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Abstract
Study Objectives: Sleep disturbances and genetic variants have been identified as risk factors for Alzheimer’s disease (AD). Our goal was to assess whether genome-

wide polygenic risk scores (PRS) for AD associate with sleep phenotypes in young adults, decades before typical AD symptom onset.

Methods: We computed whole-genome PRS for AD and extensively phenotyped sleep under different sleep conditions, including baseline sleep, recovery sleep 

following sleep deprivation, and extended sleep opportunity, in a carefully selected homogenous sample of 363 healthy young men (22.1 years ± 2.7) devoid of sleep 

and cognitive disorders.

Results: AD PRS was associated with more slow-wave energy, that is, the cumulated power in the 0.5–4 Hz EEG band, a marker of sleep need, during habitual sleep 

and following sleep loss, and potentially with larger slow-wave sleep rebound following sleep deprivation. Furthermore, higher AD PRS was correlated with higher 

habitual daytime sleepiness.

Conclusions: These results imply that sleep features may be associated with AD liability in young adults, when current AD biomarkers are typically negative, and 

support the notion that quantifying sleep alterations may be useful in assessing the risk for developing AD.
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Statement of Significance

We show that the genetic liability for developing Alzheimer’s disease (AD), as grasped over the entire genome using polygenic risk scores 
(PRS), is associated with sleep intensity and daytime sleepiness in healthy individuals devoid of sleep disorders and aged less than 30 years, 
that is, 30–60 years before typical onset of AD cognitive symptoms. Sleep features may be associated with AD liability in young adults 
when current AD biomarkers are typically negative. The findings reinforce the notion that quantifying sleep alterations may be useful in 
assessing the risk for developing AD.
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Introduction

Defective proteostasis of brain amyloid-beta (Aβ) and tau pro-
tein antedates the clinical manifestations of Alzheimer’s dis-
ease (AD) by decades [1–3]. This so-called “preclinical” window 
constitutes an opportunity for intervention that would hope-
fully reduce the predicted increase in AD prevalence [4], despite 
the absence of disease-modifying treatments in the foreseeable 
future. In this respect, the further identification of AD risk fac-
tors is of paramount importance.

AD patients can become restless at night and sleepy during 
daytime while their entire sleep–wake cycle becomes frag-
mented and disorganized [5]. Critically, similar to rapid eye 
movement (REM) sleep behavioral disorder in Parkinson’s dis-
ease [6], altered sleep has recently been related to increased risk 
for developing AD, over and above sleep disturbances in AD pa-
tients [5]. Longer latency to fall asleep and reduced sleep slow 
waves and REM sleep are associated with both Aβ plaques and 
tau neurofibrillary tangles (NFTs) in cognitively normal par-
ticipants [7–9]. Sleep fragmentation and the reduction in REM 
sleep quantity in cognitively normal individuals aged more than 
60 years predict the future risk of developing AD [10, 11]. Acute 
sleep deprivation [12, 13], and experimentally induced reduction 
of sleep slow waves [14], increases cerebrospinal fluid (CSF) Aβ 
and tau protein content.

In postmortem human brain tissues, the first signs of brain 
protein aggregation are identified in the locus coeruleus (LC), 
a brainstem nucleus essential to sleep regulation [15], under 
the form of pretangles, consisting of phosphorylated Tau pro-
tein [16]. Critically, LC pretangles can be detected during ado-
lescence, while by age 30, they can be detected in the majority 
of the population (>90%) [16]. With age, Tau deposits increase in 
the brain in a stereotypical manner and are tightly associated 
with cognitive decline in overt “clinical” AD [16]. Individual vari-
ations in these intrinsic properties should be reflected in brain 
function, including sleep, whether or not Tau aggregation has 
already occurred.

Sporadic AD, the most common form of AD in the general 
population, has an estimated heritability ranging between 58% 
and 79% [17, 18]. Individual PRS for AD can be computed based 
on the results of published genome-wide association studies 
(GWAS). This PRS reflects part of the genetic liability for AD 
in any asymptomatic individual and, at the group level, can 
be associated with phenotypes of interest that are related to 
the (risk) pathways leading to AD [19, 20]. Recent studies re-
ported a significant association between AD PRS and CSF Aβ 
content [21, 22], cortical thickness [23], memory decline [24], 
and hippocampus volume [22, 25, 26] in cognitively normal 
older adults (>45 years) but, importantly, also in young adults 
(18–35 years) [25].

Here, we conducted a proof-of-concept study to establish 
that sleep can be related to AD risk in young adults, using PRS 
for AD. We phenotyped sleep under different conditions (base-
line, sleep extension, and recovery sleep after total sleep depriv-
ation) in a homogenous sample of young healthy cognitively 
normal men without sleep disorders and computed individual 
PRS for AD. We hypothesized that high PRS would be associated 
with sleep metrics that had previously been associated with AD 
features in cognitively normal older adults. We further explored 
whether subjective assessments and behavioral correlates of 
sleep quality would be associated with PRS for AD.

Methods
This research was approved by the Ethics Committee of the 
Faculty of Medicine at the University of Liège, Belgium.

Participants

All participants signed an informed consent prior to their 
participation and received a financial compensation. A  total 
of 364 young healthy men (aged 18–31  years) were enrolled 
for the study. Exclusion criteria were as follows: body mass 
index (BMI) > 27; psychiatric history or severe brain trauma; 
addiction, chronic medication affecting the central nervous 
system; smoking, excessive alcohol (> 14 units/week), or caf-
feine (> 3 cups/day) consumption; shift work in the past year; 
transmeridian travel in the past 3 months; moderate to severe 
subjective depression as measured by the Beck Depression 
Inventory [27] (score > 19); and poor sleep quality as as-
sessed by the Pittsburgh Sleep Quality Index (PSQI) [28] (score 
> 7). Participants with sleep apnea (apnea–hypopnea index > 
15/h; 2017 American Academy of Sleep Medicine criteria, ver-
sion 2.4) were excluded based on an in-lab screening night of 
polysomnography. One participant, part of a twin pair, was ex-
cluded from the analyses so that the analyzed sample included 
363 participants (Table 1). Some EEGs were missing/lost/not re-
corded due to technical issues that were detected a posteriori 
for three to five participants per night of sleep considered in 
this manuscript. No individual had missing EEGs for more than 
one night of sleep so that all 363 individuals contributed to at 
least part of the analyses reported here. The Epworth Sleepiness 
Scale (ESS) [29] was used to characterize daytime sleepiness 
but was not used for inclusion. While most participants scored 
normal values (≤11), 28 participants had scores ranging from 12 
to 15, corresponding to moderate daytime sleepiness. Because 
of an initial error in the automatic evaluation of computer-
ized questionnaires, seven participants had PSQI scores higher 
than cut-off (scores of 8 or 9). No participants were, however, 

