

The Deep Quality-Value family of Deep Reinforcement Learning Algorithms IJCNN 2020

Matthia Sabatelli¹, Gilles Louppe¹, Pierre Geurts¹ Marco A. Wiering²

November 8, 2019

¹Montefiore Institute, Department of Electrical Engineering and Computer Science, Université de Liège, Belgium

²Bernoulli Institute for Mathematics, Computer Science and Artificial Intelligence University of Groningen, The Netherlands

Presentation outline

- 1 Model-Free Deep Reinforcement Learning (DRL)
- 2 The Deep Quality-Value Family of DRL Algorithms
- 3 Analysis of the Algorithms

In model-free RL we care about learning value functions which give us information about the policy π our agent is following.

The state-value (V) function

$$V^{\pi}(s) = \mathbb{E}\bigg[\sum_{k=0}^{\infty} \gamma^k r_{t+k} \bigg| s_t = s, \pi\bigg].$$

In model-free RL we care about learning **value functions** which give us information about the policy π our agent is following.

The state-action value (Q) function

$$Q^{\pi}(s,a) = \mathbb{E}\bigg[\sum_{k=0}^{\infty} \gamma^k r_{t+k} \bigg| s_t = s, a_t = a, \pi\bigg].$$

5

In model-free RL we care about learning value functions which give us information about the policy π our agent is following.

Deriving π

$$\pi^*(s) = \argmax_{a \in \mathcal{A}} Q(s_{t+1}, a)$$

Q-Learning is probably one of the most popular model-free RL algorithms, which learns the Q function in an *off-policy* learning setting.

Q-Learning

$$Q(s_t, a_t) := Q(s_t, a_t) + \alpha \left[r_t + \gamma \max_{a \in \mathcal{A}} Q(s_{t+1}, a) - Q(s_t, a_t) \right]$$

8

Q-Learning is probably one of the most popular model-free RL algorithms, which learns the Q function in an *off-policy* learning setting.

Q-Learning

$$Q(s_t, a_t) := Q(s_t, a_t) + \alpha \left[r_t + \gamma \max_{a \in \mathcal{A}} Q(s_{t+1}, a) - Q(s_t, a_t) \right]$$

9

Q-Learning is probably one of the most popular model-free RL algorithms, which learns the Q function in an *off-policy* learning setting.

Q-Learning

$$Q(s_t, a_t) := Q(s_t, a_t) + \alpha \left[r_t + \gamma \max_{a \in \mathcal{A}} Q(s_{t+1}, a) - Q(s_t, a_t) \right]$$

Q-Learning is probably one of the most popular model-free RL algorithms, which learns the Q function in an *off-policy* learning setting.

Q-Learning

$$Q(s_t, a_t) := Q(s_t, a_t) + \alpha \left[r_t + \gamma \max_{a \in \mathcal{A}} Q(s_{t+1}, a) - Q(s_t, a_t) \right]$$

$$L(\theta) = \mathbb{E}_{\langle s_t, a_t, r_t, s_{t+1} \rangle \sim U(D)} \left[\left(r_t + \gamma \max_{a \in \mathcal{A}} Q(s_{t+1}, a; \theta^-) - Q(s_t, a_t; \theta) \right)^2 \right].$$

Q-Learning is probably one of the most popular model-free RL algorithms, which learns the Q function in an *off-policy* learning setting.

Q-Learning

$$Q(s_t, a_t) := Q(s_t, a_t) + \alpha \left[r_t + \gamma \max_{a \in \mathcal{A}} Q(s_{t+1}, a) - Q(s_t, a_t) \right]$$

$$L(\theta) = \mathbb{E}_{\langle s_t, a_t, r_t, s_{t+1} \rangle \sim U(D)} \left[\left(r_t + \gamma \max_{a \in \mathcal{A}} Q(s_{t+1}, a; \theta^-) - Q(s_t, a_t; \theta) \right)^2 \right].$$

Q-Learning is probably one of the most popular model-free RL algorithms, which learns the Q function in an *off-policy* learning setting.

