MACH 1 and 4
Universal; Biocare Medical, Llc., USA). The sections were then incubated with the primary
antibodies: polyclonal rabbit anti-rat-FcRn (M-255; Santa Cruz Biotechnology, Inc., USA;
diluted 1:600) or polyclonal rabbit anti-Blimp-1 (PA5-20310, Invitrogen, ThermoFisher Scien-
tific Inc; diluted 1:40000), in 0.02 M PBS containing 1% bovine serum albumin (BSA),
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overnight at + 4°C. The next day, staining using the HRP-Polymer Detection kit (MACH 1 for
FcRn, and MACH 4 for Blimp-1, Universal Detection kits; BiocareMedical, Llc., USA) was
performed according to the manufacturer’ specifications and using 3,3-diaminobenzidineas a
substrate. Finally, the sections were counter-stained with haematoxylin, dehydrated and
mounted under a cover slip using DPXmedium (BDH chemicals Ltd., England). Sections in
which the primary antibody had been replaced by only PBS + 1% BSA were included as a con-
trol for unspecific binding of the HRP-Polymer detection kit to the tissue. In addition, prior to
Blimp-1 staining procedure, slides were subjected to antigen retrieval by microwaving 2 × 8
min at 650W in TRIS-EDTA buffer (0.01M, pH 9). The specificity of the primary anti-Blimp-
1 antibody was verified by pre-incubating it during 30 min at RT with the blocking peptide
that corresponds to 14 amino acids near the carboxy terminus (ratio 1:5 antibody:peptide,
PEP-0430, Invitrogen, ThermoFisher Scientific Inc.) and followed the same immunostaining
procedure (S1 Fig).

2.5. mRNA Expression by RT-qPCR

Reverse transcription of RNA followed by quantitative polymerase chain reaction (RT-qPCR)
was performed for Blimp-1 (Prdm1) and FcRn (Fcgrt) mRNA. Total RNA from proximal and
distal portions of SI was extracted using the RNeasy1 Mini Kit (Qiagen) according to the
manufacturer's instructions.Genomic DNA was eliminated during RNA extraction by using
RNase-free DNase set (Qiagen) according to instructions. Total RNA concentration was deter-
mined by using Qubit1 RNA HS assay kit (Life Technologies) in a Qubit1 2.0 fluorometer
(Invitrogen) and 50–200 ng of total RNA was used for reverse transcription (RT) per reaction.
The RT reactions were performedwith the RevertAid First Strand cDNA Synthesis Kit
(Thermo Scientific™) according to the manufacturer's protocol. The amount of cDNA was
measured with Qubit1 ssDNA assay kit (Life Technologies).

RT-qPCR was performedusing a C1000 Touch Thermal Cycler (BioRad) on 5–10 ng (2 μl of
a 20 μl RT reaction) of first strand cDNA using SsoAdvanced™ Universal SYBR1 Green Super-
mix (BioRad laboratories, USA) in triplicates, according to the manufacturer's instructions. The
primers used were predesigned on the rat sequence by the manufacturer (KiCqStart1 SYBR1

Green Primers, Sigma-Aldrich) and ribosomal protein L13 (Rpl13a) was used as a housekeeping
gene. The sequence of the primers used were as follows: Prdm1 F: ATTTTTGGCGGATCTATT
CC / R: AGGGATAGGCTTAATAGTGTAG; Fcgrt F: AAATAAATGGGACCTTCACAC / R:
ACCAACGATATCTGTCTCC; Rpl13a F: AGTTAAAGTATCTGGCCTTTC / R: CTCTTTTG
GTCTTGTGCG.Amplification of the PCR products was preformed as follows: initial denaturing
at 95°C, 3 min, followed by 40 cycles (denaturing at 95°C, 15 sec, annealing at 58°C, 30 sec and a
plate read). A melting curve for each primer was included at the end of the program from 65°C
to 95°C, with an increment of 0.5°C for 5 sec and plate read. Melting curve analysis of PCR prod-
ucts indicated single products for each primer pair used.

2.6. Determination of Plasma IgG

Plasma IgG levels were quantified by single radial immunodiffusion [19] using rabbit anti-rat-
IgG (DAKO A/S, Denmark) as the precipitating antibody. Purified rat IgG (Miles Laboratories
Inc.; USA) was used as the standard, and sample concentrations were interpolated from the
standard curve that was generated.

