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Osteoarthritis (OA), a degenerative joint disease, is the most common chronic condition
of the joints, which cannot be prevented effectively. Computational modeling of joint
degradation allows to estimate the patient-specific progression of OA, which can
aid clinicians to estimate the most suitable time window for surgical intervention in
osteoarthritic patients. This paper gives an overview of the different approaches used
to model different aspects of joint degeneration, thereby focusing mostly on the knee
joint. The paper starts by discussing how OA affects the different components of
the joint and how these are accounted for in the models. Subsequently, it discusses
the different modeling approaches that can be used to answer questions related to
OA etiology, progression and treatment. These models are ordered based on their
underlying assumptions and technologies: musculoskeletal models, Finite Element
models, (gene) regulatory models, multiscale models and data-driven models (artificial
intelligence/machine learning). Finally, it is concluded that in the future, efforts should be
made to integrate the different modeling techniques into a more robust computational
framework that should not only be efficient to predict OA progression but also
easily allow a patient’s individualized risk assessment as screening tool for use in
clinical practice.

Keywords: in silico modeling, bone remodeling, cartilage degeneration, finite element modeling, gene regulatory
network, data driven approach

INTRODUCTION

Osteoarthritis (OA), a degenerative joint disease, is the most common chronic condition of the
joints, which cannot be prevented effectively. In Europe, over 100 million people suffer from
arthritis. In the United States, nearly 2 million people under the age of 45 have symptomatic
knee osteoarthritis (Deshpande et al., 2016). In 2013, total medical costs and earnings losses due
to arthritis were $304 billion in the U.S. (about 1 percent of the U.S. gross domestic product for
2013) (Murphy et al., 2018). OA is a disease prevalent predominantly in the elderly, but it can also
affect younger patients following injury, overuse (due to sports activities) and overweight. With an
aging population coupled with other risk factors like obesity, the impact of OA on the society is
suggested to only increase in the near future.

Contrary to earlier belief that OA is a cartilage disease, modern studies (Kuettner and Cole, 2005;
Brandt et al., 2006; Lories and Luyten, 2011) suggest that it is a disease of the whole joint involving
not only cartilage but also other joint constituents like the subchondral bone and bone marrow,
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menisci, ligaments and synovium. Indeed, initiation and
progression of OA is characterized by changes in both the
cartilage and the subchondral bone. In addition to the fact that
the cartilage and subchondral bone are mechanically connected
(Brown et al., 1984), there are evidences in literature that suggest
the possibility of a biological crosstalk between the cartilage
and bone, that is further increased as OA progresses (Berry
et al., 1986; Imhof et al., 1999; Lyons et al., 2006). Thus, in
order to study the initiation and progression of OA, the bone-
cartilage unit (BCU) biomechanics need to be accounted for in
the computational models.

It is also known that not all joints are equally prone to
OA development. The joints that are most frequently affected
by OA include the knee, hip, spine and the distal and
proximal interphalangeal joints of the hand. Symptomatic OA
less frequently occurs in the ankle, wrist, elbow, and shoulder
joints (Kuettner and Cole, 2005). In these non-symptomatic
joints, if degeneration of the articular cartilage occurs, it may be
non-progressive, while in susceptible joints such a degeneration
progresses to the OA state. For different joints, the kinematics
and composition of the joint constituents are different, thereby
resulting in different biomechanical joint environments. Also, the
response of the chondrocytes in the cartilage and the underlying
bone is different for different joints (Kuettner and Cole, 2005),
which can also explain the susceptibility of certain joints to OA
as compared to others.

It is already evident from the discussion above that in order to
fully understand the onset and progression of OA, it is important
to understand the biomechanical environment of anatomically
complex joint structures like the knee joint. Since doing that
experimentally is a challenging task, computational models
can provide unique insights. Computational modeling of joint
degradation can help to estimate the patient-specific progression
of OA, which can aid clinicians to estimate a suitable time for
surgical intervention in osteoarthritic patients. Likewise, they
might also help to estimate whether certain physiotherapeutic
strategies could be effective for arresting joint degradation.
Furthermore, modeling approaches can also be used to test
different hypotheses related to the underlying mechanisms of
joint degeneration. However, the robustness of computational
models in predicting joint degeneration will depend on whether
they incorporate all the relevant degeneration mechanisms along
different length scales and their interplay. Hence, verification and
validation of the models with relevant experimental and clinical
data is a crucial and important step within the computational
modeling workflow. The variability in in vivo and in vitro
experimental data inherent to biological specimens further
emphasizes the need of population-wide model validation.

