Contribution à l'Étude anatomique et fonctionnelle de la Région céphalique de Gobio gobio (L.) (Pisces, Cyprinidae)
1. L'Appareil de Weber et les Structures connexes

Zur Anatomie und Funktion der Schädelregion von Gobio gobio (L.) (Pisces, Cyprinidae)
1. Der Webersche Apparat und mit ihm verbundene Strukturen

On the Anatomy and Function of the Head Region in Gobio gobio (L.) (Pisces, Cyprinidae)
1. The Weberian Apparatus and connected Structures

PIERRE VANDEWALLE

Author's address: P. Vandewalle, Université de Liège, Institut Ed. Van Beneden, Laboratoire de Morphologie, Systématique et Ecologie Animales (Prof. Ch. Jeuniaux), B–4000 Liège, Quai Van Beneden 22

(Received/Eingegangen: January 12, 1974)

Abstract: There are only slight differences between the skeleton of the Weberian apparatus of Gobio gobio and the other Ostariophys. On the other hand, as far as the ligaments of this anatomical device are concerned, the study of Gobio gobio compared with the few data of the literature suggests the existence of more important variations between the different Cypriniforms. Finally the mobility of the first vertebrate is very reduced.

Introduction

Nous pensons qu'il est utile de reprendre la description de l'appareil de Weber d'un autre Ostariophysaire, le Cyprinidé Gobio gobio (L.) dont CRANILIOV (1927) a décrit les os, en portant spécialement notre attention sur les ligaments et sur les rapports des différentes pièces squelettiques entre elles. Le présent travail s'inscrit dans un programme de recherche sur la morphologie fonctionnelle de la tête de G. gobio.

Matériel et Méthodes

Nous avons étudié, par des dissections et des colorations à l'alizarine, l'appareil de Weber de huit spécimens de G. gobio de longueur totale comprise entre 12,7 et 15,4 cm. Ces exemplaires furent recolts dans l'Ourthe à différents endroits.

Observations

L'appareil de Weber de G. gobio, comme celui des autres Ostariophysien général, est constitué de deux chaînes de quatre osselets (claustrum, scaphium, intercalaire et tripus) situées de part et d'autre des quatre premières vertèbres (fig. 1, 2).

La première vertèbre est réduite à son corps vertébral (fig. 1) et aux basiventraux qui développent chacun un processus latéral (fig. 2). Ses basidorsaux sont les scaphia au dessus desquels se trouvent les claustra (fig. 1), supradorsaux transformés (ROSEN et GREENWOOD, 1970).

Les corps des deuxième et troisième vertèbres sont fusionnés.

De la deuxième vertèbre, il ne reste que le corps vertébral et les basiventraux qui portent un processus latéral (fig. 1). Les basidorsaux forment les intercalaires (ROSEN et GREENWOOD, 1970).

La troisième vertèbre a un arc neural, une neuracanthe et un corps vertébral (fig. 1); ses basiventraux et leur côte sont complètement soudés pour former les tripus (ROSEN et GREENWOOD, 1970).

En avant de la neuracanthe, il y a un supraneural sous lequel se trouve un peu de cartilage (fig. 1).

Enfin, à la quatrième vertèbre, il ne manque que la neuracanthe (fig. 1); les basiventraux sont fusionnés à leurs côtes et forment les os suspenseurs (fig. 1, sA) au niveau desquels s'accrochent la vessie natatoire (fig. 2B). Celle-ci n'a aucune relation avec la peau: elle en est séparée par les côtes et les muscles qui entourent la cavité abdominale.
Les quatre osselets de Weber ne sont pas soudés aux vertèbres et constituent une série mobile.

Le claustreum est accolé à la gaine de la moelle épinière. Il est relié dorsalement au premier supraneural par un ligament (li. 3) (fig. 1). Ventralement il est emboité dans le scaphium, creux dans sa région médiane (fig. 1). Des fibres courtes unissent les deux os.

Le scaphium appuie en avant sur le sinus impar périlymphaticus et est articulé en arrière sur le corps unique des deuxième et troisième vertèbres (fig. 1).

L'intercalaire, uni par les ligaments li. 1 et li. 2 au scaphium d'une part, au tripus d'autre part, a deux pointes postérieures articulées latéralement sur les deuxième et troisième vertèbres (fig. 1).