Table 1. Sample characteristics (mean ± SD)

N 363
Sex Men
Ethnicity Caucasian 
Age (years) 22.10 ± 2.73
Height (cm) 180.39 ± 6.70
BMI (kg m−2) 22.15 ± 2.31
IQ* 123.88 ± 11.14
Education (y)† 13.33 ± 1.60
Mood 3.00 ± 3.48
Sleep quality 3.46 ± 1.76
Daytime sleepiness 5.94 ± 3.54
Chronotype 50.11 ± 8.25
Rest Fragmentation (a.u.) 0.10 ± 0.03
Baseline sleep duration (min) 451 ± 41

Mood was estimated by the 21-item Beck Depression Inventory II [27]; sleep 

quality by the PSQI [28]; daytime sleepiness by the ESS [29]; chronotype by the 

Horne–Östberg questionnaire [77]. IQ was estimated using Raven Progressive 

Matrices [30]. Rest fragmentation (arbitrary units, a.u.) was estimated as the 

probability of transition from rest to activity during estimated sleep based on 

actigraphy data from the 3 weeks of imposed regular sleep [11].

*IQ was available for 347 participants.

†Number of years of education was available for 300 participants.
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taking sleep medication. To avoid reducing sensitivity, these 
participants were included in all analyses but removing them 
did not change statistical outcomes. Furthermore, IQ was esti-
mated in all participants using the Raven Progressive Matrices 
[30]. One item or more was not responded to by a few partici-
pants so that IQ was available in 347 participants. Likewise, the 
screening questionnaire did not include a clear question about 
the number of years of educations, but was rather asking about 
current occupation, so that education was available in 300 par-
ticipants. Including IQ or education in our statistical models 
(hence, in a reduced set of subject) did not affect the statistical 
outputs of the results presented below.

Although available in our laboratory, Ab- and tau-PET scans 
were not conducted in participants: it was felt to be unethical 
to expose them to irradiation while results would most likely 
be normal.

Experimental protocol

Individual sleep–wake history was strictly controlled: during the 
three weeks preceding the in-lab experiment, participants were 
instructed to follow a regular sleep schedule according to their 
habitual sleep timing (±30 min for the first 2 weeks; ±15 min for 
the last week). Actigraphy data showed that included partici-
pants faithfully followed the assigned schedules.

Figure  1 provides an overview of the protocol. On day 1, a 
urine drug test was performed (10-multipanel drug) before com-
pleting an adaptation night at habitual sleep/wake schedule 
during which a full polysomnography was recorded to screen for 
sleep-related breathing disorders or periodic limb movements. 
On day 2, participants left the lab with the instruction not to 
nap (checked with actigraphy). They returned to the laboratory 
at the end of day 2, completed a baseline night of sleep under 
EEG monitoring at habitual sleep/wake schedule and remained 
in the laboratory until day 7 under constant CCTV. A 12 h sleep 
extension night under EEG and centered around habitual sleep 
mid-point was initiated on day 3, in complete darkness with the 
instruction to try to sleep as much as possible. Day 4 included 
a 4  h afternoon nap under EEG recording (centered 1  h after 
the mid-point between morning wake-up time and evening 
sleep time) further dissipated any residual sleep need. What we 

termed the “before” night was also initiated on day 4. It consisted 
in 8 h sleep opportunity starting at habitual sleep time. During 
days 5 and 6, participants remained awake for 40 h under con-
stant routine (CR) conditions (dim light < 5 lux, semi-recumbent 
position, 19°C ± 1, regular isocaloric food intake) before initiating 
a 12 h recovery night from habitual sleep time until 4 h after 
habitual wake time. Except during sleep (darkness—0 lux) and 
CR protocol (dim light < 5 lux), participants were maintained in 
normal room light levels oscillating between 50 and 1,000 lux 
depending on location and gaze. Analyses of “before” night, 
nap, and sleep deprivation protocol will be reported elsewhere. 
The current study focuses on baseline, extension, and recovery 
nights of sleep.

EEG acquisitions and analyses

Sleep data were acquired using Vamp amplifiers (Brain 
Products, Germany). The electrode montage consisted of 10 
EEG channels (F3, Fz, F4, C3, Cz, C4, Pz, O1, O2, and A1; refer-
ence to right mastoid), 2 bipolar EOGs, 2 bipolar EMGs, and 2 bi-
polar ECGs. Screening night of sleep also included respiration 
belts, oximeter and nasal flow, 2 electrodes on one leg, but in-
cluded only Fz, C3, Cz, Pz, Oz, and A1 channels. EEG data were 
re-referenced off-line to average mastoids. Scoring of sleep 
stages was performed automatically in 30-s epochs using a 
validated algorithm (ASEEGA, PHYSIP, Paris, France) [31] and 
according to 2017 American Academy of Sleep Medicine cri-
teria, version 2.4. An automatic artifact detection algorithm 
with adapting thresholds [32] was further applied on scored 
data. Power spectrum was computed for each channel using a 
Fourier transform on successive 4-s bins, overlapping by 2-s, 
resulting in a 0.25 Hz frequency resolution. The night was div-
ided into 30 min periods, from sleep onset until lights on. For 
each 30  min period, slow-wave energy (SWE) was computed 
as the sum of generated power in the delta band (0.5–4 Hz 
range) during all the NREM 2 (N2) and NREM 3 (N3) epochs of 
the given period, after adjusting for the number of N2 and N3 
epochs to account for artifacted data [33]. As the frontal re-
gions are most sensitive to sleep–wake history [34], SWE was 
considered over the frontal electrodes (mean over F3, Fz, and 
F4). To deal with the multiple comparison issue, we did not 