The objective of this review paper is to present an
overview of different computational model formulations that
have previously been used to study joint degradation. The
advantages and shortcomings of each of these models, along with
a comprehensive (yet non-exhaustive) set of examples of their
use to study joint degeneration are discussed. The examples are
focused on the knee joint since it is most prone to OA (Prieto-
Alhambra et al., 2014) and the bulk of literature in computational
modeling of joint degeneration is focused on the knee joint.

Nevertheless, the concepts used for modeling the knee joint
(including the damage mechanisms) can be easily extended to
other joints and therefore more generalized conclusions can be
drawn from these examples.

The paper is structured as follows: first, the different
constituents of a joint are described as well as their changes with
initiation and progression of OA. The following section describes
the different computational model formulations that can be
used to model joint degradation, including their advantages and
disadvantages. The different computational models discussed
include musculoskeletal models, finite element models (with
different mechanisms of joint degeneration in the sub-sections),
gene regulatory networks, multi-scale models, and data driven
approaches. Thereafter the verification and validation aspects of
these different computational models are discussed. Finally, some
generalizable conclusions are drawn and suggestions for future
work on further exploitation and integration of the different
models are made.

JOINT STRUCTURE AND DEGENERATIVE
CHANGES

To develop a computational model of a human joint, three
main inputs are required: (1) the anatomical properties of the
joint (Figure 1), (2) the mechanical properties of the involved
tissues, and (3) loading parameters (Erdemir et al., 2019).
Obtaining the anatomical properties of the joint is the first step
in the modeling pipeline, in order to represent the geometry
and arrangement of different tissues involved. The anatomical
features are virtually reconstructed from CT images or MRI scans
by manual or (semi-)automated segmentation and consist of the
bones (tibia, femur with or without patella), articular cartilage
lining at the contact interfaces of the bones, ligaments holding the
bones together and other contact structures; like the meniscus.
Depending on the research question, the modeler has to make
a choice on the fidelity and level of detail of the anatomy to be
included in the model. The purpose of the following section is
to briefly introduce the different components of the tibio-femoral
joint; their specific constituents and their degenerative changes as
well as their functional role.

Articular Cartilage
Articular cartilage is the highly specialized connective tissue that
covers the articulating ends of diarthrodial joints. Its primary
function is to provide a lubricated, frictionless surface for smooth
articulation and act as a cushion to distribute mechanical loads
during contact between two joint surfaces. The articular joint
surface consists of hyaline cartilage and is 2 to 4 mm thick in
humans (Sophia Fox et al., 2009). Blood vessels, lymphatics and
nerves are absent in the articular cartilage, and it is subject to
high biomechanical loads. It is composed of a dense extracellular
matrix (ECM) which is considered a biphasic material with
a sparse distribution of cells called chondrocytes. Absence of
vasculature limits its capacity for intrinsic healing and repair,
therefore maintenance of its health is essential for joint health.
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FIGURE 1 | A detailed description of the human knee joint with the different constituents of the knee joint (A) (Islam, 2019), the different layers of articular cartilage
showing variation in chondrocyte shape, collagen orientation, and matrix distribution (B) (Di Bella et al., 2015) and the different regions of the subchondral bone (C)
(modified from Yamada et al., 2002).

The different constituents of articular cartilage are as shown
in Figure 1B.

Water
Water is the primary constituent of articular cartilage,
contributing up to 80% of its wet weight. A fraction of this
water (approximately 30%) is contained in the intra-fibrillar
space within the collagen, and a small fraction is contained in
the intracellular spaces. The remaining water is contained in
the voids of the porous ECM. The relative concentration of
water increases from about 65% in the deep zone of cartilage to
about 80% in the superficial zone (Sophia Fox et al., 2009). The
transport and distribution of nutrients to chondrocytes in the
cartilage, and lubrication at the cartilage surface is aided by the
flow of water through the cartilage and across the articular surface
respectively. Applying a pressure gradient across the tissue or
compressing the solid matrix causes flow of the inter-fibrillar
water through the ECM. Due to low permeability of articular

cartilage, the ECM offers high frictional resistance against its
flow. This frictional resistance to water flow through the matrix
results in flow-dependent viscoelastic behavior of cartilage.
The flow-dependent viscoelasticity and pore fluid (water)
pressurization within the matrix are the two basic mechanisms
by which articular cartilage can withstand very high physiological
compressive loads (up to several times body weight).

