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ABSTRACT

Time-delay cosmography of lensed quasars has achieved 2.4% precision on the measurement of the Hubble constant, H0. As part of an ongoing
effort to uncover and control systematic uncertainties, we investigate three potential sources: 1- stellar kinematics, 2- line-of-sight effects, and
3- the deflector mass model. To meet this goal in a quantitative way, we reproduced the H0LiCOW/SHARP/STRIDES (hereafter TDCOSMO)
procedures on a set of real and simulated data, and we find the following. First, stellar kinematics cannot be a dominant source of error or bias
since we find that a systematic change of 10% of measured velocity dispersion leads to only a 0.7% shift on H0 from the seven lenses analyzed
by TDCOSMO. Second, we find no bias to arise from incorrect estimation of the line-of-sight effects. Third, we show that elliptical composite
(stars + dark matter halo), power-law, and cored power-law mass profiles have the flexibility to yield a broad range in H0 values. However, the
TDCOSMO procedures that model the data with both composite and power-law mass profiles are informative. If the models agree, as we observe
in real systems owing to the “bulge-halo” conspiracy, H0 is recovered precisely and accurately by both models. If the two models disagree, as
in the case of some pathological models illustrated here, the TDCOSMO procedure either discriminates between them through the goodness of
fit, or it accounts for the discrepancy in the final error bars provided by the analysis. This conclusion is consistent with a reanalysis of six of the
TDCOSMO (real) lenses: the composite model yields H0 = 74.0+1.7

−1.8 km s−1 Mpc−1, while the power-law model yields 74.2+1.6
−1.6 km s−1 Mpc−1. In

conclusion, we find no evidence of bias or errors larger than the current statistical uncertainties reported by TDCOSMO.
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1. Introduction

The time-delay method applied to gravitationally lensed quasars
(Refsdal 1964) provides a perhaps unrivalled combination of
high sensitivity to the Hubble constant H0, and minimal depen-
dence on the other cosmological parameters, while relying only
on well known physics (i.e., gravity). These qualities make this
method particularly important in the present context, where there
is growing evidence for tension in H0 measurements using cos-
mological probes based on the early Universe and the late Uni-
verse (Verde et al. 2019). The power of the method in providing
reliable H0 measurements depends on three main factors: 1- pre-
cise time-delay measurements between multiple images of the
background source, 2- well constrained models of the dominant
primary and nearby lens galaxies, and 3- an estimate of the com-
bined lensing effect of all the mass along the line of sight up to
the redshift of the lensed quasar.

Precise and accurate time-delay measurements are avail-
able, for example, from the COSMOGRAIL collaboration, using
long-term photometric monitoring of selected lensed quasars
(e.g., Courbin et al. 2018; Bonvin et al. 2018, 2019). The preci-
sion and accuracy of the COSMOGRAIL technique have been
verified via a blind time-delay challenge (Dobler et al. 2015;
Liao et al. 2015; Bonvin et al. 2016). The time-delays were then
used to constrain cosmological parameters with detailed mod-
eling of the potential well of the lens using the constraining
power of sharp Hubble Space Telescope (HST) images (e.g.,
Suyu et al. 2010, 2014; Wong et al. 2017; Birrer et al. 2019;

Rusu et al. 2020) or Keck AO imaging (e.g., Chen et al. 2019).
The measured stellar kinematics of the lensing galaxy were used
to mitigate the impact of well-known lensing degeneracies on the
cosmological inference (e.g., Treu & Koopmans 2002). Finally,
multi-band wide-field imaging and/or spectroscopy (e.g., Rusu
et al. 2017; Sluse et al. 2019) was used to constrain the com-
bined lensing effect of the line-of-sight objects and large-scale
structures in a statistical way (Greene et al. 2013; Rusu et al.
2017). Tihhonova et al. (2018) also show that these estimates of
the line-of-sight effects are compatible with the ones obtained
with weak gravitational lensing.

Adopting these data and methodology, the H0LiCOW col-
laboration (Suyu et al. 2017) is analyzing a sample of lenses
suitable for high-precision H0 measurements. The latest results
based on six systems are summarized by Wong et al. (2020).
We stress that the H0LiCOW results are obtained through blind
analyses, in the sense that the mean value of all the observed
cosmological parameters is hidden to the investigators until the
analysis is complete and the papers have been written1. The
goal of this procedure is to avoid conscious or unconscious bias
from the experimenters. We note that the six measurements that
have been published thus far are statistically consistent with each
other, in the sense that the scatter between the measurements is
as expected from the estimated uncertainties. This means that if

1 The first lens system analyzed using the then newly developed lens
modeling methods was not blinded (B1608+656), but the subsequent
analyses of the other five lenses using similar methods were blinded.
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there are any unknown uncorrelated sources of error, those are
subdominant with respect to the ones currently considered.

The resulting value of the Hubble constant in a flat Λ cold
dark matter (ΛCDM) universe, H0 = 73.3+1.7

−1.8 km s−1 Mpc−1

(2.4% precision), is 3σ higher than the early-Universe results
(Planck Collaboration VI 2020), adopting the same ΛCDM cos-
mological model, and is in very good agreement with other
independent local measurements (e.g., Riess et al. 2019). When
combined with completely independent results from other local
measurements of H0, the tension with the early-Universe probes
range between 4 and 6σ (Verde et al. 2019), depending on the
combination of probes. Very recently, Pandey et al. (2020) also
carried out statistical tests independent of any underlying cos-
mology, showing that the distances measured with strong lensing
time delays and with supernovae, which are both local but inde-
pendent measurements, are fully compatible (see also Wojtak &
Agnello 2019). Although they cannot exclude that supernovae
and lenses share exactly the same systematics, these systematic
biases would also have to be preserved across redshift, which
seems unlikely.

The blind analysis of a seventh lens system using very sim-
ilar methods for the lens modeling, time-delay measurement,
external convergence estimation and kinematics modeling to
those adopted by H0LiCOW has recently been published by the
STRIDES collaboration (Shajib et al. 2020). This work finds
74.2+2.7

−3.0 km s−1 Mpc−1, in agreement with the H0LiCOW result
(an independent analysis adopting a different modeling software
is currently under way). This most recent system is particularly
interesting since it has two sets of multiple images at different
redshifts, which help break some of the degeneracies, and results
in the most precise individual measurement so far. In order to
make further progress in this important area, members of the
COSMOGRAIL, H0LiCOW, SHARP and STRIDES collabora-
tions interested in time-delay cosmography of lensed quasars
have decided to join forces with other scientists and form a
new “umbrella” collaboration named TDCOSMO2 (Time-Delay
COSMOgraphy).

The high statistical significance of the tension between early
and late Universe probes has prompted two lines of investiga-
tion. On the one hand, theorists have been trying to find ways to
reconcile the measurements by considering models beyond the
standard ΛCDM one (e.g., Knox & Millea 2020). On the other
hand, observing teams have been focusing on increasing the pre-
cision of each method while carrying out tests of potential sys-
tematic uncertainties to ensure that the tension is real. After all,
“extraordinary claims require extraordinary evidence”.

In this work, the first by the TDCOSMO collaboration, we
explore a number of potential systematic uncertainties that may
affect the time-delay cosmography method, after reviewing its
methodology and implementation by TDCOSMO in Sect. 2 and
the inference procedure in Sect. 3. First, in Sect. 4 we explore
potential biases introduced by systematic uncertainties in the
modeling and measurement of the deflector stellar velocity dis-
persion. Second, in Sect. 5, we study uncertainties in the model-
ing of the line-of-sight contribution. Third, in Sect. 6, we address
the long standing issue of the mass-sheet degeneracy and the flex-
ibility of lensing models. It is very well known that assumptions
must be made on the form of the main deflector mass distribution
to break the mass-sheet degeneracy. As many authors have pointed
out (Falco et al. 1985; Read et al. 2007; Schneider & Sluse 2013;
Xu et al. 2016; Sonnenfeld 2018; Kochanek 2020), if the mod-
els adopted are insufficiently flexible, the resulting uncertainties

2 www.tdcosmo.org

are underestimated and potentially biased. Section 7 offers a sum-
mary and conclusions.

We address these three sources of potential systematic uncer-
tainties using a combination of observational tests and simu-
lations. We stress that a full simulation of the observational
setup and lens modeling procedure is needed if one wants to
obtain quantitative estimates of the uncertainties. Previous works
(Schneider & Sluse 2013; Sonnenfeld 2018; Kochanek 2020)
were based on idealized, often spherical models. Those are use-
ful to gain intuition of the problem, but by their very nature
cannot provide quantitative estimates due to the extreme approx-
imation and the limited information utilized to constrain them,
often just the Einstein Radius and an integrated velocity disper-
sion. The only way to obtain a faithful estimate of the uncertain-
ties is to reproduce the measurement using the same amount of
information (thousands of pixels from imaging, multiple time-
delays, stellar kinematics) and modeling techniques. The simu-
lated dataset shown in this paper are produced using the pipeline
developed by Ding et al. (2017a,b, 2018). In order to isolate and
quantify the uncertainties associated with the lens mass mod-
eling procedure, the simulated data consist of high-resolution
images of lens systems comparable to the real observations,
high-precision time delays (higher precision than those of real
lenses so that the time-delay uncertainties are subdominant com-
pared to the modeling uncertainties that we aim to quantify), and
do not include the line-of-sight structures. The lens fitting pro-
cedure that we use to analyze these simulated data resembles as
closely as possible that of the TDCOSMO collaboration.