Day 1 ADMISSION ADAPTATION/SCREENING

Day 2 ADMISSION BASELINE
Day 3 EXTENSION
Day 4 NAP BEFORE

Day 5
Day 6 RECOVERY
Day 7 DISCHARGE

7AM 11AM 3PM 7PM 11PM 3AM 7AM

SLEEP – DARKNESS

WAKE

WAKE – 5 LUX

WAKE – OUT OF LAB

Figure 1. Overview of the protocol. Following 3 weeks of regular sleep at habitual times, 363 healthy young men aged ~22 years complete a 7-day protocol (displayed 

for a participant sleeping from 11 pm to 7 pm). Adaptation/screening and baseline nights were scheduled at habitual sleep-wake times. Extension nights consisted of 

a 12 h sleep opportunity centered around habitual sleep mid-point. Nap consisted of an afternoon 4 h sleep opportunity. The “before” (sleep deprivation) and recovery 

nights (from sleep deprivation) consisted of an 8 and 12 h sleep opportunity, respectively, all starting at habitual sleep time. Following the “before” night, volunteers 

completed a 40 h sleep deprivation protocol under strictly controlled CR conditions in dim light. Sleep periods included in the current analyses are in bold and italic.
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consider SWE over the other parts of the scalp [35]. Additional 
analyses also considered cumulative power between 0.5 and 
25 Hz during NREM and cumulative power between 2 and 6 Hz 
power during REM sleep as well through similar computation 
procedures.

Genotyping and imputation

Blood sample was collected on day 2 for DNA analyses. The 
genotyping was performed using the Infinium OmniExpress-24 
BeadChip (Illumina, San Diego, CA) based on Human Build 
37 (GRCh37). Missingness of the SNP markers was below 20% 
in all individuals. Using PLINK software [36], we excluded the 
SNPs with a minor allele frequency (MAF) below 0.01, or Hardy–
Weinberg disequilibrium (HWD) significance below 10−4. Markers 
with ambiguous alleles (A-T, T-A, G-C, and C-G) were excluded 
as well. We finally ended with 511,729 SNPs. To investigate the 
relatedness between the individuals, using PLINK-genome com-
mand, we computed the identity by descent estimates for all 
pairs of individuals. For eight pairs, the composite pi-hat score 
was between 0.15 and 0.56 suggesting the existence of at least 
third-degree relatives in our cohort. We did not exclude any in-
dividuals at this level of analysis to keep the sample as large as 
possible, but removing one subject of each of these eight pairs 
did not affect the statistical significance of any of the tests re-
ported below. We merged our cohort with “1000 Genomes Project” 
[37] and employed principal component analyses on the merged 
samples to verify if our cohort was located in the European 
cluster (Supplementary Figure S1, A). We further assessed al-
lele frequencies coherence of our cohort with the European 
subset of “1000 Genomes Project” (Supplementary Figure S1, B). 
Markers with allele frequencies deviating more than 0.2 unit 
from European allele frequency were excluded (Supplementary 
Figure S1, C). Genotype imputation was performed using 
“Sanger imputation server” by choosing “Haplotype Reference 
Consortium (release 1.1)” (HRC) as Reference Panel and the Pre-
phasing algorithm EAGLE2. Post-imputation QC was then per-
formed very similarly to the one of above (MAF < 0.01, HWD < 
10−4, imputation quality score < 0.3). As a result of such filters, 
7,554,592 variants remained for the analysis. However, to avoid 
having markers with allele frequencies deviating from European 
allele frequency, we computed the allele frequencies for the 
samples in our cohort after imputation and cross-checked them 
with the European allele frequency (obtained from HRC [release 
1.1]; Supplementary Figure S1, D). The markers whose allele fre-
quencies were deviating more than 0.2 unit from European al-
lele frequency were excluded.

Predicting height

To validate common SNP assessments in our sample we pre-
dicted actual height based on polygenic scores computed based 
on a meta-analysis of a recent GWAS study [38] on around 700,000 
individuals. We used all the variants in the meta-analysis that 
were included in our cohort (3,121 SNPs out of 3,290). The pro-
cedure for calculating the liability for height is the same as the 
one described in the following section. Supplementary Figure 
S1, E visualize the Pearson correlation results between the ac-
tual values for Height and estimated genetic liability of height 

(r = 0.46, p = 10−20). Explained variance is very close to that re-
ported previously [38], that is, 24.6%.

Polygenic risk score

PRS is defined as the sum of multiple single-nucleotide poly-
morphism alleles associated with the trait for an individual, 
weighted by the estimated effect sizes [19, 20]. We used the 
estimated effect sizes from a GWAS by Marioni et al. [39] which 
consisted of a meta-analysis of AD-by-proxy (UK Biobank data 
[40]—http://www.ukbiobank.ac.uk) and AD case–control data 
[41] for a total of 388,324 individuals (67,614 cases—25,580 pa-
tients and 42,034 self-reported parental history of AD—and 
320,710 controls). Marioni et al. reported that the genetic cor-
relation between AD-by-proxy and AD case–control was very 
high and not significantly different from 1, so that the genetic 
associations they computed, and therefore the PRS we com-
puted based on their summary statistics, were truly dealing 
with AD.

The best p-value threshold that should be applied to AD 
case–control summary statistics is not established yet. Previous 
studies employed very exclusive GWAS p values (p ~ 10−8) [42] 
to more inclusive p values (p = 0.5) [25, 43], leading to the inclu-
sion of effect sizes of a few tens to hundreds of thousands SNPs 
to compute AD PRS. Because we did not want to test all com-
binations of linkage disequilibrium (LD) pruning and p-value 
thresholding, and then pick out the “best” one, we computed 
several PRS with different p value thresholding and LD pruning 
combinations.