Degenerative changes
With progression of OA and subsequent loss of proteoglycans
and collagen fibrillation, several studies have reported an increase
in the water content and hydraulic permeability of the articular
cartilage (Setton et al., 1994; Wilson et al., 2005b; Mäkelä
et al., 2015; Mononen et al., 2018). Mechanically, this increased
permeability would reduce the dynamic stiffness of the cartilage
due to a reduction in interstitial fluid pressurization and
consequent deficiency of the load support mechanism in the
degenerated cartilage.
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Proteoglycans
Proteoglycans (PG) are an important constituent of the cartilage
ECM which constitute approximately 30–35% of the dry weight
of articular cartilage. They are large, complex biomolecules
composed of a central protein core with negatively charged
glycosaminoglycans (GAG) side chains (Wilson et al., 2005b).
These negatively charged groups produce a high negative charge
density which is quantified as the fixed charged density (FCD).
Due to the FCD, the concentration of ions inside the cartilage is
higher than that in the surrounding synovial fluid. This excess
of ion particles in the tissue leads to a higher osmotic pressure
in the tissue as compared to the surroundings. As a result of
this osmotic pressure, swelling of the tissue occurs. This osmotic
swelling is critical as it enhances the ability of cartilage to resist
compressive loads.

Degenerative changes
Depletion of PGs are observed during the progression of OA
(Wilson et al., 2005b; Saarakkala et al., 2010; Orozco et al.,
2018), especially in the superficial zone of articular cartilage.
In the literature, two mechanisms underlying PG depletion are
proposed: (i) overloading of the cartilage, especially for post-
traumatic OA, resulting in death of chondrocytes and release
of inflammatory cytokines, thereby inhibiting production of PG
and leading to PG depletion (Fick et al., 2016; Mononen et al.,
2018); (ii) damage to the collagen fibrils during early stages of
OA leading to increased fluid flow velocity across the surface,
thereby promoting loss of matrix fragments and loss of superficial
PG (Thibault et al., 2002; Rieppo et al., 2003). Mechanically, PG
damage will not only reduce the matrix stiffness but also increase
the tissue permeability thereby reducing its dynamic stiffness.
In addition, PG loss reduces the cartilage FCD and reduces the
consequent swelling pressure.

Collagen
Collagen is the most predominant structural macromolecule in
ECM, constituting about 60% of the cartilage’s dry weight. Type
II collagen constitutes 90 to 95% of the collagen in ECM and
forms fibrils and fibers intertwined with proteoglycan aggregates
(Sophia Fox et al., 2009). Collagen fibers offer resistance to
tension. Hence, they provide resistance against swelling and
tensile strains, but they do not offer significant resistance to
compression. In the deep zone of cartilage, the collagen fibrils are
perpendicular to the cartilage surface whereas in the superficial
zone, they are parallel to the surface, thereby resisting shear
deformation of the surface.

Degenerative changes
Damage to the collagen network is one of the early signs of
OA and has been recorded in many studies (Wilson et al.,
2006b; Mononen et al., 2012; Hosseini et al., 2014). This has
also been associated to the initial cartilage swelling observed
in early OA (Bank et al., 2000). Collagen damage furthermore
triggers loss of PGs and loss of tissue hydration as described in the
previous section. Mechanically, damage to the collagen network
will lead to a significant reduction in the tensile stiffness of the
cartilage and enhanced swelling, since the collagen network helps
constraining the swelling of the tissue.

