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Abstract: Sentinel-2 (S2) imagery is used in many research areas and for diverse applications. Its 
spectral resolution and quality are high but its spatial resolutions, of at most 10 m, is not sufficient 
for fine scale analysis. A novel method was thus proposed to super-resolve S2 imagery to 2.5 m. For 
a given S2 tile, the 10 S2 bands (four at 10 m and six at 20 m) were fused with additional images 
acquired at higher spatial resolution by the PlanetScope (PS) constellation. The radiometric 
inconsistencies between PS microsatellites were normalized. Radiometric normalization and 
super-resolution were achieved simultaneously using state-of–the-art super-resolution residual 
convolutional neural networks adapted to the particularities of S2 and PS imageries (including 
masks of clouds and shadows). The method is described in detail, from image selection and 
downloading to neural network architecture, training, and prediction. The quality was thoroughly 
assessed visually (photointerpretation) and quantitatively, confirming that the proposed method is 
highly spatially and spectrally accurate. The method is also robust and can be applied to S2 images 
acquired worldwide at any date. 

Keywords: multi-sensor image fusion; image super-resolution; image pansharpening; 
CubeSat—Dove; radiometric correction; deep learning 

 

1. Introduction 

Satellite imagery provides a unique and detailed perspective on the state and changes in land, 
coastal, and oceanic ecosystems [1]. However, extractible information is limited by the spectral, 
spatial, and temporal resolutions of remote sensing images. Due to trade-offs in satellite 
instruments, images have generally either a high spatial resolution and a low spectral resolution or 
vice versa. One of the most used solutions is pansharpening: the fusion of a multispectral (MS) 
image with a panchromatic (PAN) image, both acquired simultaneously by the same satellite and 
capturing the same area [2]. MS images are typically composed of several bands partitioning the 
solar radiation into different spectra (e.g., red, blue, green and near-infrared). PAN images are 
composed of one band but capturing the whole solar radiation at a higher spatial resolution than MS 
images. The resulting pansharpened image combines the highest spatial resolution of PAN image 
with the highest spectral resolution of MS image. The numerous available pansharpening methods 
can be labeled as spectral, spatial, and spectral-spatial or spatiotemporal [3]. 

Pansharpening is a special case of image fusion: a combination of several images into a single 
composite image that has a higher information content than any of the original images [4,5]. Image 
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fusion can thus also be done with images acquired at different dates/times by multiple sensors 
(optical, radar, hyperspectral, thermal, etc.) and embedded in different platforms (multiple satellites 
possibly in combination with other aerial vehicles). In that case, most of the traditional methods used 
for pansharpening (with MS and PAN images) cannot be applied [2,6]. The numerous studies 
focusing on fusion of remote sensing images have proposed various methods, each one adapted to 
the image characteristics and aiming at predefined objectives [4,5,7]. 

These last years, deep learning, and in particular neural networks (NNs), has been extensively 
used in the remote sensing community, mainly for classification and object detection but also, to a 
lesser extent, for image fusion [8]. NNs provide a flexible and powerful way to approximate complex 
nonlinear relationships without a priori assumptions on variables’ relationships. The network 
architecture can be multi-dimensional, thus potentially including spectral, spatial, and temporal 
variabilities within and between images. Deep convolutional neural networks (CNNs) are the most 
popular for image analysis due to excellent performances and proved efficiency [9]. CNNs are 
robust thank to their particular architecture characterized by local receptive fields, shared weights, 
and subsampling. Many studies have implemented pansharpening and single sensor image fusion 
using CNNs with very concluding results [6,9–12]. This study focused on image fusion from 
multiple sensors [4,13] with the goal to achieve super-resolution, i.e., further increasing the highest 
native spatial resolution [14]. For multi-sensor image fusion, Shao et al. [15] showed that previous 
methods, such as STARFM [16], ESTARFM [17], or ATPRK [18], were outperformed by CNNs. 

Sentinel-2 (S2) imagery (European Space Agency) is composed of 13 bands at different spatial 
resolutions: four bands at 10 m, six bands at 20 m, and three bands at 60 m. The spectral resolution is 
high, but the spatial resolutions are not sufficient for fine-scale analysis. Higher spatial resolutions 
(such as 2.5 m) allow accurate geometrical analysis of small objects and finer descriptions and 
change detections in many areas [19,20]. To increase S2 spatial resolutions, several studies [21–28] 
have proposed to fuse the S2 bands together to super-resolve the coarser bands (20 or 60 m) to 10 m. 
However, these fusion methods cannot be used to further increase the resolution (e.g., 2.5 m), as S2 
images at such resolution simply do not exist. A solution consists in using an additional source of 
images from a different satellite constellation. The red (B4), green (B3), and blue (B2) bands of S2 at 
10 m were super-resolved to 5 m using the corresponding bands of RapidEye (Planet Labs) images 
[29]. Contrary to fusion methods using images from a unique satellite, this solution is more complex 
to implement because of differences in image footprint (swath) and acquisition date/time [29,30]. 

