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Abstract 

Background: Human mesenchymal stromal cells (hMSCs) have become attractive candidates 

for advanced medical cell-based therapies. An in vitro expansion step is routinely used to reach 

the required clinical quantities. However, this is influenced by many variables including donor 

characteristics such as age and gender, and culture conditions, such as cell seeding density and 

available culture surface area. Computational modeling in general and machine learning in 

particular could play a significant role in deciphering the relationship between the individual 

donor characteristics and their growth dynamics. Methods: In this study, hMSCs obtained from 

174 male and female donors, ages ranging from 3 to 64 with passage numbers ranging from 2 

to 27 were studied. We applied a Random Forests (RF) technique to model the cell expansion 

procedure by predicting the population doubling time (PDT) for each passage, taking into 

account individual donor-related characteristics. Results: Using the RF model, the mean 

absolute error between model predictions and experimental results for the PDT in passage 1 to 

4 is significantly lower compared to the errors obtained with theoretical estimates or historic 

data. Moreover, statistical analysis indicate that the PD and PDT in different age categories are 

significantly different, especially the youngest group (aged <10 yrs) compared to the other age 

groups. Discussion: In summary, we introduce a predictive computational model describing in 

vitro cell expansion dynamics based on individual donor characteristics, an approach that could 

greatly assist toward automation of a cell expansion culture process.  
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1 Introduction 

Human mesenchymal stromal cells (hMSCs) are attractive candidates for a large number of 

cell-based therapies [1, 2]. In most cell-based therapies, a very large amount of cells is required 

which can vary from 106 to 108 cells depending on the application and treatment site [3]. 

However, a biopsy from a donor, be it a bone marrow of adipose tissue aspirate or a periosteal 

sample, only delivers a few thousand cells (per ml or mm², respectively). Therefore, in vitro 

cell expansion is an essential step in every cell-based therapy, which should be preferably fast 

but ultimately cost-effective [4].  

Translating the cell expansion process towards clinical implementation requires a tight quality 

control of the process, including the preservation of cell identity and potency, with – where 

possible – removal of sources of variability. The variation in any biological product is mainly 

attributed to four factors: raw materials (including consumables), operational inputs 

(measurements, methods, personnel, equipment), environmental factors (e.g., change in room 

temperature within normal range), and biological variability inherent to living cells [5]. 

Inherent variability coming from the cells is a major source of variation in the autologous cell 

expansion process, where natural factors such as the age and gender of the donor have been 

shown to influence the expansion characteristics such as population doubling time (PDT) [6, 

7]. Predicting the PDT for such a variable system can be challenging [3] and, in current 

practice, is mostly based on historically obtained average PDTs, complemented with visual 

inspection of the degree of confluency.  
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Various studies have been reported in the literature that investigate the link between donor 

characteristics and cellular behavior. Heathman et al. [8], used bone marrow derived stem cells 

from five male and female donors and measured the cumulative population doubling over five 

passages and discussed the implications of the measurable input variation such as the 

metabolite production rate and nutrient consumption rate on the manufacturing of cell-based 

therapies. Li et al. [9], studied the proliferation capacity of 17 samples of MSCs isolated from 

human bone marrow where an increase in population doubling time and decrease in the number 

of colonies formed was observed in older donors. Choi et al. [10] investigated how the 

morphology, cell-surface markers, proliferation potential and differentiation capacity of tonsil-

derived MSCs from 20 donors aged from 5 to 54 years were affected by the donor age, long-

term passage, and cryopreservation. Overall, these studies cover relatively small sets of donors, 

limiting the array of techniques used to analyze the obtained data to descriptive statistics 

mostly.  