2. Background

2.1. Time-delay cosmography and the mass-sheet
degeneracy

Time delays in gravitationally lensed quasars provide a direct
measurement of the so-called “time-delay distance”, which is a
combination of angular diameter distances to the source, Ds, to
the deflector, Dd, from the deflector to the source, Dds, and the
redshift of the deflector zd:

D∆t ≡ (1 + zd)
DdDs

Dds
(1)

(Refsdal 1964; Schneider et al. 1992; Suyu et al. 2010).
This quantity is related to the relative time delay between

two multiple images A and B, ∆tAB, by:

∆tAB =
D∆t

c

[
(θA − β)2

2
−

(θB − β)2

2
− ψ(θA) + ψ(θB)

]
, (2)

where θ is the image position on the plane of the sky, β is the
(unobservable) source position, c is the speed of light and ψ is the
lensing potential which is defined such that the deflection angle
α(θ) is given by α(θ) ≡ ∇ψ(θ). From Eq. (2), we see that D∆t
depends on the geometry of the lensed system and on the poten-
tial well of the lensing galaxy. The mass profile is expressed as
a dimensionless surface mass density, κ(θ), called the conver-
gence. It is related to how the light beams from the source are
stretched or squeezed, leading to an apparent (de)magnification
and can be expressed as half of the Laplacian of the lensing
potential:

κ(θ) =
1
2
∇2ψ(θ). (3)
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We can also define the Fermat potential φ (Schneider 1985;
Blandford & Narayan 1986) as

φ(θ) ≡
(θ − β)2

2
− ψ(θ). (4)

Using this definition, Eq. (2) reduces to

∆tAB =
D∆t

c
[
φ(θA) − φ(θB)

]
≡

D∆t

c
∆φAB, (5)

where ∆φAB is the difference of Fermat potentials at the positions
of the multiple images. Based on the multipole decomposition of
the gravitational potential, Kochanek (2002) shows that the time-
delay distance, D∆t, depends on the mean surface density 〈κ〉 at
the Einstein radius θE, specifically over the annulus defined by
image positions.

An inherent limitation of the lensing models to infer D∆t is
the so called Mass-Sheet Transformation (MST, e.g., Falco et al.
1985) and its generalization (Saha 2000; Saha & Williams 2006;
Liesenborgs & De Rijcke 2012; Schneider & Sluse 2014; Wag-
ner 2018; Wertz et al. 2018). The MST transforms the projected
mass distribution and the source plane position according to:

κ(θ)→ κλ(θ) = (1 − λ) × κ(θ) + λ,

β→ β′ = λβ, (6)

where β is the (unknown) source position on the sky prior to lens-
ing. In other words, one can add a mass sheet to any model and
apply a scaling factor, λ, without changing the lensing observ-
ables except the time delays and therefore the inferred cosmol-
ogy.

The time-delay distance given by any model is affected by
MST as follows :

DMST
∆t = Dtrue

∆t × (1 − λ). (7)

In the TDCOSMO analyses, this scaling factor λ is identified
with the external convergence factor κext which accounts for the
contribution of all the mass along the line of sight (LOS). It is
estimated independently from the lens modeling by comparing
the relative number of galaxies weighted by physically relevant
priors such as the distance to the lens, the stellar mass and the
redshift in a large aperture around the strong lens system with
simulated LOS extracted from numerical simulations with sim-
ilar statistical properties (Rusu et al. 2017). Alternatively, the
external convergence can be estimated from a weak lensing anal-
ysis (Tihhonova et al. 2018).

In addition to the MST above due to external mass sheets
(i.e., external mass structures that do not affect the stellar dynam-
ics of the foreground lens galaxy), MST can also manifest itself
approximately as a change in the radial mass profile of the fore-
ground lens galaxy. We describe this as an “internal” mass sheet.
To mitigate the effects of the internal mass sheet, we consider
different families of models and further use kinematic measure-
ments of the foreground lens that provide additional constraints
on the lens mass models. In particular, the goodness of fit to the
kinematic data, especially spatially-resolved lens stellar velocity
dispersion, allows us to distinguish between otherwise degener-
ate lensing mass models (e.g., Yıldırım et al. 2020).

The lens stellar velocity dispersion of the foreground lens
galaxy allow the inference of the angular diameter distance, Dd,
to the lens, in addition to the time-delay distance (Paraficz &
Hjorth 2009; Jee et al. 2015, 2019). The inference of Dd depends
on the anisotropy of stellar orbits (Jee et al. 2015), but this addi-
tional distance measurement provides more leverage on con-
straining cosmological models (Jee et al. 2016; Shajib et al.
2018).

2.2. Two-distance inference

In the most recent analysis of SDSS J1206+4332, PG 1115+080,
RX J1131−1231, B1608+656 and DES J0408−5354 (Birrer
et al. 2016, 2019; Chen et al. 2019; Shajib et al. 2020; Wong et al.
2020), the time-delay distance D∆t and the angular diameter dis-
tance to the lens Dd are jointly inferred. Following the method
developed in Birrer et al. (2016), the luminosity weighted LOS
velocity dispersion within an aperture A of the main deflector
σv can be expressed as:

σ2
v = (1 − κext)

Ds

Dds
c2J(ξlens, ξlight, βani), (8)

where ξlens is the set of all parameters contained in the lens mass
model, ξlight is the parameter of the light models and J is a func-
tion that captures all dependencies on the modeling parameters
and the anisotropy profile βani. Using Eqs. (1), (5) and (7), we
have :

DdDs

Dds
=

c∆tAB

(1 + zd)(1 − κext)∆φAB(ξlens)
· (9)

Combining Eqs. (8) and (9), we obtain an expression for the
angular diameter distance to the lens which is independent of
the external convergence:

Dd =
c3 ∆tAB J(ξlens, ξlight, βani)

(1 + zd) σ2
v ∆φAB(ξlens)

· (10)

We immediately see that the angular diameter distance Dd varies
as 1

σ2
v
. The dependence of Dd to a change in the measurement of

σv can therefore be computed analytically :

d Dd

Dd
= −2

dσv

σv
, (11)

whereas D∆t is left unchanged when varying the velocity disper-
sion. The final H0 measurement is obtained by combining these
two distance measurements. As a consequence, the importance
of the velocity dispersion in the final H0 value depends on the
relative precision between the angular diameter distance and the
time-delay distance, and on the mapping between the parame-
ters. The D∆t measurement is typically more constraining of H0
than Dd given the current observational data. Future observations
with spatially resolved kinematics are expected to improve sub-
stantially the Dd constraints (Yıldırım et al. 2020).

Two of the lens systems in the TDCOSMO sample,
HE 0435−1223 and WFI 2033−4723, have nearby massive per-
turbing galaxies at a different redshift from the strong lensing
galaxy, and thus required multi-lens-plane mass modeling. The
single-lens-plane Eqs. (8)–(9) are thus not directly applicable,
given the additional angular diameter distances involved in the
multiple lens planes. Nonetheless, the mass model of the lens
galaxy can still be used to predict the velocity dispersion to com-
pare to the measured value, so the kinematic measurement can
be used to further constrain the mass model. It turns out that an
effective time-delay distance could be derived for these two lens
systems, but the inference of Dd accounting for the multi-lens
planes is deferred to future work.

2.3. The current TDCOSMO model families

The collaborations within TDCOSMO currently consider two
classes of models (composite and power-law), to reconstruct the
mass distribution of the main lens, with the exception of the
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first system analyzed B1608+656 (Koopmans et al. 2003; Suyu
et al. 2010). B1608+656 was modeled only using a power-law,
as Suyu et al. (2009) showed that deviations to a smooth poten-
tial using pixellated corrections were negligible. The fact that
the corrections are so small, even though the deflector in this
complex lens is an obvious merger between two galaxies, is a
remarkable indication of the degree of smoothness of the over-
all gravitational potential. This is also supported by the analysis
of extended rings used to detect substructures in lenses through
their impact on the smoothness of Einstein rings. Aside from
specific features arising from well-identified substructures in any
given lens, no statistically significant correction to simple para-
metric lens models is found by Vegetti et al. (2014).

For the above reasons, the TDCOSMO analyses consider
purely analytical lens models with sufficient degrees of free-
dom to catch a broad range of observables given current imaging
capabilities with HST or adaptive optics. More specifically, the
TDCOSMO analyses considers elliptical power-law and com-
posite models, with the addition of external shear.

2.3.1. Power-law model

Power-law models have a constant projected mass slope over the
entire profile. The convergence of the power-law elliptical mass
distribution (Barkana 1998) is described by :

κPL(θ1, θ2) =
3 − γ

2

 θE√
qmθ

2
1 + θ2

2/qm


γ−1

, (12)

where γ is the slope of the profile, qm is the axis ratio of the ellip-
tical profile and θE is the Einstein radius. The coordinate system
is defined such that the θ1 and θ2 coordinates are along the major
and minor axis respectively. The cored power-law profile is a nat-
ural extension of this model which introduces an additional free
parameter, namely the core radius in the center of the profile θc
and is defined as :

κcPL(θ1, θ2) =
3 − γ

2

 θE√
qmθ

2
1 + θ2

2/qm + θ2
c


γ−1

. (13)

This profile has therefore a shallower slope in the center to
reproduce the core of galaxies. A complete description of this
mass model can be found in Barkana (1998). Although not
used by the TDCOSMO collaboration, except in the analysis of
RX J1131−1231 by Suyu et al. (2014) who found negligible core
size, we tested cored power-law profiles on simulated lenses in
Sect. 6.

2.3.2. Composite model

The second family of mass models used by the TDCOSMO col-
laboration are the so-called composite models, which consist of
baryonic matter and dark matter components. For the dark mat-
ter, a Navarro–Frenk–White (NFW) profile is used. The spheri-
cal NFW density distribution is given by:

ρNFW(r) =
ρs

(r/rs)(1 + r/rs)2 , (14)

where rs is the scale radius and ρs is a normalization fac-
tor (Navarro et al. 1997). For the baryonic component, the
TDCOSMO collaboration adopts the Chameleon profile, which

is the difference between two singular isothermal ellipsoids and
closely mimics a Sérsic profile. A complete description of this
model can be found in Dutton et al. (2011) and Suyu et al.
(2014). This family of mass model allows more flexible mass
distribution than power-law models since the slope of the pro-
jected mass profile is not constant over the whole lens galaxy.