One of the additional sources of images could be the PlanetScope (PS) constellation (Planet 
Labs; planet.com) composed of more than 150 “Dove” microsatellites. These satellites cover the 
whole Earth at 3 m every day (about five days for S2). While superior in terms of spatiotemporal 
resolution, the radiometric quality is not equivalent to that of larger conventional satellites. 
Radiometric inconsistencies between different microsatellites was highlighted repeatedly [31], 
notably due to sensor-specific spectral response functions but also to variations in orbital 
configuration [32]. Several methods for radiometric normalization of PS imagery were thus recently 
developed using images of other satellite constellations, such as MODIS and Landsat [31–33], but 
not yet using the Sentinel-2 imagery.  

In this paper, we present an innovative method aiming at simultaneously normalizing 
PlanetScope radiometry (all bands: R, G, B, and NIR) and super-resolving Sentinel-2 imagery (10 
bands from 10 or 20 to 2.5 m) using deep residual convolutional neural networks. After a complete 
and detailed description of the method, the super-resolution quality was thoroughly assessed 
visually (photointerpretation) and quantitatively. The proposed method is highly spatially and 
spectrally accurate. Its robustness was illustrated for six locations around the world with contrasted 
acquisition conditions.  
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2. Materials and Methods 

2.1. Software and Hardware 

Preparation and processing of images and patches, as well as neural networks (NNs), were 
operated in R [34] with mainly three R packages: raster [35], sf [36], and keras (TensorFlow backend) 
[37], and in connection (command lines) with GDAL/OGR library [38] and Orfeo ToolBox [39,40]. 
Only one computer was used with satisfactory performance: Windows 10 64 bits, 64 Gb of RAM, 20 
cores at 3.31 GHz, a 2 TB SSD, and a NVIDIA GeForce RTX 2080 graphic card (CUDA).  

2.2. Image Selection 

For both constellations, Sentinel-2 (S2) and PlanetScope (PS), images with the higher processing 
levels, i.e., bottom of atmosphere (BOA) surface reflectance, were selected: Level 2A for S2 and Level 
3B (Analytic Ortho Scene) for PS. For S2, the 4 bands at 10 m and the 6 bands at 20 m were used. For 
PS, all the available bands (R, G, B, and NIR) were used. The spectral overlapping between bands of 
S2 and PS varied along the spectra (Figure 1). The S2 bands, B5, B6, B11, and B12, presented no 
overlapping with any of the PS bands. Less precise results were thus expected for these four bands.  

 
Figure 1. Spectral resolution and wavelength range of PlanetScope (PS) and Sentinel-2 (S2) bands. 

As the revisit time of S2 is the longest (five days against one for PS), S2 tiles of 100 km by 100 km 
were first selected. PS scenes were then selected to fully cover each S2 tile following three criteria: (1) 
maximum radiometric quality based on “clear percent” and “clear confidence percent” variables of 
the PS “unusable data mask 2” (udm2); (2) minimum absolute time interval with S2 tile (<7 days); 
and (3) maximum common area with S2 tile (>10%). The number of selected PS scenes varied for 
each S2 tile. Percentage of cloud cover was close to 0 for S2 and the lowest possible for PS but clouds 
and shadows were present in several PS scenes (<5%). 

In total, 6 S2 tiles were selected worldwide to illustrate the robustness of the proposed method 
(Figure 2). These tiles were acquired at various dates by one of the two S2 satellites (A or B) over 5 
countries (Table 1). Two of these tiles (BeS and BeN) covered a large part of Belgium characterized 
by a great diversity of landscapes and land covers (Figure 3 A,B). The Corine Land Cover (CLC) map 
of 2018 (Europe) was used to assess the quality of the proposed method by main land cover. 
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Figure 2. Location of the six selected Sentinel-2 tiles (Table 1). Background: OpenStreetMap. 

Table 1. Description of the six selected Sentinel-2 (S2) tiles (Figure 2). PS, PlanetScope. 

S2 
Tile 

Location 
(Country) 

Acquisition  
Date 

S2 Tile ID S2 
Satellite 

Number of PS 
Scenes 

Number of 
PS Strips 

BeS Belgium South 27/06/2019 T31UFR B 180 26 
BeN Belgium North 20/04/2020 T31UES A 160 35 
Bra Brazil 27/10/2019 T22KGV B 168 27 
Can Canada 07/07/2019 T19TCM B 190 33 
Chi China 29/04/2020 T50RKT A 186 30 
Mad Madagascar 05/11/2109 T38KNB B 203 25 
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Figure 3. Belgian Sentinel-2 (S2) tiles and PlanetScope (PS) scenes: (A) the two selected S2 tiles over 
Belgium in true color (B4, B3, and B2); (B) land cover for the same area (Corine Land Cover 2018); 
(C,D) zoom on S2 tiles in false color (B8a, B4, and B3); and (E,F) the two corresponding PS mosaics in 
false color (NIR, R, and G). The white lines indicate scene boundaries and highlight the radiometric 
inconsistencies between PS strips. 

