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Abstract

Consciousness is the result of an extremely complicated brain function. The exact functionality of the

brain resulting in consciousness remains unsolved. Combined forces from many different scientific

fields are working on this to get a better understanding on consciousness and its disorders. Medicine,

neuropsychology, mathematics and biology are only a few of those fields. Specifically, the medical

model can provide us with unique insights as to the functions of typical states of consciousness.

This thesis is focusing on patients with disorders of consciousness. This kind of patients are brain-

lesioned individuals which in numerous cases are incapable of responding to requests, despite the

fact that they might still have preserved conscious functions. Often, the remaining functionality of a

brain is sufficient for perceiving and decoding the surrounding environment or the position of patients

in it. Nowadays, we know that lack of responses do not necessarily indicate lack of consciousness.

Behavioural-assessment scales for the evaluation of consciousness often provide a vague diagnosis.

Mis-diagnosis of consciousness raises clinical as well as ethical issues.

Functional neuroimaging can be used to address this problem by providing an inner overview of the

brain functionality of patients with disorders of consciousness. Functional Magnetic Resonance Imag-

ing and Positron Emission Tomography are two commonly used modalities of functional neuroimaging,

which are used in the projects of this thesis. They provide a quantification of different brain properties

in combination with an accurate spatial representation, which makes them a unique source of infor-

mation. Machine Learning, being part of the wider Artificial Intelligence field, incorporates algorithms

that can efficiently handle high-dimensional data. Such algorithms can unveil patterns of data and un-

dercover interactions of brain regions, using data-driven approaches. Additionally, they provide tools

that can ensure success in predicting unseen data. Therefore, they can constitute a necessary and

complementary tool to classical statistics for the analysis of Functional Neuroimaging data in Disorders

of Consciousness.

The combination of behavioural assessments and functional neuroimaging form an extremely im-

portant and unique source of information, for both clinical use and the scientific study of consciousness.



The former is showing the thin line between consciousness and un-consciousness and the latter pro-

vides the means to explore it.

This thesis aims at providing tools to assist the behavioral diagnosis of consciousness using Ma-

chine Learning in functional neuroimaging data from patients with disorders of consciousness. The

studies composing it focused mainly on the two groups that are considered to lie on the border line

of responsiveness: i) Minimally Conscious State, and ii) Unresponsive Wakefulness State. Two differ-

ent modalities, which capture different properties of brain function, have been used. At first we used

functional Magnetic Resonance Imaging, from which we extracted brain connectivity features. To those

features we applied machine learning techniques to identify the contribution of brain networks to the

classification of patients. In the second project, we used the metabolic activity of the brain extracted

from Positron Emission Tomography, to classify patients with brain lesions and extract regional infor-

mation. We applied certain practices, in order to overcome problems such us noisy images, redundant

features and limited samples.

Both projects are highlighting these brain regions with the maximum contribution to the classification

process, assuming that they are significant to higher order cognitive functions, therefore shedding light

on the mechanistic counterpart of the phenomenon of consciousness.



Chapters’ Preview

Chapter 1 describes the main terminology, fundamental principles and the disorders of

consciousness. The behavioural characteristics of each state of consciousness are pre-

sented.

Chapter 2 is based on book chapter Measuring Consciousness Through Imaging [1].

It provides an overview of Functional Neuroimaging and how it has been used so far in the

investigation of Disorders of Consciousness. The operational principles of the functional

MRI and PET are briefly described. The necessary preprocessing steps, which prepare

the scans for further analysis are also reported. Finally, some important findings of Func-

tional Neuroimaging, which are used in the later chapters are provided.

Chapter 3 is an overview of the analysis that has been used for data of Disorders of Con-

sciousness (DOC) patients, based in the review work “Look at my classifier’s result”:

Disentangling unresponsive from (minimally) conscious patients [2]. Additionally, the

data analysis tools that were used in the conducted research are included in this chapter.

Statistical methods referred to in the ensuing chapters are only briefly referenced due to

the fact that they are well known, validated and considered detrimental today. Algorithms

and techniques from Machine Learning, which are applied in next chapters of this thesis

are described in more details.

Chapter 4 is based on Intrinsic functional connectivity differentiates minimally con-

scious from unresponsive patients [3], which describes the classification process of

Disorders of Consciousness patients using Resting State fMRI (rsfMRI). It starts with the

preprocessing followed by the steps we performed to build the model for classification.

Extraction and evaluation of features, evaluation and validation of the produced model and

its evaluation with a generalized unseen population is described in this chapter.

In Chapter 5, the analysis of PET using Machine Learning is presented. It consists of

the preliminary results of the classification of lower states of Disorders of Consciousness.



This work is an effort to create a diagnostic tool with minimum human intervention but also

to study the neural correlates of consciousness. The process of estimation of models’

parameters and the models’ validation with the unseen data are presented.

The last chapter contains the conclusion, drawbacks and general considerations drawn

from the research conducted in the chapters 4 and 5.



Chapter 1

Disorders of consciousness and
means of evaluation

1



Chapter 1. Disorders of consciousness and means of evaluation
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Summary

Although “consciousness” is lacking a concrete definition, for the sake of scientific progress, scientists have
come up with ways to define and quantify it. A self-explanatory start for the research of consciousness is to
observe patients for their behavioral symptoms in order to accurately assess in the different states of pathological
(un)consciousness. Then we can study the pathogenesis of it. Behavioral assessments aim at assigning the
behavioral characteristics to a level of consciousness. It is the main way to evaluate if a patient with brain lesion
has consciousness and in what degree.
Keywords: Consciousness, Disorders of Consciousness, Behavioural assessments, CRS-R.
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1.1 Consciousness

There is a big paradox in the scientific studies of consciousness: we are investigating something for

which there is no global or commonly accepted definition. If we would let this inconvenience hold back

our passion to investigate this extremely fascinating topic, we would not have started at all and the brain

research would not have had the very important findings that came up while “looking for consciousness”.

Additionally, it is also possible that a global definition will come up as a result of research findings.

Following the neurological definition of consciousness framed by Plum and Posner[4], Laureys in

2005 [5] suggested that consciousness has two components as illustrated in figure 1.1.

REM

UWS/VS

MCS

Deep Sleep

Light Sleep

Awake & 
Conscious

Drowsiness

Anestesia

Coma

A
W

A
R

E
N

E
S

S

WAKEFULNESS

Figure 1.1: The two components of consciousness. Consciousness as a result of Awareness and Wakefulness.
Projecting consciousness in two components permits the necessary quantification and definition for researchers
to further explore consciousness. Adjusted with permission from [5]

Wakefulness describes arousal, vigilance or simply eye opening. Awareness, that can be divided

in internal awareness, which is associated to internal thoughts and processes and external awareness
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that is associated to external inputs or stimulus of the environment [6].

To better illustrate the idea of the two-components model for describing consciousness one can

think of sleep, excluding the REM phase. In a healthy consciousness state, the more we move to the

right of the plot, thus increasing awareness, the more “awake” we become. One exeption to this is

REM sleep, in which we dream (and can have recollections aka awareness of it) while we are asleep.

Reversely, decreasing from wakefulness to drowsiness, light sleep, deep sleep, sedation/anesthesia

means immediately a drop in the level of awareness. Here, we focus on the conditions that fall outside

the “main line” of the plot for non pharmacological or physiological reasons, they are called DOC and

describe low awareness in full wakefulness. DOC are resulting from brain lesions caused by internal

(e.g. anoxia) or external (e.g. traumatic brain injury) factors.

In other words, being more “awake” is not followed by an increase of the perception of personal sta-

tus or surrounding environment. When this phenomenon occurs, we are talking about DOC. Differently,

DOC are referring to a deficient level of consciousness that follows a period of coma. The following

paragraphs present the different pathological states of consciousness.

1.2 Defining disorders of consciousness

Coma is the state of a person who is completely unresponsive and cannot be awakened. The main

causes of coma are brain trauma, lack of oxygen (anoxia), brain stroke or intoxication for example with

drugs. During coma, patients cannot respond to any stimulation and will only show reflexes. Usually

coma lasts from some hours up to several weeks.

After this period, coma patients might die or wake up showing normal sleep cycles with eyes opening.

However, although awake, they might not necessarily recover any non-reflexive behavior or commu-

nication. They might immediately wake up in any of the different states of consciousness or slowly

progress to it.

Vegetative State/Unresponsive Wakefulness Syndrome (VS/UWS) [7] is observed when pa-

tients recover sleep cyrcles while they show only reflexive behavior. It is characterized by the absence

of any kind of command following, lack of self or environmental awareness and it is believed to have

incomplete perception of pain [8]. If VS/UWS has a traumatic aetiology and the patient remains in this

condition for more than one year, or in case it is non traumatic and the patient remains VS/UWS for

more than three months then it is called Permanent Vegetative State [9, 10].
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Minimally Conscious State (MCS) is characterized by signs of consciousness of self and/or en-

vironment. Patients are not able to communicate functionally but they are able to show language-

independent signs of consciousness like visual pursuit or provide responses to simple commands either

verbally or in other ways. Reproducibility of responses is mandatory in order to ensure intentionality

[11]. Non-reflexive reactions, such as mirror or object tracking, and emotional behaviors, like crying or

laughing, are often observed in MCS patients. MCS, just like VS/UWS can be permanent or a transition

to another state of consciousness.

Once patients are able to use objects in the appropriate way or are able to communicate they are

characterized as being in Emerged Minimally Conscious State (EMCS) [11].

Locked-In Syndrome (LIS), though is not a disorder of consciousness, it is worth mentioning

due to the fact that it can often have similar behavioral signs and thus clinical evaluation results as

VS/UWS [12]. LIS patients are characterized by the presence of eyes opening, aphonia, tetraplegia

or quadriparesis, preserved awareness of self and environment and the ability to communicate via eye

blinking or eye movement as described in the American Congress of Rehabilitation Medicine in 1995.

The insufficiency of behavioral tools to diagnose LIS necessitates the development of paramedical

tools.

1.3 Detecting consciousness through behavior

The precise diagnosis of the state of consciousness is of great importance for medical, ethical and

scientific reasons. With an accurate diagnosis the appropriate medication and medical care will be

provided from caregivers to patients. For example, upon painful stimulation, MCS patients activate the

pain matrix in a similar way as healthy subjects, while in VS/UWS patients the activation stops before

the higher-order integration cortices. Therefore we suspect that VS/UWS patients do not integrate

pain in an efficient way, and therefore are not aware of it. However, if VS/UWS patients show signs of

discomfort, pain treatment is provided [13, 14]. This results in the improvement of the quality of life of

patients. Another ethical aspect of the accurate detection of consciousness is the end-of-life issue as

the presence or lack of consciousness is a factor of great importance in such a debate. The importance

of a correct diagnosis is also increased by the fact that there is a different prognosis between MCS and

VS/UWS patients [15]. Patients in MCS have better chances to recover consciousness compared to

those in VS/UWS. An accurate diagnosis would also help scientists to produce more reliable results

and thus create more reliable treatment and rehabilitation methods.
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In centers that are not specialized in brain traumas and deficits of consciousness, diagnosis of

DOC patients is based on doctors opinion just by observing the patients behaviorally, although several

standardized behavioral scales have been proposed and tested. Some of the most widely used scales

for assessing the level of consciousness are the Coma Recovery Scale-Revised (CRS-R) [16], the Full

Outline of UnResponsiveness scale (FOUR) [17] and the Coma Glasgow Scale (CSG)[18]. To date the

most sensitive scale for assessing DOC and especially disentangling VS/UWS from MCS [19] is CRS-

R. The CRS-R has excellent content validity and is the only scale fulfilling all of the Aspen Workgroup

criteria for good standardized administration and scoring [11]. As all patients‘ level of consciousness,

from whom the data has been used for this thesis, have been evaluated using the CRS-R, following

paragraphs will give a brief overview of it.

CRS-R contains 23 items, that are used to assess auditory, visual, motor, oromotor, communication

and arousal functions. Also, brain stem reflexes are assessed in order to assist in the interpretation of

some subscale items and to evaluate brain stem lesions and help to detect LIS patients. Repetitive

assessments ensure that responses are consistent reflexes and are indeed the result of cognitive func-

tion. The items in the subscales are hierarchically organized with the lowest items being associated

with reflexes and the highest ones with cognitively-mediated behaviors. The auditory subscale includes

four items that range from response to auditory stimulation in the lower level to understanding of simple

language. The visual subscale includes five items starting from visual startle to object localization and

recognition. The six-items motor function subscale is the one with the most items. It includes in the

lowest level abnormal posturing and in the highest, that denotes EMCS, the functional use of objects.

The oromotor subscale contains three items: oral reflexive movement, vocalization and intelligible ver-

balization. The communication subscale describes whether a patient can have intentional/functional

communication. Patients are questioned about personal and situational matters. If communication is

achieved the patient is diagnosed directly as EMCS but if not, the diagnosis is based on the results of

the other subscales. Finally, the arousal subscale assesses alertness during the examination.

CRS-R is the most sensitive scale for a differential diagnosis between VS/UWS, MCS and EMCS. It

is essential for evaluating the state of consciousness, though it is not always successful. Preserved

consciousness can be underestimated in up to 40% of patients without the use of standardized be-

havioral assessments [20] and much less but still significant with the use of them [21–23]. There are

some pitfalls that might lead to a false negative misdiagnosis, while false positives (VS/UWS as MCS)

are unlikely due to the fact that a patient is characterized with the highest state of consciousness. To
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illustrate better, when an item which is denoting an MCS state, such as “consistent movement to com-

mand”, is scored, then even if all the other items of the other subscales are in line with a VS/UWS,

diagnosis of the patient will be MCS. Deafness or blindness of the patient or other cortical sensory

impairments, cognitive deficits such as aphasia and apraxia and low vigilance during the assessments

might be reasons that non-reflex reactions or voluntary communication are not produced by the patient

although preserved consciousness might still exist.

1.4 Summary

The level of consciousness can be approximately quantified and measured using behavioural scales

for clinical and scientific purposes. Patients with DOC may have difficulties or being completely unable

to perceive any external stimulation, but even if they can, it is possible that they are unable to express

it. Thus, behavioural scales cannot always provide an accurate evaluation of consciousness. This com-

plicates the diagnosis for patients with DOC and generates the need for other means to be developed,

such as Functional Neuroimaging (FN), to assist the correct evaluation.
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Summary

Functional neuroimaging provides a visualization of brain operation mode. Positron Emission Tomography (PET)
and Functional MRI (fMRI) can reveal pathways of function or metabolism of different elements in the brain. The
representation of this activity in three dimensions allows doctors to perform visual evaluation, but also provide
important data for analysis using mathematical tools in computers. Functional neuroimaging has contributed
in mapping cognitive tasks to brain networks and regions, and thus it provided new aspects in research. The
operational principles of each modality, an overview of data preparation which precedes the main analysis and
main brain networks are presented in this chapter.
Keywords: Functional Neuroimaging, MRI-fMRI, PET, image preprocessing, brain networks.
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2.1 Principles of Functional Neuroimaging

FN techniques provide important information about the operation mode and functional properties of the

brain. In vivo brain imaging techniques can be used to evaluate how active brain regions are, how they

connect and how they interact with each other. Magnetic Resonance Imaging (MRI) and PET are two of

the most commonly used imaging techniques for the investigation of consciousness and the disorders

of it.

2.1.1 (Functional) Magnetic Resonance Imaging

Originally MRI was called Nuclear MRI but was later renamed to MRI to avoid negative connotations

as it is not using any radioactive tracers or X-rays and thus there is no damaging radiation for humans.

MRI bases its function on the magnetic properties of atomic nuclei in order to give an insight into human

organs and soft tissues.

The key concept, called nuclear induction or nuclear magnetic resonance, is that spinning nuclei of

bulk matter absorb and transmit radio waves when being exposed into an external magnetic field (here

like in most of the bibliographical reports will be referred as B0) [24]. This idea is applied to hydrogen

atoms of the human body due the fact that human tissues contain them in big percentage. Water

molecules contain hydrogen nuclei and each nucleus consists of a constantly spinning single proton

which creates a magnetic field around it and thus behaves like a small magnet. When the magnetic

field B0 is applied protons will align or anti-align with it (figure 2.1).

The amount of the aligned and the anti-aligned protons is almost the same. Once the atoms are

spinning in parallel or anti-parallel way to the field, radiofrequency (RF) pulses are applied to B0, in-

ducing a transverse magnetization. When RF pulses have the same frequency as the precessional

frequency of the protons, then they: 1) move out of the alignment with B0 and thus to a higher energy

level and also 2) synchronize movements with each other. During this process, protons oscillate and

create a small transverse magnetic field resulting in the induction of a small current in a receiver coil

of the MRI scanner. With the stop of RF pulses protons start to return to the low-energy state by re-

leasing energy to the surrounding matter. The time of longitudinal relaxation, that is actually the time

of restoration of longitudinal magnetization, varies between different tissues and is described by the T1

relaxation constant. The time that protons need to fall out of phase, while transverse magnetization

is getting lost is described by the transverse or T2 relaxation constant. The transverse relaxation is

not caused only by variations of neighboring protons of the tissues but also by inhomogeneities of the
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Figure 2.1: Protons magnetization. The different states of protons in an MRI scanner. As hydrogen atoms spin in
random directions, they produce a tiny electrical current and axiomatically associate magnetic currents, behaving
as tiny bar magnets. In the resting state (1), atoms behave like small magnets with random orientation. (2) When
an external magnetic field is applied to the proton, they align or anti-align to the field. (3) When external RF pulses
are applied, protons are deflected from previous orientation. (4) When RF pulses stop, protons start to return to
their equilibrium state (emit the energy absorbed in previous phase) and have a transverse spinning magnetization.
Adapted from https://knowingneurons.com/2017/09/27/mri-voxels/

local magnetic field. The relaxation that describes the T2 relaxation in combination with the relaxation

caused by the magnetic field inhomogeneities is called T2* (T2star) relaxation.