3. Inference procedure and limitations of toy
models

The next step required to derive a H0 measurement from the
data is a statistical inference. The collaborations contributing to
TDCOSMO adopt a Bayesian framework and compute the pos-
terior probability distribution function of all the cosmological
and nuisance parameters given the data.

The imaging and spectroscopic data contain huge amounts
of information, well beyond the position of the quasar images.
Setting aside the line of sight, which is constrained indepen-
dently, the main sources of constraints for the main deflector(s)
mass models are: the pixels of the high resolution images (of
order 104); independent time delays (up to three for a quad);
stellar velocity dispersion of the main deflector and nearby per-
turbers, if present. The inference required to extract all the infor-
mation from the data is computationally very intensive. Taking
into account the need to explore multiple and flexible models
to marginalize over modeling choices, the TDCOSMO analysis
required up to a million CPU hours per lens.

In the recent past, simplified toy models, that is, models in
which either (i) the lens systems are not simulated with suffi-
cient complexity, or (ii) the inference procedure does not exploit
the full information content, have been used to investigate syste-
matic uncertainties in time-delay cosmography (Schneider &
Sluse 2013; Sonnenfeld 2018; Kochanek 2020). These mod-
els are certainly a useful illustration, and it is encourag-
ing that they conclude that a precision within the range
3–10% can be reached with their simplified approach and lim-
ited constraints. However, owing to their limitations, those mod-
els cannot provide the quantitative answers that are needed to
understand whether there are biases at the 2% level, which is the
current achievement of time-delay cosmography. Chief among
the limitations of previous works is the use of spherical models.
Spherical models are inherently inappropriate to model quads
(e.g., Kochanek 2006), because they cannot even produce four
images and thus are intrinsically less constrained by the data than
observed quads.

The bulk of the lensing information comes from the radial
extent and surface brightness distribution of the lensed images,
which constrains directly the radial dependency of the mass dis-
tribution, the key parameter driving the inference of H0. Toy
models neglect this information (e.g., Kochanek 2020), and are
mostly spherical and constrained solely by the position of the
quasar images spanning just 10% on either side of the Einstein
radius. Furthermore, they are constrained only by the positions
of the multiple images of the quasars and not using the full
information content of the lensed host galaxy, often amount-
ing to thousands of high signal-to-noise ratio pixels (see Sect. 6
and Appendix B for details). These constraints would have no
way to detect significant departures from a power law for exam-
ple, which could instead be detected in real-life cases as vari-
ations in the distortion of the images spanning a much larger
significant radial range. Indeed, most of the HST data used
in time-delay cosmography display prominent Einstein rings,
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spanning several tenths of arcseconds radially. In other words,
the radial width of the ring is significant compared with the
Einstein radius itself, hence constraining the potential well radi-
ally. This is clearly illustrated with the case of RX J1131−1231
in, for example, Suyu et al. (2014). In addition, toy models typ-
ically condense the information in a few parameters and thus
cannot realistically explore the degeneracies between true model
parameters and how uncertainties in the actual data translate into
inference.

Last but not least, it is crucial to have the ability to assess
the goodness of the models, in both absolute and relative terms.
This is to our knowledge the most powerful way to establish
whether the chosen parametrization is an appropriate description
of the data. The power of goodness of fit estimates depends on
the realism and information content of the models. Models that
are based on key summary statistics are able to use goodness
of fit only on those statistics. More realistic models that pro-
duce and fit, for example, image positions will have a few more
observables to assess goodness of it. Models that produce the
full surface brightness distribution of the lenses source(s) and
other observables will have access to many more observables,
and thus have significantly larger power for model exploration
and selection.

4. Influence of kinematics data on H0 measurement

One important ingredient to mitigate the impact of the MST is to
use the kinematics of the deflector as an independent mass esti-
mator (Treu & Koopmans 2002; Koopmans 2004), since within a
cosmological model Dd and D∆t are related to each other. So far,
the central stellar velocity dispersion integrated within an aper-
ture, σv, has been used even though additional and substantial
gains can be obtained by including spatially resolved informa-
tion that helps break the mass-anisotropy degeneracy (Barnabè
et al. 2011; Czoske et al. 2012; Shajib et al. 2018; Yıldırım et al.
2020).

The inference of the Hubble constant is driven by a com-
bination of observables, including the extended images used in
the lens model, multiple time delays if available, and kinematic
information. Thus, the dependency of H0 on kinematics data
defined by

ξ ≡
δH0/H0

δσv/σv
(15)

cannot be estimated with simple dimensional arguments or toy
models, but needs to be computed by repeating the inference
while varying the input kinematics data. The result will depend
on the details of the analysis as well as on the relative quality
and constraining power of the kinematic and nonkinematic data,
and on how the D∆t − Dd plane maps into H0 as a result of the
deflector and source redshifts. Each of these factors varies from
lens to lens as we show below and thus cannot be simply derived
from a toy model and generalized to every lens.

4.1. The TDCOSMO analysis and its sensitivity to the
measured velocity dispersion

Simple models such as the Singular Isothermal Sphere (SIS)
models, can have a very strong dependency on the velocity dis-
persion. This dependency could be on the order of ξ ∼ 1, which
means that a 1% change in the velocity dispersion σv leads
roughly to a 1% change in H0. The high sensitivity of SIS mass
models to a change in the velocity dispersion arises from the

fact that they have only one free parameter (the normalization).
If galaxies were all SIS, then such a high sensitivity would allow
us to better constrain the mass model through more precise and
accurate kinematic measurements.

In this section we show that the TDCOSMO measurements,
which use models more flexible than SIS and constrain them
with a wealth of data, are less sensitive to the kinematics infor-
mation than SIS. In order to quantify how the error on σv propa-
gates into H0, we recomputed the posterior distributions for D∆t
and Dd after changing arbitrarily the median value for our σv
distribution. We perform the test for four values of the shift, that
is, δσv/σv = ± 5% and δσv/σv = ±10%, for each individual lens
in the TDCOSMO sample as well as for the joint H0 inference.
Throughout this section, the H0 inference was performed in flat
ΛCDM cosmology with a uniform prior on Ωm ∈ [0.05, 0.5].

Figure 1 summarizes the results, where we define H0 and σv
as the inferred H0 value of the system and its measured aperture
velocity dispersion. The models used in Fig. 1 include both com-
posite and power-law mass models3 combined according to the
standard procedure described in previous papers (e.g., Suyu et al.
2014; Chen et al. 2019; Birrer et al. 2019; Rusu et al. 2020). We
first discuss in this section the general trend between σv and H0
for the combination of the two model families. Then, we discuss
the specifics of each model family separately.

The slope ξ quantifies the sensitivity of the inferred H0 value
to a change in velocity dispersion. It is computed by perform-
ing a linear regression to the points (Table 1). We observe large
variation of measured slopes from object to object. However,
for the full sample, the joint H0 inference leads to a mean sen-
sitivity of 〈ξ〉 = 0.07 ± 0.02. In other words, a systematic
increase (decrease) of 10% on the velocity dispersion increases
(decreases) H0 by approximately 0.7%.

PG 1115+080 and DES J0408−5354 differ from the other
lenses with a slightly negative slope of ξ = −0.04 ± 0.01 and
ξ = −0.01±0.01 respectively. For the other lenses, increasing the
velocity dispersion leads to a smaller angular diameter distance
Dd and therefore to a higher H0 (Eq. (11)). This behavior could
be explained for DES J0408−5354 as this lens is a complex sys-
tem with several sources located at two different redshifts. Thus,
the reduced dependency on velocity dispersion could be due to
the extraordinary azimuthal and radial extent of the lensing infor-
mation, and the fact that multiple redshift sources might help
limit the effects of MST. In this regime, the kinematics infor-
mation only brings very limited constraints on the mass model.
The measurement of H0 is therefore almost insensitive to the
kinematics.

In the case of PG 1115+080, the time-delay distance D∆t,
which does not depend on the kinematics data, has a much
larger constraining power on H0 than the angular diameter dis-
tance Dd. As a result, PG 1115+080 is also almost insensitive
to the velocity dispersion. The same effect explains, to a lesser
extend, the low sensitivity of RX J1131−1231. We note that
SDSS J1206+4332 has the largest sensitivity to a change in σv,
with an increase of 10% in velocity dispersion leading to an
increase of H0 by 4.2%. We interpret this as the effect of D∆t
being less well constrained by the lensing data on their own. The
more limited lensing constraints with respect to other systems
are probably because this is the only doubly imaged quasar in
the sample – all the others are quadruply imaged. Last but not

3 The first H0LiCOW lens, namely B1608+656, was modeled with
a power-law model and pixellated potential corrections, which were
found to be small. A composite model was not applied, so we use only
the power-law model in our analysis (see Suyu et al. 2010, for details).
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Fig. 1. Sensitivity of the inferred Hubble constant as a function of fractional change in the measured lens velocity dispersion, σv (see Eq. (15)).
Each color corresponds to one of the seven strong lens systems of the current TDCOSMO sample. The dotted lines display the best linear fit to
the data. The joint inference performed on the seven lenses is shown in black. The error bars correspond to the 16th and 84th percentile of the
posterior distributions. The two bottom panels show the sensitivity of H0 to a change in the measured lens velocity dispersion for power-law (left)
and composite (right) models independently. The sensitivity of the joint inference, 〈ξ〉 is indicated on each panel.

least, we note that SDSS J1206+4332 and PG 1115+080 have
the largest relative uncertainty on σv among the TDCOSMO
sample. Therefore, the zero points on the x-axis of Fig. 1 for
these two objects are the most uncertain.