Chondrocytes
Chondrocytes are the cells that reside in the articular cartilage.
They are highly specialized cells which are metabolically active.
They play a pivotal role in the development, maintenance, and
repair of the ECM as well as its degeneration (in case of OA).
Chondrocytes constitute only about 2% of the total volume of
articular cartilage. The shape, number, and size of chondrocytes
vary considerably across the thickness of the articular cartilage.
The chondrocytes in the superficial zone of cartilage are flatter
in shape and smaller in size and generally have a greater density
than those present in the deeper zones in the matrix. They
can sense and respond to a variety of stimuli, such as growth
factors, mechanical loads, and hydrostatic pressures. They do not
easily proliferate in cartilage, which limits the healing capacity
of the cartilage post-injury or damage. An optimal chemical
and mechanical environment is therefore critical to the survival
of chondrocytes.

Degenerative changes
In OA, the balance between the anabolic and catabolic factors
is disturbed, with an increase in the latter. During the early
stages of OA, the levels of PG and collagen synthesis are
largely increased (Lippiello et al., 1977; Clouet et al., 2009) to
counterbalance the upregulated catabolic processes such as the
increased production of matrix degrading metalloproteinases
(Okada et al., 1992; Moldovan et al., 1997). In further stages of
OA, chondrocyte apoptosis leads to the degradation of cartilage
(Chen et al., 2003; Kim and Blanco, 2007). Chondrocytes in
OA have been shown to express hypertrophy markers such
as type X collagen and MMP13 (Kirsch and von der Mark,
1992; Nurminskaya and Linsenmayer, 1996; Alvarez et al., 2000).
It is therefore hypothesized in some studies that during OA,
articular chondrocytes lose their stable differentiated phenotype
and behave like terminal differentiating chondrocytes as found
in the growth plate of long bones, expressing hypertrophy-
like changes (von der Mark et al., 1992; Dreier, 2010;
van der Kraan and van den Berg, 2012).

Calcified Cartilage
The zone of calcified cartilage (ZCC) acts as a transition
zone from the softer cartilage to the stiffer sub-chondral bone
region. The ZCC serves the important task of transmitting
forces between the softer cartilage and the stiffer bone,
thereby distributing the stresses across the bone-cartilage
interface. The ZCC has intermediate stiffness with previous
studies showing that the stiffness of the ZCC is about
100 times the overlying hyaline cartilage and 1/10 times
the underlying subchondral bone (Hargrave-Thomas et al.,
2015). Apart from providing an intermediate stiffness, the
ZCC is believed to act as a biochemical barrier preventing
molecular exchange between the articular cartilage and the
underlying bone marrow.

Degenerative changes
In OA, the ZCC is thought to cause thinning of the overlying
articular cartilage by mineralization and advancement
of the tidemark toward the articular cartilage layer
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(Oegema et al., 1996, 1997). Thinning of articular cartilage
would then increase forces on the bone and thereby promote
further degeneration. Some studies also suggests that vessels and
channels that connect the subchondral bone with the calcified
and the uncalcified cartilage become more abundant in the
cartilage of patients with OA as compared with that of healthy
individuals, thereby increasing the molecular cross-talk between
the bone and cartilage cells (Thambyah and Broom, 2007; Walsh
et al., 2010; Lories and Luyten, 2011).

Subchondral Bone
There are different layers of bone beneath cartilage, the
subchondral cortical bone, the subchondral trabecular bone, and
the epiphyseal trabecular bone which are collectively regarded
as the subchondral bone (Figure 1C). The subchondral cortical
bone or subchondral cortical plate is a thin layer of compact
bone beneath the calcified cartilage, separated from it by a
thin layer of ductile material called the cement line, and is
composed of about around 48% mineral, 31% organic matter,
and 21% water in a healthy samples (Li and Aspden, 1997b).
The thickness of subchondral cortical end-plate varies both
within a sample and between different samples and could
additionally be affected by OA. A range between 0.1 and 4.8 mm
has been reported in the literature (Clark and Huber, 1990;
Grynpas et al., 1991; Milz and Putz, 1994; Yamada et al., 2002;
Buckland-Wright, 2004), with increased thickness at the late
stages of OA (subchondral sclerosis) (Buckland-Wright, 2004;
Goldring, 2012; Li et al., 2013; Aho et al., 2017). Likewise,
a range of elastic moduli from 0.6 to 20.0 GPa has been
reported for the subchondral cortical bone (Choi et al., 1990;
Li and Aspden, 1997b).