Structural MRI (sMRI) images make use of differences in protons’ relaxation times to contrast dif-

ferent types of brain tissues. A sMRI is a 3D volume that represents the structure of the brain where

tissues in this volume are represented by different intensity values. Each 3D volume consists of smaller

rectangular cuboid elements called voxels (from volume elements), with edges near 1mm for current

research scans (figure 2.2)).

fMRI images are contrasting the T2* relaxation time and are making use of the differences in the

magnetic susceptibility between oxygenated and de-oxygenated haemoglobin. An fMRI session con-

sists in the sequential acqusiition of a series of fMR images, where each volume represents a combi-

nation of blood concentration and cerebral blood flow (CBF), and oxygen metabolism (CMRO2) called

Blood Oxygen-Level Dependent (BOLD) signal. BOLD was first described by Ogawa in 1990 [25].

BOLD contrast images are based on the idea that regional brain activation has increased demands in

13

https://knowingneurons.com/2017/09/27/mri-voxels/


Chapter 2. Functional Neuroimaging in Consciousness

Figure 2.2: Structural and functional MRI volume of healthy control. The structural in gray-scale provides the
contrast between tissues, and here is overlapped by one slice of functional MRI, represented in “heat colormap”.
Top left quarter provides a 3 dimensional view of the scan. The other three represent the sections of the sagittal,
the axial and the coronal plane.

sugar and oxygen, which are delivered with blood perfusion, and thus is associated to increased blood

flow. By capturing the previous activities of the brain during specific tasks, areas having increased

metabolic demands and thus bigger involvement in the task can be pointed out.

2.1.2 Positron Emission Tomography

PET is a nuclear medicine functional imaging technique. Images obtained by a PET scanner can depict

blood flow or a biochemical reaction taking part in human or animal bodies. PET measures the spatial

distribution of radioactive materials or else radiotracers in organs of live beings. A radiotracer is synthe-

sized by binding a radioactive atom (isotope) to a molecule. When injected in the body, radionuclides in

PET-radiotracers emit positrons that annihilates with the surrounding electrons, resulting in the emis-

sion of two 511 KeV gamma ray photons. The two gamma ray photons travel in opposite directions

and can be detected by the scanner within a finite time interval, usually in the order of 4-12 ns. Image

reconstruction algorithms are used to translate the detected couples of photons into 3D volumes (figure

2.3).

The photons captured by the detectors, are not always coming from the ideal aforementioned sce-

nario, but can be the result of the coincidence effect or the scatter effect [26]. The coincidence effect

occurs when two unrelated photons are registered as coming from the same event and as a result

increases the background signal of the final image. The scatter effect or Compton scattering, is the

result of the interaction between photons and charged particles that end up to diverted directions, and
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thus photons reaching mis-positioned detectors. The scatter effect has an impact on the overall con-

trast of the scan. For both events corrections can be applied. Besides errors on the photon detection,

PET scans need to be corrected for the photon attenuation. Photon attenuation refers to the effect that

photons that are absorbed by the tissues of the body. The attenuation correction is performed using

anatomical images, such as Computed Tomography (CT) scans.

Figure 2.3: Overview of the steps followed for a PET scan. Starting from upper left corner it shows the
generation of radionuclides and the radiotracers. The radiotracer is injected in the human subject. When the
subject is entered in the scanner radioactivity is captured by the sensors. The final product is a sequence of 3D
volumes. Adjusted from https://www.rah.sa.gov.au/nucmed/PET/pet_docguide.htm

One of the most common radiotracers in neuroimaging is 18F fluorodeoxyglucose (FDG), which is

used to map glucose uptake in the gray matter and can be used to infer the neuronal activity of the

brain. In FDG-PET it is a common practice to acquire scans at a specific time after injection, when the

concentration of the tracer appears to stabilize temporarily. In this time a few scans are acquired and

then averaged to account for subjects’ moving noise.

Standardized Uptake Value

The Standardized Uptake Value (SUV) is a method proposed by the Quantitative Imaging Biomarkers

Alliance [27]. It rescales the intensities of PET scans, so that they could be used in quantified analysis.

It aims at minimizing the variance between scans by incorporating those factors that affect the intensity
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of the scans. Three main factors are affecting the concentration of glucose in the brain and thus the

captured activity which is reflected to the voxels intensities. One is the time between tracer injection

and scanning, which is crucial because of the half-life time of the radioactive materials. The other two

parameters are the mass of the subject and the injected dose. The ratio of these two provides a rate

of the diffused tracer per body mass units and together with the decay-corrected acquired activity, they

provide the SUV. The following formula encompasses the previous:

SUV =
Ct

Dose
Bod yMass

,

where Ct is the decay corrected voxel intensity.

2.1.3 Standards in image analysis

Neuroimaging analysis is only possible thanks to the progresses of image and signal processing tools.

Images as produced by a scanner, sometimes referred as raw images, need to go through a preparation

process that is usually called preprocessing. This prepares them for comparisons with scans of other

subjects (inter-subject analysis) or with scans from the same subject (intra-subject analysis), but from

different time points or brain states. Preprocessing parameters are not the same for all modalities or

pathologies and need to be examined carefully before being applied.

When analyzing scan time-series one should consider and correct for movements of a patient, a

process known as motion correction or realignment. Subjects cannot be placed in the scanner in the

exact same position and also have different physical characteristics like weight, height, size of neck

or head. These create differences in the brain orientation of a scan. In order to be able to compare

volumes, brain scans need to be in line so that homologous regions spatially overlap. In general, it is

common to orient the brain scans manually as a first step, so that they all have the same direction.

This process is called reorientation and precedes spatial transformations. Next step is the spatial

normalization, aiming at a more accurate overlap of brain regions by morphing volumes in order to

minimize structural differences between subjects. In MRI, usually spatial processing is performed in

structural images and then applied in the functional ones. Thus, functional and structural scans need

to be coregistered. Scans undergo image transformation algorithms to match a brain template, with

the Montreal Neurological Institute (MNI) template being the most commonly used. Once images are

formed in a way that all brain regions of different scans are overlapping, voxels can be labeled using

tissue probability maps according to their structural properties. Some algorithms can perform spatial

normalization and tissue segmentation at the same step [28]. Smoothing is usually the last part of
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preprocessing and aims to increase the Signal to Noise Ratio (SNR). A typical fMRI preprocessing is

illustrated in figure 2.4.

Figure 2.4: An overview of a typical preprocessing pipeline for functional MRI images. Functional MRI vol-
umes are corrected for motions of the subject that occur during data acquisition. Structural MRI is used to estimate
spatial transformation and tissue segmentation. The estimated transformation is then applied to functional images
after they are coregistered to the structural MRI. Smoothing is following to increase signal to noise ratio. Adapted
from SPM course Ashburner, Ridgway (https://www.fil.ion.ucl.ac.uk/spm/course/slides11/
02_Preprocessing_FIL2011May.pptx)

2.2 Brain networks

The use of FN techniques provided important findings in brain research such as the organization of

brain into networks. A “network” is formed by those brain regions which demonstrate a synchronized

activity over time, when subjects perform a specific cognitive task. Networks can also be identified in

different study designs, such as during resting state, that is the one performed in the data we analyzed

for this work. The resting state paradigm refers to task- and stimulus-free data acquisition aiming at

capturing a baseline of brain activation [29]. During rsfMRI subjects are instructed only to relax and

refrain from sleeping. Other paradigms are “active paradigms” and “passive paradigms”. The former

refers to the study design where subjects get stimulated during acquisition and aims at capturing the

contrast between different conditions of brain activity. In the latter subjects are not instructed to perform

any task but they receive different kinds of stimulation, such as music, familiar voices, pain and others.
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When it comes to resting state, two well known networks have been suggested to characterize

the baseline of brain’s activity in rest; the “intrinsic” network, encompassing medial brain areas, and

the “extrinsic”network, encompassing lateral frontoparietal areas. These networks appear to be anti-

correlated, meaning that when one of them is active the other one “goes down”. “Extrinsic” has been

associated to environmental perceptions and brain operations associated sensory input such as audi-

tory [30], visual [31]. The “intrinsic” functional network, which coincides with the Default Mode Network

(DMN), appears to be the dominant network during rest and has been noticed both using PET [32]

and fMRI [33]. Activity in the “intrinsic” network has been associated to internal awareness such us

self-related thoughts [6]. It encompasses precuneus/posterior cingulate cortex, mesiofrontal/anterior

cingulate cortex and temporoparietal junction areas 2.5. Salience network, like DMN, has been associ-

ated to “higher order” cognitive functions and encompasses the bilateral dorsal anterior cingulate cortex

[34], the frontoinsular cortex, and the frontopolar cortex. It is involved in salient emotional stimuli [35],

information perception, response selection [36], pain related processes [37, 38]. Frontoparietal network

is critical for executive control and decision making in goal-driven tasks [39, 40]. It involves regions in

the inferior parietal lobe, dorsal premotor cortex and interparietal sulcus. The Auditory network encom-

passes primary and secondary auditory cortices (including Heschl’s gyrus, bilateral superior temporal

gyri) and posterior insular cortex. It has significant involvement in audition and sound perception and

discrimination [41, 42]. The Sensorimotor network is associated to motor tasks [29] and involves so-

matosensory/midcingulate cortex, motor and middle frontal gyri [43]. The Visual network appears in

the lateral and medial posterior occipital corices and is linked to simple or complex visual activities but

also to Braille reading [41]. It can be divided further in three networks: the lateral visual network, the

medial visual network and occipital visual network [43]. All networks are illustrated in figure 2.5.

2.3 Functional neuroimaging in DOC

FN is used to investigate the brain functionality of all consciousness states in order to uncover neu-

ronal correlates of consciousness and to complement the behavioral examination and thus minimize

misdiagnosis.

PET studies have been used to investigate brain activity in terms of glucose metabolic activity

in DOC patients [44, 45]. Already in 1987, the global glucose metabolism of VS/UWS patients was

found to be less than half compared to that of healthy subjects [46, 47]. Acute VS/UWS have been

found to have significantly higher metabolic activity in all cortical regions exept frontal lobe, compared
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Figure 2.5: Basic brain networks which can be identified using functional neuroimaging in resting state. Here,
six networks which reflect “higher” order cognitive function and sensory functions, as they result from the sta-
tistical analysis in healthy controls. For visualization purposes they are rendered on structural MRI in Montreal
Neurological Institute coordinates. Adjusted from [3]

to permanent VS/UWS [47]. Coma patients and VS/UWS have found to have an overlap in regional

metabolic rates [48].

Besides local cerebral activation, PET can also provide information about connectivity between

cortical regions as well as connectivity between thalamus and cortex [5, 49–51]. Typical FDG-PET

images of healthy subject and DOC patients can be seen in figure 2.6

In fMRI several study designs can be used to investigate subjects brain function in voluntary modu-

lation, spontaneous reactions or in rest. The ”active paradigm” design has been used in DOC patients

for detecting voluntary brain activation. fMRIm scans acquired during the performance of two differ-

ent mind wandering tasks were examined by Owen in 2006 [52] in a DOC patient. The patient during

scanning was instructed to either imagine playing tennis or walking in the house. Brain activation was

very similar to those of healthy subjects concluding that there was command following as measured by

willful modulation of brain function, in a patient that was clinically diagnosed as VS/UWS. With some

variations of the commands researchers aim to trigger activations in language network [53], in premotor

cortex [54] and supplementary motor area [30, 55]. Some studies also tried “passive” paradigm in DOC

patients [13, 43, 56] aimming at detecting higher order cortical activation patterns. These activation

patterns, which are atypical for unresponsive subjects, could indicate preserved consciousness and

constitute or surrogate markers of good prognosis.

Many DOC patients are not able to perceive any commands or stimulation restricting the use of the

two aforementioned paradigms. Resting state paradigm can be used to overcome those limitations.

FN studies comparing DOC and healthy subjects show significant impairment of the fronto-parietal

network encompassing anterior cingulatemesiofrontal and posterior cingulateprecuneus and prefrontal
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Figure 2.6: FDG-PET scans in different states of consciousness. A-C demonstrate patients ended up in
VS/UWS following subarachnoidal hemorrhage (A), traumatic brain injury (B), and anoxic brain injury. In D-F are
shown MCS patients following traumatic brain injury (D), hemorrhagic stroke (E), and anoxic brain injury (F). G-I
shows EMCS patients following traumatic brain injury with intracerebral hemorrhage (G), traumatic brain injury (H),
and anoxic brain injury (I). In J,K and L are shown healthy subjects. Adapted from [50].
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and posterior parietal associative cortices [44, 49, 57–60]. These findings were confirmed by both

PET and fMRI [61–64] and more than two distinct networks were associated to internal and external

awareness [6].

The functional connectivity studies indicate that lack of consciousness is related to a cortico-cortical

([57, 65, 66]) and thalamo- cortical connectivity impairment [65] supporting the hypothesis that con-

sciousness is strongly associated to frontoparietal connectivity [5, 58, 67]. FN studies on conscious

perception in healthy volunteers [68, 69] but also in pharmacological loss of consciousness (see [70]

for a review) and sleep (see [71] for a review) are in line with the aforementioned theory.

2.4 Summary

FN gives important information on patients’ diagnosis as well as for research purposes. It provides

an accurate spatial representation of brain functionality in combination with the functional properties.

Brain activity as captured with FN has led to the identification of brain operation mode into networks

and has opened new directions within brain research. In DOC, the findings complement behavioral

assessments of consciousness, and together they form a very important piece of information. This

information can be used to to enhance our understanding of the way the brain is functioning but also to

improve the accuracy of diagnosis of patients.
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Summary

The majority of knowledge we have so far about the neural correlates of consciousness is based on the analysis
with classical statistical methods. Regional activations as portrayed by functional neuroimaging can provide
evidence to infer or predict. Classical statistics and Machine Learning methods are used in neurosciences
for data analysis. Machine Learning is getting more and more attention in recent years. Such sophisticated
methods with complex algorithms incorporate tools which involve data interaction for making a decision. With
the time passing, problems like high dimensionality and high computational demand are being solved and small
datasets get larger. Therefore, a lot of chances appear for Machine Learning to be applied and thus expand our
knowledge in the field of DOC but also to develop tools that help in patients’ diagnosis.
Keywords: Data analysis, Classical Statistics, Classification, Machine Learning, assisting diagnosis.
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3.1 From Statistics to Machine Learning

There is a big debate on what the differences between Classical Statistics (CS) and Machine Learning

(ML) are [72–74]. One widely accepted view, which seems to fit with the analysis as it has been

performed in FN of DOC over the years, is that CS has been mostly applied on inference for rejecting a

hypothesis while ML techniques provide more accurate and generalized predictions on the basis of new

data [75]. It is noteworthy that some methods of CS and ML have a common mathematical basis and

therefore, in some cases they provide similar results. Additionally, methods of CS are often embedded

in steps of ML algorithms which in fact increases the overlap of the two fields.

In FN, the hypothesis-based explanatory nature of statistics is providing answers about brain func-

tions. By performing tests on selected properties of the data, one can reject null-hypothesis and esti-

mate the degree of certainty of this decision. Two of the most common objectives of using CS in FN aim

at the detection of brain regions associated to specific tasks and on finding synchronized brain regions

that are also called co-activation regional patterns. The latter is also referred to as functional connectiv-

ity [76, 77]. Predictions by means of CS have also been applied without, though, having provided any

generally applicable tool [52, 55].

Neuroimaging data of DOC patients were, until the beginning of the current decade, almost exclu-

sively analyzed using CS. Toolboxes, like FSL [78] and Statistical Parametric Mapping (SPM) incorpo-

rated several methods of CS and provided neuroscientists free, validated and user friendly tools much

before those of ML.

The General Linear Model (GLM), implemented in SPM, is the most widely used model for hypoth-

esis testing and statistical modeling in FN. It incorporates linear Algebra and statistical models such as

ANOVA, ANCOVA, MANOVA, MANCOVA, t-test, F-test and linear regression (for more details [79, 80]).

In SPM statistical tests are performed across all voxels (mass univariate analysis). If the analysis

is performed on the sequence of volumes of one subject, it is referred to as intra-subject (first-level)

analysis. In intra-subject analysis, time-series of voxels are being analyzed and aims at finding similar

temporal patterns between regions or at associating perception of external stimulis to brain regions. A

different type of analysis is performed on data that are acquired from many subjects, which belong to

one or more groups. This analysis aims at finding systematic differences of the formed populations and

is referred to as inter-subject (second-level) analysis. In both cases GLM, given a defined model, is

looking for the parameters that capture the maximum possible variance from the data and fit the data

in the model. The estimated parameters represent the contribution of each regressor to the designed
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model. An illustration of the GLMcan be found in figure 3.1.

Figure 3.1: General Linear Model applied in fMRI time series. y is the acquired signal. x i represent the
predictors or components that explain the acquired signal. βi is the contribution weight of each predictor. Finally,
error is the variance that cannot be explained by the predictors (noise). Adapted from [81]

Though CS methods have provided researchers with important information about neural correlates

of consciousness, their diagnostic capacity in terms of predicting unseen data remains poor. It is very

common in CS that the whole available dataset is used for inference and thus generalization on unseen

data is prohibited. However, in the past, due to the need of having diagnostic tools that complement the

behavioral assessments, researchers applied statistics for diagnosing patients at a subject-level [52].

The application of ML techniques is getting more attention in the analysis of DOC mainly because

they can provide accurate predictions on “previously unseen data”. Applying ML in FN data for clas-

sifying DOC patients means simply to look for ways to assign neural correlates to a certain state of

consciousness. For both diagnosis and prognosis of DOC patients, ML has been applied to either de-

tect command-following or to differentiate patients using structural or functional properties from data

acquired during rest. In command following, the aim is to detect responses from a subject that would

indicate an indirect communication which could not be expressed behaviorally. Electroencephalography

(EEG) as well as FN modalities have been used for such experiments [30, 52, 55, 82]. In resting-state

acquisitions, group comparisons are performed aiming at finding the differences in the baseline brain

function of the involved groups of subjects.
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3.2 Classifiers

In classification, samples are identified as parts of a specific group of a given population. A classifier is a

function that takes categorical or numerical variables as inputs and provides a prediction as an output.