4.2. Sensitivity to kinematics of the different mass model
families

We repeat the experiment for power-law models and composite
model separately to check the sensitivity to kinematics data of
each family of mass models. We do not use B1608+656 when
computing the sensitivity to kinematics of the composite models
since this system has a pixelated potential correction performed
on the power-law model, but no composite model. Bottom panels
of Fig. 1 show the result of this test.

We obtain 〈ξcomposite〉 = 0.06 ± 0.02 and 〈ξPL〉 = 0.07 ± 0.01.
The value of the joint inference is similar for both the composite
and the power-law cases but each lens behaves differently. While

WFI 2033−4723 becomes more sensitive to the kinematics when
modeled only with a composite model, SDSS J1206+4332 has
its sensitivity almost halved. We can explain this behavior as due
to the relative precision of the two families of models, which is
different from one lens to the other. The time-delay distance of
SDSS J1206+4332 is better constrained by composite models
(D∆t = 5690+449

−356 Mpc at 7.1 % precision) than with power-law
models (D∆t = 5873+659

−659 Mpc at 11.2 % precision). The relative
weight of the D∆t compared to the Dd in the final value of H0 is
therefore more important in the composite model case.

WFI 2033−4723 experiences the opposite behavior; it has
tighter constrains with power-law models (D∆t = 4701+242

−204 Mpc
at 4.74 % precision) than with composite models (D∆t =
4909+485

−319 Mpc at 8.2% precision). WFI 2033−4723 is therefore
more sensitive to the kinematics in the composite model case.

In summary, there is no evidence that one family of mass
models is significantly more sensitive to the kinematics than the
other. For individual lenses, we observe differences but they can

A101, page 6 of 19

https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201937351&pdf_id=1


M. Millon et al.: Uncertainties in time-delay cosmography

Table 1. Summary of the H0 values (Col. 2) reported in Wong et al. (2020) and Shajib et al. (2020).

H0 σv ξ ξPL ξcomposite Aperture θeff θE θaperture

[km s−1 Mpc−1] [km s−1] (All models) (power-law) (composite)

B1608+656 71.0+2.9
−3.3 260 ± 15 0.27 ± 0.01 0.27 ± 0.01 – 1′′.00 × 0′′.84 0′′.59 0′′.81 0′′.46

RX J1131−1231 78.2+3.4
−3.4 323 ± 20 0.02 ± 0.01 0.04 ± 0.01 0.01 ± 0.01 0′′.81 × 0′′.70 1′′.85 1′′.63 0′′.38

HE 0435−1223 71.7+4.8
−4.5 222 ± 15 0.08 ± 0.01 0.03 ± 0.01 0.13 ± 0.01 0′′.74 × 0′′.54 1′′.33 1′′.22 0′′.32

SDSS J1206+4332 68.9+5.4
−5.1 290 ± 30 0.42 ± 0.01 0.51 ± 0.06 0.25 ± 0.01 1′′.90 × 1′′.00 0′′.34 1′′.25 0′′.73

WFI 2033−4723 71.6+3.8
−4.9 250 ± 19 0.17 ± 0.02 0.09 ± 0.01 0.35 ± 0.06 1′′.80 × 1′′.80 1′′.41 0′′.94 0′′.90

PG 1115+080 81.1+8.0
−7.1 281 ± 25 −0.04 ± 0.01 0.08 ± 0.01 −0.02 ± 0.01 1′′.06 × 1′′.00 0′′.53 1′′.08 0′′.52

DES J0408−5354 74.2+2.7
−3.0 227 ± 9 −0.01 ± 0.01 −0.01 ± 0.01 −0.01 ± 0.01 1′′.00 × 1′′.00 1′′.20 1′′.92 0′′.50

All – – 0.07 ± 0.02 0.07 ± 0.01 0.06 ± 0.02 – – –

Notes. Column 3 gives the aperture velocity dispersion used for their analysis along with 1σ error bars. Columns 4–6 give the sensitivity, ξ, of the
inferred H0 value to the lens galaxy velocity dispersion. When the information is available, we make a distinction between composite and power-
law model and the combination of these. Columns 7–9 list the size of the aperture used for the velocity dispersion measurement, the effective
radius θeff of the lens and the Einstein radius of each lens. Column 10 give the aperture radius θaperture, computed by taking half of the average
length of the slit side.

be explained by the relative precision that each of the models
can achieve on the D∆t measurement with respect to their Dd
measurement, based on the relative weight of the lensing and
kinematic constraints and on the redshift of deflector and source
that determine how the D∆t − Dd constraint maps into H0.

5. Search for correlations between H0 and
physically independent observables

The inference of H0 relies on many independent ingredients and
observables, such as the velocity dispersion of the deflector and
the relative density of galaxies in the line of sight up to the back-
ground quasar. Those quantities do not have any physical reason
to be correlated with H0. Thus, any evidence of a correlation
between these observables and the inferred value of H0 across
the TDCOSMO sample, beyond the expected error covariance,
would be an indication of underlying systematic errors. In this
section, we carry out a number of empirical tests, correlating H0
with observables and properties of the instrumental setup, and
find no evidence for any statistically significant dependency.

5.1. Dependency on the characteristic scale of the lens
system and spectroscopic aperture.

Figure 2 shows the inferred Hubble constant for each of the
seven TDCOSMO lenses for several combinations of character-
istic scales of the lens systems and the aperture used for spec-
troscopic follow-up. In the left panel, we use the ratio between
the Einstein and the effective radii to investigate any departure
from the assumed description of the radial mass density profile.
The ratio between the effective radius and the Einstein radius is
used as a diagnostic of the relative spatial distribution of lumi-
nous and total matter. If the TDCOSMO models were insuffi-
ciently flexible, one may expect a trend in this ratio because
the sum of the dark and luminous component would produce
different shape of the total mass profile and a lack of flexi-
bility in the mass model would not be able to reproduce the
correct underlying distribution. In the middle panel are shown
the ratios between Einstein radius and the spectroscopic aper-
ture, which compare the spatial scales at which the lensing and
kinematic information is obtained. Finally, the right panel of
Fig. 2, shows the ratio between the effective radius and the
radius of the spectroscopic aperture, which could potentially

be affected if the stellar kinematics were incorrectly modeled.
One expects trends in all the above quantities if, for example,
the assumptions about orbital anisotropy were systematically
wrong.

The Spearman’s rank correlation coefficient between H0 and
θE/θeff , θE/θaperture and θeff/θaperture are respectively −0.11, 0.42
and 0.67. The probability that an uncorrelated data set produces
such correlation coefficients (i.e., the p-value) is 0.82, 0.33 and
0.10. Therefore we conclude that in all three cases, there is no
statistically significant correlation, even though the dynamical
range on the x-axis is a factor of 3–6. While the absence of cor-
relations does not prove that all systematic errors are below the
statistical uncertainties, this is an important sanity check for our
current models and for future work as the statistical precision
improves with growing sample size.

In addition, observational and modeling effects such as the
choice of stellar template, the choice of anisotropy model, or the
PSF modeling could potentially bias the measured velocity dis-
persion of the main deflector and thus H0. The net effect of all
these possible sources of systematic errors is difficult to quantify
exactly but they typically scale with the effective radius of the
lens θeff or the aperture radius of the spectroscopic observation
θaperture. The absence of any trend in Fig. 2 is reassuring in this
regard. Moreover, as we showed in Sect. 4, even ∼5% system-
atic bias on the measured velocity dispersion, or equivalently on
the modeled quantities due to incorrect anisotropy assumptions,
will only produce an average 0.35% bias on H0. Furthermore, as
shown above, the direction and amplitude of the error would be
different for each lens and therefore this systematic uncertainty
would also show as a source of scatter or trend across the sample,
which are not observed.

5.2. Dependency on intrinsic parameters of the deflector
traced by the velocity dispersion

An additional potential concern is whether systematic differ-
ences between our assumptions and the internal structure of
early-type galaxies could give rise to measurable biases. For
example, the so-called “tilt” of the fundamental mass plane is
believed to arise primarily from the increase in dark-to-stellar
matter ratio, a systematic change in stellar initial mass function
with galaxy stellar mass, and possibly a small subdominant con-
tribution from systematic variations in stellar orbits anisotropy
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Fig. 2. Effective radius θeff , Einstein radius θE and radius of the spectroscopic aperture θaperture of the TDCOSMO lenses. We show the ratios of these
three quantities and the corresponding H0 value inferred for each system. We do not observe significant correlations between the characteristic
sizes of the lens, the spectroscopic aperture and H0. The horizontal lines indicate the latest H0LiCOW 2019 (dotted orange, Wong et al. 2020) and
Planck (dashed blue, Planck Collaboration VI 2020) results along with the 1σ uncertainties.

(Auger et al. 2010; Cappellari 2016). The stellar initial mass
function is not a concern in the TDCOSMO analysis, since the
stellar mass to light in the composite models is a free parameter.
However, in principle the other two sources of “tilt” could intro-
duce a potential systematic effect in TDCOSMO analysis, where
each system is analyzed independently and with the same priors,
rather than with priors that depend on the stellar mass.

In Fig. 3 we show the inferred H0 as a function of stel-
lar velocity dispersion, a redshift independent proxy of position
along the fundamental plane. In this case, we found a Spear-
man’s rank correlation coefficient of 0.07 with a p-value of 0.88.
Hence, we conclude that there is no statistically significant trend
in these data, indicating that any residual velocity dispersion
dependent bias is smaller than the measurement uncertainties,
and thus not significant at this stage. As for the plots shown in the
previous (and next) section, this sanity test should be repeated as
the sample size and individual measurement precision increase.