The subchondral trabecular bone is a layer of cancellous bone
beneath the subchondral cortical bone. Subchondral trabecular
bone layer thickness varies within and between samples with
reported values ranging from 1 to 4 mm (Johnston et al.,
2011). The apparent elastic modulus has been reported to vary
between 6 and 1670 MPa (Bentzen et al., 1987; Finlay et al.,
1989; Zysset et al., 1994; Day et al., 2001; Amini, 2013). Under
normal circumstances at the proximal tibia, mean bone volume
fraction, trabecular thickness, trabecular spacing, and trabecular
number are 0.296, 146, 392 µm and 2.07/mm, respectively
(Kamibayashi et al., 1995).

The epiphyseal trabecular bone is a layer of cancellous bone
which extends from beneath the subchondral trabecular bone
to the growth plate (Figure 1C). Compared to subchondral
trabecular bone, epiphyseal trabecular bone has lower mean bone
volume fraction (Kamibayashi et al., 1995) and thinner trabeculae
(Kamibayashi et al., 1995). A range of elastic moduli from 10
to 2770 MPa has been reported for the epiphyseal trabecular
bone (Keyak et al., 1994; Zysset et al., 1994; Morgan et al.,
2003; Amini, 2013).

Degenerative changes
The subchondral cortical bone’s composition is influenced by OA,
leading to reduced mineral content and increased water content
(Li and Aspden, 1997b). Subchondral bone tissue stiffness
generally decreases with OA (Day et al., 2001; Coats et al., 2003;

Dall’Ara et al., 2011) which might be attributed to the lower
mineral content (hypo mineralization) (Li and Aspden, 1997a,b;
Chappard et al., 2006; Cox et al., 2012). Increased subchondral
trabecular bone volume fraction and thickness, and decreased
trabecular spacing and degree of anisotropy have, however,
been observed in the later stages of OA (Ding et al., 2001,
2003; Chappard et al., 2006; Cox et al., 2012). Animal studies
have revealed decreased epiphyseal trabecular bone volume
fraction with OA progression (Dedrick et al., 1993). It is
known that the microstructure and tissue density affects the
apparent density and tissue modulus and microstructure affects
the apparent modulus. Therefore, alterations of subchondral
bone apparent density and modulus have been observed with
OA progression. Various cadaveric and animal studies have
shown decreased apparent density and modulus at early stages
of OA (Ding et al., 1998, 2001; Batiste et al., 2004; Intema
et al., 2010) which is thought to be due to elevated bone
remodeling evidenced by vascular invasion at the cartilage-
subchondral bone junction, and subchondral plate thinning
and increased porosity (Burr and Schaffler, 1997; Intema et al.,
2010). At the late stages of OA, however, apparent density
and modulus have been reported to be significantly higher
compared to normal subchondral bone (Li and Aspden, 1997a,b;
Johnston et al., 2009). The structural stiffness at the subchondral
surface is a result of the specific spatial distribution of the
apparent modulus and is thus expected to alter as OA progresses.
Altered structural stiffness at the subchondral surface as the
elastic foundation supporting the overlaying cartilage may
influence the distribution of stress and strain in the cartilage
leading to accelerated degeneration (Radin et al., 1970, 1972;
Radin and Rose, 1986).

Ligaments
The primary function of the ligaments is to tie the bones of
the joint together, thereby stabilizing its motions. Any injury
or damage to the ligaments are known to trigger abnormal
joint kinetics and kinematics, which may contribute to joint
degeneration due to excessive shear forces (Shim et al., 2011;
Simon et al., 2015).

Degenerative changes
Injury to the anterior cruciate ligament (ACL) of the knee is
known to increase the risk of osteoarthritis. ACL deficiency
results in disruption of the normal physiological knee kinematics
especially inducing increased internal tibial rotation and
increased anterior tibial translation upon flexion. This has
been associated with increased mean contact stresses in the
posterior medial and lateral compartments of the knee joint
under anterior and rotational loading which may trigger OA
(Simon et al., 2015).

Meniscus
Menisci are located between the tibia and femur bone. They are
two crescent-shaped pads of cartilage that evenly transfer load
across the joint, absorb shocks during dynamic movement, and
lubricate and help to stabilize the joint.
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Degenerative changes
Injury, degeneration, or surgical removal (meniscectomy) of the
entire or part of the meniscus is known to increase the risk of
developing knee OA (Englund and Lohmander, 2006).