To generate a set of approximately independent SNPs in 
our sample, LD clumping was performed using PLINK [36] on 
the window size of 1,000-kb using a pairwise r2 cut-off of 0.2 
and a predetermined significance thresholds (p value < 5 × 10−8, 
10−6, 10−4, 0.001, 0.01, 0.05, 0.1, 0.3, 0.5, and 1). Due to the effect 
of apolipoprotein E (APOE) in chromosome 19, we used a more 
stringent criteria pairwise r2 cut-off of 0.01 for this chromosome. 
In addition, we also calculated the PRS using all the variants 
with no pruning, that is, no correction for LD, thereby selecting 
all SNPs for PRS construction. Although the later PRS was in-
evitably affected by complex LD structures, it was kept as one 
of the PRS. This procedure yielded 11 quantitative polygenic 
scores, under each significance threshold, for each individual in 
our cohort.

Height as a negative control

From the known and hypothesized biology, we did not expect 
any a priori association between the sleep phenotypes and a 
genetic liability for height. Therefore, we included an analysis 
of polygenic scores for height as a negative control, performing 
exactly the same association analyses as we did for liability 
to AD.

Actigraphy data collection and analysis

Actigraphy data were collected with Actiwatch 4 devices 
(Cambridge Neurotechnology Ltd, UK) worn on the non-
dominant arm. Data consisted in the sum of activity counts over 
60-s intervals. Data were analyzed with pyActigraphy (Version 
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v0.1) https://github.com/ghammad/pyActigraphy which imple-
ments the computation of state transition probabilities from 
rest to activity (kRA) [11]. In order to better reflect sleep fragmen-
tation, this probability was calculated only over sleep periods 
for each study’s participant. The sleep period is defined as the 
period comprised between the activity offset and onset times, 
derived from the average 24  h activity profile. In addition, to 
mitigate the uncertainty on their exact timing, the offset and 
onset times were shifted by +15 min and −15 min, respectively.

Statistical analysis

We employed a general linear model (GLM) to test the associ-
ations between sleep metrics of interests as a dependent vari-
able and the estimated PRS as an independent variable and age, 
BMI, and total sleep time (TST) as covariates. Prior to the analysis, 
we removed the outliers among the sleep metrics by excluding 
the samples lying beyond four times the standard deviation (the 
final number of individuals included in each analysis is reported 
below each dependent variable in the supplementary tables). All 
analyses were performed in Python.

In this study, we analyzed multiple traits and multiple PRS 
for association. To control the experiment-wise false positive 
rate, we estimated the number of independent tests that we per-
formed, and set an experiment-wise p value threshold accord-
ingly. Since the traits are phenotypically correlated with each 
other and the PRS are also correlated, we used the correlation 
structure to estimate the equivalent number of tests, which is 
the number of independent tests that would result in the same 
overall observed variation.

For each correlation matrix of traits and PRS, we performed 
a singular value decomposition, ordered the resulting eigen-
values and calculated the sum of all eigenvalues. We then calcu-
lated the minimum number of linear combination of the traits 
that resulted in 99% of the variation. For the five EEG pheno-
typic sleep traits this estimate was 5, showing that they are 
not highly correlated. Likewise, for the three non-EEG pheno-
typic sleep traits this estimate was 3. For the 11 PRS for AD and 
height, the resulting number was 8 and 4, respectively, con-
sistent with a higher correlation structure among the multiple 
height predictors. Therefore, our analyses with the 5 EEG base-
line sleep metrics imply a total number of 40 and 20 tests when 
confronted to AD-PRS and height-PRS, respectively. Hence, for 
any of our trait-PRS combination to be statistically significant 
when taken multiple testing into account, the p value threshold 
is 0.00125 and 0.0025 for AD and height, respectively. Similarly, 
our analyses with SWE in recovery and extension nights and 
with SWE rebound, each imply 8 tests and a p value threshold of 
p = 0.00625, while our analyses with 3 non-EEG sleep metrics 24 
tests and a p value threshold of p = 0.0021. Additional analyses 
compared lower and higher PRS quartile (i.e. 90 individuals with 
lowest AD PRS and 90 individuals with highest PRS) as well as 
APOE ε4 carriers versus noncarriers. For these analyses, groups 
were compared through t-tests.

We compute the minimum detectable effect size given 
our sample size. According to G-Power 3 (version 3.1.9.4) [44], 
taking into account a power of 0.8, an error rate α of 0.00625 
(cf. above), with a sample size of 363, we were in a position to 
detect medium effect sizes r > 0.19 (confidence interval: 0.09–
0.29) within a linear multiple regression framework including 
7 predictors.

Results

Polygenic risk for AD is associated with the 
generation of slow waves during sleep

PRS were computed as the weighted sum of the effect sizes of 
the AD-associated SNPs, obtained from summary statistics of 
AD cases versus controls GWAS [19, 20]. PRS can indicate the 
presence of a genetic signal in moderate sample size studies [19, 
23] as long as it is computed based on a very large GWAS [45, 
46]. We, therefore, used the summary statistics of one of the lar-
gest AD-GWAS available to date (N  =  388,324) [39] to compute 
individual PRS for AD in our sample and related these to sleep 
EEG characteristics following multiple quality control steps (cf. 
Supplementary Figure S1).