Machine learning is an area of artificial intelligence that uses statistical techniques to unveil 

insights and predictive relations in large data sets. Some examples of machine learning 

techniques include Artificial Neural Network (ANN), Support Vector Machines (SVM) and 

Random Forests (RF), each having their specific theoretical underpinnings and 

(dis)advantages. There is an increasing number of applications of machine learning in the 

biomedical context and only a few examples of these studies will be mentioned here. Furey et 

al. [11] used support vector machine classification for separating malignant from healthy tissue 

using microarray expression data. Monteiro et al. [12] used machine learning techniques to 

improve the prediction of functional outcome in ischemic stroke patients. Shaikhina et al. [13] 

used Random Forests models to predict the outcome in antibody incompatible kidney 

transplantation. Random Forests is a machine learning algorithm that is often applied in 

classification and regression problems [14].  It is frequently used due to its unique advantages 
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in dealing with small sample size, high-dimensional feature space, and complex data structures 

[15, 16].  

In this study, we will apply machine learning to the data obtained from our periosteal hMSC 

donor bank containing 174 patient samples. We will start by explaining the experimental set-

up used to collect the donor information followed by simple statistical analysis of the donor 

information. Subsequently, we will apply a Random Forests algorithm to obtain a predictive 

model for the cell expansion procedure, by predicting the PDT per passage. We will compare 

these predictions with the commonly used predictors for PDT, being the theoretical and 

historical means. To the best of our knowledge, this study is the first to apply machine learning 

on data derived from a sufficiently large MSC donor bank in order to predict the patient-

specific in vitro cell expansion process. 

2 Materials and Methods 

2.1 Experimental set-up 

2.1.1 Human periosteum derived stem cell culture 

The cells used in this study are human periosteum derived stem cells (hPDC).  These cells have 

been extensively studied by our lab and others, and have been shown to exhibit MSC features. 

Regardless of donor age and species of origin, these cells were shown to be clonogenic, could 

be expanded extensively in monolayer, displayed long telomeres and expressed typical MSC 

markers. Furthermore, under specific conditions, both parental and single-cell-derived clonal 

cell populations were able to differentiate into chondrocyte, osteoblast, adipocyte and skeletal 

myocyte lineages in vitro and in vivo [17, 18].  

hPDCs were isolated from periosteal tissue biopsies from the tibia, obtained from patients 

undergoing orthopedic surgery to treat a non-union, perform limb lengthening or perform tibial 

varus/valgus correction. All procedures were approved by the ethics committee for Human 



7 
 

Medical Research (KU Leuven) and explicit patient (or parental) consent was obtained. In this 

study, donors having a known genetic defect impacting the skeleton were excluded.  

The cells were expanded in monolayer in culture medium consisting of high glucose 

Dulbecco’s modified Eagle’s medium (Invitrogen, Merelbeke, Belgium) supplemented with 

10% irradiated fetal bovine serum (iFBS; Gibco,Merelbeke, Belgium), 1% sodium pyruvate 

(Invitrogen) and 1% antibiotic–antimycotic (100 units/ml penicillin, 100 mg/ml streptomycin, 

and 0.25 mg/ml amphotericin B; Invitrogen) as described by Eyckmans and Luyten [18]).  - 

2.1.2 Cell culture metrics 

The expansion of cells was performed in multiple passages of 2D culturing. In the first phase 

(passage 0 or P0), the cells from an enzymatically digested biopsy were relocated from a 6-

well plate to a larger plastic surface and covered with growth medium. These plastic surfaces 

were tissue flasks with a surface of 25 cm², 75 cm2 or 175 cm², depending on the number of 

cells available for seeding. The initial seeding density depended on the size of the sample 

obtained from the surgery and was therefore not the same for every donor. However, for all 

subsequent passages, a seeding density of 5700 cells/cm2 was used throughout the expansion 

processes. Upon reaching near-confluence by visual inspection, cells were released from the 

substrate using trypsinization and a part of the cells (or all the cells) from the previous 

subculture were re-plated onto a new and larger plastic culture surface and covered with fresh 

growth medium, signifying the start of passage 1 (P1). Every subsequent passage started with 

a redistribution of cells over multiple new growth surfaces. This procedure was continued until 

the desired amount of cells was reached. The initial (and main) purpose of the hPDC bank was 

to be able to perform tissue engineering experiments with a clinically relevant cell source and 

to be able to investigate the effect of donor variation on said tissue engineering experiments. 