USE OF COMPUTATIONAL MODELS TO
STUDY JOINT DEGENERATION

Computational modeling of joint degeneration can be useful
to predict the initiation and progression of degradation in the
different components of the joint, thereby aiding clinicians in
timely intervention (e.g., weight loss, surgery, rehabilitation).
Computational models can range from joint level musculo-
skeletal models that evaluate abnormal whole joint loading
conditions that may lead to joint degradation; finite element
models which can evaluate tissue loading and predict their
degeneration in response to mechanical loading and gene
regulatory network models which can predict the fate of
chondrocytes when subjected to abnormal mechanical or
biochemical stimuli, thereby predicting the cellular processes
underlying joint degradation. The choice of the specific modeling
strategy depends on the specific research question that is to
be answered. It is also evident from the discussion above that
degradation happens due to interplay of factors which are active
at different length scales. Therefore, multiscale modeling can be
useful to combine the different length scales and to develop a
more robust (computational) model of joint degeneration.

In this section, we will discuss the different computational
modeling strategies used to date to study joint degeneration,
a flowchart of which is shown in Figure 2. This section
is structured as follows: firstly, musculoskeletal models are
discussed with their advantages and disadvantages, followed
by some examples from literature which involves the use of
musculoskeletal models to study joint degeneration. Secondly,
finite element models are discussed with their advantages and
disadvantages. The examples of finite element models have
been grouped based on the component of the joint that
is being modeled for degeneration. Thirdly, gene regulatory
network based models are discussed with their advantages and
disadvantages, followed by some examples from literature which
involves its use to study joint degeneration. Fourthly, multiscale
models are discussed with their advantages and disadvantages,
followed by some examples from literature which involves the
use of multiscale models in the perspective of joint degeneration.
Finally, the use of data driven approaches to study joint
degeneration is discussed with its advantages and disadvantages
and some examples.

Musculoskeletal Models
Joint degradation is generally associated with altered gait patterns
of the patient (Li et al., 2013; Farrokhi et al., 2015; Favre and Jolles,
2016). This altered gait kinematics and kinetics then further
increase the joint contact forces which will further promote the
degeneration (Baliunas et al., 2002; Meireles et al., 2017; Richards
et al., 2018). In this context, musculoskeletal computational
models, with inputs from experimental motion and ground

reaction force capture, can be used to quantify the joint contact
forces and consequent pressures, which identify the presence of
excessive loading at joint level and therefore predict the risk of
damage initiation or progression.

Advantages and Limitations
Musculoskeletal modeling provides a non-invasive way to
calculate internal biomechanical loads from experimentally
measured 3D body motions and contact forces in a wide range
of conditions. These joint contact forces give an estimate on
the presence of excessive loading and therefore the risk of
damage initiation or progression. However, as these models
only provide an overall estimate of joint loading, they cannot
identify areas of damage initiation, nor progression as they do not
quantify tissue-specific stresses and strains. The determination
of the properties of a musculoskeletal model (such as bone
lengths, muscle attachment sites, joint centers, etc.) is typically
based on reference values from anatomic and cadaveric studies.
This result in a generic musculoskeletal model which needs
to be adapted and scaled to make it patient-specific. However,
these linear scaling approaches can never mimic subject-
specific geometries and therefore do not allow subject-specific
predictions, thereby inherently limiting the use of this approach.
On the other hand, medical imaging-based workflows using CT-
or MR images have been developed allowing the introduction
of patient-specific geometries in the musculoskeletal model
(Scheys et al., 2008). Although the geometrical precision of
these models clearly outperforms scaled generic musculoskeletal
models, their application is usually cumbersome, expensive, time-
consuming, dependent on a skilled operator and is therefore
less feasible for large-scale studies. More recently, the use of
population-based approaches (such as the MAP client) have been
used to personalize generic musculoskeletal muscles, using a
sparse data set of personalized geometrical features (e.g., from
Killen et al., 2018).