Classifiers can be characterized as parametric or non parametric. Parametric classifiers have fewer

underlying parameters and can be affected by the violation of normality assumption for the involved

populations [83]. Non-parametric classifiers make no assumptions about the data distribution [84].

Classification can be divided in supervised and unsupervised. Supervised classification is the form of

learning through examples or labeled data. The process of learning by using labeled data is called

training process. In unsupervised classification, also known as clustering, data are not labeled and are

classified according to certain similarity indexes [84].

3.2.1 Support Vector Machine

One of the most popular classifiers widely applied in various fields, including Neuroimaging, is the Sup-

port Vector Machine (SVM) [85]. A (linear) SVM, given a training set of two groups with D dimensional

samples, calculates a hyperplane of D−1 dimensions that separates the groups. In the simplified form

of two dimensions, the algorithm would look for a line that is splitting the training sets by having the

least possible samples on the wrong side. In practice, infinite possible separation hyperplanes could

be drawn.

Hyperplane

In an SVM the optimal hyperplane is selected using the idea of maximum-margin, meaning that the

selected hyperplane is the one that maximizes the distances between the samples of the two classes

(3.2) and the hyperplane. To decide about the hyperplane, the algorithm is choosing some of the

samples of the two classes, that are called support-vectors. The word "vector" is used due to the

mathematical representation of each sample as a vector. As “support-vectors” are characterized those

samples that define the hyperplane. The algorithm maximizes the distance between the hyperplane

and the support vectors, when at the same time minimizes a given loss-function [86].

For a more mathematical approach, let x i ∈ Rp, i = 1, ..., n be a training set of n samples and

p features and yi ∈ {−1,1} the corresponding labels, forming a couple (x i , yi) for each sample.The

hyperplane is described by the formula: wT x + b = 0 , for w, b ∈ R. Samples falling on one side of the

hyperplane are labeled with -1 and on the other side with 1 so that:
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Figure 3.2: Margins in hyperplanes. Image on the left shows the 2 classes, with 2 features x1 and x2. Infinite
number of lines which can split the population could serve the purpose of separation hyperplane. The image on the
right demonstrates the concept of marginal maximization. z1, z2 represent the distances between the populations
and each decision hyperplane (line). SVM is looking for the hyperplane with maximum z distance. Adapted and
adjusted from [87] upon authors approval.

if wT x + b > 0 then yi = 1 and when wT x + b < 0, yi = −1.

The margin to be maximized is the distance between the two lines and is equal to 2z2 as shown in

figure 3.2. Take any point xu that lies on the line satisfying the following equation wT x + b = −1. The

distance that needs to be maximized is the length of the perpendicular to this line vector starting from

xu and ending on the point xd that lies on the line described by wT x + b = 1. The point xd can also

be expressed as xd = xu + λw (1), where λ||w|| is the margin length and ||.|| denotes the Euclidean

distance.

Solving for λ:

wT xd + b = 1, given (1) ⇒

wT (xu +λw) + b = 1⇒ wT xu +λwT w+ b = 1

but we know that: wT xu + b = −1, therefore

−1+λwT w= 1⇒ λwT w= 2⇒

λ||w||2 = 2⇒ λ=
2
||w||2

From the last relation and without loss of generality maximizing the distance -λ||w||- is equivalent

to maximizing 2
||w|| or 2p

wT w
or minimization of wT w

2 . Finally, the problem can be expressed as:

minw,b
wT w

2
so that yi(w

T x i + b)≥ 1
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In practice, several cases involve data that cannot be perfectly separated so the algorithm has to tolerate

some misclassified samples. For that a slack variable εi ∈ Rp for each x i is used to make the soft-

margin extension that has the following form:

minw,b
wT w

2
+ C

n
∑

i=1

εi subject to yi(w
T x i + b)≥ 1− εi

where εi ≥ 0, i = 1, ..., n and C > 0 is the upper bound. The dual form of this is:

mina
1
2

n
∑

i, j=1

α j(yi y j x i · x j)α j −
n
∑

i, j=1

αiα j subject to
n
∑

i=1

yiαi = 0

where 0≤ αi ≤ C .

The maximization of margins is a constrained optimization problem that can be solved using La-

grange multipliers (for further reading [86–88]). Finally, the decision function of the classifier for a new

sample x is:

y = si gn(wT x + b) = si gn(
n
∑

i=1

yiai(x i x) + b)

It is noteworthy that the maximization of the margin of an SVM is a quadratic function and thus a

convex optimization problem, so there is an optimal solution and cannot be "trapped" in local maximum

or minimum.

Regularization parameter

A parameter that can be set by the user and influences the final decision boundary is the C parameter,

also known as the regularization parameter. It is used to prevent overfitting or underfitting by directly

influencing the training loss [89]. The value of the C parameter allows the user to decide how much the

algorithm will tolerate misclassified samples during training and thus influence how broad or narrow the

margin will be 3.3. Although is not ideal, a common practice in neuroimaging, due to high dimensionality

in comparison to the data samples, is to set C = 1 without performing further tests [90–92].

Kernels

From the mathematical expression of the decision function of SVM it is clear that the decision of the

classifier is defined in terms of inner products K(x i , x) in input space. Therefore, the problem can be

transferred in some expanded feature space by replacing this inner product with another "similarity"

function.

K(x i , x)⇒ Φ(x i)
TΦ(x)
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Figure 3.3: The regularization parameter C is used to determine the tolerance level of misclassified samples
during the training. Big values of C can lead to an overfitting and therefore to a worse generalization performance
on unseen data. On the other hand a very small value of C could underfit the classifier. Adapted from [93]

where K is called a Kernel and Φ is called its feature map [94].

Changing the feature space by replacing the similarity function is called the "kernel trick" [95] and

allows to separate classes where data are not linearly separable. Popular Kernels are the Radial Basis

Function, Polynomial and Sigmoid. By using Kernels [85] the relation between features of samples

can be modeled by more complicated, non linear ways. Additionally, with Kernels the classification

is performed between paired similarities of the samples, which results in having as many features as

samples. When in most cases of functional neuroimaging analysis the datasets are small compared to

the number of features, the kernel trick also results to a dimensionality reduction.

The ideal Kernel for each problem is related to the type of the data and the number of features in

comparison to the size of the dataset. In practice, a common way to decide which Kernel to use is by

testing different Kernels, using cross-validation. However, in neuroimaging the linear Kernel is often

preferred due to the high dimentionality of data in comparison to the number of samples.

3.2.2 Extremely randomized trees

Another very popular classifier is the Extremely randomized trees (Xtrees) [96]. Xtrees is an extended

and developed form of Random Forest Classifier (RFC) and both classifiers are based in the idea of

Decision Trees (DT).

Decision Trees

DT are sequential models in the shape of tree diagrams. Such a diagram combines a sequence of

different tests in its attribute nodes, to determine a course of action linked to a branch or a sub-tree

[97]. In each node, an input value is compared to a threshold value computed from a given training
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set. In a classification problem of two classes, one node will split in two and the tree is described as

binary tree. Using a binary decision in each node the feature space is partitioned into hyper-rectangles

as shown in image 3.4 [87].

Figure 3.4: Classification Trees are multistage systems which split a feature space into hyper-rectangles by
performing a comparison to a threshold value, called “splitting criterion”, in each node. The left side of the figure
demonstrates the partitioned 2-dimensional space for 4 classes, as occurred from the tree shown in the right side.
Adapted with author’s approval from [87].

Three main issues are raised when designing a DT: What variables are going to be examined in

each node, what values will be set as thresholds and how many nodes are needed in each tree. It is

best to start answering by defining the objective of each node. For a given dataset X t that reaches a

node t of a binary tree, the splitting criterion aims to split X t in two sub-sets X t L and X tR (L for left

and R for right coming from the direction of the nodes in the visual representation of a node) where the

following is true:

X t L ∩ X tR = ; and X t L ∪ X tR = X t

Impurity of nodes

So, the goal in each node is to split the incoming set in the purest possible sub-sets regarding their

class-homogeneity. Several methods exist for the quantification of the "impurity" in each split. Entropy

Index, is one of the most common and is described as:

IEnt r(t) = −
n
∑

i=1

P(ωi |t) log2 P(ωi |t)
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where ωi is class i and P(ωi |t) =
number of samples in X t belonging to ωi

total number of samples in X t
known also as frequency of occur-

rences.

Another popular index of impurity is Gini Index expressed as:

IGini(t) = −
n
∑

i=1

P(ωi |t)(1− P(ωi |t))

Both indexes approach zero if one of the probability values are close to 1 or 0 and they maximize the

impurity near 0.5 which is the equiprobable level for the two classes as shown in figure 3.5. Entropy

and Gini Indexes produce very similar results [98]. Using the aforementioned indexes, the impurity

decrement in a node after splitting the incoming data into the two branches is calculated as:

∆I(t) = I(t)−
NtL

Nt
I(tL)−

NtR

Nt
I(tR)

where NtL
and NtR

are the numbers of samples following the right and the left branch respectively and

Nt the total number of samples. I(tL) and I(tR) are the impurity values of the nodes created by the two

new sets. In the end, the goal is to select the feature with the threshold value that maximizes ∆I(t).

Measuring the impurity provides at the same time an evaluation of the features of the dataset.

Figure 3.5: Entropy and Gini indexes are used to measure Impurity in a node. In x axis is the probability of
belonging to one of the classes and in y the corresponding values of Entropy (normalized) and Gini index. When
the certainty about belonging to one of the two classes increases then impurity decreases and vise versa.
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Stopping and classifying criteria

To stop growing a DT one option is to set a threshold value for ∆I(t) and decide whether the impurity

of the classes does not sufficiently improve further. Another criteria is to set a threshold number in the

cardinality of the sets produced in a node. When a node is called Leaf Node then there is no other node

following. Data that end up at a Leaf Node will be assigned with the label of the majority of samples.

Significant advantages of DT which make them attractive to scientists are [99]:

– the interpretability of the results

– the fact that they can handle ordered, categorical or mixed variables/features

– they effectively deal with missing variables

– the existence of an intrinsic feature selection mechanism

– the robustness to outliers

– they do not need any a-priori assumptions to model complex relations between inputs and outputs

Besides the important advantages of DTs, they also suffer from overfitting resulting in some cases

to an insufficient generalization on new data.

Ensemble of Decision Trees

A solution to this drawback based on the idea of random subspace learning [100] is to combine many

small trees. An ensemble method where many weak classifiers come together to form a strong one.

An implementation called RFC [101] is a collection of DTs each one trained in a randomly selected

sub-group of the available samples with the method of Bootstrap Aggregation or Bagging [102]. In

order to create more un-correlated predictors and thus reduce bias, a sub-set of the total features is

selected with the method of Bootstrapping for each tree. In the end, each tree votes equally for one

class and the majority decides about the final classification. It is proven that by increasing the number

of trees in a RFC is not leading to overfitting [101]. Another ensemble method based on DTs is the

Xtrees. Xtrees differs from RFC in the fact that it does not bootstrap the observation in order to built

the trees, but rather samples without replacement. Additionally, in Xtrees the nodes are split based

on random splits among a random subset of the features selected at every node. Both methods offer

several mechanisms for assessing the importance of the features, and thus enhance the interpretability

of the model. An advantage of Xtrees over the RFC is that they provide more accurate feature ranking
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[99]. RFC often mask the importance of some features, due to the guided structure of the trees. This

can lead to a over- or underestimated features. The randomness in splitting of the Xtrees prevent this

effect.

Bootstrapping and bagging

Bootstrapping refers to resampling from a given dataset with replacement mostly used for making in-

ferences about a population. When treating sub-samples as surrogate populations and then averaging

the measured parameters of those sub-samples, the corresponding real values of the whole population

can be approximated [103]. Bootstrapping can also be used for estimating confidence intervals, for

testing a hypothesis and for performance estimates. Bagging (Bootstrap Aggregating) is a machine

learning technique based on bootstrapping used to improve accuracy and stability of a classification

or regression. It is embedded in the algorithm of RFC [102] but its use has been extended further to

many techniques and applications. In bagging, given a data set S of size n, i new datasets Si are being

created by sampling from S with replacement and used in different models. Replacement permits some

samples to exist more than once in an Si . Each new dataset is used to train a model and in the case

of RFC each new dataset trains a DT. Finally, all trained models form an ensemble classifier where a

majority vote makes the final decision.

3.3 Estimating Classification performance

3.3.1 Data partitioning

To evaluate the performance of a classifier some predictions need to be performed on an “unseen”

part of the data in order to avoid circular processes [104], which result in an overestimate performance.

Therefore, as a general rule, the available dataset has to be split in two groups, one for fitting the

model and another one for testing the performance. Due to the fact that Neuroimaging datasets are

usually small, splitting the dataset is not an option and thus alternative techniques, such as Cross

Validation (CV), have to be adopted. In CV the data are split in K sub-sets, where K is an integer.

When K = number-of-samples, the process is known as Leave-One-Out CV. Each time, one of the

K sub-sets is kept for testing and the other K − 1 ones are used to fit the classifier. This process is

repeated K-times until all parts have been tested. The average of the performances of all repetitions

make the overall performance estimation. A particular case is K-fold which occurs when all splits

are of equal size. For more accurate estimates, it is recommended to repeat the K-fold process by
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shuffling the samples in each fold [105–107]. In case that feature selection process or selection of

model parameters of the classification model are involved in the pipeline, then the dataset has to be

split in three sub-sets [108] or perform a nested-CV [109].

3.3.2 Confusion Matrix

A decision of a classifier about a tested sample can fall in one of the four following categories:

– True Positive (TP), eg. MCS patients correctly classified.

– True Negative (TN), eg. VS/UWS patients correctly classified.

– False Positive (FP), eg. VS/UWS patients misclassified.

– False Negative (FN), eg. MCS patients misclassified.

A visualization of the counts of these outputs constitute the confusion matrix and is shown in 3.6.

Figure 3.6: Confusion Matrix demonstrates the results of a classification process. It contains all possible out-
comes of a classifier. The two classes are described as positive or negative, which is a way to describe the
occurrence or not of an effect. If the predicted condition is in accordance with the real one it is described as “True”.
In a missed classification case there is a “False” instance. From those four numbers many different metrics can be
calculated, each one unveiling a different aspect of the classifier.

The aforementioned possible outputs can be combined in several ways and produce different met-

rics, which estimate the performance of a classifier. Different metrics are useful as in real-life cases a

FN can often have more significant impact than a FP and vise versa and that has to be taken under

consideration when evaluating the performance.

3.3.3 Metrics

Accuracy is the number of correctly classified samples over the total number of samples and considers

misclasified samples from both classes equally. It does not take into account cardinality imbalance of
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the classified classes and is calculated as:

Acc =
T P + T N

T P + T N + F P + FN

Sensitivity or True Positive Rate or Recall is the probability that a positive sample will be classified

correctly and is expressed as:

Sensi t ivi t y =
T P

T P + FN

Specificity or True Negative Rate is the probability that a negative sample will be classified correctly

and is expressed as:

Speci f ici t y =
T N

T N + F P

Balanced Accuracy takes into account class populations. It is calculated as the mean of Sensitivity and

Specificity:

BAcc =
T P

T P+FN +
T N

T N+F P

2

Precision or Positive Predictive Value measures how accurate the positive predictions are as it takes

into account all the samples predicted as positive:

Precision=
T P

T P + F P

F1 score is the harmonic mean of Precision and Recall:

F1=

�

Recal l−1 + Precision−1

2

�−1

= 2 ∗
Recal l ∗ Precision
Recal l + Precision

Receiver Operating Characteristic (ROC) curves are also a very common technique which visualizes

the performance of a classifier. It is a plot of the Sensitivities and the Specificities. ROC curves are very

informative and besides evaluation of a model, they can be used to decide about parameter values or

to compare models [110]. The area under a ROC curve, known as Area Under the ROC Curve (AUC),

is often used to evaluate performance. It takes values from 0.5 for chance level performance, to 1

for perfect classification. It expresses the probability that a randomly chosen positive sample will be

assigned with a higher probability to be a positive rather than a negative one [111].

3.3.4 Significance of Performance and confidence intervals

In order for the estimated performance of a classifier to be considered as accurate, it has to be tested if

it is significantly above chance level. Such evaluation shows whether the measured performance was

a matter of chance or not and how confident one can be for the measured performance. When an
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independent test set is used, then the Binomial Test is an appropriate method to compare the results

of the classifier with the chance level classification [112–114]. When CV schemes are used, tests such

as Permutation Test [114] or Paired-comparisons with a Dummy classifier in a bootstrap scheme [115]

are more appropriate.

3.4 Features and labels

Features and labels are key terms of ML. Features are the input variables of the classifier. A label

indicates to which category belongs a sample in given dataset. Thus, labels are also the output of the

decision function.

3.4.1 Features

Features from DOC Neuroimaging data

Though both fMRI and PET consist of voxels, they can produce different kind of features. Regarding

FDG-PET in DOC patients, features are extracted from one volume which represents the accumulation

of glucose during a specific time-frame, after the injection of the radio-isotope. Therefore, commonly

used features extracted from PET are signal at single voxels [116] or averaged over regions of voxels.

Accordingly, fMRI is always coming as a sequence of volumes. A very common feature type extracted

from fMRI is the strength of functional connectivity, which is actually the degree of temporal correlation

between brain regions [43, 117–119].

Feature selection

Not all features are important for differentiating two populations. Some are more important than others

and there are features that have no contribution at all. Feature selections methods aim at minimizing

the size of the set without decreasing the classification accuracy and preserve the distributions of the

classes [120] by removing noisy, irrelevant and redundant features [121]. The benefits of feature se-

lection can be the reduction of computational time and storage demands, improvement of accuracy,

facilitation of data comprehension. Feature selection is an open problem and thus there is no optimal

technique for selecting the best combination of features in a given classification algorithm. It is notewor-

thy that sometimes features that seem to be useless by themselves can be of significant importance

when they are combined with other features [122]. The only way to make sure of the best subset is to

test all possible combinations. Evaluating features by examining the performance of a classifier in all

possible combinations is known as Wrapper method. Though it is a very accurate way, it cannot be
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applied because of the huge amount of feature combinations that occur from high dimensional data.