This explains the heterogeneity of the available information as cells were not routinely cultured 

up to senescence to record a full growth curve. Full growth curves were only recorded for a 
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limited number of donors, unrelated to the cells’ behavior. In the data set used for this study, 

data from 174 male and female donors was included, ages ranging from 3 to 64 with passage 

numbers ranging from 2 to 27. For each donor only the age, gender and absence of known 

genetic disorders was available, in compliance with the GDPR standard.  

2.1.3 Population doubling (PD) and population doubling time (PDT) 

The number of population doublings is the number of times the population of cells doubles, 

which can be expressed per passage or as a cumulative number for the total expansion process. 

It is calculated as follows. 

𝑃𝐷 = 𝑙𝑜𝑔
(

   
   

)
 (1) 

 

Another way to quantify the expansion of cells is by the population doubling time, which is the 

time needed for one population doubling. It is calculated as follows. 

𝑃𝐷𝑇 =  
𝐶𝑢𝑙𝑡𝑢𝑟𝑒 𝑡𝑖𝑚𝑒

𝑃𝐷
 (2) 

In every cell-based therapy, the population doubling time is of great importance since it is the 

main factor influencing the length of the expansion process and therefore a major cost driver. 

For example, for autologous therapies, the operators need to know how long it will take until 

they get the required amount of cells and, therefore, when the physicians can administer the 

therapy. 

2.1.4 Statistical Analysis 

Comparisons of PD or PDT in function of age or passage number were performed using one-

way ANOVA tests in MATLAB (MathWorks®). A p-value < 0.05 was considered statistically 

significant.  
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2.2 Predicting the PDT 

2.2.1 Rule of thumb estimates for PDT 

According to the current practice in our lab, and most other labs, the PDT is estimated using a 

rule of thumb that is based either on theoretical arguments (gold standard) or historical 

observations, and does not take into account the individual donor characteristics. This gold 

standard states that adding one million HPDCs to a T175 flask, will lead to the harvest of about 

three million cells 7 days later. Therefore, the PD and PDT for every donor and in every passage 

would be 1.58 and 4.41 days respectively. Historic observations allow to make a calculation of 

the mean PD per passage over all donors in the data set, which is more interesting than having 

a single value for all passages. Indeed, it has repeatedly been shown that the cell growth rate 

slows down with  increasing culture time [19]. This leads to mean values for PD and PDT in 

the following ranges: 2.55 (P1) – 0.52 (P20) and 3.23 (P1) – 28.74 (P20) days respectively.  

2.2.2 Supervised learning methods and Random Forests (RF) 

In supervised machine learning methods, the available data is separated in a training set and a 

test set. The training set is used to learn the hidden structure of the system by mapping the 

inputs to the outputs. The trained network therefore allows to predict a specific outcome based 

on a given input. This network is used subsequently to predict the output of the system for the 

unseen conditions in the test set [20, 21]. There are numerous studies that have applied 

supervised learning methods in a wide range of areas [22-24]. In this study we use the Random 

Forests (RF) technique for predicting the PDT. 

Decision trees are tree-like graphs applied to both classification and regression problems. 

Decision trees can be displayed graphically which makes them very easy to interpret even by 

non-experts, but they suffer from high variance where a small change in the data can cause a 

large variation in the estimated output, making them non-robust [25]. ‘Bagging’ of 
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classification trees is an ensemble learning method which can overcome the problems of 

decision trees by constructing regression trees using bootstrapped training sets. The output is 

achieved by taking the average of the resulting predictions [26]. In 2001, Breiman proposed 

the RF algorithm which introduces an improvement over bagged trees by adding an additional 

layer of randomness to bagging that decorrelates the trees [14]. In bagging, each time a split in 

a tree occurs, the best split among all predictors is considered whereas in RF, each node is split 

using the best among a random subset of variables. Typically at each split, approximately a 

square root of the total number of predictors is considered [25]. Therefore, the RF algorithm 

only has two parameters to vary which are the number of allowed predictors at each split (mtry) 

and the total number of trees used in the forest (ntree). Usually the tree performance is not very 

sensitive to the value of these two parameters [27]. Additional information on the 

aforementioned concepts, as well as a graphical representation of the RF technique is provided 

in supplementary materials.  