We first focused on baseline sleep, as it is most representa-
tive of habitual sleep, to evaluate sleep metrics that might be 
associated with AD liability. Given our sample size, we reduced 
the multiple comparison burden by selecting a priori variables 
of interest among electrophysiology sleep metrics that have pre-
viously been related to Aβ and Tau in cognitively normal older 
adults: sleep onset latency (SOL) [9, 47], duration of wakefulness 
after sleep onset (WASO) [47], duration of REM sleep [10], SWE 
during NREM sleep [7, 8], that is, the cumulated power in the 
0.5–4 Hz EEG band, and hourly rate of micro-arousals during 
sleep [14]. To compute PRS, one considers SNPs below a p value 
threshold in the reference GWAS; the optimal threshold for 
SNP selection to best compute a PRS for AD is not established. 
To avoid bias in the threshold selection, we opted for com-
puting PRS based on increasingly inclusive p-value thresholds 
(including SNPs reaching GWAS significance—p  <  5  × 10−8—to 
very liberal p < 1), while also pruning SNPs based on their cor-
relation structure (i.e. LD; Supplementary Table S1) [25, 43]. In 
addition, we performed a PRS analysis using all SNPs without 
any selection.

GLM analyses controlling for age, BMI, and TST, revealed a 
significant association between baseline night SWE and AD PRS 
(p < 0.02; β ≥ 0.12) from a p value threshold of p = 0.05 up to selecting 
all SNPs; the association reached stringent experiment-wise 
correction for multiple comparisons when computing PRS using 
all SNPs, that is, with potential LD bias (see Methods; β = 0.17; 
Figure 2, A; Supplementary Table S2). We performed a negative 
control analysis using a PRS for height, a variable for which no 
association with sleep metrics was expected, and found no as-
sociation (Supplementary Figure S2, A). The association between 
AD PRS and SWE was positive (Figure 2, B), indicating that higher 
SWE was associated with higher AD-PRS. SWE was also posi-
tively associated with TST (Supplementary Table S2), which was 
expected since TST conditions the opportunity to generate slow 
waves, and negatively with age, which is in line with the litera-
ture [48] but may still be surprising given the young age of our 
sample. Importantly, since GLM included TST and age, they are 
not driving the association we find between SWE and PRS for 
AD. Furthermore, we performed two additional analyses seeking 
for associations between PRS for AD and IQ or education, vari-
able for which negative associations with AD pathophysiology 
were previously reported [49], and found no association (p > 0.1;  
Supplementary Figure S2, B). The link between PRS for AD and 
SWE may, therefore, be more consistent (i.e. less variable) than 
the link between AD and IQ or education.

SOL also reached significant association with AD PRS from a 
p value threshold of p = 0.05 up to p = 1 (p ≤ 0.04; β = −0.11), but 
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significance did not reach stringent experiment-wise correction 
for multiple comparisons (Figure 2, A; Supplementary Table S2). 
Hence, this result has to be considered with caution and will 
not be extensively commented upon. It is interesting to note, 
however, that the association between PRS for AD and SOL is 
negative, with higher PRS associating with shorter sleep latency 
(Figure  2, C). Of note, REM% reached uncorrected significance 
(p < 0.05) for thresholding at p = 0.05 (β = 0.1), with a positive as-
sociation with AD PRS (Figure 2, A; Supplementary Table S2), but, 
since it is observed for only one p value threshold, this will not 
be discussed any further.

These results indicate that, particularly when consid-
ering all SNPs to construct the AD PRS, the overnight power 
of the slow waves generated during non-REM sleep, which is 
a widely accepted measure of sleep need [50], is linearly and 
positively associated with AD genetic liability. This finding 
suggests that individuals with a higher genetic liability for AD 
have a higher need for sleep. This idea is further reinforced by 
the fact that association between SWE and AD PRS is also sig-
nificant when only considering SWE of the first hour of sleep 
[51] (Supplementary Figure S3 and Table S3), and the poten-
tial negative association with SOL, which depends in part on 
sleep need.

Since slow oscillations (SO), that is, EEG slow waves < 1 Hz, 
may be distinct from faster slow waves [51], we further decom-
posed SWE into SO-SWE (0.5–1Hz) and faster oscillations—SWE 

(FO-SWE; 1.25–4 Hz). Both SO-SWE and FO-SWE were similarly 
and significantly associated with AD PRS and for the same p 
value thresholds (Figure 2, D; Supplementary Table S3). The as-
sociation we found between SWE and AD PRS does not appear 
therefore to arise exclusively from either slower or faster slow 
waves.

Recovery sleep, slow-wave sleep rebound, and 
extension night

When considering sleep EEG of the other nights, we only in-
cluded SWE, as it is the only sleep metric that was associated 
with PRS for AD at stringent correction for multiple compari-
sons threshold. Similarly to baseline night, when considering 
SWE during the recovery night that followed total sleep de-
privation, GLM including age, BMI, and TST, reveal that SWE 
and AD PRS are significantly associated (p ≤ 0.04; β ≥ 0.11) from 
p-value thresholding at p  =  0.1 up to using all SNPs (Figure  3, 
A; Supplementary Table S4), and the association reached strin-
gent experiment-wise correction for multiple comparisons at p 
value threshold of p = 1. Again, the association was positive with 
higher SWE associated with higher AD PRS (Figure 3, B) and re-
sults were similar when considering only SWE of the first hour 
of sleep (Supplementary Figure S3 and Table S4). Individuals typ-
ically produce more sleep slow waves in response to sleep loss, 

Figure 2. Associations between PRS for AD and baseline night sleep metrics. (A) Statistical outcomes of GLMs with five sleep metrics of interest versus AD PRS from 

conservative (p < 5 × 10−8) p value threshold to using all SNPs (N = 356). GLMs are corrected for age, BMI, and TST. The negative log transformation of p values of the as-

sociations is presented on the vertical axis. Horizontal lines in A and D indicate different p values thresholds: light blue = 0.05 (uncorrected); orange= 0.01 (corrected for 

five sleep metrics); red = 0.00125 (experiment-wise correction; see Methods). (B) The positive association between SWE during baseline night and AD PRS including all 

SNPs (N = 356). Spearman correlation r is reported for completeness (r = 0.12, p = 0.02), refer to main text Supplementary Table S2 for statistical outputs of GLMs. (C) The 

negative association between SOL during baseline night and AD PRS for p < 0.3. Spearman correlation r is reported for completeness (r = −0.11, p = 0.03), refer to main 

text Supplementary Table S2 for statistical outputs of GLMs (N = 356). (D) GLMs including SWE separated in the slower (SO-SWE; 0.5–1 Hz) and faster (FO-SWE; 1.25–4 

Hz) frequency range from conservative p value thresholds to using all SNPs (N = 356). Horizontal blue line indicate p = 0.05 significance level. GLMs are corrected for age, 

BMI, and TST. Refer to Supplementary Table S3 for statistical outputs of GLMs. SOL, sleep onset latency; WASO, wake time after sleep onset; DUR_REM, duration of REM 

sleep; arousal, hourly rate of micro-arousals during sleep; SWE, slow-wave energy in NREM sleep (0.5–4 Hz).
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as part of the homeostatic regulation of sleep [52]. Therefore, the 
result indicates that individuals with a higher need for sleep 
after sleep loss have a high PRS for AD.