2.7. Measurements, Calculations and Statistics

Microscopic examination was performed using an Olympus PROVIS microscope connected to
an Olympus DP50 camera (Olympus, Japan), and the images were evaluated by morphometry
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using the ImageJ software (National Institutes of Health, Bethesda,MD, USA). The proportion,
in percent, of adult-type enterocytes in the villi epithelium was estimated by measuring the
length of FcRnneg cells in the proximal SI and the length of non-vacuolated enterocytes in the
distal SI, in relation to the total villous length.

One-way ANOVA with multiple comparisons and Tukey’s post-hoc test was performed for
analysis of plasma IgG levels during natural development, while Dunnett’s post-hoc test was
used for analysis of plasma IgG levels in precociously-induced maturation groups and analysis
of the proportion of adult-type epithelium between groups during natural development and in
inducedmaturation groups. The percentage of adult-type epithelium in treatment groups was
also plotted for correlation with R2 and Pearson and Spearman test calculated. All statistics
were performed using GraphPad Prism version 7 for Mac (GraphPad Software, San Diego, Cal-
ifornia, USA, www.graphpad.com). Significancewas considered when p< 0.05 (�), p< 0.01
(��), p< 0.001 (���), p< 0.0001 (����), or non-significant (ns).

3. Results

3.1. Morphological Changes during Development

Microscopic examination of the SI samples revealed characteristicmorphological changes with
age (S2 Fig), such as the transition from finger-shaped villi in suckling rats (7d and 14d) to
more tongue-shaped villi in weaned rats (28d and 35d). Also evident crypt formation from 14
days of age and an increase in goblet cells, distinctive for their spherical shape and non-stained
cytoplasm, in the villi epithelium was found. Infiltration of immune cells into the lamina pro-
pria and signs of epithelial damage in the villi tips could be seen in rats during and after wean-
ing (21d and 28d).

A major difference was obvious along the proximal-to-distal axis of the SI, since in the distal
part vacuolated enterocytes were the predominant epithelial cell-type in suckling rats (7d and
14d). However, from day 21 these foetal-type cells had been replaced by non-vacuolated enter-
ocytes—adult-type cells—from the villous base and the morphological differences between the
proximal and distal SI were reduced (Fig 1). The proportion of non-vacuolated, adult-type epi-
thelial cells along the villi, increased from 6.8 ± 0.8% to 100% between 14 and 21 days of age.

Precociously inducedmaturation in 17 days old rats, resulted in a significantly increased
proportion of the non-vacuolated enterocytes in the distal SI, from 10.3 ± 2.8% in the control
group to 74.1 ± 27.1% in the PHA treated group (���� p< 0.0001) and 34.5 ± 17.3% for the
protease treated group (� p< 0.05), with vacuolated enterocytes only remaining at the villi tips
(Fig 2). Thus, during both natural and precociously induced development, a gradual replace-
ment of the foetal-type vacuolated cells by adult-type enterocytes, progressing from the base to
the tip of the villous, was seen in the distal SI.

3.2. Expression of FcRn during Development

Immunohistochemical staining showed a strong expression of FcRn in the apical portion of the
epithelial cells in the proximal SI of suckling rats (7d and 14d), with increasing intensity along
the crypt-villus axis (Fig 3A and S3 Fig). In 21 days old pups, FcRn expression was reduced and
restricted to the upper half of villi, which became even more evident in the post-weaning rats
(28d and 35d). The replacement of FcRnpos cells by FcRnneg cells in the proximal SI epithelium
was 75.3 ± 6.9% by the third week (21d), and 96.9 ± 3.7% in 28 days old pups (Fig 3B).

In the distal SI epithelial FcRn expression appeared lower than in the proximal region, but
individual disperse cells in the upper half of the villi were highly positive (S3 Fig). The 21 days
old rats showed decreased staining of FcRn, beingmainly localised apically in epithelial cells at
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the villi tips, and in the post-weaning groups (28d and 35d), these cells were further limited,
although some disperse epithelial cells still showed FcRn stained cytoplasm.

After induced precociousmaturation, due to PHA or protease exposure, the expression of
FcRn was reduced, remaining apically in epithelial cells at the upper part of the villi in the prox-
imal SI, while controls expressed FcRn along the villi epithelium (Fig 4). Thus, the presence of
FcRnneg cells in the PHA treatment group (72.75 ± 8.7%) was significantly increased (���

p< 0.001) compared to controls (12.3 ± 2.5%) while protease treatment had no significant
effect (Fig 4). A high correlation (Pearson coefficient, r, and R2 = 0.98) was found between the
degree of replacement of the foetal-type by adult-type SI epithelium in the proximal and distal
regions (Fig 5), i.e., FcRnneg enterocytes in the proximal and non-vacuolated cells in the distal
SI, indicating that the effects in the two studied regions occur in parallel during both natural
and inducedmaturation.