Examples
It has been shown by Richards et al. (2018) that for patients with
medial knee OA, the knee adduction moment (KAM) is a strong
predictor of the medial knee contact force (mKCF) at the first
peak during normal walking. It was also reported in this study
that walking with toe-in or wide-steps gait, modified the first peak
KAM, but no reduction in mKCF was observed. However, the
ratio of mKCF to total KCF, which represents the distribution of
the loading, was reduced. This study demonstrated the potential
of musculoskeletal models to not only identify markers that
increase joint loading, thereby triggering more degeneration,
but also to define modified gait strategies to reduce the joint
loading in an already degenerated joint. In Meireles et al. (2017)
it was shown that the medial-lateral force and contact pressure
distributions were already altered in early stages of medial knee
OA during normal gait. No such trend was observed for a
step-up-and-over motion.

Finite Element Models
The finite element method (FEM) has been used widely to
calculate stresses and strains in the different joint tissues
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FIGURE 2 | Overview of different aspects of joint degeneration with the different length scales involved and the link between in silico mechanistic modeling and
corresponding experimental setups for each scale.

(Mononen et al., 2012, 2015; Halonen et al., 2013, 2014; Kazemi
et al., 2013; Erdemir et al., 2019). Since onset and progression
of joint degradation are hypothesized to be a function of
excessive tissue stresses and strains, finite element models can be
particularly effective in calculating the mechanical environment
in the tissues which are then thought to trigger degeneration. The
steps that are generally followed to develop FE based models of
joint degeneration are as follows.

(a) Representation of appropriate geometry of the joint and
material properties of the constituent tissues.

(b) Input boundary conditions in terms of joint motions,
loads and constraints, often derived from a musculoskeletal
modeling workflow.

(c) Identification of output modeling parameters relevant to
joint degeneration.

(d) Formulation of adaptive -degeneration- algorithms which
relate the output parameters from the FE model to
degeneration of the joint constituents.

Using such a workflow, the initiation and progression of
degradation of knee joint structures has been quantified based on
an iterative evaluation of the finite element model-based stresses
or strains and joint degeneration algorithms (Hosseini et al.,
2014; Mononen et al., 2016; Orozco et al., 2018).

Advantages and Limitations
With advancement in imaging technologies, finite element
models typically aim to incorporate the complex geometry of
the different joint tissues as well as realistic material definitions.
This increases the biofidelity of the FE models to emulate the
in vivo mechanics of the joints. However, it is nearly impossible
to obtain an accurate representation of the joint geometry
due to image resolution, inaccuracies during the segmentation
process as well as smoothing techniques commonly used to
ensure better contact convergence in the joint. In addition,
and comparable to our discussion on musculoskeletal modeling,

manual segmentation of the geometry from imaging data to
build a patient-specific model is a time consuming task, and
hence is not suitable to be integrated in a routine manner in the
clinic. There have been quite a few approaches to automate the
process of segmentation (Marstal et al., 2011; Lee et al., 2014;
Dam et al., 2015; Ye et al., 2015; Bonaretti et al., 2019). However,
most approaches are directed at automatic segmentation of the
articular cartilage, while omitting the other significant tissues
of the joint such as the ligaments or the meniscus [except
for Dam et al. (2015), where meniscus was included], which
will restrict the accuracy of the in silico models to predict
the in vivo conditions. Very sophisticated constitutive models
have been developed for cartilage and other joint constituents
(Wilson et al., 2005a; Julkunen et al., 2013; Mononen et al.,
2015), but obtaining sufficient experimental data to estimate the
parameters for these models is quite a challenging task. In most
cases, these parameters are estimated from in vitro experiments
of cadavers, bovine or porcine joints, since determination of
patient specific material properties is not always possible. Given
that there is a huge variability in the material properties of
biological samples, it leads to departure from patient-specificity
of the developed models. Furthermore, limited tools are currently
under development that allow non-invasive characterization of
the material properties of the joint complex, which is necessary
to develop FE models. Although MRI-based relaxometry is
a promising technique (MacKay et al., 2018), it merely is
a qualitative more than quantitative imaging modality whose
role in multi-scale modeling to predict patient-specific OA
progression needs to be further confirmed (Julkunen et al.,
2013). Also, the constitutive models for cartilage tissue do not
consider physical phenomena like buckling of the collagen fibrils,
fibril–fibril interactions and width of the collagen fibrils, nor
fluid-pressurization-induced lubrication effects (Julkunen et al.,
2013). In addition, there are diverging opinions in literature
on the FE output parameters to be used for the degeneration
algorithms for the different joint constituents. Therefore, in
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the following examples, existing literature covering a variety of
output parameters relevant for joint degeneration is discussed.
Verification and validation of the degeneration algorithms
with experimental data is also a challenging task and will be
discussed in more details in Section “Verification, Validation, and
Uncertainty Quantification of Computational Models.”