For N features there are 2N −1 combinations and thus it is a NP-hard problem [123, 124]. Filter meth-

ods perform the feature selection before classification in a test set, using some ranking criteria. Such

criteria can be F-score, information gain, mutual information, chi-square. Feature evaluation can also

be part of the classification algorithm in the training process, as mentioned earlier in the paragraph of

Decision Trees.

3.4.2 Labels in the classification of DOC subjects

It is very important in classification to use a clear datasets for fitting the models. Using data with a lot of

noise or big heterogeneity under the same label can have a negative impact in the final performance.

This problem is a common issue in the field of DOC. The variability of pathological causes which can

lead to the same DOC level, different etiologies such as traumatic or non-traumatic, variations in time

since the onset result in an heterogeneous population [2]. This heterogeneity complicates the definition

of a common diagnostic pattern. Moreover, there is an increased chance of using contaminated labels

in the training sample, coming from behaviorally misdiagnosed patients [125]. All the previous reasons

result in groups with big variance, which can significantly affect the decision rules of a classifier and set

an upper threshold to the performance of the algorithm.

The establishment of a "gold standard" in the characterization of DOC patients is of crucial impor-

tance. Possible labels can be the outcome of behavioral assessments or different modalities or the

combination of them. Then, performance is measured as the agreement between the classifier and the

behavioral assessment [115] or on the diagnosis based on the selected modality.

3.5 Challenges in DOC patients’ classification

Besides potential misdiagnosed DOC patients which result to mislabeled subjects in the data fitting

a model, there are further parameters that can influence the classification process and jeopardize the

model. Available datasets are small in number compared to the size of features, making it one additional

parameter that can significantly affect DOC classification. Scans, both PET and fMRI, include tens of

thousands of features. This number is substantially higher compared to the dataset size which is so

far some tens or some hundreds of subjects. The dataset size often decreases due to subjects that

are discarded for reasons like medical treatment, previous neurological disorders and in general not
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fulfilling specific inclusion criteria. Additionally, subjects are often rejected due to big deformations in

the brain that cannot always be handled properly by the preprocessing algorithms. Moreover, some

brain mechanisms, such as plasticity have not been modelled and as such cannot be imported or be

taken under consideration by the known classification algorithms. Spasticity and lack of communication

with patients also increases scanning noise and affect classification.

3.6 Summary

ML consist of complex algorithms, which combine many scientific fields to provide predictions in new

data. In neurosciences they are used to form diagnostic or prognostic tools as well as to uncover

structural or functional patterns of the brain. A variety of metrics and of data splitting methods are used

to express different purposes and minimize pitfalls’ risk, which can be vital for patients and of significant

ethical importance. In the field of DOC not much research has been undertaken so far in the analysis

of FN using ML. The latter is a result of data and computational limitations which, with the time passing,

are being solved. The next chapters demonstrate applications of ML in DOC.
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Chapter 4

Differentiating low levels of
consciousness with intrinsic

functional connectivity

Based on: Intrinsic functional connectivity differentiates minimally conscious from unrespon-

sive patients

Demertzi A*, Antonopoulos G*, Heine L, Voss H, Crone J, de Los Angeles C, Bahri M, Di Perri C,
Vanhaudenhuyse A, Charland-Verville V, Kronbichler M, Trinka E, Phillips C, Gomez F, Tshibanda L,
Soddu A, Schiff N, Whitfield-Gabrieli S, Laureys S.
BRAIN, 2015: 138; 2619 —2631
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Summary

Statistical analysis findings in resting state connectivity remain challenging for clinicians to use at the single-
subject level. In this study a classifier separating minimally conscious from unresponsive patients, it is presented.
Functional connectivity networks from fMRI scans acquired in three different centers were extracted, to evalu-
ate their discriminatory power in differentiating MCS from VS/UWS patients. Each network was tested for its
contribution to consciousness, using feature evaluation methods. Additionally, the estimated classification model
was tested, using five different datasets to search for its generalization capacity and the border line conditions.
Results yield very good classification performance between MCS and VS/UWS patients without sedation. Gener-
alization with other datasets shown that the classifier is capable to differentiate between impaired consciousness
and pathological lack of consciousness.
Keywords: Functional Connectivity, DMN, SVM, Feature Selection, Classification, MRI- fMRI, DOC
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4.1 Introduction

Despite the significant progress in functional connectivity studies in DOC, it is still challenging for clin-

icians to apply those findings and assist diagnosis of the level of consciousness at the single-subject

level. Up to now, an accurate diagnosis of patients has been achieved with the use of Trancranial Mag-

netic Stimulation (TMS) in combination with EEG [126, 127], later by using only EEG features [128, 129]

and in terms of glucose consumption and PET by using the brain hemisphere with the highest glucose

consumption [50]. Regarding fMRI studies, active paradigms [52, 130] and passive paradigms in terms

of verbal and tactile stimulation studies [131, 132] have been performed aiming at identifying alter-

ations in the activity of each functional network. In rsfMRI there is no research so far that could provide

an assisting diagnostic tool to clinicians. The rsfMRI provides temporal and better spatial resolution

compared to PET. In addition, it does not have negative harmful radiation and does not require for a

tracer to be injected into the subjects. MRI scanning is a detrimental examination for brain lesioned

patients and it only takes an additional 10 minutes of scanning to acquire the functional scans. In to-

tal, MRI demonstrates significant advantages over other techniques which make important merits of

rsfMRI. The challenge, though, remains on how to make sense of the acquired signal and how to use it

efficiently.

Objectives

In this study we investigated whether a system-level brain organization can provide insights in order to

diagnose DOC patients individually. More precisely, the performed research aimed at evaluating the

contribution of functional networks to the level of consciousness and investigating if there can be a

prediction model that can translate the network contributions to a diagnostic tool.

4.2 Subjects

Three datasets were used to train, validate and test the model. 51 patients were scanned in Liege with-

out sedation, from which 26 were in MCS, 19 in VS/UWS and 6 in coma. Two datasets of non-sedated

DOC patients from collaborators in Salzburg (Department of Psychology and Centre for Neurocognitive

Research) and in New York (Department of Radiology and Citigroup Biomedical Imaging Centre of Weill

Cornell Medical College), consisting of 10 and 5 MCS and 5 and 1 VS/UWS respectively. One EMCS

was also included in the dataset from New York. Additionally, 21 healthy subjects from the Centre Hos-

pitalier Universitaire (CHU) de Liege and 18 from Salzburg, were used. A group of 53 patients (33 MCS
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and 20 VS/UWS) under sedation were scanned in Liege. Additionally, we tested 9 healthy controls

that were scanned at the Cyclotron Research Centre in Liege, during sedation process with propofol.

rsfMRI was acquired during the whole process and thus connectivity values of both awake and deep

sedation were available. All sedated subjects were evaluated using the Ramsay Sedation Scale [133].

Finally, 8 congenitally deaf and 9 congenitally blind subjects, without disorders of consciousness from

Panum Institute, University of Copenhagen.

For the evaluation of patients’ level of consciousness, repeated clinical examinations with the CRS-

R (average number of assessments n= 6 per patient) were performed. The clinical diagnosis was further

confirmed with FDG-PET imaging, which has been shown to have high sensitivity in identifying patients

in MCS [51]. Therefore, patients with an ambiguous profile on clinical assessment and neuroimaging

data or those that diagnosis changed within seven days from scanning and subjects with technical

issues, noisy images, were excluded from the study.

4.3 Connectivity analysis

Preprocessing

Preprocessing was performed using SPM8 and is demonstrated in steps 1 to 3 on the left column of

figure 4.1. Each structural T1 image was used as reference image on which fMRI sequential volumes

were co-registered. At first, all T1 scans underwent manual re-orientation to match a template, they

were normalized into MNI stereotactic space and then segmented using the “Unified segmentation” of

SPM. Sedated patients were spatialy normalized using diffeomorphic anatomical registration through

exponentiated Lie algebra (DARTEL) [134], using an average template of patients and healthy controls.

Finally, spatial Gaussian smoothing with a 6mm FWHM kernel was applied to all produced images.

Head motion can decrease or increase the measured signal and make it, wrongly, be considered as

neuronal activity [135], hence, we performed artifact detection and removal. Volumes were compared

to previous ones and if they had a displacement bigger than 2mm in any of the 3 axes, or a rotation

bigger than 0.02 rads, or global intensity higher than 3 standard deviations of the global mean intensity

of the entire sequence, they were used as nuisance regressors. De-noising was performed using the

signal component-based Noise Correction Method (CompCor) [136]. White matter and Cerebrospinal

Fluid (CSF) masks were eroded by one voxel to account for partial voluming with the gray matter [137].

To restrict the signal to low frequencies, which are in the range of BOLD [33, 138], band-pass filter

45



Chapter 4. Differentiating low levels of consciousness with intrinsic functional connectivity

Figure 4.1: Analysis pipeline. The left frame illustrates the single subject level analysis including: image spatial
preparation, corrections for movements, de-noising and connectivity networks extraction. The right frame describes
the data analysis part of this study. First, statistical contrast between MCS and VS/UWS was calculated for each
network from which the binary masks were created. The masks were used to extract the regional connectivity
values that were ranked in the next step to estimate the discriminatory capacity of each network. Model evaluation
was performed in the last step using “unseen” data. Adapted from the published version.

of 0.008–0.09 Hz was applied on the time series. Finally, we regressed out the residual head motion

parameters.

Image preprocessing was performed in SPM8. For Artifact detection and Removal we used Arti-

fact Detection Tools (ART) www.nitrc.org/projects/artifact_detect. For denoising and

connectivity analysis we occupied methods as incorporated in the CONN toolbox [139].

Connectivity values and networks

To estimate functional connectivity between brain regions, we elaborated a seed-voxel approach. The

seed-voxel approach was preferred over Independent Component Analysis (ICA) as the latter -applied

to patients which have big lesions- can affect the identified networks. ICA, being data driven, can

increase potential need for manual correction or rejection of subjects [117]. In the seed-based approach

neuro-pathological network disruption can be dealt using enlarged spherical seeds. We used spheres

of 10mm radius for cortical and 4mm for subcortical regions, which were combined accordingly to

form the desired networks. Default mode, frontoparietal, salience, auditory, sensorimotor and visual

networks were examined in this study. The coordinates of the seeds corresponding to each network
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were selected from the literature [35, 140–145].

Time series were extracted from all voxels of each network/Region Of Interest (ROI) and then were

averaged. From the averaged time series we estimated whole-brain correlation r-maps which were

then converted to normally distributed Fisher‘s z transformed correlation maps to permit for group-level

comparisons.

Networks’ Functional connectivity values for MCS, VS/UWS and coma patients were estimated

using one-sample t-tests in the dataset of non-sedated patients scanned in Liege. Healthy controls were

used to cross-check for the validity of networks’ characterization. Aetiology (traumatic/non traumatic)

and chronicity (acute/chronic) were included in a 2x2 factorial design to test interaction effect with

clinical evaluation of patients (MCS and VS/UWS) and variables were included as regressors in the

general linear model, if effect was present.

Linear regression was applied to CRS-R scores and the connectivity values of each network, to

examine the contribution of each network in the level of consciousness. The same process was applied

for the cerebellar network. As it is known for not being associated to consciousness related processes

[146, 147], it was utilized to control the contribution to the level of consciousness. The cerebellar

network was extracted using seed regions on the posterior lobe bilaterally [144] and on the inferior

semi-lunar lobule [140].

4.3.1 Features’ extraction and evaluation

A t-test between MCS and VS/UWS, for each network, provided the contrast maps which then were

thresholded to be utilized as masks. The masks were used to extract the mean connectivity of each

network (average z-values across the whole mask) from each subject, resulting in 6 values per subject.

The extracted values served the purpose of features and were tested for their discriminatory power with

two feature-evaluation methods [148]. At first, feature ranking using a t-test implementation (http:

//www.mathworks.nl/help/bioinfo/ref/rankfeatures.html)[149] and then, a single-

feature classification with SVM [123] were performed.

4.3.2 Classification of DOC patients

In order to automatically classify patients, we focused on the network which was ranked higher in the

evaluation process. We used a linear SVM with default regularization parameter C=1 [92, 150]. The

training of the classifier was performed using the Liege dataset and for testing we used the datasets
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from New York and Salzburg. In all cases we used SVM, we used the libsvm [151] as implemented in

matlab.

4.4 Results

4.4.1 Networks involvement in consciousness

Controls’ functional connectivity for all networks was identified in all regions as it is classically reported

in the literature. Connectivity values appeared to be smaller in MCS patients compared to controls.

Connectivity in VS/UWS was weak and in some cases hardly identifiable. The correlation analysis

that was performed between network connectivity and CRS-R scores, demonstrated good correlation

between them, as illustrated in figure 4.2. The cerebelar network, as expected, did not correlate to the

behavioural evaluation.

Figure 4.2: Correlation between CRS-R scores and functional connectivity values. Regions in red represent
the areas from which connectivity values were extracted. Functional connectivity correlates with behavioural scale
evaluation. Statistical maps are thresholded at FWE P < 0.05 (cluster-level)

Contrast maps, from which network masks were extracted, are illustrated in figure 4.3. To minimize

the possibility that differences in functional connectivity reflected differences in brain anatomy, we per-

formed a two-sample t-test voxel- based morphometry on the normalized gray matter and white matter

segmented masks (smoothed at 6mm full- width at half-maximum). No differences in gray matter vol-

ume between patients in MCS and VS/UWS were identified at FWE P < 0.05 either at the whole-brain

48



4.4. Results

or at the cluster-level. Similarly, the analysis of white matter volumes showed no differences between

the two groups, even at a liberal threshold P < 0.001 (whole brain level) uncorrected for multiple

comparisons.

Figure 4.3: Contrast maps between MCS and VS/UWS patients. Regions showing higher functional connectiv-
ity in MCS patients compared to patients in VS/UWS for each network. Statistical maps are thresholded at FWE P
< 0.05 (cluster-level) and are rendered on 3D surface plot template (top = lateral view; bottom = medial view).

4.4.2 Feature ranking results

In both methods for feature evaluation, the Auditory Network was found to have the highest discrimina-

tory power. Visual, DMN, Frontoparietal, Salience and Sensorimotor were following in this order when

evaluated with the t-test method. Salience was second in the single value classification only by one TP

better than DMN, Frontoparietal and Salience. Detailed results can be found in table 4.1.

Feature selection criterion
(t-test) Single-feature classification

Network t value Rank p value
True positives

(MCS)
True negatives

(VS/UWS)
Performance

accuracy
Auditory 8.32 1 <.001 25 18 43/45
Visual 7.79 2 <.001 23 15 38/45
Default mode 6.95 3 <.001 23 15 38/45
Frontoparietal 6.82 4 <.001 23 15 38/45
Salience 6.21 5 <.001 24 15 39/45
Sensorimotor 5.87 6 <.001 24 13 37/45

Table 4.1: Evaluation of networks using feature evaluation methods. Results of feature ranking based on
t-test on the left of the table and Single-Feature SVM classification results on the right side of the table. For both
techniques, the Auditory network provided better discriminatory power between MCS and VS/UWS

49



Chapter 4. Differentiating low levels of consciousness with intrinsic functional connectivity

4.4.3 DOC patients classification

To avoid classifying with only one feature and possibly overfit the model, we extracted values from

bilateral auditory and visual cortices, that are the clusters that the Auditory Network consists of. From

the 22 tested subjects, two were not classified correctly, one from each group. We included the EMCS

patient with the MCS to test how would it be treated by the classifier, and it was classified correctly. The

confusion matrix with the classification results is shown in the following table 4.2.

Label
MCS UWS

Classifier
MCS 15 1
UWS 1 5

Sens = 15/16 Spec = 5/6
Acc = 20/22

Table 4.2: Confusion matrix of the independent dataset. One false negative and one false positive yielding to
a Specificity of 83 % and a Sensitivity of 94 %. The total Accuracy is 91%

An illustration of the separation hyperplane and the data can be found in (figure 4.4).

Figure 4.4: Classification Results. Three dimensional representation of the classification. Axes represent the
values of the three main clusters of the Auditory network: Bilateral auditory cortices and occipital cortex. The
hyperplane is calculated by training with the Liege dataset set. One patient from each group was misclassified
resulting to an accuracy of 91% (20/22).
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4.5 Generalization of the classifier to a wider population

The classification between the two DOC subgroups, MCS and VS/UWS, is an equivalent of finding

a boundary between subjects with residuals of consciousness and without consciousness. In other

words, the classifier decides between the appearance or the absence of consciousness. To get an

idea of what the classifier is measuring and what it is not, generalization trials had to be performed to

investigate boundary and precarious conditions [108].

4.5.1 Tracking consciousness

A model able to detect signs of consciousness has to outperform in controls. The two healthy groups

mentioned earlier, from Liege and Salzburg, were used to confirm that the classifier is indeed capable

to capture consciousness. We tried the classifier on these groups and 2 out of 39 subjects were

identified as non-conscious. Both misclassified subjects were relatively close to the decision boundary,

as illustrated in figure 4.5.

Figure 4.5: Classification of controls in a 2D representation using the Euclidean distance from the separation
hyperplane. 2 out of 39 healthy subjects (95%) are placed in the consciousness side showing a high True positive
rate.

4.5.2 Classifier’s evaluation on healthy, sedated subjects

To take generalization of the classifier a step further we tested the classifier in healthy sedated pop-

ulation. Connectivity values during wakefulness and during deep sedation were extracted from each

subject. Though all subjects before sedation were classified as “conscious”, during the deep sedation

classifier detected 5 of them as conscious and the rest 4 as non conscious. The two dimensional

illustration of the results are in figure 4.6.
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Figure 4.6: Classification results of healthy subjects under wakefulness stage 1 (w1) and deep propofol
anesthesia stage 2 (s2) sedation. In a 2D representation using the Euclidean distance from the separation
hyperplane, five deeply sedated subjects are placed in the classifier in the side of “consciousness”.