S2 tiles were downloaded from the Theia Hub (https://theia.cnes.fr) using the R package 
“theiaR” [41]. Theia produces S2 Level 2A products (from Level L1C) with the MAJA software 
estimating atmospheric optical properties and detecting clouds and shadows from multi-temporal 
information [42]. MAJA cloud masking performed 7% better than Sen2Cor and was recommended 
[43,44]. PS images were downloaded using the Planet API (https://developers.planet.com). 

2.3. Radiometric Inconsistency 

Radiometric inconsistency between PS scenes (Figure 3 E,F) was mainly due to varying 
acquisition dates/times (<7 days) but also to differences in microsatellite spectral response [31,32]. At 
the scale of a S2 tile, the radiometric variability was largely expressed by orbital strips. PS strips are 
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unique for a given satellite and a given absolute orbit. To deal with this heterogeneity, two solutions 
could be applied: either at the data preparation level or at the modelling level. The first solution was 
used by Galar et al. [29]. Only the most appropriate patches of image pairs (S2 and RapidEye) were 
kept for neural network training. This solution required arbitrary thresholding and could potentially 
lead to unbalanced or incomplete training data. The second solution was to include the source of the 
radiometric variability, i.e., the PS strips, in the network architecture. 

2.4. Data Preparation 

For S2, the 10-m bands (B2, B3, B4, and B8) were assembled in one multi-band raster. The 20-m 
bands (B5, B6, B7, B8a, B11, and B12) were assembled into another multi-band raster. The two Theia 
“CLM” masks (at 10 and 20 m) were converted into mono-band binary rasters (1: no clouds or 
shadows; 0: clouds or shadows). 

For PS, each “unusable data mask 2” (udm2) was converted into one mono-band binary mask 
(1: clear with confidence ≥ 75; 0: not clear). All scene binary masks and multi-band rasters (R, G, B, 
and NIR) were registered using a global linear transformation (R package RStoolbox [45]). Sub-pixel 
shifts in X and Y were estimated from the red bands of the two data sources (Figure 1): PS R band 
(shifted) and S2 B4 band (master). Owing to the rather small footprint of PS scenes, this method gave 
good results and photointerpretation confirmed that the use of a more complex method (e.g., [46]) 
was not necessary. After co-registration, PS scene masks and multi-band rasters were mosaicked to 
cover the whole S2 tile. In these mosaics, PS scenes with the best selection criteria overlapped the 
others (Figure 3 E,F). PS strips, being a categorical variable, were considered with a dummy 
approach. A multi-band mosaic composed of binary values was generated at the scale of the S2 tile. 
The number of bands corresponded to the number of unique PS strips. The mask and strips mosaics 
were resampled from 3 to 2.5 m (i.e., whole multiple of the S2 band resolutions) using the “nearest” 
method. The four-band mosaic was resampled to the same resolution using the “bicubic” method. 

For each S2 tile, the 1st and 99th percentiles (P  and P ) of each of the 10 S2 bands and 4 PS 
bands were computed. These percentiles were used to normalize data during NN training and to 
compute a custom loss. 

2.5. Network Architecture 

As the relationships between variables in the spectral and spatial dimensions within and 
between S2 and PS images were a priori unknown, convolutional neural networks (CNNs) were 
used to directly learn from data. The proposed CNNs aimed at super-resolving the 10 bands of S2 to 
2.5 m using intrinsic spectral-spatial information of PS. More particularly, CNNs with residual 
learning were implemented. For networks with numerous convolutions and layers, residual CNNs 
are known to be safer and easier to train [24,47], notably because they limit the problem of 
vanishing/exploding gradients [48,49].  

For NN training, S2 ground truth at 2.5 m should ideally be used, but obviously did not exist. 
The Wald’s protocol was thus used [50]. It consists in using, as input, properly downsampled bands 
and, as output, the same bands but at the highest available resolution (Table 2). This protocol is 
based on the assumption that relationships between variables are scale invariant. Another solution 
could have been to use the method proposed by Galar et al. [29]. However, although avoiding data 
downsampling, bands of input and output would have to be equal in numbers and close in spectral 
ranges [24,29].  

Two scale ratios (SRs) were applied: 4× (from 10 to 2.5 m) and 8× (from 20 to 2.5 m). Data at the 
desired SRs were generated by blurring with a Gaussian filter (standard deviation of 0.75 and 1.50 
pixels, respectively) and then averaging over SR × SR windows [23]. The S2 10- and 20-m masks, and 
the PS mask and strips were downsampled using the “mode” resampling method (no blur). 
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Table 2. Spatial resolution, patch size, and depth (number of channels) of input and output data for 
training and prediction of the two super-resolution neural networks (NNs): from 10 to 2.5 m (×4) and 
from 20 to 2.5 m (×8). PS, PlanetScope data; S210, Sentinel-2 10-m data; S220, Sentinel-2 20-m data. 
For resolutions, values not in brackets correspond to NN prediction. For patch sizes, values in 
brackets correspond to the overlapping pixels (both sides). 

