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ABSTRACT
Tissue engineering is a fast progressing domain where solutions are provided for organ failure
or tissue damage. In this domain, computer models can facilitate the design of optimal produc-
tion process conditions leading to robust and economically viable products. In this study, we
use a previously published computationally efficient model, describing the neotissue growth
(cellsþ their extracellular matrix) inside 3D scaffolds in a perfusion bioreactor. In order to find
the most cost-effective medium refreshment strategy for the bioreactor culture, a multi-objective
optimization strategy was developed aimed at maximizing the neotissue growth while minimiz-
ing the total cost of the experiment. Four evolutionary optimization algorithms (NSGAII, MOPSO,
MOEA/D and GDEIII) were applied to the problem and the Pareto frontier was computed in all
methods. All algorithms led to a similar outcome, albeit with different convergence speeds. The
simulation results indicated that, given the actual cost of the labor compared to the medium
cost, the most cost-efficient way of refreshing the medium was obtained by minimizing the
refreshment frequency and maximizing the refreshment amount.
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Introduction

Despite the elaborate ongoing research efforts, the tis-
sue engineering (TE) field still faces many challenges,
several of those related to the translation of TE prod-
ucts from the laboratory to the patient (Srijaya et al.
2014; Steeves 2015). One of the main challenges in
TE applications is the economic costs associated with
the process of creating living implants (Salter et al.
2011). Another major challenge is the translation of
the complex biological systems into robust manufac-
turing processes.

Computer modeling is an enabling technology that
can contribute to tackling the challenges faced in the
TE community (Geris et al. 2016). One such example
is computational models of bioreactor processes that
can be used to define optimal operating conditions,
e.g. in terms of nutrient concentration and medium
refreshment rate (Guyot 2015; Guyot et al. 2015;
Hossain et al. 2015; Mehrian et al. 2018). In previous
work by the authors, a mechanistic computational
model was developed describing the neotissue growth
in perfusion bioreactors, taking into account

influences of geometry, flow-induced shear stress,
oxygen, glucose, lactate and pH (Guyot 2015). A
reduced version of this model was developed to
decrease the computational costs associated to the
model and to allow for rigorous optimization proce-
dures to be executed without running into computa-
tional challenges (Mehrian et al. 2018; Olofsson
et al. 2019).

Evolutionary algorithms are a class of non-gradient
metaheuristic methods that have gained popularity for
optimization in a vast array of problems. Examples of
evolutionary algorithms include, but are not limited
to, genetic algorithms (GA), particle swarm optimiza-
tion (PSO) and differential evolution (DE) (Eberhart
and Shi 1998; Panduro et al. 2009). Evolutionary algo-
rithms are suitable for non-costly (in terms of time
per function evaluation) objective functions because
they browse the entire input space, starting from a
random initial population without considering the
time for each function evaluation. In many optimiza-
tion studies, conflicting objectives have to be recon-
ciled in a multi-objective optimization (MOO)
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problem (Hwang and Masud 1979). In the literature,
there are numerous examples in biopharmaceutical
manufacturing domain where MOO is used to find a
trade-off between the yield and the cost of a process
or where MOO is used to find a trade-off between
effectiveness of therapy and drug-induced side-effects.
Dedieu et al. (2003) and Kim and Smith (2004) used
a multi objective genetic algorithm (MOGA) approach
for designing environmental friendly and economic-
ally affordable processes for waste solvent (acetic
acid) recycling from aqueous waste mixtures with the
aim of maximizing the total profit and minimizing
the potential environmental impacts. In the study by
Petrovski and McCall (2001), the authors used a PSO
technique for the MOO of cancer chemotherapy with
the aim to maximize the damage to the tumor cells
while restricting the side effects of the drug. In the
study by Heris and Khaloozadeh (2011), a non-domi-
nated sorting genetic algorithm II (NSGA II) was
used to find the optimal strategy for HIV therapy
with the aim to minimize the drug usage and maxi-
mize the quality of the treatment.