An important feature of RF technique is the Out-Of-Bag (OOB) error [28]. Each bagged tree 

uses around two-third of the observations. The remaining observations that are not used to fit 

a given bagged tree are specified as the OOB observations. Since the output for each 

observation is predicted using only the trees that were not fit using that observation, the OOB 

error is considered as a credible estimate of the test error for the bagged model. The OOB error 

of the RF is obtained by taking the average error of the observations from the dataset using the 

OOB trees. Therefore, this built-in internal validation causes the error estimation to be less 

optimistic and is generally considered as a reliable estimator of the expected error for 

independent data [25]. Furthermore, this feature helps RF to avoid overfitting [14, 16]. 

In this study, a RF model for predicting the PDT in P1 to P4 was created in the software R, 

using its randomForest package. For predicting the PDT of P1 (referred to as PDT1 in the 

remainder of the paper), the input parameters were the (i) age and (ii) gender of the donor, (iii) 
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the available culture surface area used in the passage for P1, (iv) the number of cells seeded at 

the beginning of the passage in P1 and (v) the culture time (Ctime) of the previous (P0) passage. 

For predicting the PDT2, PDT3 and PDT4, the PDT and the Ctime of all previous passages 

were also added to the input parameters to further improve the performance of the model. The 

prediction results of the RF method were compared with the rule of thumb methods’ PDT 

estimates. 

3 Results 

3.1 Analysis of the donor population and cell growth characteristics 

In the period 2012-2018, 174 donors were added to the cell bank. Given the variability in the 

amount of cells extracted from the biopsy, information on population doubling times at passage 

0 (P0) is not available for all donors. Therefore, in this study, we did not include a model for 

P0 and all model predictions start from P1. An overview of all 174 donors based on the number 

of donors in each passage (from P1 to P20) is shown in Figure 1A. Figure 1B shows the number 

of donors in different age categories in the entire donor set and for the selection used in the 

model (cfr infra). Out of the 174 donors, only 4 donors were cultured for more than 17 passages. 

Figure 1C shows the cumulative population doubling (CPD) of these 4 donors over time, 

labeled by their respective ages at harvest.  

In order to investigate if the age of donors has any effect on the PD and PDT in different 

passages, we have categorized donors into six different age groups. Groups one to five 

comprise donors with the ages of 0 to 50 years, divided in 10 year intervals. Group six are the 

oldest donors with ages over 50 years. Figures 2 and 3 show the PD and the PDT from P1 to 

P4 for the aforementioned age categories respectively. 

As is shown, the age of the donor has an important effect on the amount of PD and PDT where 

younger donors, on average, have higher PD and lower PDT. Significant differences were 
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observed between the PD and PDT of the first group aged less than 10 years with the rest of 

the groups, except for PD1 where the significant difference is only between the first and the 

second age group. No significant differences were observed between the donors in the middle 

age categories (20 to 50 years). 

To better evaluate the PD and PDT over the entire culture period, the mean and standard 

deviation of PD and PDT in each passage is calculated. Note that, the number of donors in each 

passage used for calculating the mean and standard error are different, as shown in Figure 1A. 

As is shown in Figure 4A, the first few passages have the highest PD and the average PD is 

decreasing as the number of passages are increasing. The average PDT seems to slightly 

increase over different passages (Figure 4B) but no significant differences could be detected 

due to the large variation in the data set. Figure 4C shows the mean and standard deviation of 

the CPD of all donors from P1 to P6 divided in their respective age categories. Data is shown 

up until P6 as there are only a few donors (~10% of the total donor set) that go beyond P6. The 

average amount of CPD in all passages is higher for younger donors and a clear correlation 

between CPD and age of the donor is observed. The youngest group (aged 10 years or less), 

have the highest CPD in all passages.  