Slow-wave sleep rebound quantifies the physiological re-
sponse to a lack of sleep based on the relative changes from 
normal sleep to recovery sleep following sleep loss. We com-
puted the ratio between the initial SWE (1  h of sleep) during 
recuperation and baseline nights to assess SWE rebound. GLM 
analysis, including age and BMI, indicated that SWE rebound 
reached a significant association with AD PRS when including 
all SNPs (β = −0.11), but significance did not reach stringent 
experiment-wise correction for multiple comparisons (Figure 3, 
A; Supplementary Table S4). Sleep rebound is driven by sleep 
homeostasis which tightly regulates sleep duration and inten-
sity based on prior sleep–wake history [35]. Since we observe an 
association with AD PRS for a single p value threshold at un-
corrected p value our findings suggest that, in our sample, AD 
PRS was not tightly associated with sleep homeostatic response. 
Interestingly though, Spearman’s correlation indicated that 

SWE rebound was correlated to SWE during the recovery night 
(r = 0.39, p < 10−14; Figure 3, C).

We then considered SWE during the extension night and 
PRS for AD in a GLM, including age, BMI, and TST. Results indi-
cated that extension night SWE was not significantly linked to 
AD PRS. This may be because sleep timing for this particular 
night affects sleep quality [35, 50] (Figure 3, A). In contrast to 
baseline and recuperation sleep periods which were initiated 
at habitual sleep time, sleep extension started 2 h before ha-
bitual sleep time, covering the end of a period known as the 
evening “wake-maintenance zone” corresponding to the time 
at which the circadian system maximally promotes wakeful-
ness [50]. In addition, the circadian system is known to af-
fect the relative content in non-REM and REM sleep as well as 
in different EEG frequencies [35, 50]. Therefore, the imposed 
2 h advance of sleep time during the extension night affected 
sleep quality, which may have reduced the association be-
tween SWE and AD PRS found with baseline and recovery 
nights.

Figure 3. Associations between PRS for AD and SWE during recovery and extension nights and with SWE rebound. (A) Statistical outcomes of GLMs with SWE (0.5–4 Hz) 

in the recovery (REC; N = 353) and extension (EXT; N = 356) nights and with SWE rebound (REC/BAS; N = 344) versus AD PRS from conservative (p < 5 × 10−8) to inclusive 

(p < 1) p value level and using all SNPs. SWE rebound consists in the ratio between SWE in the first hour of sleep of recovery and baseline nights. GLMs are corrected for 

age and BMI, and TST for REC and EXT. Negative log transformation of p values of the associations is presented on the vertical axis. Horizontal lines indicate different 

p values thresholds: light blue = 0.05 (uncorrected); red = 0.00625 (experiment-wise correction; see Methods). (B) The positive association between SWE during recovery 

night and AD PRS at p < 1. Spearman correlation r is reported for completeness (r = 0.01, p = 0.06) refer to main text Supplementary Table S4 for statistical outputs of 

GLMs (353). (C) Positive association between SWE during recovery and SWE rebound (SWE REC/BAS): Spearman correlation r = 0.36, p < 0.001 (N = 344).
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Polygenic risk for AD is associated with increased 
subjective daytime sleepiness

We next focused on the non-EEG sleep metrics of our protocol 
and explored their potential association with AD PRS. Based on 
the 3 weeks of actigraphy with imposed regular habitual sleep 
time at home, we computed the probability of transition from 
rest to activity during the sleep period (kRA [11]). kRA is a proxy 
for sleep fragmentation and has been associated with cognitive 
decline and the risk for developing AD in cognitively normal 
older adults (mean age 81.6 years [11]). kRA showed a negative 
association (higher AD PRS is associated with less fragmented 
sleep) with PRS for AD for two p-value thresholds, p = 5 × 10−8 and 
p = 10−8 (Figure 4, A; Supplementary Table S5), but did not reach 
stringent experiment-wise correction for multiple comparisons 
(p < 0.002); it will not be further discussed.

Two questionnaires assessed habitual subjective sleep 
quality and daytime sleepiness before the start of the protocol. 
Subjective sleep quality was not significantly associated with AD 
PRS. By contrast, subjective daytime sleepiness was significantly 
associated with PRS for AD (p < 0.05; β ≥ 0.11) from thresholding 
at p < 10−4 up to a threshold of p < 1 and at stringent experiment-
wise correction for multiple comparisons at p-value thresholds 
of p < 0.05 and p < 0.3 (β ≥ 0.16; Figure 4, A; Supplementary Table 
S5). The association was positive indicating that higher habitual 
subjective daytime sleepiness was associated with higher AD 
PRS (Figure 4, B). This shows that the association between AD 
PRS and sleep need, as assessed by electrophysiology, is not a 
mere effect of the protocol and is mirrored at the behavioral 
level during habitual daytime functioning (outside the experi-
mental protocol). Importantly, the vast majority of participants 
had no or mild levels of sleepiness with a minority (N  =  28) 

reporting moderate level of daytime sleepiness; the association 
with daytime sleepiness is therefore not driven by extreme or 
clinically relevant sleepiness levels but rather by ordinary vari-
ability in healthy young individuals.