In this study, we work with a previously published
model (Mehrian et al. 2018) to optimize neotissue
growth inside a 3D scaffold in a perfusion bioreactor
set-up using evolutionary algorithms. The objective is
to optimize the bioreactor culture strategy, in terms
of the frequency of medium refreshment and fraction
of medium to be refreshed at each refreshment step,
maximizing neotissue growth while minimizing the
cost of labor and medium consumed during the cul-
ture period. We will first apply GA, PSO and DE in a

single objective optimization procedure, focusing only
on maximizing the biological output (scaffold filling).
This is followed by a MOO taking into account also
the cost of labor and the culture medium, comparing
the performance of four different evolutionary algo-
rithms. This study shows how well-known optimiza-
tion algorithms and computer modeling can help to
reconcile conflicting objectives in the manufacturing
process of TE constructs.

Methods

Summary of the neotissue growth model

The neotissue growth model describes the production
of extracellular matrix by cells seeded onto a 3D scaf-
fold cultured in a perfusion bioreactor set-up as
depicted in Figure 1. As the neotissue starts growing
in the scaffold over time, cells consume more nutrient
(e.g. glucose and oxygen in the model) and produce
lactate (a waste product). The model that describes
this process, as detailed in the work by Mehrian et al.
(2018), is a system of four ordinary differential equa-
tions that describe the evolution over time of a homo-
genized neotissue volume, curvature and shear stress
(the latter two both in function of the homogenized
neotissue volume) as well as the levels of oxygen, glu-
cose and lactate (pH) in the scaffold. Model and
implementation details are provided in the
Supplementary Material. The simulation results were
corroborated by comparison with results obtained
from a first-principles based 3D mechanistic model

Figure 1. Schematic representation of the perfusion bioreactor and the scaffold used in this study. The green volume inside the
Gyroid scaffold (center) represents the neotissue (cells and their extracellular matrix).
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(Guyot 2015) as well as with experimental results
(Sonnaert et al. 2017).

Objective functions

The first step in running an optimization study is the
definition of the objective function, detailing the over-
all aim(s) of the optimization process, in function of
the design variable(s), being the parameter(s) that can
be altered to arrive at an optimal solution.

In this study, the two design variables are refresh-
ment period (p) that ranges from 12 h to 96 h and
refreshment amount (a), varying between 0%
and 100%.

The first objective function in our study is the neo-
tissue filling percentage inside the scaffold that we try
to maximize during the culture period. The second
objective function is the total cost of culture, includ-
ing the cost of the medium and the labor costs.
Equation (1) expresses the calculation of the costs of
the culture medium and the labor

C ¼ M 1þ 24d
p

:a
� �

þ L 1þ 24d
p

� �
: (1)

In this equation, C is the total cost of the experi-
ment, d is the total amount of days of the experiment,
p is the refreshment period and a is the fraction of
medium being refreshed each time (0 � a � 1). The
first term is related to the costs of the medium. The
medium composition used in the experiments on
which our model is based is as follows: Dulbecco’s
modified Eagle’s medium with high-glucose medium
(Invitrogen) containing 10% fetal bovine serum
(BioWhittaker), 1% sodium pyruvate (Invitrogen) and

1% antibiotic–antimycotic (100 units/mL penicillin,
100mg/mL streptomycin and 0.25mg/mL amphoteri-
cin B; Invitrogen). Taking current commercial prizes,
the cost of the aforementioned medium composition
is 26.11 e/L. The bioreactor system contains 13mL of
culture medium in total, of which 10mL is located in
the reservoir and 3mL in the circuit (Sonnaert
et al. 2017).

In Equation (1), M¼ 0.2611 e as we use 10mL of
the medium for a complete medium refreshment. The
second term in Equation (1) is related to the labor
costs. One medium exchange step takes an experi-
enced lab technician about 15min, which translates
into 6.8 e per medium exchange (L¼ 6.8). As the
only parameter affecting the labor cost is the fre-
quency of refreshments (p), parameter a is eliminated
in the second term in Equation (1). Figure 2A shows
the cost of the culture medium only (L¼ 0), in func-
tion of the design variables. Figure 2B depicts the
total experimental cost of a 21-day experiment as pro-
posed in Equation (1).

As it is depicted, increasing the medium refresh-
ment period results in a cheaper outcome (dark blue
region in Figure 2B), as it decreases the labor cost
and the labor cost is dominating the total cost in this
study (L>M). Figure 2A shows only the medium
cost, shifting the expensive region toward the top-left
corner with high medium refreshment amounts and a
low medium refreshment period.