3.2 Predictive modeling of population doubling time 

Out of 174 donors, 141 donors were cultured at least up to P4. The 33 donors for which the 

growth curve up to P4 was not available were excluded from the data set. Additionally, for a 

limited amount of donors in certain passages, the amount of harvested cells was only slightly 

higher – or even lower – than the amount of seeded cells, leading to a very large– or negative 

– value for the PDT. For example, for a specific donor in P3, after 7 days, we have harvested 

940.000 cells while we started with 106 seeded cells. This would lead to a value for PD and 

PDT of -0.0893 and -78.41 days respectively. For other donors, certain passage’s culture time 
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was prolonged beyond the usual 1-week time point due to slow cell growth. Out of the 141 

remaining donors, 10 donors had at least 1 PDT greater than 10 days or 1 negative PDT. As 

the PDT values for previous and subsequent passages for those 10 donors were in the normal 

ranges, these particular passages were considered to be outliers and the donors were omitted 

from the data set. This omission was performed manually in this study, but could easily be 

included in the model as a pre-model quality check using the same criteria as for the manual 

curation step. After this step, 131 donors remained to build a predictive model for PDT in P1 

to P4. This exclusion criteria can be used during the actual expansion process to delineate the 

context of use of the RF model (i.e. in which conditions the model applies). The number of 

donors in each age category for the 131 donors used in the model is shown in figure 1B. Donors 

from all age categories were present in the data set, therefore, the model trained on this data is 

be applicable to all age groups. 

An RF model was constructed for each passage separately using 70% of the donors (91 donors) 

for training the RF model and 30% of the donors (40 donors) for testing the performance of the 

model after its construction. To optimize the performance of the RF model, the two main 

variables of the model, mtry and ntree, were tuned. An mtry value of 1 resulted in the lowest 

OOB error. As mentioned earlier, the RF technique is not very sensitive to the number of trees 

and we did not observe a noticeable difference in the performance of the model using different 

tree numbers. Therefore, the RF model using 1000 trees with one variable randomly sampled 

at each split was identified to perform best. The OOB error for different mtry values and the 

MAE of the prediction for different ntree values are provided in the supplementary material. 

The results of the RF model for predicting the PDT in P1 to P4 are shown in Figure 5 with 

model predictions for the donors in the test set that was unseen by the trained RF model (red 

points), and the experimental values (blue points) in each passage. As the RF model gains more 

knowledge of the underlying system by including more information from previous passages 



14 
 

such as their PDT and Ctime, the predictions in higher passages (P2, P3 and P4) improve 

compared to previous passage. Quantification of the mismatch between model predictions and 

experimental observations shows that the mean absolute error (MAE) is consistently decreasing 

from 0.87 days for PDT1 to 0.7 days for PDT4. The variable importance plots (panels on the 

right) show the percentage increase in the mean square error (MSE), in case each of the input 

variables are permuted. For example in PDT1, the culture time of the previous passage (P0) 

plays the most important role in predicting the PDT1 followed by the age of the donor. For 

each passage, the importance of each variable having the most effect on the PDT is shown. In 

all passages, the PDT of the previous passage is the most influential factor for predicting the 

PDT of the current passage.  

Figure 6 shows the comparison between RF model predictions and the predictions obtained 

using the rule of thumb estimates, both for the gold standard and the mean historical data. The 

comparison is made for all 141 donors (cultured at least up to P4), and for the case where the 

10 problematic donors having PDT<0 or PDT>10 have been omitted.  

For the gold standard method, the average PDT is calculated based on theoretical 

considerations, resulting in the PDT of 4.41 days for every passage. For the mean historical 

data method, the whole data set is used to calculate the average PDT in each passage. For all 

methods in all passages, excluding the problematic donors based on the aforementioned 

exclusion criterion, the MAE and the standard error decrease and the performance improves. 

For the mean historical data method, with or without the donor omission, the mean and standard 

error are smaller than for the gold standard method (except for P3) as we calculate the average 

PDT over each passage resulting in a more accurate estimate of PDT. The best performance is 

achieved using the RF model after donor exclusion (light pink). 