4.5.3 Testing the classifier in congenitally deaf and blind subjects

The identification of Auditory network, that encompassed temporal and occipital regions, as the one

with the best discriminatory capacity is raising the question whether the classifier captures a higher-

order cortical organization pertaining to conscious conditions or merely a sensory function (i.e. auditory,

visual). To clarify that, we tested the classifier with one group of conscious but congenitally deaf subjects

and with one of conscious but congenitally blind subjects.

Out of the nine congenitally blind patients one has been detected as not conscious from the clas-

sifier leading to an accuracy of 88.9% as shown in figure 4.7a. From the 8 congenitally deaf subjects

one was classified as non conscious. A 2-dimensional representation of the classification results can

be found in figure 4.7b.

4.5.4 Classification of sedated patients

The last dataset we used to test the classifier was part of the sedated patients. Specifically, 53 sedated

patients were tested, from which 33 were in MCS and 20 in VS/UWS. Results were similar to those of

sedated healthy subjects. Near-chance level classification was achieved, with 35 out 53 patients being

classified correctly (66%) 4.8. An overview of the results can be found in table 4.3

4.6 Discussion

In this research we investigated how functional connectivity networks can be used to differentiate pa-

tients with DOC. At first we evaluated how much the connectivity strength of networks is in accordance
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Figure 4.7: Classification results of congenitally deaf and blind subjects in a 2D representation using the
Euclidean distance from the separation hyperplane. a) Seven subjects out of eight were classified as having signs
of consciousness. b) One congenitally blind subject out of nine was detected as unconscious.

Label
MCS(33) UWS(20)

Classifier
MCS 24 9
UWS 9 11

Sens = 24/33 Spec =9/20
Acc = 35/53

Table 4.3: Confusion matrix of the sedated patients’ dataset. Results give Sensitivity of 73%, Specificity 45%
and AUC of 66%.
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Figure 4.8: Classification results of sedated patients. All misclassified subjects are annotated with the red “o”.
There is a big overlap between the two populations which explains the chance level classification.

with the CRS-R scale and we found a strong correlation between them. As feature selection methods

do not have a theoretical frame for optimal methods, we used two techniques from two different cate-

gories, one from filter methods and one from wrapper. Both methods highlighted the Auditory network

as the best one for classifying patients. To restrict the phenomenon of contaminated labels, which can

significantly affect the decision boundary and thus the classification results, we only included subjects

for which the clinical evaluation was in accordance with the PET evaluation.

A critical point of this work is the usage of the same dataset for the identification of the differences

between the two populations, and also for the evaluation of the features. This yields a circularity in the

processes, which can result to over-estimation of the performance. We overcame this issue by validat-

ing the classifier with datasets that were not involved in previous steps. The use of these two datasets

helps to overcome the issue of double dipping [104, 152]. The fact that we used the same data for

creating statistical maps as well as for feature evaluation and selection could lead to an overestimation

of the performance, if there were not the two unseen datasets for the final performance estimation of

the model.

The unseen datasets demonstrated a very good accuracy. Interestingly, in the misclassified sub-

jects there was one VS/UWS which emerged to higher state a few weeks later and an MCS.

Furthermore, we tested the model using un-sedated and sedated healthy subjects. That way, we

wanted to examine whether or not the classifier is indeed able to detect consciousness. All un-sedated

controls were classified as conscious, but deeply sedated healthy subjects demonstrated chance level

results. It is noteworthy that for two of the subjects the connectivity values of deep sedation appeared

increased compared to unsedated-state values.

54



4.6. Discussion

The classification of healthy controls during sedation aimed at testing the generalization of the clas-

sifier in different un-consciousness etiologies. Results confirmed that the classifier is performing well in

detecting consciousness as it assigned again all un-sedated subjects as conscious. Nevertheless, the

number of misclassified subjects in deep sedation raises questions. Does lack of consciousness have a

unique pattern or there might be more ways to be unconscious? The random level classification results

of sedated patients point to pharmacological sedation having a different brain connectivity pattern to

the one that the classifier is trained to disentangle. Meaning, that the classifier is incapable of assigning

non pathological unconsciousness. To address this issue further studies should be performed, in which

included sedated patients and controls will be sedated with the same drugs, as the sedated patients of

our study were under different anesthetic drugs.

The accurate classification of the congenitally blind and deaf groups shows that the “Auditory”

network is not highlighted due to some sound stimulation coming from the scanner or some visual stim-

ulation. A reason could be the cross-modal interaction of visual and auditory cortex that is considered

relevant for multisensory integration [153] and has been suggested as a facilitator for top-down influ-

ences of higher-order regions to create predictions of forthcoming sensory events [154]. Additionally,

preserved functional MRI activity in temporal and occipital areas has been shown for healthy subjects,

who were attentive and aware of the auditory violations, during mental counting of auditory temporal

irregularities [155]

In conclusion, we have shown that the classification of patients using functional connectivity pro-

vides an important assisting tool for the evaluation of consciousness. Multisensory integration sup-

ported by crossmodal connectivity have been highlighted by machine learning methods, as of great

importance for consciousness.

The validity and significance of our findings could be further improved when including more data.

More data coming from different unconscious populations, such as pharmacological or physiological

unconsciousness, could help build a more robust model with a higher generalization capacity.
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Summary

In this study we used machine learning for differentiating between unresponsive and minimally conscious pa-
tients, using PET scans. We aimed at creating a tool to assist clinicians with the diagnosis of DOC patients.
We used SUV of FDG-PET and estimated parameters of a model with three classifiers, trying to minimize mis-
classification of MCS patients. We used 158 patients in a cross-validation scheme to build the model and 53
subjects to validate it. We achieved a Recall 89%, a Precision of 89% and a general accuracy of 85%.
Keywords: DOC, FDG, PET, Feature Selection, consciousness classification, SVM, Random Forests
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5.1 Aim of the project

PET has shown to be very robust for diagnosing the level of consciousness in patients suffering from

brain lesions, by visual examination of the SPM analysis of hypometabolic and preserved regions [51].

In DOC patients, decreased local and global metabolic activity was reported compared to healthy sub-

jects, varying between 40% and 50% in the acute phase and 30% to 40% in the subacute and chronic

phase [46, 47, 156]. Differences in the metabolic activity of the intrinsic midline network and the extrin-

sic cerebellar network were found between the different levels of consciousness and controls [157]. No

difference was reported between the DOC groups.

Although the resolution of PET is not the best among FN techniques, it has the advantages having

no noise during scanning and thus it does not distract the subject, and being unaffected by magnetic

properties of the tissues. Additionally, the imaged activity is that occuring an earlier time window to the

scanning time. This property allows subjects to be sedated during the acquisition while the captured

metabolic activity represents a time frame prior to the sedation. This makes PET less prone to motion

artifacts, which is important in DOC as patients often suffer from spasticity or perform random move-

ments during scanning. Motion during scanning can result in very noisy and practically useless scans,

therefore sedation is often required.

Discriminating MCS patients from VS/UWS ones, using PET, has been performed in previous stud-

ies [50, 158]. The first study suggested a correlation of the level of consciousness and the overall

cortical energy turnover. Additionally, it defined the threshold of the shift between unresponsive and

minimal consciousness to be 50% of healthy controls‘ metabolic activity. A voxel based analysis high-

lighted primary sensorimotor areas, adjacent frontoparietal regions and precuneus, being in line with

previous studies [156, 159, 160], which had reported those regions as important for consciousness. No

validation with unseen data was performed in the study. The second study [50] examined the hypoth-

esis of having a minimal glucose metabolic requirement for a patient to be conscious. This minimum

requirement was calculated in the hemisphere of patients that had the highest mean consumption, and

was found to be at 42% of healthy subjects’ cortical activity. No further analysis was performed to

highlight more precisely the most significant regions within the selected hemisphere.

This project aims at differentiating MCS patients from those being in VS/UWS using brain regions

defined by anatomy. Additionally, SUV values of PET were preferred in order to permit for inter-scanner

generalization. For the classification process, emphasis is given on detecting the presence of respon-

siveness with high accuracy (here detecting MCS patients). This objective originates from clinical and
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ethical requirements which dictate the medical management of patients, balancing the autonomy and

well being. Therefore, we aimed at minimizing the amount of MCS patients detected as VS/UWS,

hence we evaluated our results in terms of recall and precision. Additionally, we wanted to investigate

the spatial patterns of consciousness using a data driven approach. We assume that some brain re-

gions will be of greater importance than others and moreover, regions from both hemispheres will play

a role in the classification of the two groups.

5.2 Datasets

Our dataset consists of PET scans of 211 patients (159 MCS and 70 VS/UWS) and of 20 healthy

subjects, free of psychiatric or neurological history. The scan was performed 52±13 minutes after in-

travenous injection of 150 or 300 MBq of FDG using a Gemini TF PET-CT scanner (Philips Medical

Systems). A low-dose CT was acquired for attenuation correction, followed by a 12-minute emission

scan. The studies were reconstructed using a LOR-OSEM algorithm and reconstructed images had

23mm isotropic voxels in a 256x256x89 voxel matrix. An examiner was present during the whole ac-

quisition to ensure that the patient remained awake and eyes open in a silent and dark room (tactile

or auditory stimuli were administered when patients were closing their eyes). Patients were assessed

at variable times after the brain injury (acute<3 months since onset-75 patients-, or chronic stage>3

months since onset -136 patients-), in order to clarify the actual state of consciousness. All patients

were repeatedly evaluated with the CRS-R [16]. At least 5 CRS-R assessments were performed by

accredited trained specialists. In all cases, assessments were performed on different days and clinical

labels were assigned according to the highest clinical diagnosis across all evaluations.

5.3 Methods

The dataset was randomly split in two subsets, where each had the same proportion of MCS and

VS/UWS as in the full dataset. More precisely, one subset included 158 patients (106 MCS, 52

VS/UWS) and the other one included 53 patients (35 MCS, 18 VS/UWS). The first and largest sub-

set was used to train and estimate the performance of the classification models (test-set) and the other

one to validate the selected models (validation-set).
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5.3.1 Standardized Uptake Values and quality check

We created the SUV-PET scans from the DICOM format data with our custom code1, following the

steps described in the guidelines/pseudocode of the Quantitative Imaging Biomarkers Alliance [27].

5.3.2 Preparation of the scans

To ensure that homologous brain regions are compared, all PET images were spatially normalized into

MNI stereotactic space. Using the standard PET template of SPM can be problematic for our dataset,

because the PET template of SPM is created from 15O-H2O cerebral blood flow PET scans and only

from healthy controls. In our case, the injected tracer is 18F -F DG and also our subjects have very

often brains with big deformations. To address those issues, we created a study specific template

using only the scans of the test-set. We performed the following steps as described in [116] to create

a template targeted to our subjects: all images of the test set were at first normalized with the SPM

standard PET template, along with the a-priori white matter and gray matter Tissue Probability Maps

(TPM) as implemented in SPM12 [161]. Then, all normalized images were averaged and smoothed

with an 8mm FWHM kernel to create the study template. We normalized all original SUV-PET images

using only the study template. In the latter normalization procedure the regularization imposed on the

nonlinear warping was increased by one order compared to the standard setting to prevent unrealistic

warping [162]. Finally, the normalized scans were smoothed with a FWHM = 8mm Gaussian filter. All

normalization processes were performed using the Old Normalization option of the SPM12 package.

The specific normalization algorithm applies an affine registration, followed by estimating nonlinear

deformations. The deformations are defined by a linear combination of three dimensional discrete

cosine transform basis function.

Parcelation and extraction of features

The latest version of Automated Anatomical Labeling atlas [163, 164], which indicates macroscopic

brain structures, was selected for our analysis. The atlas consists of 120 regions: 47 volumes of

interest in each hemisphere of the brain, and 26 areas of the cerebellum, which we did not include in

our analysis. For each PET scan, we extracted the mean metabolic activity of each region by averaging

the included voxels. Each regional mean formed one feature.

1https://github.com/antogeo/PET_classification
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All scans were controlled for their quality using z-score with the threshold at 3. Z-scores were

applied in the mean values of intracranial activity and in the region of each subject with the highest

mean intensity.

5.3.3 Building the classification model

We used scikit-learn [165] for all the steps in testing and validating the models.

Classifiers

We selected two classifiers from different families for our analysis. We chose a linear SVM [86] and a

non parametric Xtrees [102], which incorporates a feature evaluation. We wanted to estimate two SVM

classifiers with different sensitivities in identifying the two populations. As we aimed at minimizing MCS

misclassification, we wanted a classifier to emphasize on high recall and the other one in high precision.

We consider that the hyperplanes of those two classifiers will be parallel or almost parallel to each other

in the space of our interest [166]. In the area between them there will be subjects that are classified

as MCS by the one classifier and as VS/UWS by the other one. We wanted to test the performance

of a Xtrees for this area, as it is partitioning the space in a very different way and thus decides with

different criteria. Also, by using the whole feature set in Xtrees we can have a more straight forward

interpretetion of the regional contribution in the classification. Moreover, the redundancy inherent to

the joint implementation of different classifiers can be a source of final decision improvement [167]. In

such a way when the two classifiers make the same prediction for a sample, there is high confidence

about the result and when not then the decision will be driven by the Xtrees. Figure 5.1 illustrates the

aforementioned concept. Such structure is described as tree-like classifier structure (classification tree)

and is a serial strategy to combine decisions with dynamic classifier selection [167]. During the model

selection we evaluated the performance of the tested models in terms of AUC, recall and precision.

AUC was calculated in order to provide us with an estimate of the separability of the two classes.

Estimation of the parameters of the models

The selection process of the parameters was performed in the test set (158 subjects). Features were

normalized by removing the median from each feature and then scaled with the interquartile range,

which is the range between the 1st quartile (25th quantile) and the 3rd quartile (75th quantile). For the

linear SVM models, we performed a feature evaluation by ranking the features using ANOVA F-values

and we tested for the optimal number of best features in terms AUC and F1-score. The process was
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Figure 5.1: The idea of the Classification model in 2D. We assume that the two SVM classifiers will form two
parallel decision lines (Hyperplane 1 & 2). The subjects that are on the left side of hyperplane 1 are assigned as
MCS and those on the rights side as VS/UWS. Respectively, for hyperplane 2 the subjects that lie on the right
side will be classified as VS/UWS and on the left side as MCS. Samples that lie in the middle area are assigned
differently from the two SVM classifiers and the Xtrees will make the final decision.

performed by randomly splitting the test set further, using 70% of the data to train and 30% to test. For

each number of features we performed 100 differet splits and always kept the same proportion of the

two groups as the initial dataset. The Xtrees has an internal feature selection process, thus we did not

apply any feature selection prior to classifications.

We wanted to have two SVM classifiers, one with recall of 95% and one with precision of 90%.

Therefore, we tested penalizing with higher values the misclassified samples of one class, over the

other class, during the training phase. A range of weights starting from penalizing VS/UWS 10 times

less than MCS (1/10) and up to the reverse ratio (10/1) were tested. During the model evaluation we

performed 5-fold cross validation, for each value, iterated 50 times, to ensure more accurate estimates

of the performance [168]. In all folds of all iterations, the proportion of the two classes was similar to

the one of the full dataset. For the Xtrees, we used the same parameters as in [129] which facilitate the

feature evaluation, performance and computational complexity.

Statistical analysis

To validate the estimated models and the confidence intervals of our estimations we used the unseen

data of the validation set. To compare our results with the empirical chance level we used a dummy

classifier, which is a model selecting the “most frequent” class for all subjects [165]. We performed
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bootstrapping [103] with 1000 repetitions in the validation dataset and classified them using the selected

models trained in test set. For each iteration we compared our models to the dummy classifier [115]. In

other words, we created a distribution from the paired differences between our models and the empirical

chance level as expressed by the dummy classifier.

5.3.4 Classification of healthy subject

Finally, we classified the group of controls with the three classifiers expecting that they will be treated

as MCS subjects.

5.4 Results

5.4.1 Image preparation

All SUV scans of the subjects, produced by our custom code, had z-scores smaller that 3. One control

had z-score above than 3 and was excluded from the classification.

The study specific template had bigger ventricles as compared to the template of SPM. The two

templates are shown in figure 5.2a). Figure 5.2b) shows the fit of the parcellation atlas on the custom

template and two patients from the dataset we used to make the model.

Figure 5.2: a) Study specific template (on the bottom) was preferred over the standard PET template (on the
top). The standard template existing in SPM is made out of healthy controls and a different tracer (H2

15O). Our
custom template has bigger ventricles. b) Fitting AAL atlas. Upper left image shows the AAL atlas in “jet” color-
map. Upper right shows the study specific template and bottom row shows a MCS subject on the left and an UWS
subject on the right. Red lines represent the overlapped borders of the AAL regions at current sagittal, coronal and
axial slices (39, 58, 39).
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5.4.2 Evaluation of the number of features

We performed the classifications starting with the feature that had the highest ANOVA F-score and by

adding the next highest scored feature in each step, are shown in 5.3. Ten features lead to the slightly

better performance for both metrics.

Figure 5.3: Optimal number of features was tested for the SVM classifier. We performed forward feature se-
lection on the features ranked with the ANOVA F-scores. At first one features was included. For each step, the
highest ranked feature not included was added, until all features are included. In every step AUC and F1-score
was estimated. The combination of the 10 highest ranked features provided the best performance for both metrics.

5.4.3 Class weight evaluation

The desired 95% of recall which indicates 1 misclassified MCS patient out of twenty, corresponds to a

cut off point where VS/UWS patients were weighted 2.4 times more than MCS. The 90% of precision

occurs when VS/UWS where weighted 0.6 times of the MCS. We used those weight ratios to make two

classifiers. The results across all selected weight-ratios are illustrated in figure 5.4.