Optimization techniques

As mentioned earlier, we will focus on the use of
multiple optimization algorithms. In the following, we

Figure 2. Culture costs over a 21 days culture period. (A) Cost of culture medium in function of the medium refreshment time
(hour) and amount (%). (B) Costs of labor and culture medium using different combinations of medium refreshment time (hour)
and amount (%). Colors represent the cost in euro (e).
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briefly introduce the different types of optimization
techniques used in this study for single and MOO. In
MOO, the goal is to reach a compromise between
conflicting objectives. Two common ways to deal with
MOO are the ‘weighted sum approach’ and the
‘Pareto front’. In the first approach, a single aggre-
gated objective function is created using a weighted
sum of the functions fs xð Þ ¼ Pm

i¼1 kifiðxÞ (Zadeh
1963) with ki being the weights and fi being the func-
tions. This method is easy to apply but the choice of
weights introduces a new challenge to the problem.
The second approach is computing the Pareto-frontier
(Horn 1997). Pareto optimality is a state in which it
is impossible to improve the value of one objective
function without worsening the value of the other.
Alternatively stated, we are looking for the border
between infeasible and suboptimal in our problem. In
order to apply these techniques to the problem at
hand and obtain the Pareto front, we used the
Platypus package in python (Hadka 2015).

Single objective optimization
GA and other related evolutionary strategies such as
PSO belong to the class of non-gradient methods
which was first introduced by Holland (1975) and has
been growing in popularity over the past years. The
basic idea in GA is inspired from biology and based
on the mechanisms of natural selection. Each param-
eter in GA, (xi), represents a gene (real number or
string of bits). The corresponding genes for all
parameters, x1, . . . :, xn, form a chromosome
(called individual). Each individual is a candidate for
the solution of the problem. To initialize the GA algo-
rithm, we start from multiple guess points forming
the initial population. All the individuals will be eval-
uated using the objective function. In the next step,
the best individuals (yielding maximum output) are
selected for mating by combining genes from parents
to produce children (offspring) through natural oper-
ator (cross over) evolving to a new, better fitting
population. Finally, the newly created population
(children) is added to the population where some
mutations are randomly performed. This procedure
continues until the population has converged or a
predefined maximum number of generations has
been reached.

PSO is a more recent approach inspired by the
choreography of a bird flock. PSO was first intro-
duced by Kennedy (1995) and has been found to be
successful in a wide variety of optimization tasks
(Kennedy 2006). PSO solves a problem by creating a
random population of candidates called ‘particles’.

Each particle moves in the search space based on its
position and velocity, following a mathematical for-
mula. The movement of the particles is influenced by
their local best-known positions, i.e. the position of
that specific particle leading to the lowest/highest
objective function value, as well as the global best-
known position found by any of the particles in the
total population. The velocity of each particle updates
according to its distance from the best-known posi-
tions. Same as in GA, this process is repeated until
the population converges or the algorithm reaches the
maximum number of iterations.

DE is an evolutionary algorithm, which uses the
difference of solution vectors to create new candidate
solution. DE was originally introduced in 1997 (Storn
and Price 1997). In this method, new candidate solu-
tions (called agents) are created by combining existing
solutions according to a simple formula. Then, solu-
tions with the best fitness will be kept for the next
generation. Same as previously introduced evolution-
ary methods, the optimization problem is treated as a
black box without needing the gradient of the object-
ive function.

Multi-objective optimization
For the MOO problem tackled in this study, an
extended version of the aforementioned algorithms is
used, being SMPSO, NSGAII and GDEIII. Speed-con-
strained multi-objective PSO (SMPSO) is a more
advanced method compared to the basic PSO. In this
method, the maximum velocity of particles in the
search for new solutions is limited which has been
shown to enhance the search capability of the tech-
nique and to improve the overall performance (Nebro
et al. 2009). Nondominated sorting genetic algorithm
II (NSGA-II) is an extension of the GA for multiple
objective function optimization. One of the advan-
tages of NSGAII compared to its predecessors is the
reduced computational complexity (Deb et al. 2002).
Generalized Differential Evolution (GDEIII) is an
extension of the DE method for MOO problems.
GDEIII results in better distributed solutions com-
pared to earlier GDE versions (Kukkonen and
Lampinen 2005).