5.3. Dependency on the external convergence and lens
redshift

In the previous sections, the focus is on how the lens velocity dis-
persion influences H0 measurements. But there is also an exter-
nal contribution of all objects along the line of sight to the main
lensing potential. This external convergence, κext, is estimated in
all TDCOSMO systems from galaxy counts, in combination with
spectroscopy for obtaining redshifts for galaxies and quantifying
coherent structures (e.g., groups and clusters). Tihhonova et al.
(2018) showed that this measurement is compatible with the con-
straints obtained on κext with weak lensing. κext is directly related
to the time-delay distance D∆t , as shown in Eq. (7). Similarly,
the effect of the external convergence on the inferred H0 can be
written as :

Huncorr
0 =

Hcorr
0

(1 − κext)
, (16)

where Huncorr
0 (Hcorr

0 ) is the value of H0 before (after) correc-
tion from κext. The effect of this external MST can be miti-
gated by directly inferring κext. To test the presence of residual
external Mass-Sheet Degeneracy (MSD) not entirely removed
by the measurement of κext, we investigate the presence of cor-
relation between the estimated κext and the inferred H0 value for
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Fig. 3. Hubble constant as a function of the measured velocity disper-
sion of the main lens. The horizontal lines indicate the latest H0LiCOW
2019 (dotted orange, Wong et al. 2020) and Planck (dashed blue, Planck
Collaboration VI 2020) results along with the 1σ uncertainties.

the seven lenses of the TDCOSMO sample. The top panel of
Fig. 4 shows the relation between the H0 measurements before
correction for the mass along the line of sight Huncorr

0 , and the
estimated convergence. A trend is visible between these two
quantities indicating that the measurement is indeed sensitive
to the lens environment. If no correction is applied, the lenses
located in over-dense regions (positive κext) tend to have a higher
Huncorr

0 than lenses in under-dense regions (negative κext). We fit
a linear model to the uncorrected data, and measure a slope of
auncorr = 88.9 ± 29.1 km s−1 Mpc−1, well compatible with the
expected slope of auncorr = Hcorr

0 = 73.7 km s−1 Mpc−1. Both
the uncorrected and corrected data are well fitted by our linear
model, with a reduced χ2 of 0.61 and 0.95 respectively.

As shown on the bottom panel of Fig. 4, this trend disap-
pears when correcting for the external convergence and there
is no evidence for residual correlation between Hcorr

0 and κext.
In fact, the best-fit slope coefficient in this case is acorr =
−5.1 ± 23.7 km s−1 Mpc−1, consistent with no correlation. This
is an indication that the external convergence correction makes
the trend disappear, which is what would be expected if our
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Fig. 4. Measured Hubble constant, before (upper panel) and after (lower
panel) correction for the mass along the line of sight as a function of
the estimated external convergence. Huncorr

0 and Hcorr
0 are related accord-

ing to Eq. (16). The dashed black lines show the best linear fit, and
the shaded gray envelopes correspond to the 1σ uncertainties. The dot-
ted blue lines represent the relation expected from the theory between
Huncorr

0 , Hcorr
0 and κext.

correction were accurately accounting for κext. The present data
set shows no evidence of residual systematic bias involving the
LOS mass density.

As first mentioned by Wong et al. (2020), the H0LiCOW col-
laboration reported the presence of a possible trend between the
lens redshift and the inferred Hcorr

0 value at low statistical sig-
nificance level (∼1.9σ). When adding DES J0408−5354 to the
six H0LiCOW lenses, the significance of the trend is slightly
reduced to ∼1.7σ. We note that, having tested multiple correla-
tions, it might be expected to find one at marginal significance,
as a result of the “look elsewhere effect”. This trend is still
present before correction for the external convergence as shown
on Fig. 5. The data are well-fitted by a linear model both before
and after the LOS correction with a reduced χ2 of 1.52 and 0.24.
The significance level of this correlation before LOS correction
is still on the order of ∼2σ. Hence, there is no direct indication
that the trend is due to unaccounted systematics in κext.

6. Impact of the choice of families of mass model

In this section we quantify how much the inference on H0
depends on the choice of the mass density profile adopted for
the lens modeling. We first use the six systems for which both
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Fig. 5. H0 constraints for the TDCOSMO lenses as a function of lens
redshift before (top) and after (bottom) correction for the external con-
vergence. The best linear fits and their 1σ envelopes are shown in
shaded gray. The tentative (1.7σ significance) trend is not introduced
by the LOS contribution as it is still visible before correcting for the
external convergence.

power-law and composite mass models have been performed and
compare the results. We show that even though the two model
families have sufficient flexibility to produce a broad range of
profile shapes, in practice when applied to real elliptical massive
galaxies, they form mass density profiles close to a simple power
law. As we see below, this is likely due to the “bulge-halo” con-
spiracy (Treu & Koopmans 2004; Dutton & Treu 2014).

Then, we carry out end-to-end simulations in order to quan-
tify the flexibility of our models and how the data actually allows
us to constrain them. Meeting this goal requires the simulated
properties of lenses to be close enough to those of real galax-
ies. About 90% of galaxy-scale lenses are early-type galaxies
(Auger et al. 2009), which satisfy very tight correlations between
their observable properties (Auger et al. 2010). This indicates
a high degree of regularity in the relative distribution of dark
and luminous matter, often referred as the “bulge-halo conspir-
acy”. This bulge-halo conspiracy results in the total mass den-
sity profile of lenses being very close to a singular isothermal
ellipsoid (e.g., Koopmans et al. 2006, 2009; van de Ven et al.
2009; Cappellari 2016), even out to large radii (Gavazzi et al.
2007; Lagattuta et al. 2010).

Importantly, the simulations we use all consider spatially
extended lensing information, spanning a large range in radial
extension. This radial extent must provide sufficient leverage to
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Fig. 6. Marginalized H0 posteriors for power-law (left panel) and composite models (right panel). The cosmological inferences are for a flat
ΛCDM cosmology with uniform priors. The posterior probability distributions for each individual system are shown with shaded color curves and
the combined constraint from the six systems corresponds to the solid black curve. The legend indicates the median, 16th and 84th percentiles of
the H0 distributions.

inform us about any possible departures from a simple power
law within the actual range of observables. A goodness-of-fit cri-
terion is then used to verify that the model adopted is indeed
a good description of the data. Models that are exclusively
based on the positions of two or four multiple quasar images,
rather than the full surface brightness distribution of its spatially-
extended host galaxy, cannot provide an accurate account of the
uncertainties from surface brightness modeling. Therefore, mod-
els based on two or four image positions cannot satisfy the above
goodness-of-fit requirement, even if they include time delays
and stellar-velocity-dispersion measurements. In the following,
we describe our set of simulated lenses in Sect. 6.2, present the
results in Sect. 6.3 and discuss our findings in Sect. 6.4.

6.1. H0 inference per model family

The TDCOSMO collaboration uses both composite and power-
law models in their analysis, except for B1608+656 (see
Sect. 2.3). Apart from this exception, the published estimates
of H0 correspond to the marginalization over the two model
families as a way to account for modeling uncertainties (Wong
et al. 2020; Shajib et al. 2020). The sample size of real lenses
is now sufficiently large to infer H0 by model family and to
test whether this choice makes a difference at the 2% precision
level of the statistical uncertainty. This is illustrated in Fig. 6,
where the priors on the cosmological parameters are the same
as adopted by Wong et al. (2020): H0 ∈ [0, 150] km s−1 Mpc−1,
Ωm ∈ [0.05, 0.5] and Ωm = 1 −ΩΛ.

The H0 values vary with the model family for individual
objects, and this testifies to the flexibility of the families of mod-
els. However, the choice of model family changes the combined
value by much less than the estimated statistical uncertainty.
Quantifying these statements, the combined value from the six
lenses is H0 = 74.2+1.6

−1.6 km s−1 Mpc−1 when we use exclusively
power-law models and H0 = 74.0+1.7

−1.8 km s−1 Mpc−1 when we
use only composite model. This corresponds only to a 0.2% dif-
ference. Individual objects can have larger differences between
power-law and composite models than the combined estimate,
but the two posterior probability distributions always remain
compatible. The largest differences are found for PG 1115+080
(5%) and SDSS J1206+4332 (4%), which still have the two dis-
tributions compatible at the ∼0.6σ level.

Last but not least, there is no indication in the current sam-
ple of six lenses that one given family of models systematically
gives a lower or higher H0 value. For example, WFI 2033−4723
has a higher H0 value when modeled with a power law rather
than a composite, while the opposite behavior is found for SDSS
J1206+4332; and other such examples can be easily found in
Fig. 6.

In conclusion, even though our two families of models are
flexible enough to produce a broad range of H0 values, in prac-
tice they do not. In the following, we investigate with simulated
lens systems the reasons why composite and power-law mod-
els provide comparable estimates of H0 in spite of allowing for
flexibility. We also investigate under which circumstances grav-
itational lenses can be modeled with both composite and power-
law models and still yield the same H0.

6.2. Simulations

We generate six mock lens systems chosen to illustrate the range
of possible outcomes, labeled by IDs #1 through #6. We describe
the process of the simulations in this section. In addition to the
power-law and composite models typically used by TDCOSMO
we also include cored power laws to explore the effects of adding
extra flexibility to the models.

The simulated HST images are produced using the pipeline
described by Ding et al. (2017a, 2018). The image frame size
is chosen to be 99 × 99 pixels, with a pixel scale of 0′′.08
to mimic the realistic HST WFC3/F160W drizzled resolution.
Mass profile parameters are chosen such that the Einstein radius
is roughly at the scale of 1′′ as typical for galaxy-scale lenses.
The noise in each pixel is composed of the Gaussian background
noise and the Poisson noise. For Gaussian background noise, we
assume an rms of 0.003, which is directly measured from empty
regions in the real data; the Poisson noise is added, based on a
total exposure time of 2400 s. For computational speed, the PSF
is assumed as a Gaussian kernel with FWHM = 0′′.25.