Discussion
We provide evidence that genetic liability for AD is related 
to sleep electrophysiology and daytime sleepiness in young 
adults (aged 18–31 years), that is, decades before typical onset 
age of clinical AD symptoms and at an age at which current AD 
biomarkers are typically negative. Our sample size is modest 
for the detection of small effect size associations, and we do 
not include a replication sample, so the present results should 
be considered as a proof-of-concept for linking AD liability 
and sleep in young adults. We emphasize, however, that the 
unique deep phenotyping of our protocol in hundreds of par-
ticipants, based on gold standard electrophysiology and com-
prising different sleep conditions, on the one hand, makes the 
creation of a replication sample difficult but, on the other, un-
doubtedly increased the sensitivity of our analyses so that we 
could find associations that survived stringent correction for 
multiple comparisons. In addition, we performed a negative 
control analysis using a PRS for height variables for which no 
association with sleep metrics was expected, and found no as-
sociation. Furthermore, the absence of links between PRS for 
AD and IQ and education suggest that the association between 
PRS for AD and SWE is more stable across subjects than the 
link previously isolated between AD and IQ or education [49]. 
Importantly, our protocol provides links between disease risk 
and sleep physiology in contrast to coarser phenotyping based 

Figure 4. Associations between PRS for AD and non-EEG sleep metrics. (A) Statistical outcomes of GLMs with actimetry-assessed sleep fragmentation (kRA; N = 361), 

subjective sleep quality (Sleep-qual; N = 363), and subjective daytime sleepiness (Day-sleepiness; N = 363) versus AD PRS from conservative (p < 5 × 10−8) to inclusive 

(p < 1) p value thresholds and using all SNPs. GLMs are corrected for age and BMI. The negative log transformation of p values of the associations is presented on the 

vertical axis. Horizontal lines indicate different p values: light blue = 0.05 (uncorrected); orange= 0.016 (corrected for three sleep metrics); red = 0.002 (experiment-wise 

correction). (B) The positive association between subjective daytime sleepiness and AD PRS at p < 0.05 (N = 363). Linear regression line shown for display purposes only; 

refer to the main text and Supplementary Table S5 for statistical outputs of GLMs.
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on sleep questionnaires or actimetry alone. Furthermore, to 
increase the genetic uniformity of the sample, we only in-
cluded Caucasian men within a narrow age range; they were 
healthy and devoid of any sleep disorders or sleep complaints 
and their prior sleep–wake history was recorded and stable. 
In this carefully selected homogenous sample, we show that 
higher PRS for AD was associated with producing denser or 
larger slow waves during baseline and recovery nighttime 
sleep, potentially with large slow-wave sleep rebound fol-
lowing sleep deprivation, and with reporting higher daytime 
sleepiness.

Larger and more abundant slow waves during habitual sleep 
in young and healthy individuals can result from an increased 
sleep need due to insufficient prior sleep [52]. This appears un-
likely: prior sleep–wake history was stringently controlled for 
3 weeks prior to entering the lab, ruling out undue sleep de-
privation, sleep restriction, or disrupted rhythmicity. Moreover, 
throughout the protocol, participants followed their own sleep 
schedule, a regime that should not expose them to important 
chronic sleep restriction. Finally, SWE during the sleep exten-
sion night did not significantly correlate with subjective daytime 
sleepiness (Spearman’s correlation r = 0.08, p = 0.11), supporting 
the idea that, when given a longer sleep opportunity, individ-
uals with higher and yet normal daytime sleepiness did not 
sleep more intensely to recover a putative prior sleep debt. 
Alternatively, increased slow-wave density and/or intensity 
could reflect a faster build-up of sleep need [53]. Indeed, sleep 
homeostasis is thought to result from molecular and cellular 
changes induced by waking brain function and behavior [54, 55]. 
Synaptic potentiation and increased synaptic strength resulting 
from waking experience are reflected in a progressive increased 
cortical excitability during wakefulness [56, 57] and an increase 
in slow-wave activity during subsequent sleep [54, 55]. Likewise, 
extracellular glutamate concentration and glutamatergic re-
ceptor density increase with time awake and affect brain func-
tion [58, 59]. Here, SWE rebound following sleep loss, that is, the 
ratio between baseline and recovery sleep, was only significantly 
associated with high PRS for AD for one p value threshold and 
at uncorrected significance threshold, but was strongly associ-
ated with SWE during recovery sleep. We, therefore, find only 
partial evidence for this second hypothesis, which will require 
more investigations.

How are these findings related to AD? The answer to this 
question remains speculative because the time course of AD 
processes across the lifespan is still poorly understood. In 
transgenic mice, neuronal activity locally increases the level of 
Aβ in the interstitial fluid and drives local Aβ aggregation [60]. 
Progressive Aβ deposition ultimately disrupts local functional 
connectivity and increases regional vulnerability to subsequent 
Aβ deposition [61]. We might thus hypothesize that individ-
uals with more intense brain activity during wakefulness (and 
therefore also during sleep) would also be exposed to larger Aβ 
extracellular levels and a greater risk of developing Aβ deposits. 
This hypothesis appears unlikely for the following reasons. First, 
postmortem examinations show that the earliest evidence of 
Aβ deposits (stage 1 [62]) is not observed before 30  years [63]. 
Second, Aβ oligomers might be released and exert their detri-
mental effect on brain function at an earlier age. However, in 
transgenic mice, sleep–wakefulness cycle and diurnal fluctu-
ation in brain extracellular Aβ remain normal until plaque for-
mation [64].