A fourth MOO is added, being the multi-objective
Evolutionary Algorithm Based on Decomposition
(MOEA/D) that was first introduced in 2007 by
Zhang and Li (Zhang and Li 2007). In this method,
the decomposed objective functions (subproblems)
are solved simultaneously by evolving a population of
solutions. Each subproblem is optimized only using
the information from its neighbor subproblems which
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makes the MOEA/D method more efficient in terms
of computational complexity in each generation com-
pared to some other methods such as non-dominated
sorting genetic algorithm (NSGA).

Results and discussion

Single objective optimization: neotissue
filling percentage

For finding the best refreshment amount and refresh-
ment period of the medium in the bioreactor, the
GA, PSO and DE methods were used. The initial
population was set to 10 individuals and the opti-
mization procedure stopped after 15 iterations as con-
vergence was reached in all methods after a few
iterations. Figure 3 shows the best and average filling
percentage in each iteration over 15 iterations.

For each iteration, the best value (shown by star)
and the average value of the whole population are
shown (dashed line). As it is depicted, PSO and DE
converged toward the best value (dashed blue and
black lines) in each iteration faster than GA. The con-
vergence rate of PSO was slightly better than DE. The
high speed of convergence in PSO compared to GA
has also been shown in the literature (Hassan et al.
2005; Li et al. 2010). All three algorithms converged
to the maximum filling percentage, which is around
88%, after seven iterations. The optimal solution
(refreshment time and amount) proposed by all three
methods indicated that increasing the refreshment fre-
quency and amount will result in the highest filling
percentage. This is in line with previous studies
(Mehrian et al. 2018; Olofsson et al. 2019), where we
have shown using Bayesian optimization that an opti-
mum region for refreshing the medium exists by
keeping the refreshment period less than 40 h and the
refreshment amount more than 70 percent (top-left
region in Figure 2A), resulting in more than
85% filling.

Multi-objective optimization

For balancing the conflicting objectives of maximal
neotissue formation and minimal cost, we compared
the results of the four algorithms introduced earlier:
MOEA/D, NSGAII, SMPSO and GDEIII. Each algo-
rithm was run for 50, 100 and 1000 generations with
the population size of 50. In order to be able to com-
pare and evaluate the obtained Pareto front from each
algorithm, we needed to first determine a global
Pareto front (Van Veldhuizen and Lamont 1999). In
this study, the global Pareto front was obtained by
running the objective function 106 times. Figure 4
shows the results of the MOO using differ-
ent approaches.

As it is depicted, the best result (closest to the glo-
bal Pareto shown in the dashed black line) is obtained
using 1000 generations (green line). One of the main
features of a good Pareto front is that the proposed
solutions cover the whole feature space as is the case
for the black and green lines where they contain very
cheap to very expansive solutions. For example, the
generated Pareto front using 50 iterations (blue line)
in SMPSO method (Figure 4C) does not include very
cheap solutions where the neotissue filling is less than
60%. Furthermore, it could not find solutions in the
top-left corner which is the most desirable area in our
problem where the best trade-off between our con-
flicting objectives could be found. The results using
100 iterations (red line) in all of the four approaches
are better than the blue generated lines as the algo-
rithm had more time to evolve toward the best feas-
ible solutions. The red lines (100 iterations) generated
by the SMPSO (C) and GDEIII (D) methods are bet-
ter compared to the other two methods as their per-
formance is very close to the green (1000 iterations)
and black line (global Pareto). The fastest converging
method is the GDEIII method (Figure 4D), where the
generated Pareto using only 50 iterations (blue line) is
very similar to the global Pareto (black line).

Figure 3. The best (star) and average (dashed lines) filling percentage in each iteration using PSO (blue), GA (red) and DE (black).
The best solution in each iteration (star) for all three techniques completely overlaps each other.
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In the Pareto front, there are multiple optimum
spots, each of them corresponding to a different
refreshment time and amount. The user/decision
maker has to decide, based on certain preferences and
objectives, which individual solution is preferred to
the others. In the absence of a decision maker, there
exist special regions on the obtained Pareto front
known as the ‘knee regions’ where the maximal trade-
off between different objectives occurs. According to
the obtained Pareto fronts, the best answer to the
problem could be the turning point in Figure 4
(knee-region, point M) which results in 84.5% filling
at a cost of 46 euros, and corresponds to refreshing
the medium every 90 h by 99%. Going further to the
right on the Pareto front will make very little
improvement to the neotissue filling percentage while
it dramatically increases the costs. For example, 88%
filling (Figure 4A, point N) could be reached by
refreshing the medium every 18 h by 88%, resulting in
a cost of 196 euro, which is economically unjustifiable
in comparison to point M.