NN Data Source Resolution (m) Patch Size (px.) Depth 

×4 

Input PS 2.5 (10) 96 (16 + 16) 4 bands + 1 mask + number of strips 
 S210 10 (40) 24 (4 + 4) 5 (4 bands + 1 mask) 
 S220 20 (80) 12 (2 + 2) 7 (6 bands + 1 mask) 

Output S210 2.5 (10) 64 4 bands 

×8 

Input PS 2.5 (20) 96 (16 + 16) 4 bands + 1 mask + number of strips 
 S210 10 (80) 24 (4 + 4) 5 (4 bands + 1 mask) 
 S220 20 (160) 12 (2 + 2) 7 (6 bands + 1 mask) 

Output S220 2.5 (20) 64 6 bands 

The general network architecture was thought as the best compromise between 
super-resolution quality and performance efficiency. Several state-of-the-art residual-learning 
convolutional neural networks (RCNNs) for image super-resolution [47–49,51,52] were tested with 
some adaptations to include data of both constellations, Sentinel-2 (S2) and PlanetScope (PS), with 
different spatial resolutions and numbers of spectral bands (6 S2 bands at 20 m, 4 S2 bands at 10 m, 
and 4 PS bands at 2.5 m), as well as their corresponding masks of clouds and shadows. Although 
percentages of clouds and shadows were low in PS scenes (<5%), these additional data improved the 
local rendering of the super-resolved S2 images. PS strips were also included to normalize the 
pronounced radiometric inconsistencies between PS strips (Figure 3 E,F). 

Several configurations of super-resolution RCNNs were tested (patches size, number of filters, 
number of residual blocks, different loss functions, etc.) with encouraging results from the 
beginning. The main issue was to eliminate undesirable border effects of S2 output patches. These 
effects were smaller when using sub-pixel convolutions instead of transpose convolutions [53], 
before or after residual learning, but still undesirable. The border effects were further reduced using 
sub-pixel convolution followed by “mirror” padding [54] to increase patch size from 64 to 96 pixels 
(16 + 64 + 16). Small but visible differences were still present for a few pixels at the border of the 
output patches. The overall quality of super-resolution was not that much affected, but border 
effects were still disturbing for human eyes (when zooming). The proposed architecture resulted in 
the best radiometry normalization and super-resolution quality with no border effects. 

Two RCNNs were implemented: one by scale ratio (4× and 8×). As the PS strips (and their 
number) varied between S2 tiles, RCNNs were trained from scratch for each S2 tile (no use of 
pre-trained NN or weights). The network architecture was the same for both RCNNs and was 
composed of three steps: data transformation (Figure 4), residual learning, and data reconstruction 
(Figure 5). S2 20-m (S220), S2 10-m (S210), and PS bands were normalized separately using Equation 
(1). Data normalization strongly enhances the performance and learning capacity of NNs and 
minimizes the error. PS mask, strips, and normalized bands were concatenated. S210 mask and 
normalized bands were concatenated. S220 mask and normalized bands were concatenated. S210 
and S220 concatenations were upscaled using one sub-pixel convolution [51] of scale 4 (patch size 
from 24 to 96) and of scale 8 (patch size from 12 to 96), respectively (Table 2). Upscaled S210 and S220 
data and PS data were concatenated and then used for residual learning. The residual learning was 
composed of four residual dense blocks (RDBs), and each RDB was composed of three convolutions 
and two concatenations. RDBs are described in detail in [52]. The padding was set to “same” (zero 
padding). The reconstruction consisted in one cropping to resize patches from 96 to 64 and 
eliminating the data affected by the zero padding (Table 2). A last convolution was applied to get the 
appropriate number of channels: 4 for the ×4 NN and 6 for the ×8 NN. Finally, the output data were 
denormalized (i.e., reverse of Equation (1)). 
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𝑁𝑜𝑟𝑚𝑉𝑎𝑙 𝑉𝑎𝑙 −  𝑃 ) 𝑃 − 𝑃 ) (1) 

where Val  denotes the spectral values of the considered band b, P  and P  denote the first 
and 99th percentiles of the values of band 𝑏, and NormVal  denotes the normalized values of the 
band 𝑏. 

 
Figure 4. Neural network architecture: data transformation step of the two super-resolution neural 
networks. PS, PlanetScope; S210, Sentinel-2 10-m data; S220, Sentinel-2 20-m data. See Table 2 for 
patch sizes and resolutions of input and output data. 
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Figure 5. Neural network architecture: residual learning and reconstruction steps of the two 
super-resolution neural networks. The residual learning was composed of four residual dense blocks 
(RDBs). The first RDB (RDB 1) is complete. The three others RDBs (2–4) are collapsed. See Table 2 for 
patch sizes and resolutions of input and output data. 

For all convolutions in RDBs, the kernel size was 3 × 3 and the activation function was rectified 
linear unit (ReLU). The number of filters was 128 between RDBs and 64 inside RDBs [52]. For data 
transformation and reconstruction, kernel size was 1 × 1 and the activation function was linear. The 
total number of parameters, varying between S2 tiles and NNs, was about 2,550,000. 