5.4.4 Performance validation of selected models

The AUC for all classifiers was significantly higher than the chance level classification, as expressed by

the dummy classifier. In all bootstrap iterations (1000) the AUC of the three classifiers was higher than

the dummy classifier. Xtrees had lower recall compared to the dummy 4 times out of 1000. The recall

of SVMp (sensitive in detecting VS/UWS) was lower than the dummy ’s 344 times and SVMr’s (sensitive

in MCS detection), 1 time. Finally, for precision the performances of Xtrees and SVMp were higher than
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Figure 5.4: Estimating performance for different class weights in terms of recall, Precision and AUC. X axis
represents the ratio of classification weights of MCS patients over those of VS/UWS. The red lines point out the
weights at the 95% of recall and 90% of precision. A dummy Classifier was used to indicate the chance-level
classification.

the dummy ’s in all iterations, and SVMr performed 32 times worse than the dummy classifier. The mean

performance for each metric and each classifier as well as the contrasts between each classifier and

the dummy classifier are shown in figure 5.5.

Figure 5.5: The performance validation of the selected models in terms of recall, Precision and AUC. Top three
figures demonstrate the variance of the models and the dummy classifier for the three metrics. The three bottom
boxplot-figures demonstrate the comparisons between the models and the dummy classifier for each iteration.

The table 5.1 summarizes the validation results and includes the 95% confidence intervals of the
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bootstrap process.

Classifier AUC (CI) Recall (CI) Precision (CI)
Xtrees 88% (77-96) 88% (77-97) 89% (78-97)
SVMp 84% (73-94) 69% (51-83) 89% (79-100)
SVMr 84% (73-94) 94% (86-1) 79% (71-88)
Dummy 50% (37-64) 66% (49-80) 66% (57-77)

Table 5.1: The performance on the validation set in terms of AUC, Recall and Precision. Metrics were estimated
using bootstrap of 1000 iterations. In parenthesis the 95% confidence intervals for each metric are presented.

The performance of each model is shown in table 5.2. Models performed similarly to the perfor-

mance achieved during the cross-validation scheme using the test-set.

Models
SVM

(recall)
SVM

(precision)
Xtrees

MCS UWS MCS UWS MCS UWS

Labels
MCS 33 2 24 11 31 4
UWS 9 9 3 15 4 14

General accuracy 79% 74% 85%
Recall 94% 69% 89%

Precision 79% 89% 89%

Table 5.2: Confusion matrices of models for the validation set. Classification results of the three selected
models over the validation set, which included 35 MCS and 18 VS/UWS patients.

The table 5.3 provides the results of the final models which combines the three classifiers. Xtrees

is used to provide a prediction only in the case that the two SVM models predict a different label for a

subject. For the 38 out of 53 subjects, there was an agreement between the two SVM classifiers.

SVMr = SVMp SVMr 6= SVMp
n = 38 (3FP, 2FN) n = 15
24 TP 2 FN

RF
7 TP 2 FN

3 FP 9 TN 1 FP 5 TN

Table 5.3: Confusion matrix of the combined classifiers. When the two SVM models agree 33/38 subjects are
classified correctly. For the rest 15 cases, Xtrees classified correctly 12 out of 15 and had 1 FP and 2 FN. The total
recall is 89%, precision is 89% and Accuracy is 85%
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5.4.5 Contribution of regions in the classification

From the fitted models, we extracted the features significance and projected them on a 3-dimensional

brain shaped model. The 10 regions that were selected using ANOVA F-scores used in SVM models

are Paracentral Lobule, Cuneus, Lingual, Calcarine, Occipital Inferior, Occipital Superior, Precuneus,

Postcentral in the right hemisphere and Cuneus with Calcarine on the left, and are shown in figure 5.6.

Figure 5.7 shows the ranking of features (or regions) in the classification of the Xtrees. Xtrees ranks

the features using the impurity decrement between nodes, averaged over all the trees.

Figure 5.6: The 10 regions selected using ANOVA f-scores. F-scores values have been transformed with
−log10 and then normalized to unit for better visualization. Paracentral Lobule, Cuneus, Lingual, Calcarine,
Occipital Inferior, Occipital Superior, Precuneus, Postcentral in the right hemisphere and Cuneus with Calcarine
on the left. Regions in white (values below 0.82) were not selected in the best 10 features. Image was made with
BrainNet viewer [169]

Figure 5.8 shows analytically the values of all regions for the two methods. The ANOVA F-scores

have been transformed with −log10 and normalized to one for better visualization. Xtrees have been

only normalized to the unit.

5.4.6 Classification of healthy subjects

All 19 controls were classified as MCS from the Xtrees and the SVMr. One subject was classified as

VS/UWS from the SVMp classifier.
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Figure 5.7: The importance of features as resulted from the Xtrees. The importance of features in Xtrees result
from the nodes decrease of impurity averaged all over the trees. Mainly posterior and lateral brain areas drive the
classifier. Similar regions from both sides of the brain are highlighted, with the right regions having higher values.
Values have been normalized to 1. Image was made with BrainNet viewer [169]

5.5 Discussion

With this work we wanted to address the problem of an accurate diagnosis for DOC patients. Addi-

tionally, we wanted to investigate the regional contribution in the diagnosis of consciousness using a

data driven approach. To overcome the problem of intensity variability between scans and permit com-

parison between subjects, scans were scaled to SUV. We also performed spatial normalization with

a template created from FDG scans of subjects with brain lesions. We believe that such a template,

compared to the standard SPM template, provides better warping of the images in the MNI space by

preserving at the same time the lesions of the brain.

Specifications of the model

Though an optimal balance between recall and precision can be estimated with standardized metrics,

in our case we opted to give a practical utilization. Therefore we set custom performance values to fit

ethical and clinical expectations. By choosing the recall to be at 95% we actually defined the certainty

level of classifying a patient as MCS to be correct in 19 out of 20 cases. A precision of 90% indicates

that out of 10 detected MCS patients one will be VS/UWS. We assume that by penalizing differently

the weights of one class over the other, the decision boundary would shift towards the direction of the

class weighted less. Therefore, the two models will create almost parallel decision hyperplanes in the
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Figure 5.8: Values of features evaluation from the internal Xtrees classification process, on the right, and using
ANOVA F-scores, on the left. In the ANOVA F-scores, the 10 features with the highest values are colored in red.
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space of our interest. In such a way, when the two classifiers assign a sample with the same label, we

can have a certain level of confidence about the classification result. When the two classifiers provide

different labels, there are two possible ways for this to happen: 1) the high-recall SVM decides for MCS

and the high-precision SVM for VS/UWS,and 2) the SVMr assigns the subject as VS/UWS and the

SVMp as MCS. In the first case the subject would fall between the decision hyperplanes of the two

classifiers, and will be decided in the Xtrees. The second scenario is unlikely and did not occur with

any of our subjects, reaffirming in a way the assumption of having almost parallel hyperplanes. Figure

5.9 illustrates the aforementioned decision flow.

Figure 5.9: The flow chart shows the decision flow using all three classifiers. If the SVMr, which has low FN rate,
assigns an VS/UWS, we know that is correct for 19 out of 20 cases. If the SVMr classifies the subject as MCS,
we know that it’s certainty level is low and have to proceed to the next SVMp classifier. The second classifier is
sensitive in avoiding FP. It’s certainty equals to one FP in every ten subjects classified as MCS. If this classifier
decides also for MCS then this one can be the final decision. Finally, if the SVMp classifier decides for VS/UWS,
then Xtrees will provide the final label.

It is of great importance that the selected performance was also achieved when using the validation

dataset. That way we can be confident that the model performs as designed to perform on unseen

data acquired with the same scanner and scanning protocol. The classification of controls as MCS was

performed as a sanity check for the classifier. The one subject that was classified as VS/UWS showed

very low mean compared to the rest of the controls which can be the result of sleeping between injection

and scanning or protocol compliance 5.10.

The ANOVA F-scores analysis selected Paracentral Lobule, Cuneus, Lingual, Calcarine, Occipital

Inferior, Occipital Superior, Precuneus, Postcentral in the right hemisphere and Cuneus with Calcarine
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Figure 5.10: SUV scans of the healthy subjects. In the green frame is the subject that was excluded due to very
high voxel values, which provided a z-score higher than 3. In the red frame is the subject that was classified as
VS/UWS which has unexpectedly low values.

on the left. The regions selected are in accordance with the idea of “posterior hot zone” [170]. The

Xtrees feature selection comes from averaging the decrease in impurity over trees. Faetures that

ranked higher are Cuneus, Paracentral Lobule, Postcentral, Calcarine and the Precentral Parietal from

both hemispheres, and Supplamentary Motor, Lingual, Precuneus and Occipital areas of the right hemi-

sphere.

In both methods it can be noticed the significance of parietal and occipital midline, which have

been highlighted in previous studies [51, 157] and right somatosensory cortex. For all classifiers the

important regions for the classification are in both brain hemispheres although the right side is more

highlighted.

The classification scheme we propose can compose the base for a more accurate model with fixed

confidence intervals for every individual classification performed. Larger datasets with less noisy labels

should increase the performance and moreover will permit for further development of the models. The

area between the two hyperplanes is of great importance and a classifier with “Local Spacialization”

[171], as part of multiple classifier scheme, can provide a more accurate overview of the differences of
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the two groups.

In conclusion, we believe that the model proposed here can be used by clinicians and provide them

with an assisting diagnostic tool. The classifier should always be used in combination with the clinical

assessments and other evaluation methods if available.
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Chapter 6

Discussion

6.1 General remarks

This work has shown how functional neuroimaging data -fMRI and PET- can be combined with machine

learning in order to assist the diagnosis of the level of consciousness of brain lesioned patients. The

first three introductory chapters provide fundamentals of the Disorders of Consciousness, functional

neuroimaging focusing on PET and fMRI, and machine learning. The information provided are selected

according to the techiques and tools used in the research described in the forth and fifth chapters.

The forth chapter describes the performed analysis that resulted in a classification model which makes

use of functional connectivity values. The fifth chapter includes the analysis I performed for diagnosing

patients that are in MCS or VS/UWS using PET scans. To account for reproducability of the two models,

the algorithms used have been described in detail and the corresponding code is available in version

control system 1 or is provided upon request.

Although a big effort is made by the clinicians to provide an accurate diagnosis, there is no guar-

antee that all the patients involved are labeled correctly. This is a common problem in DOC research,

which results in an upper limit of the classification performance. This limit exists, in my opinion, for all

projects using clinical evaluations. Therefore, very high performances could imply overfitted models

and validation with unseen data is in a way mandatory.

I believe that a more accurate labeling will come to fruition when clinical assessments will be used

hand in hand with classification models and further tools coming from neuroimaging and neurophysiol-

1https://github.com/antogeo
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ogy. The label refining for research purposes can be an added value for the two classification models

presented in this work. With the time passing, bigger and cleaner databases will be created allowing

the algorithms to provide a more accurate decision boundary, thereby increasing their performance as

well as their robustness.

A significant parameter in the analysis of lesioned brains is the accurate preprocessing and seg-

mentation. Most of the algorithms have been developed under the hypothesis that they will be applied

in subjects with small or without distortions. Therefore, in DOC studies and especially for MRI, a signif-

icant number of subjects has to be excluded from the analysis. The PET images, are less affected by

deformations due to their lower resolution and the fact that sedation can be applied without affecting the

acquired data. Although the problem of big brain deformation has been addressed [162, 172] these so-

lutions seem to be outdated. Additionally, it is not always possible to apply the proposed methodologies

due to the time demanding manual intervention. Unfortunately, the inhomogeneities of the brains of

DOC patients, caused by atrophies, lesions or traumas, do not permit us to transform the masks or the

atlases in a way that they perfectly fit all subjects. I believe though, that potential mismatches between

patients’ brains and the masks or the parcellation atlases are small and moreover, are included in the

variance that is taken into account by the models. There is a big debate whether or not the captured

signal of BOLD in fMRI represents some local brain activity or is the result of an increased blood flow

[173–175]. Also for PET, it is not clear whether the metabolic activity captured is purely coming from

neurons or also from astrocytes [176, 177]. In both cases the validation of the classifiers was performed

with unseen data. Therefore, I assume that the models encapsulated those factors in their parameters.

In the project of chapter 4 we tried to classify MCS from VS/UWS patients, using the functional

connectivity of brain networks. Although the classifier differentiates conscious subjects from VS/UWS

patients, it does not perform well with non-pathological lack of consciousness coming from anesthesia.

Whether there are more ways to be unconscious, is a question that cannot be answered by our re-

sults, but raises an interesting aspect for further studies: is it possible to classify between unconscious

subjects coming from pathological, pharmacological and physiological cause?

In PET classification the chosen scaling (SUV) is a standardized and widely used scaling technique

despite the fact that in some case it can provide controversial results. The intensities of SUV-PET

scans might have a wide range of values which is the result of inconsistency in data the registration and

protocol compliance [178]. Relevance Uptake Value scaling, could overcome these issues and provide

more accurate representation of the scans, but they need first to be studied and validated in subjects

with big brain lesions and traumas. Accurate scaling can be achieved from methods that make use
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of blood samples but they are very uncommon due to the high cost and difficulties in implementation.

Hence, in our case SUV appeared to be the most reliable method.

Multivariate (Xtrees) and univariate (ANOVA F-scores) feature evaluation provide different but com-

plementary information which facilitates discovering features which differently would be ignored [179,

180]. The former provides features importance and the latter shows if a variable is important either due

to a correlation with the outcome or due to interdependencies with other variables that can be informa-

tive about the outcome [129]. Drawing conclusions about the weights assigned from the SVM can lead

to mis-interpretetion. The regions highlighted in this project could constitute the basis of new rehabili-

tation research using targeted stimulation such as transcranial direct or alternate current stimulation.

6.2 Clinical Impact

The tools presented are using two different neuroimaging modalities and both can provide a diagnosis

for the level of consciousness of patients to complement behavioural assessments. Due to the fact

that PET and MRI have different scanning contraindications, the chance that one patient will not fulfill

the scanning criteria for both of them is relatively small. Therefore, in most of the cases the clinical

evaluation can be supported by one of the two classifiers.

In practice, if the behavioral assessments clearly indicate an MCS, there is no need to use the

models. Clinicians mostly benefit from using the classifiers when other means of diagnosis indicate

that a patient is unconscious. When both clinical evaluation and the models diagnose a patient as

an VS/UWS the benefit of using the models is an increased confidence of the diagnosis. Therefore,

patients care can be promoted by adjusting medical management like stimulating parts of the brain and

decide about pain treatment. Additionally, it can help families to take decisions regarding end of life.

More interesting though, can be those cases that one or both classifiers will not be in accordance with

a clinical assessment indicating a VS/UWS, and classify a patient as an MCS. Then caregivers should

consider further evaluations to be performed. Costly and complex set-ups such as “willful modulation”

in an fMRI or other brain-computer interface methods should be planned and try to detect a response

from the patient. This filtering of patients will lead to further examinations only for a targeted group of

patients thus reducing the cost and improving the management of the resources.
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6.3 Future work

For both projects future work includes the implementation of pipelines that will minimize manual inter-

vention. The goal is that a user will have only to provide the DICOM images and a reorientation matrix

as there is no algorithm so far that can provide an accurate reorientation of scans with big brain dis-

tortions. For the classifier of chapter 4, I would like to proceed to further tests with scans coming from

meditating subjects, subjects under the influence of specific drugs or medication and examine if the

way they are unconscious is similar to DOC patients. Additionally, I would like to search for a model that

performs well with sedated patients which could be used for assisting the diagnosis of those patients.

For the model of chapter 5, I plan to test for the inter-scanner generalization as combining scanners

is a big issue in PET studies [181]. Comparing different scaling methods, SUV and Relevance Uptake

Value (RUV), and testing them in terms of classification performance is also a future perspective. An

accurate RUV scaling will set unnecessary all the information needed for the SUV scaling. Finally, I

intend to combine classifiers and create ensembles of classifiers of different modalities. Combining

functional and structural information has already shown that increases performance [182]. The main

idea consists of a multimodal model using the two classifiers of this work, a classifier using structural

information [183] and one using neurophysiology [115]. In such multiple classification system classifiers

can have a parallel structure and vote for the final decision, or serial structure where one is feeding the

next one with some a priori information. The weights of each vote or the sequence of the classifiers

result from test.
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Intrinsic functional connectivity differentiates
minimally conscious from unresponsive
patients

Athena Demertzi,1,* Georgios Antonopoulos,1,* Lizette Heine,1 Henning U. Voss,2

Julia Sophia Crone,3,4,5 Carlo de Los Angeles,6 Mohamed Ali Bahri,7 Carol Di Perri,1

Audrey Vanhaudenhuyse,8 Vanessa Charland-Verville,1 Martin Kronbichler,3,4

Eugen Trinka,5 Christophe Phillips,7 Francisco Gomez,9 Luaba Tshibanda,10

Andrea Soddu,11 Nicholas D Schiff,12,13 Susan Whitfield-Gabrieli6,* and Steven Laureys1,*

*These authors contributed equally to this work.

Despite advances in resting state functional magnetic resonance imaging investigations, clinicians remain with the challenge of how

to implement this paradigm on an individualized basis. Here, we assessed the clinical relevance of resting state functional magnetic

resonance imaging acquisitions in patients with disorders of consciousness by means of a systems-level approach. Three clinical

centres collected data from 73 patients in minimally conscious state, vegetative state/unresponsive wakefulness syndrome and

coma. The main analysis was performed on the data set coming from one centre (Liège) including 51 patients (26 minimally

conscious state, 19 vegetative state/unresponsive wakefulness syndrome, six coma; 15 females; mean age 49 � 18 years, range

11–87; 16 traumatic, 32 non-traumatic of which 13 anoxic, three mixed; 35 patients assessed 41 month post-insult) for whom the

clinical diagnosis with the Coma Recovery Scale-Revised was congruent with positron emission tomography scanning. Group-level

functional connectivity was investigated for the default mode, frontoparietal, salience, auditory, sensorimotor and visual networks

using a multiple-seed correlation approach. Between-group inferential statistics and machine learning were used to identify each

network’s capacity to discriminate between patients in minimally conscious state and vegetative state/unresponsive wakefulness

syndrome. Data collected from 22 patients scanned in two other centres (Salzburg: 10 minimally conscious state, five vegetative

state/unresponsive wakefulness syndrome; New York: five minimally conscious state, one vegetative state/unresponsive wakeful-

ness syndrome, one emerged from minimally conscious state) were used to validate the classification with the selected features.