Figure 5A shows the corresponding refreshment
time and amount for each of the four Pareto fronts
using 1000 generations and the global Pareto front. In
order to investigate the effect of medium costs on the
generation of optimal points, labor cost is neglected
(L¼ 0) in Figure 5B.

In order to reduce the labor cost, which is the
dominant cost among the two cost sources, most of

the non-dominated points leading to the best result
are selected by maximizing the refreshment time,
which leads to less frequent medium exchange by the
operator (Figure 5A). The optimum point in our
problem resulting in 84.5% filling is shown by point
M in Figure 5A. Moving toward the left of the opti-
mum point will slightly increase the filling percentage
(maximum increase 3.5%) and at the same time
increases the total cost of the experiment. Whereas
moving toward bottom from the optimum point in
Figure 5A will decrease the filling percentage and at
the same time decreases the total cost of the experi-
ment. In Figure 5B, as the labor cost is not consid-
ered, increasing the frequency of the refreshment does
not make the experiment more expensive. Therefore,
many points are chosen on the horizontal axis, corre-
sponding to very little refreshment amounts, whereas
in Figure 5A, no points are situated on this axis.

Choosing the proposed refreshment strategy by the
Pareto front (every 90 h by 99%) could result in
inhomogeneous neotissue growth inside the scaffold.
As the cells start growing inside the scaffold, they
consume more nutrients (glucose in the model) and
produce more lactate, which makes it necessary to
refresh the medium more often. Especially during the
final days of the culture, refreshing the medium every
90 h could be harmful to the cells as neotissue growth
is at its peak resulting in a rapid decrease of the pH
due to the cells’ increasing lactate production.

Figure 4. The Pareto front obtained from (A) MOEA/D, (B) NSGAII, (C) SMPSO, (D) GDEIII algorithms using 50 generations (blue
line), 100 generations (red line), 1000 generations (green line) and the global Pareto front (black line). The green and black lines
are fully overlapping. Point M shows the knee region which is the best answer to the problem. Point N shows a very expensive
solution to the problem.
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Therefore, the proposed refreshment strategy needs to
be investigated in laboratory experiments to verify the
model predictions and if needed, we have to sacrifice
the cost and choose a refreshment strategy with more
frequent refreshments which would reduce the risk of
harming the cells during the culture period. Another
way of tackling this issue is to add a constraint for
the pH value in the optimization procedure and
therefore, refresh the medium when the pH value in
the medium goes below a certain threshold.

To date, in the field of TE, most of in vitro bio-
reactor cultures settings have been (and are being)
determined based on trial and error without consider-
ing the costs of the experiment. The availability of
computational models is an advantage for determin-
ing the most cost-effective refreshment strategy before
conducting laboratory experiments. In this study, we
have used evolutionary algorithms for finding the best
trade-off between culture costs and neotissue growth
in a perfusion bioreactor. Note that currently, the
medium refreshment strategy in our laboratory is
based on historic developments with a medium
change every 48 or 72 h by 100%. These settings result
in a cost of 81.2 e and 56.4 e, respectively, yielding a
more expensive refreshment strategy than the one
proposed in this study. In addition to the proposed
optimal point (point M), a few other possible scen-
arios for new experiments could be chosen from the
obtained Pareto front. For instance, when the long
intervals between medium refreshment are not pos-
sible due to the presence of other substances in the
medium with a short half-life, other points with a

higher medium change frequency need to be tested.
One such point could be to refresh the medium every
68 h by 100% which leads to 86% filling at a cost of
59 e.