Le tripus, d'une pièce, est attaché par des fibres courtes à la troisième vertèbre. Un ligament (li. 4) l'unit à la région antérieure de l'os suspenseur (fig. 2B). Son extrémité postérieure ou transformateur pénètre la tunique externe de la vessie natatoire; il est relié à la région postérieure de l'os suspenseur par le ligament li. 5 (fig. 2B).
Nous n’avons pas trouvé le saccus paravertebralis qui entoure les osselets de Weber, décrit notamment par ALEXANDER (1962).

En plus des ligaments déjà cités, il en existe (fig. 1, 2B):
- entre le premier supraneural et les exoccipitaux (li. 6);
- entre le quatrième arc neural et le cinquième (li. 7); ce ligament, aussi appelé oblique interneural est en grande partie ossifié entre les arcs neuraux suivants (li. 7');
- entre la première vertèbre et le processus postérieur du basioccipital (li. 8);
- entre la deuxième vertèbre et le processus postérieur du basioccipital (li. 9);
- entre le processus latéral de la première vertèbre et le supracleithrum (li. 10);
- entre le processus latéral de la deuxième vertèbre et le corps de la première (li. 11);
- entre le processus latéral de l’os suspenseur et la cinquième côte (li. 12);
- entre chaque paire de côtes (li. 13);
- entre les neuracanthes des quatrième et cinquième vertèbres (li. 14); ce ligament n’est peut-être qu’un épaississement de la membrane qui s’étale entre les neuracanthes.

Discussion et Conclusions

1. Ostéologie

Il y a peu de différences essentielles entre l’appareil de Weber de *G. gobio* et celui des autres Ostariophysi.
La tendance à l’enkylose des premières vertèbres, comme chez les Siluriformes (BRIDGE et HADDON, 1894; CHRANILIOV, 1929; CHARDON, 1968) ou chez certains Cyprinoidei (CHRANI-
LOV, 1927; RAMASWAMI, 1952, 1953, 1955) est attestée par la fusion des deuxième et troi-
sième vertèbres. Cependant de nombreux Cyprinidae (CHRANILIOV, 1927; RAMASWAMI, 1955b) ainsi que les Gymnotoidei (CHARDON et DE LA HOZ, 1973; DE LA HOZ, en prépa-
ration) et les Characoidei décrits par WEITZMAN (1962, 1964) et ROBERTS (1969), ont
encore les quatre premières vertèbres libres.

Le tripus est d’une pièce comme chez le plupart des Cyprinoidei (CHRANILIOV, 1927; RA-
MASWAMI, 1952, 1953, 1955). Ce n’est pas le cas chez les Gymnotoidei (CHARDON et DE
LA HOZ, 1973; DE LA HOZ, en préparation) ni chez certains Characoidei (MONOD, 1950;

Le basiventral de la quatrième vertèbre est fusionné à sa côte chez G. gobio alors que chez
Gobio polytaenia (d’après RAMASWAMI, 1955a) et chez les Gymnotoidei (CHARDON et
DE LA HOZ, 1973; DE LA HOZ, en préparation), il existe encore une suture entre les deux
pièces.

2. Ligaments

Nous manquons de données qui permettent une comparaison complète des ligamen-
ts de G. gobio avec ceux des autres Cyprinidae et des Ostariophys en général. Nous
pouvons cependant proposer quelques remarques qui illustrent les variations importantes
du plan des ligaments au sein des Ostariophys.

a) — Les ligaments li. 1, li. 2, li. 4, et li. 5 semblent, d’après ALEXANDER (1962, 1964)
exister chez tous les Ostariophys pour autant que les osselets de Weber soient bien
individualisés.
— Le ligament li. 6 et les ligaments intercostaux (li. 7 et li. 7') de G. gobio existent chez
Brycon meeki jeune (ROSEN et GREENWOOD, 1970) et chez les Gymnotoidei (DE LA
HOZ, en préparation).
— Il n’existe pas chez G. gobio de ligament neuro-parapophysaire (ligament qui unit
l’arc neural au basiventral et à la côte d’une même vertèbre) décrit chez Brycon meeki
jeune (ROSEN et GREENWOOD, 1970). DE LA HOZ (en préparation) fait à juste titre
remarquer que ce ligament est peut-être homologue de celui qui unit le corps au ba-
siventral de la quatrième vertèbre et des suivantes chez les Gymnotoidei.