In addition to the epithelial FcRn expression, staining was also found in the villi lamina pro-
pria, including immune cells, being weak in the proximal SI while stronger in the distal SI in the
suckling rats (7d and 14d) (Fig 5). In older rats, FcRn appeared in the lamina propria with some-
what stronger intensity in the proximal SI and was still detected in the distal SI in 21 days old
pups, while in the post-weaning groups (28d and 35d) staining had decreased.After induced
maturation, in both the protease and PHA treated groups, an increased number of FcRn stained
cells appeared within the lamina propria in the distal SI, compared to the control group (S4 Fig).

The RT-qPCR analysis showed a significant decrease of mRNA for FcRn (Fcgrt) expression
with age/inducedmaturation in the proximal SI that support the results obtained with immu-
nohistochemistry (Fig 6A and 6C).

Fig 1. Replacement of vacuolated foetal-type epithelium by non-vacuolated adult-type epithelium in the distal part of the SI during postnatal

development in rats. (a) Representative H & E stained sections (magnification 400x) showing the structural changes in the distal SI between the

suckling (7d) and the post-weaning periods (28d). (b) Appearance of adult-type epithelium with non-vacuolated cells (in % of total villous length) in 7, 14,

21, 28 and 35 days old rats (mean ± SD, n = 6–7).

doi:10.1371/journal.pone.0164775.g001
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3.3. Plasma Levels of IgG

The level of IgG in blood plasma increased in suckling rats reaching a peak in the 14 days old
pups and then decreasing to a minimum after weaning (28d and 35d) (Fig 7A). The change in

Fig 2. Increased replacement of vacuolated foetal-type epithelium by non-vacuolated adult-type epithelium in the distal

part of the SI in rats due to precociously-induced maturation. (a) H & E stained sections (magnification 200x) from the distal SI in

17 days old rats gavage treated with PHA or protease for 3 days, to induce precocious gut maturation, compared to control rats

gavaged water. (b) The proportion of adult-type non-vacuolated enterocytes appearing in the distal SI epithelium (in % of total villous

length) in 17 days old rats treated with PHA or protease compared to control rats (mean ± SD, n = 6; * p < 0.05; **** p < 0.0001).

doi:10.1371/journal.pone.0164775.g002
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plasma IgG levels showed an inverse correlation (r = -0.65) with the appearance of adult-type
FcRnneg cells in the proximal SI during this age period (S4 Fig). In older rats, the plasma IgG
levels started to increase again until reaching a plateau of around 4 mg/ml after 42 days of life.

Fig 3. Replacement of FcRnpos foetal-type epithelium by FcRnneg adult-type epithelium in the proximal part of the SI during

postnatal development in rats. (a) Immunohistochemistry of FcRn shown in representative histological sections (magnification 400x) in

the proximal SI from the suckling (7d) to the post-weaning periods (28d). For comparison, note the lack of staining for FcRn in the

epithelium, while staining seen in the lamina propria in the distal SI of suckling 7 days old rats. (b) Appearance of adult-type epithelium with

FcRnneg enterocytes (in % of total villous length) in the proximal SI of 7, 14, 21, 28 and 35 days old rats (mean ± SD, n = 6–7).

doi:10.1371/journal.pone.0164775.g003
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After inducedmaturation in the rats treated with PHA or protease, the plasma IgG levels was
lower, for PHA significatly, compared to that of the controls (Fig 7B).

3.4. Expression of Blimp-1 during Development

Epithelial cells along the villi were positively stained with anti Blimp-1 antibodies in the distal
part of SI of suckling rats, especially at age of 14 days old, with some variation between villi and

Fig 4. Increased replacement of FcRnpos foetal-type epithelium by FcRnneg adult-type epithelium in the proximal parts of the SI after

precociously induced maturation in rats. (a) Immunohistochemistry of FcRn in representative histological sections (magnification 200x) from

the proximal SI in 17 days old rats gavaged with PHA or protease for 3 days to induce precocious maturation, compared to control rats. (b) The

proportion of adult-type FcRnneg enterocytes in the proximal SI epithelium (in % of total villous length) in 17 days old rats treated with PHA or

protease, compared to control rats (mean ± SD, n = 6; *** p < 0.001).

doi:10.1371/journal.pone.0164775.g004
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individuals (Fig 8). The nuclear staining disappeared from the villi epithelium in the post-
weaning age groups. On the other hand, the immunostaining of Blimp-1 was not evident in the
epithelial cells of the villi in the proximal SI in all ages.

