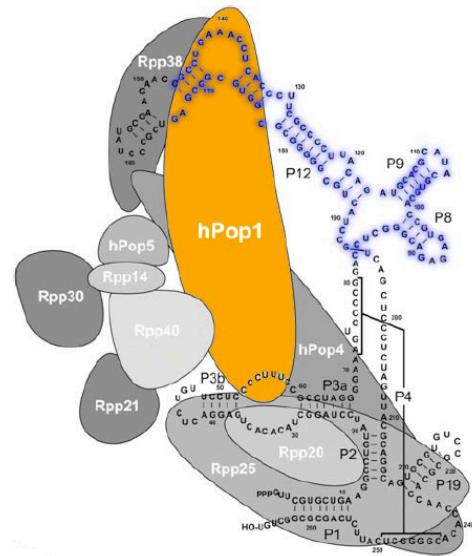


Po4.70.A

***POP1*-Skeletal Dysplasias : Description of Two New Families.**

J. Harvengt¹, S. Alkan¹, B. Florkin², S. Bulk¹, V. Bours¹.


¹CHU of Liège Sart Tilman, Human Genetic department, Liège, Belgium.

²CHU of Liège CHR Citadelle, Pediatric department, Liège, Belgium.

Background *POP1* mutations should be considered in anauxetic dysplasia (AD) patients without *RMRP* mutations but also in skeletal dysplasia (SD) of different severities. To date, only 5 patients were reported.

RMRP mutation
Cartilage Hair Hypoplasia
Metaphyseal chondrodysplasia
(Mckusick type)

RMRP =
RNase MRP complex

POP1 mutation
Anauxetic Dysplasia 2
Spondyloepimetaphyseal dysplasia

Domains of RMRP RNA that have been implicated in anauxetic dysplasia

Citation: Glazov EA, Zankl A, Donskoi M, Kenna TJ, Thomas GP, et al. (2011) Whole-Exome Re-Sequencing in a Family Quartet Identifies *POP1* Mutations As the Cause of a Novel Skeletal Dysplasia. *PLoS Genet* 7(3): e1002027. doi:10.1371/journal.pgen.1002027

Welting, T.J., van Venrooij, W.J. & Pruijn, G.J. Mutual interactions between subunits of the human RNase MRP ribonucleoprotein complex. *Nucleic Acids Res* **32**, 2138-46 (2004).

FAMILY 1 – A 4 years boy.

Personal history :

Normal delivery, at term.

BW 3845 gr (+1DS) – BH 47 cm (-2DS) - BHC 38 cm (P75)

Familial history:

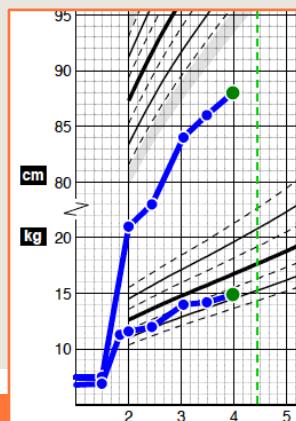
Mother H : 170 cm. Father H : 174 cm

Turkish origin. Consanguinity.

Older sister with hypochondroplasia (diagnosis based on clinical criterias, GH treatment). Final Height 160 cm.

Clinical description:

Age 1 an et 5/12 ;


H 71 cm (-3,88DS)

W 9kg630 (-0,98DS)

HC 51 cm (+2,88 DS)

Normal psychomotor development.

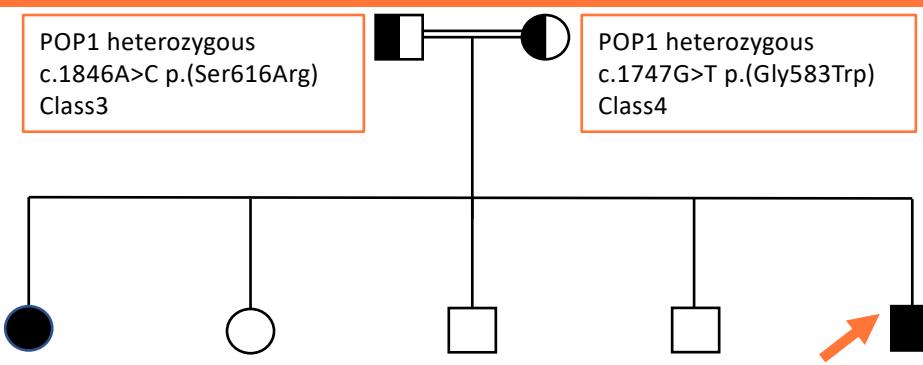
Normal langage.