15 
 

To further assess the accuracy of the RF model and particularly its dependency on the choice 

of training vs test set, the RF model was trained 100 times with random splitting of data in 

training (70%) and test (30%) data sets. Each time the MAE of the predicted PDT for P1 to P4 

is calculated and ultimately the average MAE of the 100 RF model repeats can be calculated 

for each passage. For P1 to P4 the mean MAE is 0.99, 0.87, 0.80 and 1 day respectively with 

the mean standard deviation of 0.1, 0.08, 0.09 and 0.11 (Figure 6, yellow). As expected, using 

different random splits for the training and test data set did not affect the outcome as in the RF 

technique there is a built-in validation process, as explained in previous sections. 

4 Discussion 

In this study, we have presented the application of a supervised learning method (Random 

Forests) for predicting the PDT for a 2D flask-based in vitro cell expansion procedure. Based 

on the statistical analysis, we showed that the PD and PDT in different age categories are 

significantly different, especially the youngest group (aged <10) compared to the other age 

groups. The accuracy of the RF model in predicting the PDT was better (lower prediction error) 

than the rule of thumb methods in all of the four passages. According to RF model results, the 

age of the donor and the PDT of the previous passages are the most influential factors for 

predicting the PDT values of different passages.  

There are a number of studies on in vitro cell expansion in which the effect of different factors 

such as age of the donor on cell growth has been investigated [29-32]. But in all of these studies, 

the number of donors being investigated was limited (e.g., 53 individuals in [33]) and the focus 

was more on the biological characteristics of the cell expansion procedure such as the 

osteogenic differentiation abilities and the gene expression of the donors related to their age 

and culture conditions [33-35]. To the best of our knowledge there is no previous study using 

modeling to predict the cell growth in different passages of the cell expansion process. In this 
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study we have predicted the PDT per passage rather than the cumulative PDT at the end of the 

culture period, as the former allows tracking the growth rate as well as the time in each passage 

and has a direct impact on the cell culture process. 

One of the main limitations in the computational modeling of the cell expansion procedure is 

the lack of donor data. The highest number of donors presented in cell expansion literature 

consisted of 53 individuals, 25 female, 28 male aged between 13 to 80 years [33], an amount 

that is not sufficient to build a reliable model using machine learning techniques. Even for the 

larger set used in this study we had to use the RF technique which is the most efficient method, 

able to deal with small sample sizes [15, 16]. RF uses a bootstrapping technique to fully exploit 

the training data set. Note that we also explored the use of neural networks to model the cell 

expansion process (results not shown), but with the size of the data set used in this study, the 

MAE obtained in each passage was very high compared to RF results, making the method unfit 

for this application. In the developed model, we accounted for the risk of overfitting which 

refers to the fact that a model that adapts too closely to the learning samples will not be able to 

discover all the patterns in the training data set and thus cannot generalize well for the test set. 

The theoretical result shown in Breiman [26] supports the fact that ensemble methods such as 

Random Forests do not overfit with an increase in the number of trees. However, it has been 

shown that that they might overfit due to other reasons such as the depth of the grown trees 

[36]. In this study, we have tuned the mtry value which introduces more randomness to the 

grown trees by making them more diverse and as a result reduces the risk of overfitting. 

Moreover, the average MAE obtained by training the model 100 times (yellow bar in Fig. 5) 

shows very similar error values with the built RF model in all of the four passages (purple bar 

in Fig. 5) which is a an indication of the robustness and reliability of the built model. 

Other machine learning techniques such as support vector machines [37] and boosting [38] 

could be applied to our problem. The performance of these two methods is very close to the 
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Random Forests we used in this study. For example in Wu et al. [39], authors compared the 

performance of several  types of statistical methods such as linear discriminant analysis, k -

nearest neighbor classifier, bagging and boosting classification trees, support vector machines 

and random forest for the classification of cancer. They have shown that random forests 

technique outperforms other competitors, although in Konig et al. [40], SVM slightly 

outperforms Random Forests for patient-centered yes/no prognosis. All in all, considering the 

ease of application, most of the machine learning techniques need extra tuning to deliver their 

best performance, whereas Random Forests is believed to be among the best performing 

methods even without extra tuning [41]. 