Additionally, immunostaining of Blimp-1 was observed in the crypt-region cells in both the
proximal and the distal parts of the SI in all ages. Blimp-1 immunostaining was found in epi-
thelium-associated cells, in the lamina propia, in the submucosa and in cells between the mus-
cular layers.

The RT-qPCR analysis of Blimp-1 (Prdm 1) mRNA showed decreased expression in the dis-
tal part of the SI in the post-weaning age groups, while no obvious changes were observed in
the proximal SI during development (Fig 6B). Similarly, PHA- and protease-induced preco-
cious maturation resulted in decreasedmRNA Blimp-1 expression in the distal part of the SI
(Fig 6D).

Fig 5. Correlation between the maturational appearance of adult-type epithelium in the proximal and the

distal SI. Appearance of FcRnneg cells in the proximal SI and non-vacuolated cells in the distal SI in 17 days old

rats treated with PHA or protease for 3 days, to induce precocious gut maturation, compared to control rats.

doi:10.1371/journal.pone.0164775.g005
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Fig 6. Expression of mRNA for Fcgrt (FcRn) and Prdm1 (Blimp-1) in the SI of developing rats. Relative mRNA levels

of Fcgrt (a, c) and Prdm1 (b, d) in the proximal and distal SI in 7, 14, 21, 28 and 35 days old rats (n = 4–6) during postnatal

development (a, b) and in 17 days old rats treated with PHA or protease at 14–16 days of age (n = 3–4) to induce

precocious gut maturation, compared to control rats (c, d). (mean ± SD, a–b and * p < 0.05; *** p < 0.001).

doi:10.1371/journal.pone.0164775.g006

Postnatal Maturation of the Intestinal Epithelial Barrier

PLOS ONE | DOI:10.1371/journal.pone.0164775 October 13, 2016 11 / 18



4. Discussion

4.1. Intestinal Barrier Function and Plasma IgG Levels

In the present study, intestinal barrier functionwas monitored by measuring the plasma levels
of IgG, as an accumulative marker for macromolecular passage frommothers milk to the neo-
nate’s blood circulation [20]. Thus, during the first three weeks after birth, continuously
increasing plasma levels of IgG were seen reflecting the immature SI epithelium permeable to
macromolecules, like IgG, during the suckling period. After this, at weaning, the plasma IgG
levels decreasedmarkedly due to the decreased permeability at intestinal closure [10, 13]. From
postnatal day 35 the plasma IgG levels restarted to increase, which can be attributed to the acti-
vation of the adaptive immunity [21], with an increased antibody (IgG) production due to the
exposure to new dietary and microbial antigens after weaning. The high permeability of the SI
during the suckling periodwas reflected in the presence of the immature SI epithelium, evi-
denced by the histological and FcRn immunohistochemistry and mRNA analysis.

4.2. Neonatal-Fc-Receptor Expression

It is well known that FcRn mediates the binding and transfer of IgG across the SI during the
suckling period in rats [11]. Our results, obtained by monitoring the FcRn protein expression
in the epithelial tissue by immunohistochemistry, are in line with this as well as with the FcRn
mRNA quantification in this study and previously published data [10]. Thus, FcRn was
expressed with highest intensity in the proximal SI during the suckling periodwhereas the
expression markedly decreased at weaning. Generally, FcRn was localised in the apical part of

Fig 7. Plasma IgG as an accumulative marker for intestinal macromolecular permeability. (a) Changes in

plasma IgG levels (mg/ml) during postnatal development in suckling rats, 7, 14, and 21 days old and post-weaning

rats, 28, 35, 42, 49 and 56 days old (mean ± SD, 10–90% percentile, (boxes), n = 6–10). (b) Decreased plasma

IgG levels (mean ± SD, n = 6) in 17 days old rats treated with PHA (* p < 0.05) or protease (non-significant) during

3 days to induce precocious maturation, compared to control rats.

doi:10.1371/journal.pone.0164775.g007
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the foetal-type epithelial cells with a gradual increase in expression towards the villi tips and
with no expression in the crypts. After weaning, in the adult-type epithelium, FcRn was
expressed only in a few cells at the villi tips, with a dotted staining in the cytoplasm, indicating
a vesicular deposition. This low expression of FcRn in the SI epithelium after weaning might
indicate a second role of this receptor contributing to the sampling of luminal antigens and
transporting IgG–antigen complexes to the underlying lamina propria with immune cells [22].