Cervicocranial MRI: Normal

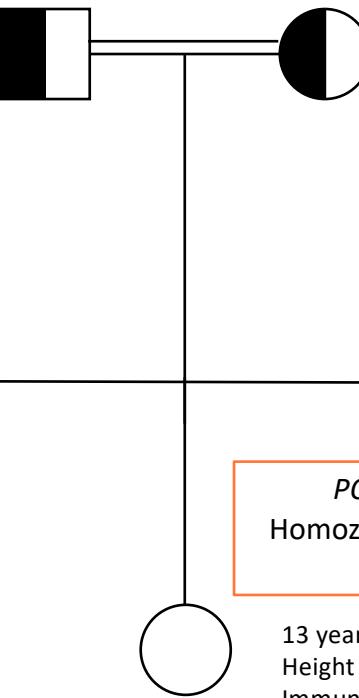
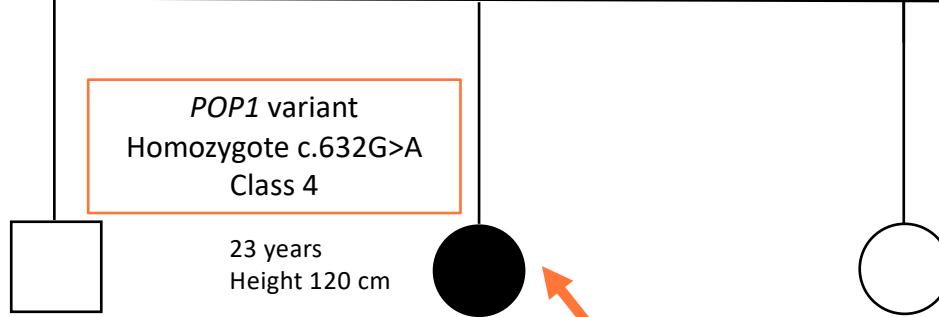
Endocrinologic Work up : Normal

Neuropediatric evaluation : Normal

Genetics

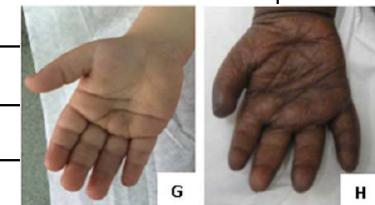

FGFR3 : negative

Standard Karyotype : normal



CGH array : 46, XY

Mucopolysaccharides : normal

POP1 heterozygous
c.1846A>C p.(Ser616Arg)
Class3



FAMILY 2 – Two sisters with severe short stature.

DISCUSSION - Literature review : 5 published patients with POP1 mutation.

	1	2	3	4	5	CLINICAL OBSERVATIONS
Sex	F	M	F	F	M	
Age	4,6	6	1		5	
Height (SDS)	-5,5	-10,2			-7,1	
Dysmorphism						1/3 Midface Hypoplasia – 1/3 Hypopigmented hair
Hands and Feet						3/3 Brachydactylyia
Psychomotor dev.						1/3 Cognitive Delay
Other findings						1/2 Deficiency of Complex I of the respiratory chain
Diagnosis Hypothesis	SD	CHH/AD	AD	AD	AD	Barrazza et al, 2017
	1	2	3	4	5	RADIOLOGICAL OBSERVATIONS
Sex	F	M	F	F	M	
Age	4,6	6	1		5	
Height (SDS)	-5,5	-10,2			-7,1	
Bone Age						4/4 Delayed bone age
Hands and Feet						3/4 Bullet Shaped Middle phalanges
Pelvic Bones						3/3 Hypoplastic Iliia – 2/3 Coxa Vara
Vertebral Column						2/4 Cervical Spine instability

Barrazza et al, 2017

Barrazza et al, 2017

No Data
 Positive patient
 Negative for the symptoms/Others signs reported

Patients 1 and 2 = Barrazza et al, 2017

Patients 3 and 4 = Glazov et al, 2011

Patient 5 = Elalaoui ,2016

CONCLUSION We describe two new families with *POP1* mutations encountered in patients clinically suspected for CHH and achondroplasia, enhancing that the phenotypical spectrum is larger than AD type 2. Larger cohorts of patients are needed to improve the clinical characterization, especially the risk of having associated symptoms such as immune deficiency.

***POP1* Patients features**

- *Severe short stature of prenatal onset
- *Very short adult height (less than 1 meter – our patients 120 cm and 160 cm)
- *Hypodontia
- *Midface hypoplasia
- *Mild intellectual disability
- *Radiological specific findings – But only 5 patients described until now

***POP1* : More associated features?**

- *Immune deficiency?
- * Positive response to growth hormone?

References

1. Barraza-García J, Rivera-Pedroza CI, Hisado-Oliva A, et al. Broadening the phenotypic spectrum of *POP1*-skeletal dysplasias: identification of *POP1* mutations in a mild and severe skeletal dysplasia. *Clin Genet.* 2017;92(1):91–98.
2. Elalaoui SC, Laarabi FZ, Mansouri M, Mrani NA, Nishimura G, Sefiani A. Further evidence of *POP1* mutations as the cause of anauxetic dysplasia. *Am J Med Genet A.* 2016;170(9):2462-2465. doi:10.1002/ajmg.a.37839
3. Glazov EA, Zankl A, Donskoi M, et al. Whole-Exome Re-Sequencing in a Family Quartet Identifies *POP1* Mutations As the Cause of a Novel Skeletal Dysplasia. *PLOS Genet.* 2011;7(3):e1002027. doi:10.1371/journal.pgen.1002027
4. Welting TJM, van Venrooij WJ, Pruijn GJM. Mutual interactions between subunits of the human RNase MRP ribonucleoprotein complex. *Nucleic Acids Res.* 2004;32(7):2138-2146. doi:10.1093/nar/gkh539
5. Lygerou Z, Mitchell P, Petfalski E, Seraphin B, Tollervey D. The *POP1* gene encodes a protein component common to the RNase MRP and RNase P ribonucleoproteins. *Genes Dev.* 1994;8(12):1423-1433. doi:10.1101/gad.8.12.1423

- * The authors have nothing to disclose.
- * The authors thank the OSCAR Rare Medical Disease Center , Necker, Paris for its advice for family 1 (medical staff).