2.6. Network Training 

The configuration was the same for both NNs. For each NN, 3000 batches were used as training 
data. The batch size was 32 samples, one sample corresponding to a whole set of PS, S210, and S220 
patches (Table 2). For each batch, the 32 samples were randomly extracted. The Adam optimizer [55] 
was used with a learning rate of 1e−4 and a decay of 5e−5. The number of epochs was 100 and the 
number of steps per epoch was 300. For each NN, the parameters where thus updated 960,000 times 
(=100 × 300 × 32). When the training stopped, the loss value was at the beginning of the learning 
plateau [56]. A higher number epoch, such as 150 or 200, could have slightly increased the quality 
but at a cost of a too long processing time and with an increasing risk of overfitting. 

Concerning loss function, performance and results using the mean absolute error (MAE or “l1”) 
or the mean squared error (MSE or “l2”) were not satisfying. MSE is easier to solve but MAE is more 
robust to outliers. While MSE is the dominant NN measure, it was shown that MAE performed 
better than MSE for single image super-resolution [57]. Considering the lower quality of radiometry 
between and within PS scenes, using MSE with a non-negligible proportion of outliers was 
problematic. On the other hand, the training time was longer using MAE and resulted in a lesser 
overall quality. As an intermediate solution, the mean pseudo-Huber (MPH) [58] was used 
(Equation (2) with a delta value of 2). MPH behaves as MSE near the origin (low residuals) and as 
MAE elsewhere (Figure 6). Furthermore, as the value range varied significantly between the 10 S2 
bands, the residuals were weighted using Equation (3) before MPH computation. 

PH =  δ  ×  1 + RSδ − 1  (2) 

where δ denotes the delta value and RS denotes the residuals (i.e., ground truth minus prediction). WeightRS = RS ÷ (P −  P )  × MeanRng (3) 

where RS  denotes the residuals for the considered band b, P  and P  denote the first and 
99th percentiles of the values of band b, MeanRng denotes the mean of the value ranges of all bands 
(6 for S220 and 4 for S210), and WeightRS  denotes the weighted residuals of band b injected in 
Equation (2) for computing MPH (Equation (2)). 
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Figure 6. Comparison of the tested loss functions: mean squared error (MSE), mean absolute error 
(MAE), and mean pseudo-Huber (MPH) (Equation (2)) (delta = 2). 

2.7. Quality Assessment 

The radiometric normalization and super-resolution quality were assessed at ground truth 
resolution for the two NNs (10 m for ×4 NN and 20 m for ×8 NN) considering the whole S2 tile (not 
only the training data) and using seven measures [59,60]: mean error (ME), mean absolute error 
(MAE), mean weighted absolute error (MWAE), root mean square error (RMSE), peak signal noise 
ratio (PSNR), structure similarity (SSIM), and cross correlation (CC). MWAE is similar to MAE but 
computed from absolute residuals divided by the band value range (P −  P ) and expressed in 
percentage. SSIM and PSNR are the most commonly considered metrics for image super-resolution 
[61]. SSIM measures the similarity between the signals of ground truth and predicted images. PSNR 
is the ratio between the maximum possible power of the signal and the power of corrupting noise. 
SSIM and PSNR were computed with a max value of 216. ME values close to zero; lower values of 
MAE, MWAE, and RMSE; and higher values of the PSNR, SSIM and CC indicate better quality. In 
addition, the quality was also assessed visually (photointerpretation), with attention given to the 
borders of output patches and to areas with variation in PS radiometry (different strips) and 
presence of clouds and shadows. 

3. Results 

3.1. Measured Quality 

The radiometric normalization and super-resolution quality was assessed by NN (at 10 m for ×4 
and 20 m for ×8) for the six S2 tiles: whole tile and all bands together (Table 3) and with a focus on PS 
strips (Table 4). The quality was also assessed by band (Table 5) and by main land cover (Table 6) for 
the two Belgian tiles (“BeS” and “BeN”).  
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Table 3. Measured quality of the two super-resolution neural networks (NNs): from 10 to 2.5 m (×4) 
and from 20 to 2.5 m (×8). Overall quality (i.e., whole tile and all bands together) for the six selected 
S2 tiles (Figure 2) (Table 1). ME, mean error; MAE, mean absolute error; MWAE (%), mean weighted 
absolute error; RMSE, root mean square error; PSNR, peak signal noise ratio; SSIM, structure 
similarity. CC, cross correlation. 

NN S2 Tile ME MAE MWAE RMSE PSNR SSIM CC 

×4 (10 m) 

BeS 2.5 36.2 2.3 69.0 59.6 1.000 0.999 
BeN −2.8 43.9 2.0 83.3 57.9 1.000 0.998 
Bra 0.1 25.0 1.5 41.7 63.9 1.000 0.999 
Can −5.1 41.0 2.9 80.6 58.2 1.000 0.998 
Chi −1.5 40.0 2.4 71.4 59.3 1.000 0.998 
Mad 1.5 37.0 1.6 54.4 61.6 1.000 0.998 

×8 (20 m) 

BeS −5.9 67.8 2.4 100.7 56.3 1.000 0.997 
BeN 5.6 76.5 2.0 121.2 54.7 1.000 0.995 
Bra 5.5 52.8 1.5 79.2 58.3 1.000 0.996 
Can 14.4 67.9 2.3 101.8 56.2 1.000 0.997 
Chi 1.0 68.4 2.2 99.8 56.4 1.000 0.994 
Mad 8.6 66.0 2.1 95.7 56.7 1.000 0.994 

Table 4. Measured quality of the two super-resolution neural networks (NNs): from 10 to 2.5 m (×4) 
and from 20 to 2.5 m (×8). Focus on variations between PS strips for the six selected S2 tiles. ME, 
mean error; MAE, mean absolute error; RMSE, root mean square error; CC, cross correlation. The 
values correspond to mean (standard deviation) of the quality measures computed separately for 
each PS strip. See Table 1 for the number of strips by tile. 