4.3. Presence of Vacuolated Enterocytes

During the suckling period vacuolated enterocytes are the predominant epithelial cell-type in
the distal portion of the SI [11]. These foetal-type cells have high endocytic activity and form a
large supranuclear vacuole, occupyingmost of the cytoplasm and have an intracellular diges-
tive function. These distal absorptive cells might, even if they are digestive, contribute to the
uptake and transfer of intact macromolecules like maternal IgG, however, in a less specific
manner than in the proximal SI, expressing the IgG selective receptor FcRn [23]. The foetal-

Fig 8. Expression of Blimp-1 in the small intestine during suckling and post-weaning periods. Immunohistochemical staining of Blimp-

1 in representative histological sections (magnification 200x) from the proximal and distal SI in suckling (14d) and post-weaning (28d) rats.

Note: Nuclear immunorreactivity of Blimp-1 antibodies in epithelial cells indicated by black arrows; intraepithelial and lamina propria cells–red

arrows; crypt cells–green arrows and cells in muscle layer are indicated by blue arrows.

doi:10.1371/journal.pone.0164775.g008
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type epithelium, with vacuolated enterocytes, was totally replaced by the adult-type non-vacuo-
lated epithelium in the distal SI after weaning.

4.4. Natural and Induced Maturation

Gavage of PHA and protease for three days accelerated the intestinal maturation, resulting in a
precociousmaturational status in 17 day old rat pups similar to that observed in the rats after
natural weaning (21–28 days old). Thus, the treated groups showed decreased plasma IgG lev-
els compared to controls indicating increased barrier properties, as well as changed epithelial
phenotypes in both SI regions, i.e. decreased proximal FcRn expression and disappearance of
the vacuolated enterocytes in the distal region. However, the treatments differed in magnitude,
since PHA gavage resulted in a total switch to the adult-type epithelium in both parts of the SI,
while the effects of the treatment with protease, given in a suboptimal dose, were only about
20–40% of those caused by PHA [15]. Thus, the degree of maturation, naturally or precociously
induced, could be followed by the appearance of FcRnneg epithelial cells in the proximal SI and/
or non-vacuolated enterocytes in the distal SI. In fact, a strong correlation between the epithe-
lial replacement in the proximal and distal parts of the SI was found and these changes could
be used independently or in combination as markers to monitor the developmental maturation
of the SI in the young rat.

4.5. Expression of Blimp-1

Two recent studies on the SI expression of the transcription factor Blimp-1 in mice suggested
its possible role as a regulating-element in gut maturation [16, 17], since young mice showed a
cease in Blimp-1 expression in the SI epithelium at weaning correlating with the transition to
adult-type epithelium [24]. In the present study done in rats, we also observed expression of
Blimp-1 in the nuclei of some distal SI enterocytes in the suckling age groups, which was no
longer found in the post-weaning age groups and is in line with the findings in mice [16, 17].
In contrast to the distal part, the proximal SI enterocytes had no evident expression of Blimp-1
and, in fact, data on Blimp-1 in the proximal SI epithelium has not been previously published
to our knowledge.

Moreover, we observed an additional localisation of Blimp-1 in the SI, where some cells in
the crypt region were found positive, especially in the proximal region in the post-weaning
groups. Furthermore, single intraepithelial cells along the villi and cells in the lamina propria
and submucosa presented clear expression Blimp-1 in their cytoplasm, presumed to be
immune cells [25]. We could also observe expressing Blimp-1 cells between the muscle layers,
possibly belonging to the myenteric plexus. The expression of Blimp-1 at all rat ages included
in the study was confirmed by mRNA analysis. Taken together this suggests that Blimp-1 may
function as nuclear transcription repressor in the distal SI enterocytes during the suckling
period, presumably delaying SI epithelial maturation, as it was suggested in mice [17]. How-
ever, further studies for the characterisation of the cell types expressing Blimp-1 in the SI in
rats would be of interest and perhaps Blimp-1 knockout models would be needed to further
investigate the role of Blimp-1 in intestinal epithelial maturation.