Q-Learning

$$Q(s_t, a_t) := Q(s_t, a_t) + \alpha \left[r_t + \gamma \max_{a \in \mathcal{A}} Q(s_{t+1}, a) - Q(s_t, a_t) \right]$$

$$L(\theta) = \mathbb{E}_{\langle s_t, a_t, r_t, s_{t+1} \rangle \sim U(D)} \left[\left(r_t + \gamma \max_{a \in \mathcal{A}} Q(s_{t+1}, a; \theta^-) - Q(s_t, a_t; \theta) \right)^2 \right].$$

Q-Learning is probably one of the most popular model-free RL algorithms, which learns the Q function in an *off-policy* learning setting.

Q-Learning

$$Q(s_t, a_t) := Q(s_t, a_t) + \alpha \left[r_t + \gamma \max_{a \in \mathcal{A}} Q(s_{t+1}, a) - Q(s_t, a_t) \right]$$

$$L(\theta) = \mathbb{E}_{\langle s_t, a_t, r_t, s_{t+1} \rangle \sim U(D)} \left[\left(r_t + \gamma \max_{a \in \mathcal{A}} Q(s_{t+1}, a; \theta^-) - Q(s_t, a_t; \theta) \right)^2 \right].$$

The Deep Quality-Value Family of DRL Algorithms

$QV(\lambda)$ -Learning

• Tabular RL algorithm which jointly learns the V(s) function and the Q(s,a) function in an on-policy setting ³.

 $^{^3}$ Wiering, Marco A. "QV(λ)-Learning: A new on-policy reinforcement learning algrithm." Proceedings of the 7th European Workshop on Reinforcement Learning. 2005.

$QV(\lambda)$ -Learning

• Tabular RL algorithm which jointly learns the V(s) function and the Q(s,a) function in an on-policy setting ³.

TD-Learning for learning V(s)

$$V(s) := V(s) + \alpha \big[r_t + \gamma V(s_{t+1}) - V(s_t) \big] e_t(s).$$

 $^{^3}$ Wiering, Marco A. "QV(λ)-Learning: A new on-policy reinforcement learning algrithm." Proceedings of the 7th European Workshop on Reinforcement Learning. 2005.

$QV(\lambda)$ -Learning

• Tabular RL algorithm which jointly learns the V(s) function and the Q(s,a) function in an on-policy setting ³.

TD-Learning for learning V(s)

$$V(s) := V(s) + \alpha [r_t + \gamma V(s_{t+1}) - V(s_t)] e_t(s).$$

\approx Q-Learning for learning Q(s, a)

$$Q(s,a) := Q(s,a) + \alpha [r_t + \gamma V(s_{t+1}) - Q(s,a)].$$

 3 Wiering, Marco A. "QV(λ)-Learning: A new on-policy reinforcement learning algrithm." Proceedings of the 7th European Workshop on Reinforcement Learning. 2005.

Two neural networks for two different value functions

•
$$V(s; \Phi) \approx V(s)$$

Two neural networks for two different value functions

- $V(s; \Phi) \approx V(s)$
- $Q(s, a; \theta) \approx Q(s, a)$

Two neural networks for two different value functions

- $V(s; \Phi) \approx V(s)$
- $Q(s, a; \theta) \approx Q(s, a)$

$$L(\Phi) = \mathbb{E}_{\langle s_t, a_t, r_t, s_{t+1} \rangle \sim U(D)} \left[\left(r_t + \gamma V(s_{t+1}; \Phi^-) - V(s_t; \Phi) \right)^2 \right]$$

Two neural networks for two different value functions

- $V(s; \Phi) \approx V(s)$
- $Q(s, a; \theta) \approx Q(s, a)$

$$L(\Phi) = \mathbb{E}_{\langle s_t, a_t, r_t, s_{t+1} \rangle \sim U(D)} \left[\left(r_t + \gamma V(s_{t+1}; \Phi^-) - V(s_t; \Phi) \right)^2 \right]$$

Two neural networks for two different value functions

- $V(s; \Phi) \approx V(s)$
- $Q(s, a; \theta) \approx Q(s, a)$

$$L(\Phi) = \mathbb{E}_{\langle s_t, a_t, r_t, s_{t+1} \rangle \sim U(D)} \left[\left(r_t + \gamma V(s_{t+1}; \Phi^-) - V(s_t; \Phi) \right)^2 \right]$$