Three mass models, including power-law (ID #1, #2), cored
power-law (ID #3, #4), and composite (ID #5, #6) mass density
profiles, are adopted to generate the six mock systems. All of the
systems are elliptical in projection in order to allow for quad-
like configurations by construction. For each family of mass
distribution, we generate two mock lensed systems, one with
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Fig. 7. Sample of simulated lenses: three pairs are generated from power-law, cored power-law, and composite lens models. The color scale is
logarithmic and is the same for all images. Identifiers associated to each lens are also indicated. Refer to Sect. 6.2 for a description of these
simulations. Model #6, although composite, is chosen so that the total mass profile resembles a power law in the region of the Einstein radius.

the source lying close to a fold of a caustic (“fold” configura-
tion) and one with the source lying close to the lens-optical axis
(“cross-like” configuration). The “cross” represents a worst case
scenario because the radial ranges and the differences in the time
delays are limited by symmetry. The simulated lens systems are
shown in Fig. 7.

For the composite model, the total mass consists of a bary-
onic elliptical Hernquist profile (Hernquist 1990), and a dark
matter elliptical NFW profile (see Eq. (14) and Navarro et al.
1997). The baryonic part is linked to the lens surface bright-
ness through a constant mass-to-light ratio. While we use the
same axis ratios for the baryonic and dark matter components,
we allow for slight offsets in their position angles; the total pro-
jected mass profile is therefore not elliptical. We note that the
system (ID #6) is chosen to describe a scenario similar to realis-
tic galaxies, in which luminous and dark matter conspire to pro-
duce a total mass model very close to a power-law profile. This
is consistent with the findings of the H0LiCOW, SHARP, and
STRIDES collaborations so far (Suyu et al. 2014; Wong et al.
2017; Birrer et al. 2019; Chen et al. 2019; Rusu et al. 2020;
Shajib et al. 2020). Other cored power-law and composite sys-
tems (ID #3 – #5) are designed on purpose to depart significantly
from a single power law in order to test the effect on H0 and
investigate whether the information contained in the data can
capture this discrepancy. For all the lenses, the deflector sur-
face brightness is simulated as an elliptical Hernquist profile.
The ellipticity of the simulated lens galaxy corresponds to an
axis ratios of q ∼ 0.9 ± 0.01. We use an elliptical Sérsic profile
(Sérsic 1963) to simulate the extended part of the source light,
which is sufficient for our purpose. Lensed quasar images are
modeled as point spread functions centered on the images of the
host galaxy.

The simulated time delays are calculated within a fiducial
flat ΛCDM cosmology with Ωm = 0.27, and ΩΛ = 0.73, and
Hubble constant Hfiducial

0 = 70.7 km s−1 Mpc−1, which was cho-
sen randomly. For the time-delay uncertainties, we assume an
unbiased random error with rms level set as the largest value
between ∆t × 1% and 0.25 days. The uncertainties on the time
delays are chosen to be smaller than current uncertainties of real
data in order to focus mainly on the modeling uncertainties.

Since the tests in this section focus on the mass reconstruc-
tion of the main deflector, we do not include in the simulations the
effects of the galaxies along the line of sight, which are treated sep-
arately in real data. Likewise, we simulate and model the veloc-
ity dispersion using spherical Jeans equations following Suyu
et al. (2010) and Birrer et al. (2019), and assume an anisotropy
radius equal to the lens half-light radius. This is a simplification
of the stellar kinematics treatment with respect to the analysis of
real systems where TDCOSMO marginalizes over the unknown
anisotropy. In this exercise where we aim to illustrate the con-

straining power of the images while saving computing time, we
do not use the LOS velocity dispersion as a direct constraint in the
modeling but rather only calculate the modeled values to make the
comparison with measured values. The relevant key properties of
the six simulated lenses are summarized in Table A.1.

6.3. Results

The six mock lenses are modeled using the public strong lens-
ing modeling package LENSTRONOMY4 (Birrer et al. 2015; Birrer
& Amara 2018), which was used for the latest analysis of the
real systems SDSS J1206+4332 and DES J0408−5354 (Birrer
et al. 2019; Shajib et al. 2020). The exact/known input PSF is
used as the effect of PSF imperfections is not investigated in
this work. The light profile of the lens and of the source are
modeled as Hernquist and Sérsic profiles respectively. We fit
three types of analytical elliptical mass profiles to the simulated
data, namely a power-law, a cored power-law and a compos-
ite profile. Specifically for the composite model, we emphasize
that no strong prior is applied on the scale radius of the dark
matter component. Instead, we use a noninformative uniform
prior rs ∼ U (5′′, 40′′), so that the dark matter component effec-
tively has two degrees of freedom in the radial direction. The
99 × 99 pixels contained in the images and three independent
time delays are used for the fit. We, however, mask a central
region corresponding to three pixels (i.e., 0′′.24) since we do not
want to form any central image which could lead to extra con-
straints on the lens model (see also Tagore et al. 2018; Mukherjee
et al. 2018, 2019). The resulting fitted models are used to infer
only H0 (Ωm is kept fixed to 0.27) from the time-delay distance
alone. The lens velocity dispersion is computed only for com-
parison but is not included in the H0 inference, to highlight the
information content of the images.

We use the Bayesian Information Criterion (BIC) to evaluate
the quality of the fit. The BIC is defined by

BIC = k × ln(n) − 2 × ln(L̂), (17)

where k is the number of free parameters, L̂ is the maximum
likelihood of the model and n is the number of data points. The
likelihood used for the fit uses only the imaging and time-delay
information so that n corresponds to the number of nonmasked
pixels in the image plus the three time delays. Our models have
25 free parameters for the power-laws, 26 for the cored power-
laws and 29 for the composite models.

The recovered H0 value, integrated LOS velocity dispersion
within a square aperture of side 1′′ and the BIC values are given
in Table 2. The corresponding image residuals of the lens mod-
eling are shown in Table 3. As expected, we recover the correct

4 https://github.com/sibirrer/lenstronomy
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Table 2. BIC value, reduced χ2 of the image fit, measured H0, tension relative to the true value of Hfiducial
0 = 70.7 km s−1 Mpc−1 and integrated

stellar velocity dispersion.

Model: power law Model: cored power law Model: composite

Truth: power law (#1) BIC = 10220 BIC = 10230
– ∆ BIC = 10

(σv = 308 km s−1) χ2 = 1.02 χ2 = 1.02
H0 = 71.9+2.1

−2.3 km s−1 Mpc−1 H0 = 70.9+2.2
−2.0 km s−1 Mpc−1 –

Tension = 0.5σ Tension = 0.1σ
σv = 310.1+1.4

−1.5 km s−1 σv = 304.3+3.9
−3.4 km s−1

Truth: power law (#2) BIC = 9786 BIC = 9797
– ∆ BIC = 11

(σv = 297 km s−1) χ2 = 0.98 χ2 = 0.98
H0 = 72.6+1.8

−1.7 km s−1 Mpc−1 H0 = 72.2+2.0
−2.0 km s−1 Mpc−1 –

Tension = 1.1 σ Tension = 0.8 σ
σv = 298.1+1.1

−1.0 km s−1 σv = 296.3+1.6
−1.6 km s−1

Truth: cored power law (#3) BIC = 14544 BIC = 9776
∆ BIC = 4768 –

(σv = 245 km s−1 ) χ2 = 1.46 χ2 = 0.98
H0 = 76.3+2.1

−2.0 km s−1 Mpc−1 H0 = 72.3+2.1
−2.2 km s−1 Mpc−1 –

Tension = 2.8σ Tension = 0.7σ
σv = 248.4+0.6

−0.7 km s−1 σv = 245.3+1.2
−1.2 km s−1

Truth: cored power law (#4) BIC = 18565 BIC = 9768
∆ BIC = 8797 –

(σv = 216 km s−1 ) χ2 = 1.86 χ2 = 0.98
H0 = 78.2+1.9

−2.0 km s−1 Mpc−1 H0 = 71.8+1.5
−1.8 km s−1 Mpc−1 –

Tension = 3.9 σ Tension = 0.7 σ
σv = 219.0+0.6

−0.6 km s−1 σv = 216.1+1.0
−1.2 km s−1

Truth: composite (#5) BIC = 10042 BIC = 9703 BIC = 9608
∆ BIC = 434 ∆ BIC = 95 –

(σv = 253 km s−1 ) χ2 = 1.00 χ2 = 0.97 χ2 = 0.96
H0 = 63.9+1.3

−1.1 km s−1 Mpc−1 H0 = 60.4+1.1
−1.2 km s−1 Mpc−1 H0 = 69.0+2.4

−2.7 km s−1 Mpc−1

Tension = 5.2 σ Tension = 9.1 σ Tension = 0.7 σ
σv = 259.5+0.6

−0.6 km s−1 σv = 243.1+1.1
−0.9 km s−1 σv = 255.7+1.6

−2.0 km s−1

Truth: composite (#6) BIC = 14170 BIC = 10764 BIC = 9715
∆ BIC = 4455 ∆ BIC = 1049 –

(σv = 207 km s−1 ) χ2 = 1.36 χ2 = 1.04 χ2 = 0.97
H0 = 69.8+1.1

−1.2 km s−1 Mpc−1 H0 = 70.0+1.2
−1.2 km s−1 Mpc−1 H0 = 72.4+1.9

−1.7 km s−1 Mpc−1

Tension = 0.8 σ Tension = 0.6 σ Tension = 1.0 σ
σv = 200.5+0.6

−0.8 km s−1 σv = 200.7+0.9
−0.8 km s−1 σv = 211.7+1.5

−1.2 km s−1

Notes. The three columns of the table correspond to the family of mass model fitted on the six simulated lens systems. The ∆BIC is computed
relative to the best model for each lens.

H0 value within the 1-σ errors of the posterior distribution when
fitting the same mass model family as used in the simulation.
This case corresponds to the diagonal of Tables 2 and 3.

