36th ICAR Session and Interbull Meeting Niagara Falls, 16-20 June 2008

Potential Estimation of Minerals Content in Cow Milk Using Mid-Infrared Spectrometry



FNRS

H. Soyeurt¹, D. Bruwier¹, N. Gengler^{1,2}, J.-M. Romnee³, and P. Dardenne³

Gembloux Agricultural University, Animal Science Unit, Belgium
 National Fund for Scientific Research, Belgium
 Walloon Agricultural Research Centre, Quality Department, Belgium

Introduction

- Interest for human and animal health:
 - Ca: osteoporosis, milk fever
 - Na: milk fever, alkalosis, indicator of mastitis?

 Dairy products with high Ca content are commercialized to prevent osteoporosis (e.g., Belgium,...)

Introduction

- Regular analysis
- Inductively Coupled Plasma Atomic Emission Spectrometry: ICP-AES
 - Fast
 - Expensive
- Previous studies on the measurement of milk components by Mid-Infrared (MIR)
 Spectrometry:
 - Fast and cheap
 - %fat, %protein, %fatty acids, %lactose, urea,...

General Objective

 Estimate the contents of the major minerals in cow milk (Ca, Na, and P) by MIR spectrometry

Milk Samples

- 1,609 milk samples :
 - March 2005 and May 2006
 - 478 cows in 8 herds belonging to 6 dairy breeds:
 - dual purpose Belgian Blue, Holstein Friesian, Jersey, Montbeliarde, Normande, and non-Holstein Meuse-Rhine-Yssel type Red and White
- 2 samples:
 - MilkoScan FT6000 during the Walloon milk recording
 - Conserved at -26°C

Calibration

- Selection of samples :
 - Principal Components Approach (PCA)
 - 70 selected samples
 - 9 samples with bad conservation
 - 4 outliers
- Reference analysis:
 - ICP-AES without mineralization

Calibration

- Equations:
 - 57 samples
 - Partial Least Squares (PLS) regressions
 - Repeatability file:
 - Walloon part of Belgium
 - Luxembourg
 - Accuracy: Full cross-validation

Results

	N	Mean	SD	SECV	R ² cv	RPD
Na	57	431.39	102.10	57.31	0.69	1.78
Ca	57	1251.58	157.44	66.98	0.82	2.35
Р	57	1071.02	107.03	51.87	0.77	2.06

SD = Standard deviation; SECV= Standard error of cross-validation; R²cv = Cross-validation coefficient of determination; RPD = the ratio of SD to SECV

- If RPD > 2, good indicator
- Good prediction of Ca and P (high contents)

Real MIR absorbance?

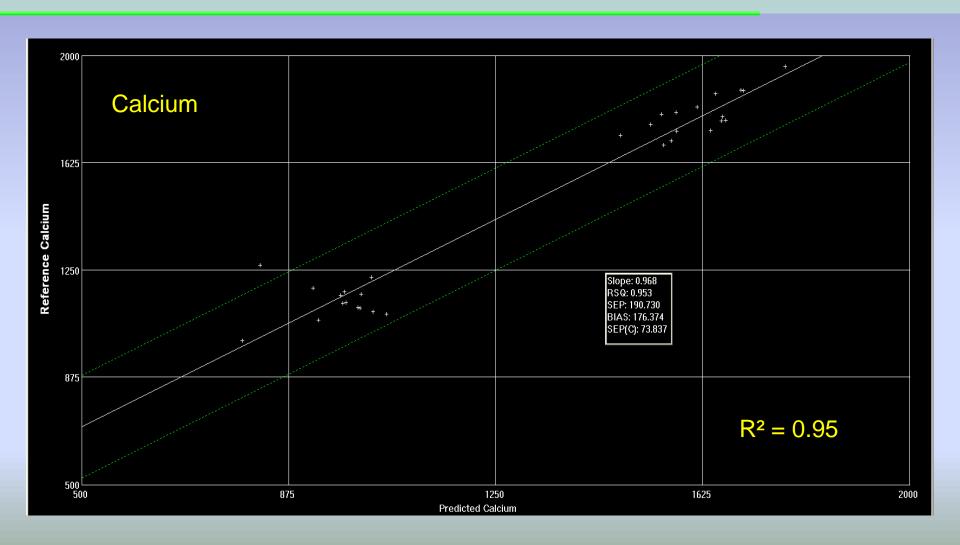
	Ca	Р	%fat	%prot	lactose	urea
Na (mg/l of milk)	-0.25	-0.08	-0.49	0.33	-0.76	0.46
Ca (mg/l of milk)		0.58	0.52	0.21	0.19	-0.37
P (mg/l of milk)			0.38	0.56	-0.02	0.14
%fat (g/dl of milk)				0.29	-0.41	0.39
%prot (g/dl of milk)					0.19	-0.12
Lactose (g/dl of milk)						-0.33

Real MIR absorbance?