b) En ce qui concerne les autres ligaments nous ne disposons pour établir une comparaison
que du travail de DE LA HOZ (en préparation). Nous nous proposons de relever entre G. gobio
et les Gymnotoidei:
— il n’y a pas de claustrum chez les Gymnotoidei; il est possible dès lors que le liga-
ment li. 3 de G. gobio soit homologue de celui qui unit le scaphium au supraneural
des Gymnotoidei;
— la première vertèbre des Gymnotes n’a pas de processus latéral; il est donc probable
que le ligament inséré sur l’extrémité du processus latéral de la deuxième vertèbre
chez les Gymnotes joue le même rôle que le ligament li. 7 de G. gobio;
— il y a chez les Gymnotes et non chez *G. gobio* un ligament entre le processus latéral de la deuxième vertèbre et la côte libre de la quatrième, ainsi qu’un autre qui unit la côte d’une vertèbre à la paraphophyse et à la base de la côte de la vertèbre suivante, à partir de la quatrième;
— il y a en plus chez *G. gobio* des ligaments li. 8 et li. 9.

c) Il est possible que les ligaments li. 4, li. 12 et li. 13 soient homodynamiques. En effet le processus latéral de l’os suspenseur correspond très probablement à la côte de la quatrième vertèbre.

Il semble également que la moitié postérieure du tripus soit d’origine costale. Cette côte a changé d’orientation par rapport aux autres. Dès lors il est possible que le ligament intercostal entre les troisième et quatrième côtes ait glissé vers l’intérieur et se soit fixé sur le basiventral de la quatrième vertèbre qui, chez *G. gobio*, forme la partie interne de l’os suspenseur. Le ligament li. 4 serait donc un ligament intercostal comme li. 13.

3. Remarques fonctionnelles

1. On constate chez de nombreux Ostariophysus une tendance à la perte de la mobilité des premières vertèbres entre elles et par rapport au neurocrâne (CHRALILOV, 1927, 1929; RAMASWAMI, 1952, 1953, 1955; CHARDON, 1968). Chez *G. gobio*, en plus de la fusion des corps des deuxième et troisième vertèbres, les trois premières vertèbres ont peu de liberté. En effet, le premier supraneural, soudé aux deuxième et troisième vertèbres, et relié aux exoccipitaux par un ligament très court, ne permet qu’une faible rotation vers le haut ou vers le bas des premières vertèbres (fig. 1); les mouvements latéraux sont également réduits par la présence des ligaments li. 8 et li. 9 (fig. 1) qui rendent les trois premières vertèbres solides du processus postérieur du basioccipital. Seule la quatrième vertèbre jouit d’une mobilité probablement égale à celle des suivantes.

2. Les osselets de l’appareil de Weber de *G. gobio* sont articulés sur les corps des vertèbres et séparés les uns des autres par des ligaments. Cette disposition est sans doute à mettre en rapport avec la mobilité que conserve la quatrième vertèbre à laquelle s’attache la vessie natatoire et rappelle la situation décrite chez la plupart des Siluriformes de type généralisé (CHARDON, 1968).

Remerciements

Qu’il nous soit permis d’exprimer notre vive reconnaissance à Monsieur E. de la Hoz avec qui nous avons eu de fructueuses discussions et qui nous a fait part de renseignements non publiés. Nous remercions également Messieurs J. Voss, de l’aquarium de l’Université de Liège, et J. Cl. Philippart qui nous ont procuré les spécimens de *G. gobio* nécessaires à notre étude.
Liste des Abréviations

a.ne.4 : arc neural de la 4ème vertèbre;
boc : basioccipital;
car : cartilage;
cl : claustrum;
cô.v.5,6 : 5ème, 6ème côte;
c.v.1,4,5,6,7 : corps des 1ère, 4ème, 5ème, 6ème et 7ème vertèbres;
c.v.2,3 : corps unique des 2ème et 3ème vertèbres;
exoc : exoccipital;
inct : intercalaire;
li. 1,..., 14 : ligaments 1 à 14;
nép.v.3,5,6 : neuracanthe des 3ème, 5ème et 6ème vertèbres;
p.lat.1,2,4 : processus latéral des 1ère, 2ème et 4ème vertèbres;
p.p.boc : processus postérieur du basioccipital;
ptot : ptérotique;
sc : scaphium;
s.ne.1,2,3 : 1er, 2ème et 3ème supraneuraux;
soc : supraoccipital;
susp : os suspensor;
tri : tripus;
ves : vessie natatoire.

References

BRIDGE, T. W., et A. C. HADDON: Contribution to the anatomy of fishes. II. The air-bladder and Weberian ossicles in the silurid fishes. Phil. Trans. (B) 184, 65–334 (1894).