NN S2 Tile ME MAE RMSE CC 

×4 (10 m) 

BeS 1.5 (14) 44.9 (17.4) 79.5 (27.5) 0.998 (0.001) 
BeN −2.7 (3.9) 43.5 (11.9) 78.8 (24.4) 0.995 (0.006) 
Bra 1.2 (6.3) 30.3 (10.2) 48.6 (14.7) 0.999 (0.001) 
Can −6.3 (5.4) 41.8 (10.8) 80.2 (20.5) 0.998 (0.001) 
Chi −1.0 (3.0) 46.0 (15.6) 80.5 (26.3) 0.997 (0.003) 
Mad 0.9 (4.3) 37.1 (7.2) 53.3 (10.1) 0.998 (0.001) 

×8 (20 m) 

BeS −1.8 (20.0) 77.6 (19.9) 113.2 (26.0) 0.996 (0.002) 
BeN 4.9 (6.4) 72.3 (25.0) 114.2 (38.7) 0.991 (0.010) 
Bra 8.3 (14.1) 59.6 (10.6) 86.9 (13.6) 0.995 (0.002) 
Can 12.4 (7.4) 70.3 (16.1) 110.8 (52.3) 0.996 (0.005) 
Chi 3.3 (7.2) 78.1 (18.7) 113.5 (26.8) 0.992 (0.005) 
Mad 8.1 (3.9) 66.9 (7.6) 96.8 (9.4) 0.993 (0.002) 
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Table 5. Measured quality of the two super-resolution neural networks (NNs), from 10 to 2.5 m (×4) 
and from 20 to 2.5 m (×8), by band (10 bands) for the two Belgian S2 tiles (BeS and BeN) (Figure 3). 
ME, mean error; MAE, mean absolute error; MWAE (%), mean weighted absolute error. RMSE, root 
mean square error; PSNR, peak signal noise ratio; SSIM, structure similarity; CC, cross correlation; 
PRg, 1st‒99th percentiles of ground truth data; PRp, 1st‒99th percentiles of predicted data. 

S2 Tile NN Band ME MAE MWAE RMSE PSNR SSIM CC PRg PRp 

BeS 

×4 (10 m) 

B2 1.2 16.1 1.0 31.6 66.3 1.000 0.991 2‒1049 8‒1042 
B3 2.1 20.9 1.3 35.5 65.3 1.000 0.993 160‒1492 164‒1482 
B4 10.2 23.5 1.5 41.7 63.9 0.999 0.995 25‒1830 21‒1805 
B8 −3.6 84.4 5.3 122.7 54.6 0.997 0.991 1315‒5514 1339‒5506 

×8 (20 m) 

B5 −6.3 35.4 1.2 54.2 61.7 0.999 0.992 339‒2211 350–2200 
B6 −4.8 70.2 2.5 97.9 56.5 0.998 0.988 1150‒4142 1159‒4138 
B7 −5.7 81.2 2.9 114 55.2 0.997 0.99 1376‒5310 1399‒5304 

B8A −6.8 84 3.0 118.1 54.9 0.997 0.991 1533‒5694 1559‒5693 
B11 −5.4 82.1 2.9 117.9 54.9 0.997 0.985 681‒3848 689‒3837 
B12 −6.7 53.8 1.9 86.5 57.6 0.998 0.986 274‒2609 283‒2607 

BeN 

×4 (10 m) 

B2 −3.7 27.2 1.2 58.7 61.0 0.999 0.986 0‒1594 10‒1593 
B3 2.4 30 1.3 59.8 60.8 0.999 0.987 172‒1961 175‒1948 
B4 3.7 34.4 1.5 67.2 59.8 0.999 0.993 0‒2339 0‒2327 
B8 −13.6 83.8 3.7 127.4 54.2 0.997 0.996 22‒5956 40‒5942 

×8 (20 m) 

B5 1.6 46.6 1.2 80.3 58.2 0.999 0.985 154‒2487 161‒2459 
B6 2.7 75.4 2.0 114.8 55.1 0.997 0.993 48‒4304 55‒4273 
B7 6.4 86.4 2.3 130.2 54.0 0.997 0.995 43‒5796 51‒5748 

B8A 7.4 87.4 2.3 131.9 53.9 0.997 0.996 12‒6092 24‒6065 
B11 4.2 85.7 2.3 130.9 54.0 0.996 0.985 5‒3634 11‒3596 
B12 11.5 77.6 2.0 130.6 54.0 0.996 0.986 16‒3340 18‒3291 

Table 6. Measured quality of the two super-resolution neural networks (NNs), from 10 to 2.5 m (×4) 
and from 20 to 2.5 m (×8), by main land cover (Corine Land Cover 2018) of the two Belgian S2 tiles 
(BeS and BeN together) (Figure 3). ME, mean error; MAE, mean absolute error; RMSE, root mean 
square error; CC, cross correlation. 