Coma Recovery Scale-Revised total scores correlated with key regions of each network reflecting their involvement in conscious-

ness-related processes. All networks had a high discriminative capacity (480%) for separating patients in a minimally conscious

state and vegetative state/unresponsive wakefulness syndrome. Among them, the auditory network was ranked the most highly.

The regions of the auditory network which were more functionally connected in patients in minimally conscious state compared to

vegetative state/unresponsive wakefulness syndrome encompassed bilateral auditory and visual cortices. Connectivity values in

these three regions discriminated congruently 20 of 22 independently assessed patients. Our findings point to the significance of

preserved abilities for multisensory integration and top–down processing in minimal consciousness seemingly supported by audi-

tory-visual crossmodal connectivity, and promote the clinical utility of the resting paradigm for single-patient diagnostics.
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Introduction
As patients with acute or chronic disorders of conscious-

ness are by definition unable to communicate, their diag-

nosis is particularly challenging. Patients in coma, for

example, lay with eyes closed and do not respond to any

external stimulation. When they open their eyes but remain

unresponsive to external stimuli they are considered to be

in a vegetative state (VS; Jennett and Plum, 1972) or, as

most recently coined, unresponsive wakefulness syndrome

(UWS; Laureys et al., 2010). When patients exhibit signs of

fluctuating yet reproducible remnants of non-reflex behav-

iour, they are considered to be in a minimally conscious

state (MCS; Giacino et al., 2002). To date, the diagnostic

assessment of patients with disorders of consciousness is

mainly based on the observation of motor and oro-motor

behaviours at the bedside (Giacino et al., 2014). The evalu-

ation of non-reflex behaviour, however, is not straightfor-

ward as patients can fluctuate in terms of vigilance, may

suffer from cognitive (e.g. aphasia, apraxia) and/or sensory

impairments (e.g. blindness, deafness), from small or easily

exhausted motor activity and pain. In these cases, absence

of responsiveness does not necessarily correspond to

absence of awareness (Sanders et al., 2012). Alternatively,

motor-independent technologies can aid the clinical differ-

entiation between the two patient groups (Bruno et al.,

2010).

Up to now, accurate single-patient categorization in MCS

and VS/UWS has been performed by means of transcranial

magnetic stimulation in combination with EEG (Rosanova

et al., 2012; Casali et al., 2013) and by combining different

EEG measures (Sitt et al., 2014). In terms of patient separ-

ation by means of functional MRI, activation (which utilise

sensory stimulation; Schiff et al., 2005; Coleman et al.,

2007; Di et al., 2007) and active paradigms (which probe

mental command following; Owen et al., 2006; Monti

et al., 2010; Bardin et al., 2012) have been used to detect

convert awareness in these patients. An apparent limitation

of the latter approaches is that patients may demonstrate

motor and language deficits which incommode these assess-

ments and heighten the risk of false-negative findings

(Giacino et al., 2014). The application of these paradigms

can also be constrained due to each institution’s technical

facilities.

Alternatively, functional MRI acquisitions during resting

state do not require sophisticated setup and surpass the

need for subjects’ active participation. Past resting state

functional MRI-based assessment of patients has focused

on the default mode network, which mainly encompasses

anterior and posterior midline regions, and which has

been involved in conscious and self-related cognitive pro-

cesses (Raichle et al., 2001; Buckner et al., 2008). Such

investigations have shown that default mode network

functional connectivity decreases alongside the spectrum

of consciousness, moving from healthy controls to patients

in MCS, VS/UWS and coma (Boly et al., 2009;

Vanhaudenhuyse et al., 2010; Norton et al., 2012;

Soddu et al., 2012; Demertzi et al., 2014; Huang et al.,

2014). In patients, the precuneus and posterior cingulate

cortex of the default mode network have been also char-

acterized by decreases in functional MRI resting state low

frequency fluctuations and regional voxel homogeneity

(which refers to the similarity of local brain activity

across a region) (Tsai et al., 2014). Reduced functional

MRI functional connectivity has been further identified

for interhemispheric homologous regions belonging to

the extrinsic or task-positive network (implicated in the

awareness of the environment; Vanhaudenhuyse et al.,

2011) in patients as compared to controls (Ovadia-Caro

et al., 2012). Reduced interhemispheric connectivity has
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been also indicated by means of partial correlations

(Maki-Marttunen et al., 2013). In terms of graph theory

metrics, comatose patients were shown to preserve global

network properties but cortical regions, which worked as

hubs in healthy controls, became non-hubs in comatose

brains and vice versa (Achard et al., 2011, 2012).

Similarly, chronic patients showed altered network proper-

ties in medial parietal and frontal regions as well as in the

thalamus, and most of the affected regions in unresponsive

patients belonged to the so-called ‘rich-club’ of highly

interconnected central nodes (Crone et al., 2014). More

recently, functional MRI-based single-patient classification

has been performed by considering as discriminating fea-

ture the neuronal properties of various intrinsic connectiv-

ity networks (Demertzi et al., 2014). The discrimination

between ‘neuronal’ and ‘non-neuronal’ was based on the

spatial and temporal properties (fingerprints) of the iden-

tified networks that were extracted by means of independ-

ent component analysis (De Martino et al., 2007).

According to specific criteria (Kelly et al., 2010), ‘non-

neuronal’ components were those that showed activation/

deactivation in peripheral brain areas, in the cerebrospinal

fluid (CSF) and white matter, as well as those showing

high frequency fluctuations (40.1 Hz), spikes, presence

of a sawtooth pattern and presence of thresholded

voxels in the superior sagittal sinus. Conversely, ‘neuronal’

were those networks when at least 10% of the activations/

deactivations were found in small to larger grey matter

clusters localized to small regions of the brain. Based on

this definition of neuronality, the ‘neuronal’ properties of

the default mode and auditory network were able to sep-

arate single-patients from healthy controls with 85.3% ac-

curacy. Nevertheless, the discrimination accuracy between

patients in MCS and VS/UWS reached only a chance level

(Demertzi et al., 2014).

Taken together, these studies show that the so far rest-

ing state functional MRI-based differentiation of patients

has been performed either at the group-level or concerned

the classification between healthy and pathological groups.

As a consequence, clinicians remain with the challenge of

how to implement the resting state functional MRI para-

digm on an individualized basis for the more challenging

discrimination between the MCS and VS/UWS (Edlow

et al., 2013). Here, we aimed at promoting the MCS-VS/

UWS single-patient differentiation by using resting state

functional MRI measurements in this clinical population.

To this end, we studied systems-level resting state func-

tional MRI functional connectivity in traumatic and non-

traumatic patients with acute and chronic disorders of

consciousness with the aim to (i) estimate the contribution

of each network to the level of consciousness as deter-

mined by behavioural assessment; (ii) rank the capacity

of each network to differentiate between patients in

MCS and VS/UWS; and (iii) automatically classify inde-

pendently assessed patients.

Materials and methods

Subjects

Three data sets were used, including patients scanned in Liège
[to address study aims (i) and (ii)], Salzburg and New York
[to address study aim (iii)]. Inclusion criteria were patients in
MCS, VS/UWS and coma following severe brain damage stu-
died at least 2 days after the acute brain insult. Patients were
excluded when there was contraindication for MRI (e.g. pres-
ence of ferromagnetic aneurysm clips, pacemakers), MRI
acquisition under sedation or anaesthesia, and uncertain clin-
ical diagnosis. Healthy volunteers were free of psychiatric or
neurological history. The study was approved by the Ethics
Committee of the Medical School of the University of Liège,
the Ethics Committee of Salzburg, and the Institutional Review
Board at Weill Cornell Medical College. Informed consent to
participate in the study was obtained from the healthy subjects
and from the legal surrogates of the patients.

Data acquisition

All data were acquired on 3 T Siemens TIM Trio MRI scan-
ners (Siemens Medical Solutions). For the Liège data set, 300
multislice T2*-weighted images were acquired with a gradient-
echo echo-planar imaging sequence using axial slice orienta-
tion and covering the whole brain (32 slices; voxel
size = 3 � 3 � 3 mm3; matrix size = 64 � 64; repetition
time = 2000 ms; echo time = 30 ms; flip angle = 78�; field of
view = 192 � 192 mm). For the Salzburg data set, 250
T2*-weighted images (36 slices with 3-mm thickness; repeti-
tion time = 2250 ms; echo time = 30 ms; flip angle = 70�; field
of view = 192 � 192 mm). For the New York data set, 180
T2*-weighted images were acquired (32 slices; voxel
size = 3.75 � 3.75 � 4 mm3; matrix size = 64 � 64; repetition
time = 2000 ms; echo time = 30 ms; flip angle = 90�; field of
view = 240 � 240 mm).

Subject-level connectivity analysis

Data analysis is illustrated in Fig. 1.

Data preprocessing

Preprocessing and connectivity analyses were performed in the
same way for all subjects across the three data sets. The three
initial volumes were discarded to avoid T1 saturation effects.
For anatomical reference, a high-resolution T1-weighted image
was acquired for each subject (T1-weighted 3D magnetization-
prepared rapid gradient echo sequence). Data preprocessing
was performed using Statistical Parametric Mapping
8 (SPM8; www.fil.ion.ucl.ac.uk/spm). Preprocessing steps
included slice-time correction, realignment, segmentation of
structural data, normalization into standard stereotactic
Montreal Neurological Institute (MNI) space and spatial
smoothing using a Gaussian kernel of 6 mm full-width at
half-maximum. As functional connectivity is influenced by
head motion in the scanner (Van Dijk et al., 2012), we
accounted for motion artifact detection and rejection using
the artifact detection tool (ART; http://www.nitrc.org/pro-
jects/artifact_detect). Specifically, an image was defined as an
outlier (artifact) image if the head displacement in x, y, or

Intrinsic connectivity classification BRAIN 2015: Page 3 of 13 | 3

by guest on July 23, 2015
D

ow
nloaded from

 

Chapter 7. Paper I

82



z direction was 40.5 mm from the previous frame, or if the
rotational displacement was 40.02 radians from the previous
frame, or if the global mean intensity in the image was 43
standard deviations (SD) from the mean image intensity for the
entire resting scan. Outliers in the global mean signal intensity
and motion were subsequently included as nuisance regressors
(i.e. one regressor per outlier within the first-level general
linear model). Therefore, the temporal structure of the data
was not disrupted.

For noise reduction, previous methods subtracted the global
signal across the brain (a controversial issue in resting state
analyses; Murphy et al., 2009; Saad et al., 2012; Wong et al.,
2012), and the mean signals from noise regions of interest
(Greicius et al., 2003; Fox et al., 2005). Here, we used the
anatomical component-based noise correction method
(aCompCor; Behzadi et al., 2007) as implemented in CONN
functional connectivity toolbox (http://www.nitrc.org/projects/
conn/; Whitfield-Gabrieli and Nieto-Castanon, 2012). The
aCompCor models the influence of noise as a voxel-specific
linear combination of multiple empirically estimated noise
sources by deriving principal components from noise regions
of interest and by including them as nuisance parameters
within the general linear models. Specifically, the anatomical
image for each participant was segmented into white matter,
grey matter, and CSF masks using SPM8. To minimize partial
voluming with grey matter, the white matter and CSF masks
were eroded by one voxel, which resulted in substantially
smaller masks than the original segmentations (Chai et al.,
2012). The eroded white matter and CSF masks were then

used as noise regions of interest. Signals from the white
matter and CSF noise regions of interest were extracted from
the unsmoothed functional volumes to avoid additional risk of
contaminating white matter and CSF signals with grey matter
signals. A temporal band-pass filter of 0.008–0.09 Hz was
applied on the time series to restrict the analysis to low fre-
quency fluctuations, which characterize functional MRI blood
oxygenation level-dependent resting state activity as classically
performed in seed-correlation analysis (Greicius et al., 2003;
Fox et al., 2005). Residual head motion parameters (three
rotation and three translation parameters, plus another six
parameters representing their first-order temporal derivatives)
were regressed out.

Extraction of intrinsic connectivity networks

Functional connectivity adopted a seed-based correlation
approach. Seed-correlation analysis uses extracted blood oxy-
genation level-dependent time series from a region of interest
(the seed) and determines the temporal correlation between
this signal and the time series from all other brain voxels.
Evidently, the selection of the seed region is critical because,
in principle, it can lead to as many overlapping networks as
the number of possible selected seeds (Cole et al., 2010).
Additionally, a network disruption can be expected due to
patients’ underlying neuropathology, as the chosen seed may
no longer be included in the overall network. Using more seed
regions, this issue can be overcome and therefore ensure
proper network characterization in patients. Here, the seeds

Figure 1 Analysis pipeline. Data analysis at the subject-level encompassed signal preprocessing and extraction of the intrinsic connectivity

networks. Data analysis at the group-level encompassed estimation of functional connectivity in the networks of interest, estimated the con-

tribution of each network to the level of consciousness by means of CRS-R total score regression analysis, and identified connectivity differences

between the group of patients in MCS and VS/UWS for each network. Network ranking methodology was used to rank characteristic features

(i.e., connectivity differences per network)to discriminate individual patients into the groups of MCS and VS/UWS. Two independent data sets of

patients, assessed in Salzburg and New York, were used to further validate patient classification. Different colours indicate the three data sets and

how these where used along the analysis pipeline.
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that were selected to replicate the networks were defined as 10-
mm (for cortical areas) and 4-mm radius spheres (for subcor-
tical structures) around peak coordinates taken from the litera-
ture (Supplementary material). For each network, time series
from the voxels contained in each seed region were extracted
and then averaged together. In that way, the resulting averaged
time course was estimated by taking into account the time
courses of more than one regions. The averaged time series
were used to estimate whole-brain correlation r maps that
were then converted to normally distributed Fisher’s z trans-
formed correlation maps to allow for group-level comparisons.

Group-level connectivity analysis

For the Liège data set, one-sample t-tests were ordered to
estimate network-level functional connectivity for patients in
MCS, VS/UWS and in coma; the data from healthy controls
were used as a reference to ensure proper network character-
ization. An exploratory analysis looked for network-level con-
nectivity changes as a function of patients’ aetiology and
chronicity. Two 2 � 2 factorial designs between aetiology
(traumatic, non-traumatic)/ chronicity (acute, chronic) and
the clinical entities (MCS, VS/UWS) were ordered. If an inter-
action effect was identified, these variables had to be entered
as regressors in the general linear models.

To address the first aim of the study, i.e. to estimate the
contribution of each network to the level of consciousness,
patients’ Coma Recovery Scale-Revised (CRS-R) total scores
were used as regressors to determine the relationship between
each network’s functional connectivity and the level of con-
sciousness. As a control, CRS-R total scores were used as
regressors of functional connectivity for the cerebellum net-
work (three regions of interest, Supplementary material),
which is known to be minimally implicated in conscious-
related processes (Tononi, 2008; Yu et al., 2015).

To address the second aim of the study, i.e. to determine the
capacity of each network to differentiate between patients in
MCS and VS/UWS, initially two-sample t-tests were ordered to
identify the regions of each network showing higher functional
connectivity in patients in MCS compared to VS/UWS (Liège
data set). The resulting difference maps were saved as masks,
which were used subsequently for the network ranking and
selection step. All results were considered significant
P50.05 corrected for multiple comparisons at false discovery
rate (FWE; cluster-level).

Network ranking and selection

Using the REX Toolbox (http://www.nitrc.org/projects/rex/),
the difference masks which were calculated in the previous
step were used to extract mean connectivity values (average
z-values across the whole mask) from the first-level contrast
images estimated for each network. Therefore, one value per
subject per network was created leading to a 6 � 1 vector
per subject (i.e. 45 � 6 matrix). These vector values were con-
sidered as features in a feature ranking methodology (Saeys
et al., 2007) as implemented in Matlab (http://www.math-
works.nl/help/bioinfo/ref/rankfeatures.html). The results of the
feature (i.e. network) ranking were verified by means of single-
feature linear support vector machine classifier (Burges, 1998).
Supplementary material contains further details on the net-
work ranking procedure and results.

To address the third aim of the study, i.e. to automatically
classify independently assessed patients coming from two other
clinical centres, we focused on the network which was ranked
most highly during the network ranking procedure. For that
network, a linear kernel support vector machine classifier
(Burges, 1998) with regularization parameter C = 1 was used.
This parameter was chosen based on its wide use in the
machine learning procedure (Phillips et al., 2011). The features
that were used for the training were individual mean connect-
ivity values extracted from the first-level contrast images using
the relevant network binary mask as described above. To
avoid single feature classification, hence running the risk of
overfitting, more features were included for the classifier’s
training. The number of features was based on the number
of clusters showing higher connectivity in patients in MCS
compared to VS/UWS as indicated by the contrast manager
of the CONN toolbox during the connectivity analysis
(FWE P50.05, cluster-level correction).

Classification of independently
assessed patients

The final validation of the classifier was performed on a new
set of connectivity values extracted from independently
assessed patients in Salzburg (n = 15) and New York (n = 7).
The data preprocessing, extraction of intrinsic connectivity net-
work, and feature extraction followed an identical procedure
as described above for the Liège data set. To test for robust-
ness, we also evaluated whether the same classifier generalized
to healthy controls subjects scanned in two centres (Liège,
Salzburg; no healthy control data were available for the New
York centre).