Interestingly, the core size of the cored power-law profile is
well constrained by the data. Indeed, when a cored power-law
profile is fitted to data generated with power law with no core,
the core size is well constrained and shrinks to zero. If there is a
core in the simulation (e.g mock lenses #3 and #4), the core-size
is recovered within 2.2% accuracy and within <3.0% precision
with a cored power-law model. This indicates that the lensing
data are sensitive to the presence of a sizeable core in galax-
ies. The sensitivity stems from the robust constraint on the mass
enclosed within the Einstein radius that indirectly depends on
the core size.

We deliberately choose not to present the results of the com-
posite models fitted to power-law and cored power-law simula-
tions. This is because, by construction, the lens light profile of
these simulations does not necessarily correspond to their mass
profile. In the power-law and cored power-law profiles, the lens
light profile bears no relation to the mass distribution, and is only
used as a tracer of the stars when computing the stellar velocity
dispersion. As a result, we cannot have a meaningful compari-
son between power-law and composite models if we assume that
the baryonic component of the composite model is traced by the
arbitrary lens light in the power-law model. This limitation is
inherent to these simulations and we do not expect that this hap-
pens for real galaxies, because it is unlikely that the stellar light
is not tracing at all the baryonic mass component.
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Table 3. Residual maps of the lens modelling, i.e. normalized χ2 per pixel.

Notes. The maps corresponds to ( fmodel − fdata)/σ, where fdata is the observed flux, fmodel is the modelled flux and σ is the estimated rms noise level
at the pixel position. The color map ranges from −6σ (blue) to +6 σ(red). The given χ2 value in each panel is the mean χ2 per pixel and does not
include the time-delay information.

The tests performed on composite simulated lenses #5 &
#6 show that the ability of a power law or a cored power law
to recover the correct H0 depends on the characteristics of the
composite lenses. In both cases, the power-law models give
much poorer fits to the data than the true composite models
(∆BIC = 434 for #5 and ∆BIC = 4455 for #6). Adding one more
degree of freedom by using a cored power law instead of a power
law improves the fit but it is still significantly poorer than the
composite models (∆BIC = 95 for #5 and ∆BIC = 1049 for #6 in
the case of a cored power law). We note that the image residuals
in lens #6 are worse than that in lens #5, since #6 is in a fold
configuration with higher lensing magnifications and thus pro-
duces correspondingly higher amounts of image residuals. The

recovered H0 is compatible with the true value for the lens #6,
but in lens #5 it is biased toward lower H0 by 9.4%. In short, the
different behavior arises because of intrinsic differences in the
composite mass density profile. While mock #5 is chosen to be
different from a power law, mock #6 is chosen to be similar to a
power law. When the truth is a composite similar to a power law,
the inferred H0 is the same. When it is not, the two models lead
to different inferences. As discussed in Sect. 6.1 the real universe
is similar to #6 and dissimilar to #5.

As an additional test, we model the simulated data using
only the four lensed image positions, the lensing galaxy posi-
tion and the time delays to investigate the effect of neglecting
the other information. We find that, as mentioned in Sect. 3, this
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is not sufficient to constrain all the lens model parameters. A
reduced χ2 < 1 can be obtained for all the mocks using a power
law model, except for mock #6 for which the best reduced χ2 is
∼1.9. Even when the true mass distribution is a power law (e.g.,
mock #1 and #2), the maximum likelihood models are associated
with power-law indices substantially different from the input
one, yielding a bias on H0, that can reach 90% (see Appendix B
for details). This is well understood as the multipole components
of the lens potential can compensate for large changes in the
monopole structure which are only poorly constrained by the few
image positions. This test highlights the necessity of using the
full information provided by the high resolution images to better
constrain the lens potential. In particular, the multiple images of
the lensed host galaxy are critical to pin down the uncertainty on
the average mass density at the image positions (Kochanek et al.
2001).

6.4. Discussion

In this section we discuss the results of the simulations with
the goal of providing an intuitive physical understanding of the
quantities that are relevant for time-delay cosmology and how
they are constrained by the data. As noted by Kochanek (2002),
the time delay is mainly determined by the mean convergence
〈κ〉 in an annulus between the multiple images. Figure 8 shows
the radial convergence profiles of the models averaged over the
azimuth angle. The shaded gray contour corresponds to the sep-
aration between the multiple images. The quality of the fit in this
region determines the accuracy on H0. The Einstein radius is typ-
ically very well constrained by any lens model, so the only way
to modify the mean 〈κ〉 at the positions of the multiple images
is to change the slope of the convergence profile while keeping
constant the integrated mass within the Einstein radius. This is a
well-known problem in time-delay cosmography called the pro-
file slope degeneracy (Witt et al. 2000; Wucknitz 2002; Suyu
2012).

As argued by Sonnenfeld (2018), assuming a too rigid model
such as a power law model, can lead to a bias up to ∼10% if
the true underlying profile contains a change of slope within the
Einstein radius. Sonnenfeld (2018) concluded that at least three
degrees of freedom are required in the lens model to recover
an un-biased result if no kinematics information is used. With
the addition of kinematics, uncertainty can be reduced to 1%
(in accuracy) even within the simplified constraints considered
in that study. Based on a sample of simulated galaxies from
the Illustris simulation, Xu et al. (2016) studied how physi-
cally motivated numerical density profiles are transformed into
an approximate power-law (in the region where lensed images
are formed) by means of a mass-sheet like transformation. They
reported that a large range of transformation was allowed, which
would translate into a large scatter and possible bias on the
inferred H0. They concluded that the amplitude of the bias
depends on the (logarithmic) curvature of the mass density pro-
file of the simulated galaxies. This behavior was previously illus-
trated in Schneider & Sluse (2014) and more recently in Gomer
& Williams (2019).

We recover the findings of Sonnenfeld (2018), Xu et al.
(2016), Schneider & Sluse (2014) and Gomer & Williams (2019)
with our simulated lens #5, where the combination of the Hern-
quist and NFW profile is designed to produce an inflection point
in the radial profile of the convergence within the Einstein radius.
For this system, the composite and power-law models are dis-
crepant, thus providing an indication that the power-law model

is indeed too rigid. This rigidity results in a significant difference
in goodness of fit (∆BIC = 434), as well as on the inferred H0.

For the lens system #6, the radial convergence profile does
not have inflection points and therefore it is impossible to change
the slope of the profile while keeping the Einstein radius iden-
tical. In this case, the recovered value of H0 is compatible with
the true value for both the composite and power-law model. The
fact that the two families of models are providing compatible H0
indicates that the convergence profile is well-recovered in the
annulus around the Einstein radius.

The TDCOSMO collaboration has systematically tested both
model families in their analysis after the first and only nonblind
published system B1608+656. The tight agreement between
the composite and power-law models in the TDCOSMO anal-
yses supports the hypothesis that, as a result of the bulge-halo
conspiracy, the kind of real galaxies that act as strong lenses are
similar to our #6 mock. The mass density profile is well approx-
imated by a power law. In this case, the stellar component and
the extended NFW halo combine to form a profile very close
to a power law near the quasar images. If this had not been the
case, we have shown in this work that the composite and power
law would not have produced the same mean convergence 〈κ〉 at
the image position, and thus would have yielded very different
H0 values. If TDCOSMO had found this discrepancy, it would
have been accounted for in the error budget of each individual
lens since they marginalize over model families. In contrast, both
classes of models produce fits with comparable goodness-of-fit
and H0 in the real world, resulting in high precision, including
modeling errors in the error budget. Our analysis in Sect. 6.1
shows that in practice the two models agree even at the current
sample precision of <2.4%.

7. Conclusion

As the statistical precision of time-delay cosmology improves
with the analysis and publication of multiple gravitational lens
systems by the H0LiCOW, SHARP, and STRIDES collabora-
tions, a parallel effort must be undertaken to ensure that sys-
tematic uncertainties remain subdominant. In this first paper of
the TDCOSMO collaboration (i.e., COSMOGRAIL, H0LiCOW,
SHARP, STRIDES members), we investigate and quantify a
number of potential systematic uncertainties that could affect the
analysis. Before we summarize the main results of this work, it
is important to highlight a few general points that are relevant to
the estimation of systematic errors in time-delay cosmography:
1. The TDCOSMO analyses are carried out blindly to cos-

mological parameters, with the exception of the first sys-
tem B1608+656 (Suyu et al. 2010) in order to avoid
implicit/explicit experimenter bias.

2. The TDCOSMO estimates of H0 are obtained independently
for each lens, and they are found to be statistically consis-
tent with each other (Wong et al. 2020). The statistical con-
sistency demonstrates that uncorrelated systematic errors are
negligible with respect to statistical errors. So any investiga-
tion of systematic errors must focus on correlated errors that
would affect many systems in the same way.

3. Toy models based on simplified assumptions and constraints
cannot offer any quantitative estimates of systematic errors
given the current state-of-the-art data-sets and lens mod-
els. The only way to estimate quantitative errors is to carry
out an analysis that is very similar to the one performed
on real data, using the full extent of the available infor-
mation, including the high-resolution images, multiple time
delays (if available), and stellar kinematics. For example, the
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Fig. 8. Azimuthally averaged radial convergence profiles, for the different lens models applied to fit the sample of six mock lenses (Fig. 7). Upper
part of each panel: true profiles are shown in dotted lines; power-law, cored power-law and composite models are shown in blue continuous, green
dashed and red dot-dashed lines, respectively. The spectroscopic (square) aperture used for computing velocity dispersions is indicated as a vertical
dotted line, and the true Einstein radius location is indicated as a vertical dashed line. The gray area encloses lensed quasar image positions. For
each model, the inferred H0 values are indicated (in km s−1 Mpc−1), and must be compared to the input value Hfiducial

0 = 70.7 km s−1 Mpc−1. Lower
part of each panel: relative error computed as (truth − model)/truth. The pixel size in the simulated images is 0′′.08.

dependency on the inferred distances on stellar velocity dis-
persion is nontrivial, it varies from lens to lens, depending
on the precision of the various constraints, the lensing con-
figuration, the source and deflector redshift, and the spec-
troscopic aperture used for the kinematic measurement. On

average over the current TDCOSMO sample, uncertainty
in velocity dispersion δσv/σv translates into approximately
δH0/H0 ∼ 0.07 × δσv/σv.