NN CLC Category (Level 1) Area (%) ME MAE RMSE CC 

×4 (10 m) 

Artificial surfaces 18.0 0.0 60.2 109.1 0.995 
Agricultural areas 54.2 −1.0 35.9 66.5 0.999 

Forest and seminatural areas 23.9 1.6 36.8 71.3 0.999 
Wetlands 0.6 −3.4 38.6 76.7 0.995 

Water bodies 3.3 0.2 22.8 43.8 0.994 

×8 (20 m) 

Artificial surfaces 18.0 4.5 97.0 152.8 0.987 
Agricultural areas 54.2 −0.6 70.9 105.7 0.996 

Forest and seminatural areas 23.9 −2.5 63.3 91.6 0.997 
Wetlands 0.6 −2.6 60.3 97.5 0.995 

Water bodies 3.3 −1.1 24.4 54.0 0.994 

The overall quality of the six tiles was very good (Table 3) with low values in MAE, MWAE, 
RMSE, and MPH; high values in PNSR, SSIM, and CC; and ME values close to zero (no bias). SSIM 
values computed from the four predicted bands for ×4 NN and the six predicted bands for ×8 NN 
reached the maximum value of 1 (by rounding), indicating that the two images are (almost) perfectly 
structurally similar [57]. PSNR and SSIM values were systematically higher than those of Galar et al. 
[29], a unique and most similar study, but using a different approach. Their highest PSNR and SSIM 
values were 35.5 and 0.957, respectively. The MWAE, expressing the error in percentage of the band 
value ranges, varied from 1.5% to 2.9%. The quality variations between PS strips were low (Table 4), 
confirming that the method accurately captured and corrected the PS radiometric inconsistencies at 
the scale of the S2 tile. 

The quality of each of the 10 predicted bands was high with no major differences (Table 5). The 
MWAE varied from 1% to 5.3%. Although the bands B5, B6, B11, and B12 presented no overlapping 
with the PS bands (Figure 1), their error was close to the average. Surprisingly, the band B8 was the 
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less well predicted of all bands. Concerning the quality by land cover (Table 6), no major differences 
were highlighted but artificial surfaces were logically less well predicted than less spectrally and 
spatially contrasted areas such as agricultural and forest lands. 

3.2. Visual Quality 

The proposed method was also validated by photointerpretation (Figure 7). There was no 
border effect even at maximum zoom. The output patches were thus not distinguishable from each 
other at coarser and finer resolutions. The normalization of the radiometric inconsistencies between 
PS strips was impressive (Figure 8). In the super-resolved images (10 S2 bands at 2.5 m), no differences 
were observed. A 1-pixel between-scenes boundary was sometime visible (but with very similar 
spectral values). This boundary was probably indirectly induced by the training data downsampling 
(resampling of the PS strips mosaic using the “mode” method). The effect of clouds and shadows in PS 
scenes on super-revolved images was limited as they simply did not appear (Figure 9, Top). However, 
these areas were slightly affected by speckle and/or blur, decreasing locally the visual quality. For 
clouds and shadows in S2 tiles, they were fully predicted (Figure 9, Bottom).  

 
Figure 7. Super-resolved images resulting from the two neural networks (NNs), from 10 to 2.5 m (×4) 
and from 20 to 2.5 m (×8). PS, PlanetScope; S2, Sentinel-2. (Top) urban area with a river; (Middle) 
zoom on industrial buildings; and (Bottom) agricultural land and forest. From left to right: PS at 2.5 



Remote Sens. 2020, 12, 2366 14 of 19 

 

m in true color (R, G, and B); S2 at 20 and 2.5 m in false color (B8a, B6, and B12); and S2 at 10 and 2.5 
m in false color (B8, B4, and B3). 

 
Figure 8. PlanetScope radiometry normalization of the two neural networks (NNs), from 10 to 2.5 m 
(×4) and from 20 to 2.5 m (×8). PS, PlanetScope; S2, Sentinel-2. There are two examples, one per row. 
All images are at 2.5 m. In a row, from left to right: PS in true color (R, G, and B) with scene 
boundaries (white lines); S2 from ×4 NN in true color (B4, B3, and B2); and S2 from ×8 NN in false 
color (B8a, B6, and B12) and S2 from ×4 NN in false color (B8, B4, and B3). 



Remote Sens. 2020, 12, 2366 15 of 19 

 

 
Figure 9. Effect of clouds and shadows on super-resolved images resulting from the two neural 
networks (NNs), from 10 to 2.5 m (×4) and from 20 to 2.5 m (×8). First row: Presence of clouds and 
shadows in PlanetScope (PS) data. Second row: Presence of clouds and shadows in Sentinel-2 (S2) 
data. From left to right: PS at 2.5 m in true color (R, G, and B); PS mask at 2.5 m (red, top) or S2 mask 
at 10 m (blue, bottom); S2 from ×8 NN at 2.5 m in false color (B8a, B6, and B12); and S2 from ×4 NN at 
2.5 m in false color (B8, B4, and B3). 