In Equation (1), the total price of the experiment
is dominated by the labor cost. For example, in the
proposed optimum strategy for refreshing the
medium by Pareto front (every 90 h by 99%), only
3.5% (1.7 e) of the total price during 21 days of cul-
ture is related to the culture medium and the rest
belongs to labor costs (44.3 e). Therefore, there is a
clear need to go toward automation in bioreactor set-
tings and eliminate as much as possible the labor cost
in the experiments. Efforts for moving toward auto-
mation are under way. For instance, in the study by
Kami et al. (2013), the authors present the first time
use of the AutoCultureVR system which can automatic-
ally replace the culture medium, centrifuge cells, split
cells and take photographs for morpho-
logical assessment.

The optimization results both for single and MOO
in all four methods showed no significant difference
in finding the Pareto front. However, the performance
of different metaheuristics could vary depending on
the problem and the settings they are being used. In a
recent study, Piotrowski et al. (2017) compared the
performance of 33 metaheuristic methods on 22 real-
world studies in vastly different domains. It was
shown that the performance of all these methods
were highly dependent on the number of function
calls that the algorithm demands during the optimiza-
tion procedure as in many modern metaheuristics,

Figure 5. (A) Corresponding refreshment time and amount for each of the four optimization methods using 1000 generations
and the global Pareto front. (B) Corresponding refreshment time and amount of the global Pareto front considering only the cost
of culture medium.
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the number of function calls may vary even within
one generation. It was shown that the performance of
all these metaheuristic methods constantly improves
or deteriorates with the increase in the allowed num-
ber of function calls. They demonstrated, amongst
others, that out of all the tested metaheuristic meth-
ods, PSO performs better when the number of func-
tion evaluations is low whereas GA and DE perform
better when the computational budget is not limited
(Piotrowski et al. 2017). Another important point to
consider in applying metaheuristics is that they suffer
from finding a balance between exploration, where we
are not certain about the objective function values,
and exploitation, i.e. choosing values for sampling
where the objective function is expected to be high
for maximization and low/small for minimization
(�Crepin�sek et al. 2013). Therefore, we can expect that
more exploitative algorithms such as PSO win the
competition when the number of function evaluations
is limited as it was the case in our study for single
objective optimization (Figure 3). Other explorative
algorithms such as GA and DE perform better with
the availability of more function evaluations
(Piotrowski et al. 2017).

Recent advances in TE and regenerative medicine
have led to remarkable achievements and tissue engi-
neered constructs are finding their way to the clinical
use. However, in order to have a successful transition
from laboratory into clinics, for any pharmaceutical
product, it is crucial to reduce the cost of goods in
the process while at the same time minimizing the
variability in each of the elements involved in the
process (Suresh and Basu 2008). This could be
achieved by a careful selection of the materials used
in the experiments and by automating different cul-
ture procedures. There are different sources of uncer-
tainty in the cell culture process which needs to be
experimentally minimized (removed). These variations
are mainly attributed to four factors: raw materials
(including consumables), operational inputs (measure-
ments, methods, personnel, equipment), environmen-
tal factors (e.g. change in room temperature within
normal range) and biological variability inherent to
living cells (Shimoni et al. 2017). Optimization of the
process with respect to conflicting objectives, such as
the work presented in this article, would bring us one
step closer to the application of tissue engineered
products in a robust and reliable manner. Moreover,
in order to have a robust and reproducible thera-
peutic product, the variability in each of these ele-
ments should be at its lowest limits.

Conclusion

In this work, a single objective optimization using
GA, PSO and DE was performed on a previously
developed model describing neotissue growth inside
3D scaffolds. The optimal solution found by all of the
algorithms resulted in the same filling percentage
indicating that increasing the refreshment frequency
and amount will result in the highest neotissue filling,
although the speed of convergence was different for
each algorithm. Adding cost of the medium culture
and labor into the optimization problem, required a
formal multi-objective approach to reconcile the con-
flicting requirements of maximizing neotissue growth
and minimizing the associated experimental costs.
Hereto, we applied four different evolutionary algo-
rithms and the obtained Pareto front from these
methods were compared. No significant differences in
terms of the speed of convergence and performance
were observed between the Pareto fronts obtained
from different algorithms, especially when the number
of generations was set to 1000. The most optimum
refreshment strategy in all the algorithms was the
same. Depending on user/decision maker preferences,
also other refreshment strategies could be selected on
the Pareto front. In summary, this study proposes an
optimal strategy for medium refreshment minimizing
the medium and labor costs.
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