Results

Subjects

In Liège, between April 2008 and December 2012, 177

patients with disorders of consciousness underwent MRI

scanning. Of these, 80 (45%) were excluded due to sed-

ation or anaesthesia during scanning. Of the remaining 97

patients scanned in an awake state, five due to change of

diagnosis within a week after scanning, 14 because they

showed functional communication, 15 due to technical rea-

sons or movement artifacts, and 12 due to incongruence

between clinical diagnosis and fluorodeoxyglucose (FDG)-

PET scanning (Stender et al., 2014). As regards the latter

criterion, we decided to exclude patients showing wide-

spread PET activation in midline and frontoparietal regions

while the bedside diagnosis indicated the VS/UWS, in order

to avoid confounds due to clinical ambiguity.

The included 51 patients were behaviourally diagnosed

with the CRS-R (Giacino et al., 2004) as in MCS = 26, VS/

UWS = 19 and coma = 6 (15 females; mean age 49 � 18

years, range 11–87; 16 traumatic, 32 non-traumatic of

which 13 were anoxic, three mixed; 35 patients were

assessed in the chronic setting, i.e. 41 month post-insult).

Data from an age-matched group of 21 healthy volunteers
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(eight females; mean age 45 � 17 years; range 19–72) were

used as a reference to the connectivity analyses and to val-

idate the generalizability of the classifier without being

included in the training. The data set from Salzburg

included 10 MCS and five VS/UWS patients; the data set

from New York included five MCS, one VS/UWS and one

patient emerged from MCS. All patients’ demographic and

clinical characteristics are summarized in the

Supplementary material.

For the Liège data set, the effects of the denoising pro-

cedure are summarized in the Supplementary material.

Also, the number of motion outlier images did not differ

among healthy controls (mean = 9 � 8), patients in MCS

(mean = 22 � 17), VS/UWS (mean = 17 � 12), coma

(mean = 2 � 2) (for all t-tests, P50.05). The exploratory

analysis indicated a main effect for the clinical entity

(i.e. MCS, VS/UWS) on the functional connectivity of

each network. No interaction was identified between

the clinical entity and aetiology (traumatic: MCS = 13,

VS/UWS = 1; non-traumatic: MCS = 12 + 1 mixed; VS/

UWS = 16 + 2 mixed) or chronicity (acute MCS = 5, VS/

UWS = 6; chronic MCS = 21, VS/UWS = 13; average

length of time since the injury was 902.3 days, min-

imum = 2 days, maximum = 9900).

Group-level connectivity analysis

For the default mode, frontoparietal, salience, auditory,

sensorimotor and visual network, functional connectivity

encompassed regions classically reported for healthy con-

trols; all six networks showed reduced connectivity in

patients in MCS, connectivity was hardly identified in

patients in VS/UWS and was absent in comatose patients

(Supplementary material).

CRS-R total scores correlated with functional connectiv-

ity in key regions of each network (Fig. 2). In contrast,

when the CRS-R total scores were used as regressors of

connectivity in the cerebellum, which is known for its min-

imal involvement in consciousness processes (Tononi,

2008), no areas showed connectivity with the behavioural

scores. For illustrative purposes, the cerebellar network in

healthy controls is presented in the Supplementary

material.

The regions that showed higher functional connectivity in

patients in MCS compared to VS/UWS for each network

are summarized in Fig. 3. To minimize the possibility that

differences in functional connectivity reflected differences in

brain anatomy, we performed a two-sample t-test voxel-

based morphometry on the normalized grey matter and

white matter segmented masks (smoothed at 6 mm full-

width at half-maximum). No differences in grey matter

volume between patients in MCS and VS/UWS were iden-

tified at FWE P50.05 either at the whole-brain or at the

cluster-level. Similarly, the analysis of white matter volumes

identified no differences between the two groups, even at a

liberal threshold P5 0.001 (whole brain level) uncorrected

for multiple comparisons. The average grey matter and

white matter volumes in the two patient groups are

reported in the Supplementary material.

Network ranking and selection

All networks were found to discriminate between patients

in MCS and VS/UWS with an acceptable accuracy

(Supplementary material). Among them, the auditory net-

work was the most highly ranked system to separate

patients in MCS from those in VS/UWS.

Validation with independent data set

Functional connectivity of the auditory network was fur-

ther used to classify independently assessed patients. The

classification was performed on the connectivity strength in

bilateral auditory and visual cortices (Fig. 3). This three-

feature vector was preferred to a single-feature classification

(i.e. the average connectivity across all areas of the auditory

network mask) to avoid over-fitting of the classifier. Based

on these three clusters’ connectivity strength (z-values),

20 of 22 patients independently assessed in Salzburg and

New York were discriminated congruently (Fig. 4 and

Supplementary material), namely the CRS-R diagnosis

matched the classification outcome. As in Phillips et al.

(2011), for each feature we calculated its weighted vector

‘w’, which determines the orientation of the decision sur-

face, indicative of which feature drives the classification

(Bishop, 2006). For the right auditory cortex it was

w = �1.7890, for the left auditory cortex w = �0.4002

and for the occipital cortex w = �0.7362. The patient

who was misclassified as being in MCS had a CRS-R

total score of 5 on the day of scanning (indicating the

VS/UWS; Patient 11 of centre two, Supplementary material)

and she evolved to MCS 38 days later (Auditory Function:

1, Visual Function: 3, Motor Function: 2, Oromotor/Verbal

Function: 2, Communication: 0, Arousal: 2). The patient

who was misclassified as being in VS/UWS had a CRS-R

total score of 9 on the day of scanning (indicating the

MCS; Patient 13 of centre two, Supplementary material)

based on the presence of localization to noxious stimula-

tion but this behaviour could not be elicited in neither pre-

vious (AF: 1, VF: 0, MF: 0, O/VF: 1, COM: 0, AR: 2) or

subsequent evaluations (AF: 2, VF: 1, MF: 2, O/VF: 1,

COM: 0, AR: 2). To test robustness, we evaluated whether

the same classifier generalized to healthy control subjects

scanned in Liège and Salzburg (n = 39; no healthy control

data were available for the New York centre). The majority

of healthy controls (37 of 39; 95%) were classified as MCS

(Supplementary material).

Discussion
We here aimed at determining the clinical utility of the

resting state functional MRI paradigm in patients with dis-

orders of consciousness by employing a systems-level
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approach. Resting state functional MRI connectivity of the

default mode, frontoparietal, salience, auditory, sensori-

motor and visual networks were first shown to correlate

with behavioural CRS-R assessment scores, highlighting

their contribution to the level of consciousness. Previous

studies on the default mode network, linked to autobio-

graphical memory, mind-wandering, and unconstrained

cognition (Buckner et al., 2008), also showed

Figure 3 Regions showing higher functional connectivity in patients in MCS compared to patients in VS/UWS for each net-

work. Statistical maps are thresholded at FWE P5 0.05 (cluster-level) and are rendered on 3D surface plot template (top = lateral view;

bottom = medial view).

Figure 2 The intrinsic connectivity networks are involved in consciousness-related processing. Functional connectivity of all studied

networks (areas in red) correlate with the level of consciousness as determined by behavioural assessment with the Coma Recovery Scale-

Revised (total scores) in patients in MCS, VS/UWS and coma. Statistical maps are thresholded at FWE P5 0.05 (cluster-level) and are rendere on

a glass brain template (transverse view).
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consciousness-level dependent reductions in connectivity

under physiological (Horovitz et al., 2009; Samann et al.,

2011) and pharmacological unconsciousness (Greicius

et al., 2008; Boveroux et al., 2010; Stamatakis et al.,

2010; Amico et al., 2014). Similarly, the frontoparietal net-

work, which has been linked to perceptual and somesthetic

processing (Smith et al., 2009; Laird et al., 2011) and is

considered critical for conscious reportable perception

(Dehaene et al., 2003), showed reductions in functional

connectivity during sleep (Larson-Prior et al., 2009;

Samann et al., 2011; Boly et al., 2012) and anaesthesia

(Boveroux et al., 2010). The salience network, which has

been involved in conflict monitoring, information integra-

tion, response selection, interoceptive processes (Seeley

et al., 2007; Smith et al., 2009; Ploner et al., 2010;

Wiech et al., 2010) and the emotional counterpart of

pain (Seeley et al., 2007; Shackman et al., 2011), also

showed modulations in connectivity under propofol anaes-

thesia (Guldenmund et al., 2013). Here, the positive correl-

ation between CRS-R scores and the salience network

anterior cingulate cortex could account for the preserved

capacities of some patients to orient their attentional

resources towards environmental salient stimuli, such as

noxious stimulation, corroborating previous PET data

(Boly et al., 2008). With regards to sensory networks,

little changes have been reported under physiological and

pharmacological unconsciousness (Heine et al., 2012).

Nevertheless, propofol-induced disconnections have been

shown between the default mode network and motor

cortex, reticular activating system and the thalamus

Figure 4 The auditory-visual crossmodal functional connectivity discriminates single patients in MCS from patients in VS/

UWS. The 3D space indicating connectivity between left auditory, right auditory and occipital cortex (Supplementary material) has been

compressed into two dimensions to represent the distance of each patient (in circles) from the decision plane (arbitrary values). The upper panel

plots the data of patients (in circles) who were used for the classifier’s training (Liège data set, n = 45). The lower panel summarizes the classifier’s

decision on the validation data set including patients (in asterisks) independently assessed in Salzburg (n = 15) and New York (n = 7). Based on the

crossmodal interaction, 20 of the 22 independently assessed patients were classified congruently, namely the behavioural diagnosis matched the

classification outcome.
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(Stamatakis et al., 2010). In particular, the thalamus is of

critical importance to consciousness (Dehaene and

Changeux, 2005; Tononi, 2008). In our analysis the signifi-

cance of the thalamus was controlled by involving it among

the regions of interest in the three large-scale networks,

namely the default mode network, frontoparietal and sali-

ence. The direct comparison between patients in MCS and

VS/UWS did not identify any differences in network-level

thalamic connectivity. However, a recent study with pa-

tients with disorders of consciousness using a target-detec-

tion task showed that respondents had a greater

connectivity between the anterior thalamus and prefrontal

cortex. These findings suggest that thalamo-frontal circuits

are important for cognitive top–down processing (Monti

et al., 2015). Interestingly, when the cerebellum was used

as a control network, CRS-R total scores did not correlate

with any regions of this network in patients. Such findings

confirm previous suggestions that the cerebellum has min-

imal implication in conscious-related processing (Tononi,

2008; Yu et al., 2015). Taken together, the positive correl-

ation between clinical scores and each network’s functional

connectivity highlight that the here studied networks are an

appropriate means to study, at least to a certain degree,

residual cognitive function in this patient cohort.

Importantly for clinical practice, we further aimed at

determining the capacity of each network to differentiate

between patients in MCS and VS/UWS. In terms of func-

tional MRI-based differentiation of patients, to date differ-

ences in functional connectivity have been observed only at

the group-level for the default mode (Boly et al., 2009;

Vanhaudenhuyse et al., 2010; Norton et al., 2012; Soddu

et al., 2012; Demertzi et al., 2014), the frontoparietal and

the auditory networks (Demertzi et al., 2014). Here, we

replicated these findings and further showed group differ-

ences in functional connectivity for the salience, sensori-

motor and visual networks. Moving towards single-

patient network-based differentiation, we found that all

networks were able to differentiate patients with an accept-

able accuracy (486%). Such high rate of accuracy can be

partly attributed to the fact that the network ranking was

based on features extracted from the same population for

which between-group differences were already known.

To avoid a double-dipping effect, we aimed at validating

the most highly ranked network in two independently as-

sessed patient data sets (Salzburg and New York) and

across healthy controls. To that end, we opted for single-

patient classification based on the connectivity strength of

the auditory network. Based on this network’s connectivity,

20 of the 22 new patients were classified congruently, i.e.

the clinical diagnosis matched the classification outcome.

Of note is that the classifier positioned the independently

assessed patients closer to the decision plane compared to

patients included in the training set. This could be

explained by the abovementioned favouring of the Liège

training data set during the network ranking procedure,

which might have led to a stricter classification of the val-

idation set. Although the intrinsic connectivity networks

have been shown to be robust independent of different

scanning parameters (Van Dijk et al., 2010), the different

parameters employed in each of the three centres might also

have influenced the classifier’s estimation. Alternatively, the

use of a relevance vector machine classifier (Phillips et al.,

2011), which returns probabilities of a patient belonging

to a clinical condition instead of using a binary decision,

could be a more sensitive way to classify patients less

strictly.

The classification results further highlight the challenges

posed by behavioural examination (Majerus et al., 2005)

which in many cases underestimates patients’ level of con-

sciousness (Schnakers et al., 2009). Here, the validation of

the auditory network’s classifier worked congruently for

the majority of the included patients (20/22).

Interestingly, the patient who was misclassified as MCS

had a profile of VS/UWS on the day of scan but evolved

to MCS 38 days later. The other patient was misclassified

as VS/UWS but had a clinical profile of MCS on the day of

scanning based on the presence of localization to noxious

stimulation (note that this behaviour could not be elicited

in any other evaluations). The validation of the classifier’s

outcome to the clinical evaluation was used as a starting

point in our analysis. Therefore, a well-defined diagnostic

baseline was critical for the subsequent patient classifica-

tion. To that end, repeated clinical examinations with the

CRS-R (average number of assessments n = 6 per patient)

were performed. The clinical diagnosis was further con-

firmed with FDG-PET imaging, which has been shown to

have high sensitivity in identifying patients in MCS (Stender

et al., 2014). Therefore, patients with an ambiguous profile

on clinical assessment and neuroimaging data were not

included in the analysis. Similarly, patients who received

sedatives to minimize motion in the scanner (Soddu et al.,

2011) were further excluded. The reason to exclude sedated

patients was because of our limited understanding of the

potential effect of anaesthetics on network connectivity

(Heine et al., 2012). We here recognize the importance of

increasing the classification power for patients scanned

after receiving anaesthetics, given that many patients

undergo anaesthesia not only to restrict scanner motion

but also for neuroprotective reasons (Schifilliti et al.,

2010). Future investigations which will aim to disentangle

between the variances of anaesthetics and pathology in

functional connectivity measures are certainly essential.

Finally, even though patients were scanned in an ‘awake’

state, the monitoring of patients’ state of vigilance during

data acquisition was not feasible because of technical diffi-

culties. Hence, one cannot exclude the possibility that

patients could have fallen asleep during scanning, which

could subsequently influence the assessment of functional

connectivity.

One explanation of why the auditory network was iden-

tified as the system with the highest discriminative capacity

could concern its underlying functional neuroanatomy.

Apart from temporal cortices, the auditory network further

encompasses regions in occipital cortex, pre- and

Intrinsic connectivity classification BRAIN 2015: Page 9 of 13 | 9
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postcentral areas, insula and anterior cingulate cortex

(Damoiseaux et al., 2006; Smith et al., 2009; Laird et al.,

2011; Maudoux et al., 2012; Demertzi et al., 2014). The

direct comparison between patients in MCS and VS/UWS

restricted the identified areas to bilateral auditory and

visual cortices. This pattern of auditory-visual functional

connectivity has been previously described in normal con-

scious subjects during rest as well (Eckert et al., 2008) and

is in line with functional MRI results in consciousness

research. For example, preserved functional MRI activity

in temporal and occipital areas has been shown for healthy

subjects during mental counting of auditory temporal irre-

gularities; interestingly, this activation was identified only

in those subjects who were attentive and aware of the audi-

tory violations (Bekinschtein et al., 2009). At a functional

level, the auditory-visual functional connectivity, also

referred to as crossmodal interaction, is considered relevant

for multisensory integration (Clavagnier et al., 2004).

Multisensory integration has been suggested as a facilitator

for top–down influences of higher-order regions to create

predictions of forthcoming sensory events (Engel et al.,

2001). Such top–down connectivity was recently found

with an EEG oddball paradigm that differentiated patients

in MCS from VS/UWS (Boly et al., 2011). Interestingly,

decreased crossmodal auditory-visual interaction has been

reported in healthy subjects with preserved structural con-

nections but under pharmacologically-induced anaesthesia

(Boveroux et al., 2010). In that study, recovery of con-

sciousness paralleled the restoration of the crossmodal con-

nectivity suggesting a critical role of this connectivity

pattern to consciousness level-dependent states.

In our results, the crossmodal interaction was more pre-

served in patients in MCS compared to unresponsive

patients. The reduction in functional connectivity between

the auditory-visual cortices in VS/UWS could be partly

attributed to disrupted anatomical connections, often

encountered in post-comatose patients (Perlbarg et al.,

2009; Fernandez-Espejo et al., 2010, 2011; Stevens et al.,

2014; van der Eerden et al., 2014). The tight link between

functional and structural connectivity was recently shown

in primates during propofol-induced unconsciousness with

regards to resting state functional MRI dynamic fluctu-

ations. In this study, functional connectivity was fluctuating

less frequently among distinct consciousness states, it was

mostly linked to the state characterizing unconsciousness

and this pattern was mostly explained by the underlying

structural connectivity (Barttfeld et al., 2015). Here, the

negative differences between the two patient groups on

voxel-based morphometry of grey and whiter matter seg-

ments is suggestive that the changes in functional connect-

ivity cannot be fully attributed to the underlying

anatomical abnormalities. We recognize that analyses

with diffusion-weighted imaging and its relation to func-

tional data would allow for more confident statements

about residual functional connectivity in our clinical

sample.

In conclusion, we here identified that systems-level resting

state functional MRI showed consciousness-dependent

breakdown not only for the default mode network but

also for the frontoparietal, salience, auditory, sensorimotor

and visual networks. Functional connectivity between audi-

tory and visual cortices was the most sensitive feature to

accurately discriminate single patients into the categories of

MCS and VS/UWS. Our findings point to the significance

of multisensory integration and top–down processes in con-

sciousness seemingly supported by crossmodal connectivity.

In the future, efforts need to be made to promote the feasi-

bility of such a complex approach in the clinical setting and

promote the clinical utility of the resting paradigm for

single-patient diagnostics.
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