Two neural networks for two different value functions

- $V(s; \Phi) \approx V(s)$
- $Q(s, a; \theta) \approx Q(s, a)$

$$L(\theta) = \mathbb{E}_{\langle s_t, a_t, r_t, s_{t+1} \rangle \sim U(D)} \left[\left(r_t + \gamma V(s_{t+1}; \Phi^-) - Q(s_t, a_t; \theta) \right)^2 \right]$$

Two neural networks for two different value functions

- $V(s; \Phi) \approx V(s)$
- $Q(s, a; \theta) \approx Q(s, a)$

$$L(\theta) = \mathbb{E}_{\langle s_t, a_t, r_t, s_{t+1} \rangle \sim U(D)} \left[\left(r_t + \gamma V(s_{t+1}; \Phi^-) - Q(s_t, a_t; \theta) \right)^2 \right]$$

Two neural networks for two different value functions

- $V(s; \Phi) \approx V(s)$
- $Q(s, a; \theta) \approx Q(s, a)$

Approximating the state-value function

$$L(\Phi) = \mathbb{E}_{\langle s_t, a_t, r_t, s_{t+1} \rangle \sim U(D)} \left[\left(r_t + \gamma V(s_{t+1}; \Phi^-) - V(s_t; \Phi) \right)^2 \right]$$

$$L(\theta) = \mathbb{E}_{\langle s_t, a_t, r_t, s_{t+1} \rangle \sim U(D)} \left[\left(r_t + \gamma V(s_{t+1}; \Phi^-) - Q(s_t, a_t; \theta) \right)^2 \right]$$

DQV vs DQN and DDQN

Figure: DQV learns significantly faster than DQN and DDQN ⁴

⁴Sabatelli, Matthia, et al. "Deep Quality Value (DQV) Learning." Advances in Neural Information Processing Systems, Deep Reinforcement Learning Workshop. Montreal, 2018.

1. Can we successfully approximate two value functions while following an **off-policy** learning scheme?

- 1. Can we successfully approximate two value functions while following an **off-policy** learning scheme?
- 2. DQV-Max: a novel off-policy DRL algorithm

$$L(\Phi) = \mathbb{E}_{\langle s_t, a_t, r_t, s_{t+1} \rangle \sim U(D)} \left[\left(r_t + \gamma \max_{a \in \mathcal{A}} Q(s_{t+1}, a; \theta^-) - V(s_t; \Phi) \right)^2 \right].$$

- 1. Can we successfully approximate two value functions while following an **off-policy** learning scheme?
- 2. DQV-Max: a novel off-policy DRL algorithm

$$L(\Phi) = \mathbb{E}_{\langle s_t, a_t, r_t, s_{t+1} \rangle \sim U(D)} \left[\left(r_t + \gamma \max_{a \in \mathcal{A}} Q(s_{t+1}, a; \theta^-) - V(s_t; \Phi) \right)^2 \right].$$

- 1. Can we successfully approximate two value functions while following an **off-policy** learning scheme?
- 2. DQV-Max: a novel off-policy DRL algorithm

$$L(\Phi) = \mathbb{E}_{\langle s_t, a_t, r_t, s_{t+1} \rangle \sim U(D)} \bigg[\big(r_t + \gamma \max_{a \in \mathcal{A}} Q(s_{t+1}, a; \theta^-) - V(s_t; \Phi) \big)^2 \bigg].$$

- 1. Can we successfully approximate two value functions while following an **off-policy** learning scheme?
- 2. DQV-Max: a novel off-policy DRL algorithm

Approximating the state-value function

$$L(\Phi) = \mathbb{E}_{\langle s_t, a_t, r_t, s_{t+1} \rangle \sim U(D)} \left[\left(r_t + \gamma \max_{a \in \mathcal{A}} Q(s_{t+1}, a; \theta^-) - V(s_t; \Phi) \right)^2 \right].$$

Approximating the state-action value function = DQV

$$L(\theta) = \mathbb{E}_{\langle s_t, a_t, r_t, s_{t+1} \rangle \sim U(D)} \left[\left(r_t + \gamma V(s_{t+1}; \Phi) - Q(s_t, a_t; \theta) \right)^2 \right]$$