 

An important aspect of modeling is the biological interpretation of the results. The developed 

RF model is capable of identifying the most important input variables affecting the predicted 

PDT values in each passage. For example, it is shown that age of the donor plays the most 

important role in cell growth for the first two passages, which is in corroboration with other 

studies in the literature [32, 33]. Marędziak et al. [42]  compared the PD and PDT in 28 patients 

aged from 22 to 77 years where younger donors showed significantly higher PD and lower 

PDT values. In Fig. 3A we showed that the PD decreases with the increase in passage numbers. 

Other studies have reported the same trend for PD over different passages. In Zaim et al. [7] 

authors showed that long term passage affects both the morphology and proliferation of hMSCs 

in all ages where the increase in passage number led to a decrease in proliferation rate of the 

cells. According to the model results, the previous PDT becomes more important than the age 

of the donor as we go toward higher passages.  

Additionally, almost in all passages, the gender of the donor is the least important feature of 

the input space and the cell growth is deemed to be independent of donor gender. As in most 
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published studies male and female patients are grouped together, there is little literature 

specifically studying the effect of gender on hMSC proliferation.  Furthermore, mixed results 

were published on the effect of gender on hMSC proliferation, as reviewed by Fossett and Khan 

[43].  

Although the seeding density in our experiments was almost constant (5700 cells/cm2) in all 

passages after P0, it was taken along in the creation of the RF model.  Consistent literature 

reports have shown that lower seeding densities will result in faster proliferation rates both in 

T-flasks and three dimensional scaffolds [44, 45]. 

 

This model was developed for manual cell culture where information of the process was limited 

to measurements of cell number between passages. The implementation of such approaches in 

bioreactors is possible and could in fact result in more accurate predictions since the robustness 

of the process of the bioreactor as compared to manual expansion might enhance this 

correlation. For hPDCs we have already shown that this applies since process performance 

substantially increases in bioreactors [46]. In addition, data regarding cell growth could be 

either monitored online through imaging [47] or other sensors such as oxygen and lactate data 

[48], that once validated can provide more dense information throughout cell expansion [49] 

and not only during passaging. Especially with the development of fully controlled and sensor-

embedded bioreactor systems [50] such approaches could be embedded in control strategies, 

‘correcting’ for donor dependent variation. 

Given large enough data-sets our approach could be expanded to iPS cells or allogeneic cells 

and could be used for allogeneic and hence scale-up scenarios. However, in this work we focus 

on the autologous application where donor-to-donor variability is an essential source of 

variability in the starting material, as shown by our analysis (Figure 1-3) but also by additional 
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work in bioreactors [51]. Donor-related characteristics is mostly indicative of scale-out 

scenarios and knowledge extracted through our methods can inform the design of expansion 

processed or prevention of batch failures early on. 

In Figure 6, the performance of the Gold standard and mean historical method are close to the 

RF model in the first two passages and the MAE is less than 2 days which explains why this 

rule of thumb has been used successfully to date. When sufficient in-house data is available, 

the mean historic average provides a good estimate, even though in practice the theoretical 

estimate often remains the standard.  However, with increasing passage number the MAE of 

the RF model drops significantly compared to the standard estimates. When moving towards 

more clinical applications which require large amounts of cells and hence extensive passaging, 

the advantages of the RF model will become increasingly relevant.  