4.6. Connection between the Barrier Function and the Immune Systems

in the Gut

In addition to the intestinal barrier, also the immune system of the gut at birth is immature
and functionally naive due to the low antigenic stimulation in utero [26]. The maternal passive
immunity obtained by absorption of milk-borne IgG during the suckling periodwill provide a
temporary protection, but the immune system will also be activated by exposure to the
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manifold of environmental, dietary and microbial, antigens [27]. The increase in plasma IgG
levels evident after weaning, verified the activation of the immune system. The low expression
of FcRn in some epithelial cells at the villi tips as well as in the lamina propria, endothelial and
possibly immune cells, remaining in post-weaning rats (28 and 35 days old) can be related to
FcRn’s functions in retrieval of luminal antigens, and the uptake of IgG-antigen complexes for
antigen presentation. Thus, FcRn may have a dual role not only in the intestinal transfer of pas-
sive immunity during the suckling period but also contributing to antigen presentation and
activation of the naïve immune system during and after weaning [22].

The immune system of suckling rats, 10 days old, is immature, whereas that of weaned rats,
21 days old, is comparable to that of an adult, suggesting a parallelism in timing between the
activation of the immune system and gut maturation of the young at weaning [21, 28, 29]. In
fact, there is a peak of interleukin-2 (IL-2) receptor expression on day 21 after birth [30] and
experimental injection of IL-2 to suckling rat pups have been shown to induce precocious
intestinal maturation, while the injection of the immunosupressive drug cyclosporineA, being
an inhibitor of IL-2 production, reduces intestinal maturation [31, 32]. Moreover, IL-2 tran-
scription was shown to be repressed by Blimp-1 in immune cells and to affect enterocyte gene
expression in mice with defective adaptive immunity [33, 34]. Thus, the observations obtained
in the present study, together with published data, suggest that the development of the SI epi-
thelial barrier and the immune system of the gut not only show parallelism but also appear
connected during postnatal period in rodents.

5. Conclusions

The switch from foetal- to adult-type SI epithelium during neonatal development with a
decrease in FcRn expression in the proximal SI occurred in parallel to the disappearance of vac-
uolated enterocytes in the distal SI. This regional correlation of the developmental changes in
the SI could be used in combination or separately for monitoring and estimating the stage of
intestinal maturation in the neonatal rat. Even though Blimp-1 cannot be used as an ultimate
marker for maturational monitoring, the changes in expression in the distal SI during matura-
tional alterations suggest that Blimp-1 might be involved in the intestinal barrier development
but also supports the connectionwith the immune system during the neonatal period in rats.

Supporting Information

S1 Fig. The specificityof the anti-Blimp-1 antibody was verified by neutralizationwith the
Blimp-1 peptide control. Immunohistochemistrywith and without blocking with the immu-
nizing 14-aa Blimp-1 peptide (antibody: blocking peptide ratio; 1:5) in the distal part of the SI
in suckling 14 days old and post-weaning 28 days old rats. In contrast to anti-Blimp-1 staining,
the tissues incubated with the antibody pre-neutralizedwith the Blimp-1 peptide showed no
staining. Negative control, incubation without Blimp-1 antibody is included as a secondary
detection system control.
(TIF)

S2 Fig. Replacement of vacuolated epithelium by non-vacuolated epithelium in the distal
part of the SI during postnatal development in rats.H& E stained representative histological
sections (200X) showing the structural changes in the proximal and distal parts of the SI during
postnatal development in 7, 14, 21, 28 and 35 days (d) old rats.
(TIF)

S3 Fig. Replacement of FcRnpos epithelium by FcRnneg epithelium in the SI during postna-
tal development in rats. Immunohistochemistry of FcRn (200X) in representative histological
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sections from the proximal and distal SI during postnatal development in 7, 14, 21, 28 and 35
days (d) old rats.
(TIF)

S4 Fig. Changes in FcRn expression in the distal part of the SI of rats due to precociously
inducedmaturation. Immunohistochemistry of FcRn (200X) in representative histological
sections from the distal SI in 17 days old rats treated with PHA or protease at 14–16 days of age
to induce precocious gut maturation, compared to control rats. Note the increased FcRn stain-
ing in the lamina propria, especially higher in the PHA treated group.
(TIF)

S5 Fig. Correlation between FcRn expression and plasma IgG during postnatal develop-
ment in rats.Changes of plasma IgG (mg/ml, mean ± SD) and appearance of adult-type cells
(% FcRnneg of total villi cells, mean ± SD) in the proximal SI during postnatal development in
7, 14, 21, 28 and 35 day old rats. Note the inverse correlation with a coefficient of r = -0.65.
(TIF)
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