- 1. Can we successfully approximate two value functions while following an **off-policy** learning scheme?
- 2. DQV-Max: a novel off-policy DRL algorithm

Approximating the state-value function

$$L(\Phi) = \mathbb{E}_{\langle s_t, a_t, r_t, s_{t+1} \rangle \sim U(D)} \left[\left(r_t + \gamma \max_{a \in \mathcal{A}} Q(s_{t+1}, a; \theta^-) - V(s_t; \Phi) \right)^2 \right].$$

Approximating the state-action value function = DQV

$$L(\theta) = \mathbb{E}_{\langle s_t, a_t, r_t, s_{t+1} \rangle \sim U(D)} \left[\left(r_t + \gamma V(s_{t+1}; \Phi) - Q(s_t, a_t; \theta) \right)^2 \right]$$

Figure: DQV-Max learns just as fast as DQV.

Empirical Results on the Atari Benchmark

TABLE I: The results obtained by DQV and DQV-Max on a subset of 15 Atari games. We can see that our newly introduced algorithms have a comparable, and often even better performance than DQN and DDQN. As highlighted by the green cells the overall best performing algorithm in our set of experiments is DQV-Max while the second-best performing algorithm is DQV (as reported by the yellow cells). Specific attention should be given to the games BankHeist and Enduro where DQV and DQV-Max are the only algorithms which can master the game with a final super-human performance.

Environment	Random	Human	DQN [6]	DDQN [7]	DQV	DQV-Max
Asteroids	719.10	13156.70	1629.33	930.60	1445.40	1846.08
Bank Heist	14.20	734.40	429.67	728.30	1236.50	1118.28
Boxing	0.10	4.30	71.83	81.70	78.66	80.15
Crazy Climber	10780.50	35410.50	114103.33	101874.00	108600.00	1000131.00
Enduro	0.00	309.60	301.77	319.50	829.33	875.64
Fishing Derby	-91.70	5.50	-0.80	20.30	1.12	20.42
Frostbite	65.20	4334.70	328.33	241.50	271.86	281.36
Gopher	257.60	2321.00	8520.00	8215.40	8230.30	7940.00
Ice Hockey	-11.20	0.90	-1.60	-2.40	-1.88	-1.12
James Bond	29.00	406.70	576.67	438.00	372.41	440.80
Montezuma's Revenge	0.00	4366.70	0.00	0.00	0.00	0.00
Ms.Pacman	307.30	15693.40	2311.00	3210.00	3590.00	3390.00
Pong	-20.70	9.30	18.90	21.00	21.00	21.00
Road Runner	11.50	7845.00	18256.67	48377.00	39290.00	20700.00
Zaxxon	32.50	9173.30	4976.67	10182.00	10950.00	8487.00

DRL algorithms are prone to damage the quality of the learned value functions when the following elements are present:

1. A **function-approximator** is used when learning a value function

DRL algorithms are prone to damage the quality of the learned value functions when the following elements are present:

- 1. A **function-approximator** is used when learning a value function
- 2. The algorithms rely on **bootstrapping** while the value function is regressed

DRL algorithms are prone to damage the quality of the learned value functions when the following elements are present:

- 1. A **function-approximator** is used when learning a value function
- 2. The algorithms rely on **bootstrapping** while the value function is regressed
- 3. The algorithms learn off-policy

These elements when combined enhance the **overestimation** bias of the Q function which characterizes the DQN algorithm.

Figure: DQV and DQV-Max suffer less from the overestimation bias of the *Q* function.

On the neural capacity of the algorithms

1. Do we need two separately parametrized neural networks for successfully approximating V(s) and Q(s,a)?

On the neural capacity of the algorithms

- 1. Do we need two separately parametrized neural networks for successfully approximating V(s) and Q(s, a)?
- 2. We propose different extensions of the original DQV-Learning algorithm

Figure: HARD-DQV Learning

Figure: Dueling-DQV Learning

DQV-Learning Extensions

Two separate neural network with enough capacity are needed to exploit DQV's performance.

Figure: Results obtained by alternative versions of the DQV-Learning algorithm.

A final thank you note

https:

//github.com/paintception/Deep-Quality-Value-Family