 

One of the main limitations of the built RF model is the inability to predict the PDT of the 10 

excluded donors having negative or very little growth during a particular passage of the 

expansion process, resulting in negative or very high PDT values. As previously mentioned, 

the main source for these PDT values might be the operational inputs rather than the inherent 

biological characteristics as in these problematic donors the PD or PDT values of the preceding 

and subsequent passages were normal. In the current study, taking along these 10 donors 

resulted in a poorer model. Yet, the exclusion criteria used to construct the model can also be 

used during culture to delineate its use. The exclusion criteria can easily be implemented in the 

model itself as an initial quality check. For donors that fail this quality check, the model cannot 

be applied to reliably to predict the next passage outcome and the rule of thumb estimate along 

with repeated visual inspection is required. Once the expansion behavior meets again the 

quality criteria, further passages can be predicted again.  
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For the first passage, the initial seeding density (P0) could not be used as that information was 

not available for all donors. This means that the model is not able to incorporate the real in 

vitro age of the cells at the first passage, which is something that should be remedied in the 

future.  

Another limitation of the model is that using the current dataset we are unable to go beyond 

passage P4 for predicting PDT due to the lack of sufficient donor data at higher passages. 

However, in the future, another version of the RF model could be built where the predicted 

PDT of the previous passage is added as an input for the next passage, rather than the actual 

experimental values of the PDT that we used in the model. In the case of having satisfactory 

results (low prediction error in passage P2, P3 and P4), we can predict the PDT up to passage 

P4 in advance. It should be noted that there is no limitation in terms of the type of the MSCs 

used in the model. Given the appropriate donor and culture information for sufficient donors, 

the model is capable of predicting that particular cell expansion process. Finally, using the 

same methodology, we could have built a model that predicts the amount of PD of the cells. 

Predicting the PDT is believed to be more informative than predicting the PD, as in PDT, both 

the PD and the culture time are included.  

 

In conclusion, the model presented in this study could be used as a tool assisting cell expansion 

operators in predicting the time it takes to reach a certain amount of cells based on the 

characteristics of the donor using well-defined culture conditions. In our model, the overall 

prediction error is significantly different from the rule of thumb methods in all passages 

(especially for the model with 131 donors). Accordingly, the presented model shows great 

potential in employing data driven modeling for the characterization and prediction of in vitro 

cell expansion .  
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Figure 1.  Overview of donor population. (A) Summary of all donors based on the number of donors 
in each passage (from P1 to P20). (B) The number of donors in different age categories for the full 
(blue) and the curated (red) data set. (C) The cumulative population doubling (CPD) of periosteal cells 
cultured for more than 20 passages, labeled by the donor’s age at the moment of periost donation. (D) 
The number of donors used for the modeling section in different age categories. 
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Figure 2. Representation of cell growth characteristics in function of age groups for P1-P4. The mean 
and standard error of population doubling (PD) for P1 to P4 in function of the age categories. *p < 0.05; 
**p < 0.005; ***p < 0.0001 
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Figure 3. Representation of cell growth characteristics in function of age groups for P1-P4. The mean 
and standard error of population doubling time (PDT) for P1 to P4 in function of the age categories. *p 
< 0.05; **p < 0.005; ***p < 0.0001 
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Figure 4. Analysis of cell growth characteristics in function of passage number and age. (A) The mean 
and standard error of population doubling (PD) in each passage. (B) The mean and standard error of the 
population doubling time (PDT) in each passage. (C) The mean and standard error of cumulative 
population doublings (CPD) of donors from P1 to P6 in different age categories. *p < 0.05; **p < 0.005; 
***p < 0.0001 
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Figure 5. Comparison of model predictions and experimental observations, and the relative parameter 
importance. The results of the RF model for predicting the PDT in P1 to P4 (red dots) and the 
experimental observations (blue dots) for all 40 donors in the test set. The prediction’s mean absolute 
error (MAE) is indicated in the upper right corner.  The variable importance plot for each passage is 
shown on the right hand side, indicating the relative contribution of each parameter in the total increase 
in the mean square error (MSE) of prediction [%]. 
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Figure 6. Mean Absolute Prediction error for rule of thumb models (gold standard and mean historic) 
and RF models (left axis). Errors are calculated for the full data set (141 donors) or the data set after 
omitting problematic donors (131 donors) and are shown as mean  SE The right bar for each passage 
shows the average of the mean absolute error (MAE) of running the RF model 100 times using random 
splits between train and test data. *p < 0.05; **p < 0.005; ***p < 0.0001. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