3.3. Processing Times 

The processing times using a unique computer and for a given S2 tile were on average: about 1 
h 30 min for the selection, downloading ,and preparation of images; about 2 × 4 h for the preparation 
of the 2 × 3000 training batches; about 2 × 8 h for the NN trainings; about 1 h 15 min for the prediction 
at the coarser resolution (four bands at 10 m and six bands at 20 m); and about 21 h for the prediction 
at finer resolution (10 bands at 2.5 m). The total time for the complete procedure was thus about 48 h. 

4. Discussion 

In this study, we presented and validated a novel method for super-resolving Sentinel-2 (S2) 
imagery (10 bands from 10 or 20 to 2.5 m). Super-resolution was achieved by fusion with additional 
images acquired at finer resolution by the PlanetScope (PS) constellation. The super-resolution 
quality was thoroughly analyzed for six S2 tiles acquired in contrasted conditions over five countries 
around the world, confirming that the proposed method is highly accurate and robust. The method 
also remarkably normalized the radiometric inconsistencies between PS micro-satellites. 
Super-resolution and radiometric normalization were achieved simultaneously using 
state-of-the-art residual convolutional neural networks (RCNNs), adapted to the particularities of S2 
and PS imageries, and including the corresponding masks of clouds and shadows.  

To our knowledge, only one study [29] considered a similar approach combining S2 and 
RapidEye images for super-resolving three of the S2 bands (B2, B3, and B4) to 5 m, also using 
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RCNNs, but with an architecture originally developed for conventional “RGB” images. With a 
spatial resolution of 2.5 m, the generalization of the procedure to 10 S2 bands (B2, B3, B4, B8, B5, B6, 
B7, B8a, B11, and B12) and a much higher accuracy, this study further explored the high potential of 
deep learning for multi-satellite multi-sensor image fusion. The proposed method is highly spatially 
and spectrally accurate, at the scale of the considered S2 tile, but also locally, and separately for each 
band, PS strip (i.e., unique PS satellite and orbit), and main land cover.  

Radiometric inconsistencies between PS strips are mainly related to differences in sensor 
spectral response, orbital configuration [31,32], and acquisition date/time. The proposed method 
accurately captures and corrects these radiometric variations. As the PS strips varied for each S2 tile, 
the RCNNs had to be train from scratch every time (no use of pre-trained NN or weights). Although 
it strongly increases robustness, the processing time could be limiting for routine use. With a unique 
computer, 48 h per S2 tile were necessary. This processing time could be significantly decreased with 
code optimization and implementation in powerful cloud computing platforms, such as Google 
Earth Engine. 

The high temporal resolution of PS imagery (revisit time of one day) is an important element. 
The small acquisition time differences between the S2 tile and PS scenes strongly limit land cover 
changes. Contrary to Shao et al. [15], fusing Landsat-8 and S2 imageries, the use of temporal series 
was not necessary. 

We deliberately selected S2 tiles and PS scenes with low percentages of clouds and shadows 
(<5%). The inclusion of S2 and PS masks in the network architecture improved the local rendering of 
the super-resolved images. Clouds and shadows in S2 were fully predicted. Clouds and shadows in 
PS scenes were not predicted but with speckle and/or blur effects. The proposed method should be 
tested with higher percentages of clouds and shadows. RCNNs should be able to learn and adapt the 
prediction. However, for percentages > 20%, it would probably be more appropriate to use only data 
free of clouds and shadows. The super-resolution quality would be identical but with a higher 
proportion of missing data. 

The proposed method could also be applied to images of other satellite constellations. For 
instance, S2 could be replaced by Landsat and PS by Pleiades. However, it would be important to 
keep in mind that the proposed method is based on the scale-invariant hypothesis [50]. We 
demonstrated that the ×8 scale ratio (from 20 to 2.5 m) resulted in high quality super-resolution, but 
the quality for the 4× scale ratio (from 10 to 2.5 m) was as expected higher. The maximum scale ratio 
is still to be determined. 

The proposed RCNN architecture could probably still be improved in several ways. Data 
augmentation is a well-known way to improve the performance of deep networks. For image 
super-resolution, some of the augmentation methods highlighted by Ghaffar et al. [62] could be added. 
The “CutBlur” approach could also be tested [63], as well as the use of the FReLU activation function 
[64], instead of ReLU, for residual learning. Residual learning could be done first, separately for S220, 
S210, and PS data (three branches, similarly to Wu et al. [28]) and then together (single branch). 
Concerning loss functions, as the pseudo-Huber resulted in better predictions and performance than 
with the usual MAE and MSE, the robust adaptive loss function [58] looks promising. 

5. Conclusions 

The proposed method allows super-resolving 10 bands of the Sentinel-2 imagery, from 20 or 10 
to 2.5 m, at a very high spatial and spectral accuracy. The method is robust and can be applied to S2 
tiles acquired worldwide at any date.  
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