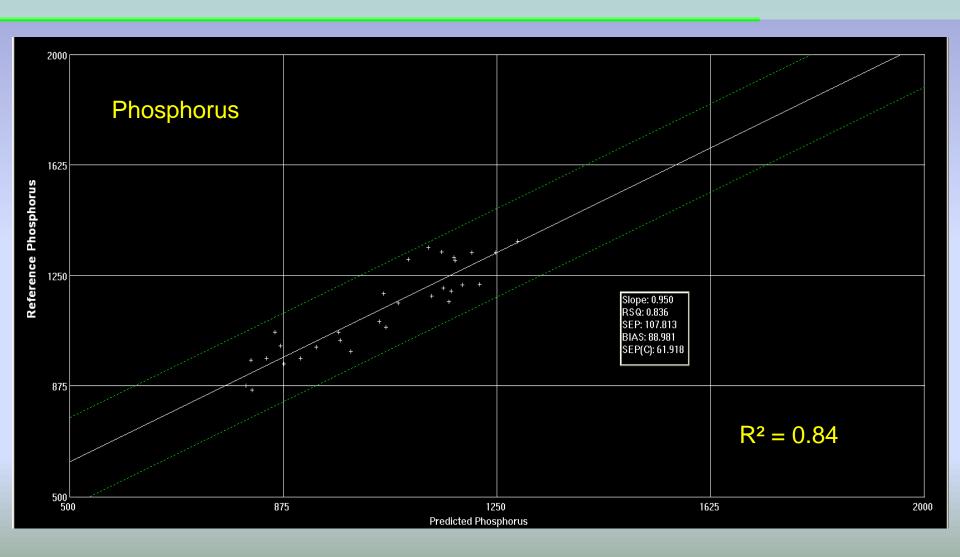
	Ca	Р	%fat	%prot	lactose	urea
Na (mg/l of milk)	-0.25	-0.08	-0.49	0.33	-0.76	0.46
Ca (mg/l of milk)		0.58	0.52	0.21	0.19	-0.37
P (mg/l of milk)			0.38	0.56	-0.02	0.14
%fat (g/dl of milk)	_		_	0.29	-0.41	0.39
(g/dl of milk) %prot (g/dl of milk)	<u> R</u>	cv = 0.90	0		0.19	-0.12
Lactose (g/dl of milk)						-0.33

Real MIR absorbance?

	Ca	Р	%fat	%prot	lactose	urea
Na	-0.25	-0.08	-0.49	0.33	-0.76	0.46
(mg/l of milk)		0.58	0.52	0.21	0.19	-0.37
(mg/l of milk)		0.00	0.02	0.2.	0110	0.01
P (mg/l of milk)			0.38	0.56	-0.02	0.14
(filg/f of fillik) %fat (g/dl of milk)	R	cv = 0.88	8	0.29	-0.41	0.39
%prot (g/dl of milk)		0.00	9		0.19	-0.12
Lactose (g/dl of milk)						-0.33


Validation

- Validation:
 - Internal validation:
 - cross-validation
 - External validation:
 - samples not used for the calibration procedure
- 30 milk samples

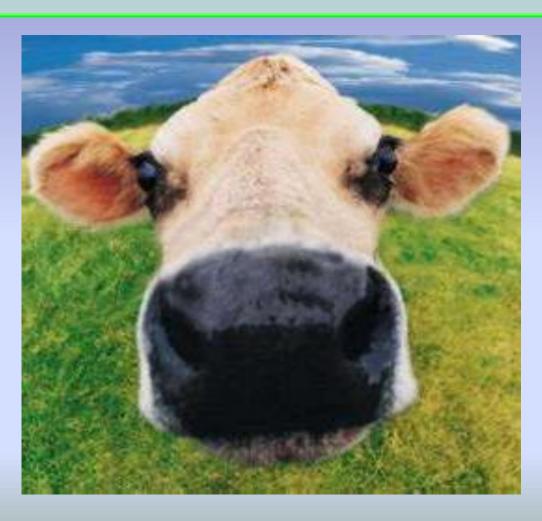

Validation

Validation

Conclusion

 Potential estimation of Ca and P directly on bovine milk

- Prospects for the calibration:
 - Increasing the samples used for the calibration
 - Executing a larger external validation


Prospects

- Genetic variability of minerals
 - Prevent osteoporosis
 - Feeding has a low influence on Ca content
 - Heritability (26,086 data):
 - Calcium: 0.42
 - Phosphorus: 0.47
 - Prevent milk fever?
- Indicators of mastitis??

Thank you for your attention

Acknowledgments

FNRS:

2.4507.02F(2)

F.4552.05

FRFC 2.4623.08

soyeurt.h@fsagx.ac.be