In contrast, given the age range of our population sample, the 
reported topography of pretangles at this age [16] and the power 
of PRS for AD to discriminate AD patients in case–control sam-
ples [43], higher PRS in our young sample might reflect the influ-
ence of incipient Tau aggregation onto sleep regulation through 
the LC (and other nonthalamic cortically projecting nuclei, as 
raphe nuclei) [16]. Tau, an intracellular protein, is also detected 
in the extracellular space. Over and above a low-level constitu-
tive tau secretion [65], neuronal activity increases the release 
of tau in the extracellular space [66], thereby participating in 
enhancing tau spread and tau pathology in vivo [67]. Moreover, 
early electrophysiological changes indicative of hyperexcitability 
are observed in intact neurons from transgenic tau mice [68]. In 
the cerebral cortex of tau transgenic mice, glutamatergic and 
GABAergic neurons are in a hypermetabolic state, characterized 
by a relative increase in production of glutamate [69]. In con-
trast, decreasing tau in epilepsy-prone transgenic mice reduces 
neuronal hyperexcitability [70]. These findings would suggest 
that a strong cerebral activity during wakefulness would result 
in a higher daily average in perceived sleepiness, a substantial 
tau release—which lead to the formation of pretangle aggre-
gates—and an enhanced sleep homeostasis processes, as indi-
cated by denser and larger slow waves.

The reasons for the vulnerability of LC to Tau aggregation are 
not established but might reside in its constant recruitment for 
essential functions, its energy demanding and ubiquitous brain 
connections, its high vascularization or its higher susceptibility 
to oxidative stress [15]. Although it is tantalizing to hypothesize 
that tau pretangle aggregates are involved in the mechanisms 
linking slow-wave sleep and AD liability, one can also specu-
late that it is the LC intrinsic characteristics that are related to 
(subsequent) tau vulnerability that associated with PRS for AD, 
meaning that the association would not necessarily require the 
presence of tau to be detected.

On the other hand, in tau transgenic mice, misfolded and 
hyperphosphorylated tau alters hippocampal synaptic plasticity 
[71], eventually induces a loss of hippocampal LTP and causes re-
duction of synaptic proteins and dendritic spines [72, 73]. These 
findings would predict a lower sleep need in participants with 
high AD liability. However, these detrimental processes may 
take place later on in the development of the disease or emerge 
from an interaction between tau and Ab [74, 75]. Accordingly, 
in older adults, significant associations, opposite to the current 
findings, were observed between slow-wave sleep and risk for 
AD based on PET biomarkers [7, 8]: higher Aβ [7] or tau NFT [8] 
burdens were associated with lower sleep slow-wave EEG power. 
Our results suggest therefore that the association between AD 
risk and sleep homeostasis changes with age: at an early stage, 
dense and large slow waves would be associated with increased 
AD risk. Later on, the ability to generate slow waves would play 
a protective role against AD risk. Deep sleep phenotyping across 
all ages and/or in long-term longitudinal studies will have to 
test this hypothesis.

We emphasize that the cross-sectional nature of our study 
precludes any causal interpretation of the association we find 
between AD and sleep. We further stress that PRS estimation 
based on all available SNPs may be biased by complex LD 
between SNPs. Since we find similar p values when pruning 
SNPs for LD at other p value thresholds, we are confident 
that the likely bias is not the main driver of the effects we re-
port. Furthermore, our sample only includes men and cannot, 
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therefore, be extended to the entire population. Women 
have been reported to have different sleep characteristics, 
including the production of more numerous and intense slow 
waves during sleep [76]. It is also worth mentioning that we 
cannot isolate in our findings the specific contributions of the 
circadian timing system, which is the second fundamental 
mechanism regulating sleep and wakefulness [35]. Although 
we find a significant association between AD PRS and base-
line/recovery SWE and daytime sleepiness across similar p 
value thresholds, more research is also required to determine 
how many SNPs one has to include, that is, what SNP selection 
strategy should be used to best predict AD. Previous studies 
support that using a lenient p value thresholds is successful 
in doing so [25, 43], thus we are confident that our finding is 
related to AD liability. Our PRS calculation was stringently 
controlled for the weight of chromosome 19 (see Methods) 
to avoid excessive contribution from APOE genotype, which 
is the genetic trait most associated with sporadic AD. When 
comparing APOE ε4 carriers genotype versus non-carriers, 
no significant difference in baseline night SWE and daytime 
sleepiness was observed (Supplementary Figure S4), in line 
with our findings that a large number of SNPs is required to 
find an association between SWE and PRS for AD.

The specificity of our findings for a given EEG frequency 
band and/or for NREM remains to be fully established. As 
many previous studies on linking sleep and AD risk [7, 8], we 
only focused on a limited set of sleep metrics and included a 
single power measure over a given frequency band. Although 
not the focus of the present article, we computed SWE, relative 
SWE (i.e. ratio between SWE and overnight total NREM power), 
overnight cumulated total power during NREM sleep and over-
night cumulated power in the 2–6 Hz band during REM sleep 
of the baseline night in individuals among the higher and 
lower AD PRS quartile (Supplementary Figure S5). This simple 
analysis indicates that individuals with 25% highest AD PRS 
had higher power than individuals with 25% lowest AD PRS for 
all three absolute measures (t-test; p ≤ 0.01 but not for relative 
SWE (p = 0.14), suggesting that our findings may not be spe-
cific to NREM sleep and SWE. We emphasize, however, that, 
given our modest sample size, our analyses were not planned 
to address such a question. This first preliminary analysis 
warrants future studies with larger sample size ensuring suf-
ficient power when using a larger set of sleep metrics. Since 
we also find that daytime sleepiness, a wakefulness trait, is 
associated with PRS for AD, and because of the link between 
tau protein and cortical excitability [70], neuronal activity 
synchrony during wakefulness should be associated with the 
risk for developing AD to assess whether isolated links are 
specific to sleep.

In conclusion, we find that denser and/or more intense 
sleep slow waves during baseline and recovery sleep and day-
time sleepiness are associated with the genetic liability for AD 
in young and healthy young men. This finding supports that 
sleep slow-wave and sleepiness measures may help early de-
tection of an increased risk for AD and reinforce the idea that 
sleep may be an efficient intervention target for AD. Similarly 
to most studies associating PRS to phenotypes of interest (e.g. 
[23–25, 45]), the effects we isolated constitute relatively small 
effects (r < 0.2), however, recalling that sleep must be envis-
aged within the multifactorial aspect of a complex disease 
such as AD [4].

Supplementary material
Supplementary material is available at SLEEP online.
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