Keeping these general considerations in mind, the main results
of this work are as follows:
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– No evidence is found for any correlation between the mea-
sured value of H0 and observables related to the internal
structure of the lens galaxies (e.g., velocity dispersion, effec-
tive radius), or to the size of the spectroscopic aperture. If our
assumptions about the kinematic field of the lens galaxies
had been significantly wrong, then we would have expected
to detect trends in these parameters, since our deflectors and
spectroscopic observations span a significant range of con-
figurations. Of course absence of evidence is not evidence
of absence and more work remains to be done in this area,
even though the weak dependency of the inferred H0 on kine-
matic data implies that systematic uncertainties in this area
will have a subdominant impact on H0.

– No evidence is found for any correlation between the mea-
sured value of H0 and the external convergence estimated
from galaxy number counts and numerical simulations. In
contrast, if no external convergence is applied, H0 is found
to depend on the overdensity of galaxies in the field, a clearly
unphysical result.

– Tests based on mock lens systems that have simulated data
comparable in quality to real lens systems show that the cur-
rent approach of considering different mass profiles has suf-
ficient flexibility in the mass model to infer a wide range of
H0 values, should the data require it.

– Mock lens galaxies composed of baryons and dark matter
whose total mass distribution is not well approximated by a
power law produce discrepant H0 inferences and significant
differences in image residuals when comparing power-law
and composite mass models. In contrast, mock lens galax-
ies whose baryonic and dark matter components conspire to
form a power law lead to comparable H0 inferences between
power-law and composite mass models.

– The comparison of power-law and composite mass models
allows us to quantify deviations in H0 due to our mass model
assumptions. By using these two families of models and
marginalising over them, the resulting H0 accounts for model-
ing uncertainties. Future measurements of spatially resolved
kinematics of the lens system would provide highly constrain-
ing measurements of the lens mass distribution that potentially
allow us to distinguish/rank mass models, removing the need
to marginalize over degenerate lensing mass models.

– The similarity of H0 constraints from power-law and com-
posite models of TDCOSMO lenses shows that the total
mass profiles of galaxies are close to power laws due to
the bulge-halo conspiracy. For the six lenses that have been
analyzed with both power-law and composite models we
find H0 = 74.2+1.6

−1.6 km s−1 Mpc−1 and 74.0+1.7
−1.8 km s−1 Mpc−1

respectively. The difference between the two model fami-
lies is much smaller than the inferred statistical errors. The
similar H0 from the different families of models thus made
the current H0 measurement with ∼2% uncertainty from
TDCOSMO achievable.

Based on a number of tests carried out in this paper,
we find no evidence that the error budget reported by the
H0LiCOW/SHARP/STRIDES (TDCOSMO) collaborations is
significantly underestimated. We emphasize that our tests repro-
duce very closely the TDCOSMO inference procedure, in con-
trast to previous work in the literature that does not have the
fidelity to investigate this issue.

While investigating potential sources of systematic uncer-
tainties was an important first step, meeting the goal of 1% pre-
cision and accuracy with time-delay cosmography (e.g., Suyu
2012; Treu & Marshall 2016), requires additional and contin-
ued efforts over the coming years. Aside from expanding sample

sizes and improving statistical precision per system, some of
the clear steps along the way are: (i) exploring broader model
families and the impact of departures from elliptical symmetry
and including spatially variable mass-to-light ratio, (ii) explore
in more detail the bulge-halo conspiracy based on high reso-
lution data for local early-type galaxies, (iii) explore the effect
of allowing for gradients in stellar mass-to-light ratios (e.g.,
Sonnenfeld et al. 2018) in composite models; (iv) carrying out a
full Bayesian hierarchical analysis of existing samples of lenses
in order to constrain parameters that cannot be inferred on single
lens but require an inference at the population level, (v) account-
ing for measurement and modeling covariance, and (vi) perform-
ing realistic data challenges such as the one proposed by Ding
et al. (2018), with increasing level of realism and complexity as
data also improve. These steps are nontrivial from a modeling
point of view, considering that the analysis of any single sys-
tem currently requires a year of expert investigator time and on
the order of a million CPU hours (e.g., Shajib et al. 2020). Sub-
stantial advances in automation and speed are required in order
to carry out those next steps, but given their importance for the
determination of H0, they are worth undertaking.
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Appendix A: Properties of simulated lenses

As a complement to Sect. 6, we show in Table A.1 a subset
of important properties of the simulated lenses. Characteristic
radii are indicated: half-light radius, effective Einstein radius,
core radius in the case of cored power-law profiles, and scale
radius of the dark matter profile for composite models. The ratio
of the lens half-light radius and Einstein radius is also computed.
Additionally, the input logarithmic slope of the convergence pro-
file, the lens mass ellipticity, true time delays and LOS veloc-
ity dispersion are indicated. The spectroscopic aperture used
for simulating and modeling kinematics is a square with side
1′′. For composite models, we provide the dark matter fraction

within the Einstein radius. Lastly, to ease comparison with pre-
vious studies, we add the measure of the curvature of the total
mass ξ, as defined in Xu et al. (2016). Given this definition, a
concave-upward (convex-downward) radial convergence profile
has curvature greater than one (lower than one), and a perfect
power-law have curvature equal to one. Xu et al. (2016) con-
clude that galaxies close to isothermal and those having a curva-
ture parameter close to one provide the smallest bias on H0. We
recover these findings only partially with these simulated lens
systems. We find that the curvature criterion is the most impor-
tant criterion to ensure a low bias on H0 even if the slope differs
significantly from isothermal, as illustrated with our simulated
galaxy #6.

Table A.1. Key properties of the simulated lenses described in Sect. 6.

θeff [′′] θE [′′] θE/θeff θc [′′] rs [′′] γ q ξ fDM ∆t [days] σv [km s−1]

#1 Power law 3.620 1.237 0.342 – – 2 0.899 1.000 – [0.277, 3.701, 8.999] 308
#2 Power law 3.789 1.143 0.302 – – 2 0.889 1.000 – [3.919, 4.48, 10.773] 297
#3 Cored power law 3.988 1.153 0.289 0.559 – 2 0.890 1.016 – [1.331, 5.687, 7.112] 245
#4 Cored power law 2.643 1.028 0.389 0.560 – 2 0.895 1.018 – [3.135, 3.525, 9.012] 216
#5 Composite 2.689 1.028 0.382 – 31.185 1.90 0.900 1.036 0.190 [3.55, 9.175, 13.567] 253
#6 Composite 3.573 1.165 0.326 – 34.497 1.45 0.902 1.006 0.763 [4.878, 5.055, 12.166] 207

Notes. For each lens, from left to right: lens half-light radius θeff , effective Einstein radius θE (enclosing a mean convergence equal to unity), ratio
of these radii, core radius θc, dark matter scale radius rs, effective slope of the convergence profile at the Einstein radius γ, lens mass ellipticity
q, total mass curvature ξ (as defined in Xu et al. 2016), dark matter fraction fDM within Einstein radius, true time delays ∆t and LOS velocity
dispersion σv of the lens galaxy.
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Appendix B: Models only based on lensed quasar
positions and time delays

We model the simulated dataset as generated in Sect. 6.2, using
only the lensed quasar positions, the lensing galaxy position
and the relative time delays between the lensed images. We
assume an uncertainty σ = 0′′.004 on the point-source positions,
σ = 0′′.01 on the lensing galaxy centroid, and the same uncer-
tainty on the time-delay as in Sect. 6.3. Similarly to extended
source modeling performed in Sect. 6.3, we employ the lens
modeling package LENSTRONOMY. We adopt both the Singular
Isothermal Ellipsoid (SIE) model (i.e., fix slope value γ = 2.0)
and the Power-law model in this test. An independent modeling
has been carried out with lensmodel (Keeton 2001, 2011). We
obtained similar inference with both packages and therefore only
report hereafter results obtained with LENSTRONOMY.

We use the true parameters as the input values to start per-
forming the modeling. A careful choice of the likelihood and
sampling options has to be carried out to ensure that image
position constraints arise from the same source. In practice, we
sample the source plane and evaluate the positional likelihood
in the image plane, but adding a source plane likelihood term
to ensure that each image arises from the same source within

σ = 0′′.001. A notebook implementing our fitting strategy is
available online5.

In Fig. B.1, we show the corner plots of the inference based
on the mock system #1. When using a SIE model where the mass
slope value is fixed to the truth, we could obtain an unbiased H0
with uncertainty at the ∼10% level. However, when the slope
is a free parameter, the inference broadens significantly as the
data are not sufficient to constrain that parameter. In particular,
the uncertainty on H0 increases by a factor of ∼3 and the max-
imum likelihood deviates from the truth by up to 100%. This
contrasts with the same model constrained by the point-source
and extended images from the source. Those features constrain
accurately the position of the centroid of the lens potential and its
ellipticity, breaking degeneracies between those quantities and
H0.

Qualitatively similar behavior is observed for the other sys-
tems, but we do not report inferred parameters in those cases due
to the difficulty to achieve convergence of the MCMC chains for
the power-law model. This is due to the degeneracies observed
between q, γ and H0 which implies a sampling of a large region
of the parameter space, enforcing exploration of parameter val-
ues for which results of LENSTRONOMY modeling has not been
fully tested (e.g., γ > 2.5).
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Fig. B.1. Corner plot of the inference of modeling mock system #1 using only the lensed quasar position and time delay. The SIE model and
Power-law model are adopted on the left and right, separately. The blue lines indicate the true values in the simulation.

5 https://github.com/TDCOSMO/TD_data_public/blob/
master/TDCOSMO_I/PSTD_notebook.ipynb
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