Examples
Since there are different models that exist in literature for the
degradation of the different joint constituents, the examples have
been grouped based on the constituent for which degeneration
is being modeled using FEM. Hence, the names of the following
subsections will be based on the constituent of the joint,
keeping in mind that all the subsection involve the use of
FEM as the common computational method (see breakdown
in Figure 2).

FE-models of articular cartilage degeneration in OA
Articular cartilage is one of the primary load-bearing joint
structures which may become damaged when cartilage is
subjected to excessive mechanical loading, and such damage
is likely to progress into OA. Early signs of OA include loss
of PG and roughening of the cartilage surface. In the later
stages, fibrillation of the cartilage occurs, with cracks on the
surface penetrating deeper into the tissue (Chen and Broom,
1998; Hosseini et al., 2014). State of the art computational
models include the different constituents of articular cartilage
and account for fundamental mechanical properties such as
collagen fiber reinforcement with physiological organization
of the collagen structure, ground substance (ground matrix)
stiffness and tissue swelling due to PGs, while accounting
for a depth dependent collagen and PG density (Wilson
et al., 2005a). In consequence, their effects on the mechanical
response of the cartilage can be numerically studied. This
way, a holistic understanding of cartilage degeneration can be
achieved, as damage in the individual components of cartilage,
i.e., softening in the ground substance and damage to the
collagen network, and the possible interaction between these
two can be studied. As it is challenging to explore these
effects experimentally, computational models provide unique
insights. In the following subsections, FE models for the
degeneration of the different constituents of articular cartilage
will be discussed.

FE-modeling of proteoglycan degeneration: Loss of proteoglycans
is one of the signs of early OA. Proteoglycans being the fixed
charge carriers in cartilage, the degeneration of PGs has a two-
fold effect: reducing the cartilage’s compressive properties (due to
increased permeability) and fixed charge density (FCD), resulting
in reduced osmotic swelling pressure. In the paper (Orozco
et al., 2018), FCD loss was modeled in lesioned cartilage disks
under dynamic loading using a degeneration algorithm driven
by fluid velocity, maximum shear strain and deviatoric strain
separately. The fluid velocity driven algorithm was found to
be most effective in predicting FCD loss when compared to
experimental results. This 2D model incorporated only loss
of FCD as a result of PG loss. No softening of the cartilage
ground substance due to PG loss was considered, which is

a shortcoming of this study. Another study (Eskelinen et al.,
2019) involving a 3D FE model of a lesioned cartilage disk,
used similar degeneration algorithms, however with different
parameters driving the degeneration algorithm, more specifically
axial strain, shear strain, octahedral shear strain, maximum
shear strain, minimum principal strain and maximum principal
stress. A maximum shear strain-driven algorithm resulted in
the maximum degeneration of fixed charges around the lesion.
It was also observed that the choice of the degeneration
thresholds for each of the cases as well as the choice of the
loading regime largely influenced the degeneration of fixed
charges around the lesion. Also, the collagen fibril stiffness
was reduced and the permeability increased to model a more
realistic case of loss of fixed charges, further increasing the
FCD degeneration.

It must be noted that both these models incorporate local
damage theories, where the damage at an integration point is
determined by the stresses or strains at that point only. This
local damage theory could result in localization of damage which
results in concentration of all damage in a vanishing volume.
Based on past literature on damage mechanics (Pijaudier-Cabot
and Bažant, 1987; de Vree et al., 1995), this could cause an
extreme brittle behavior of the material, with the material
failing at almost zero energy (Peerlings et al., 2002). In context
of cartilage damage, it would mean that damage to cartilage
occurs catastrophically as compared to a more gradual damage
in physiological case. The solution to this problem would be
to use non-local damage theories, such as the one used by
Párraga Quiroga et al. (2017).

FE-modeling of collagen fiber degeneration: During the initiation
phase of OA, an increase in the fibrillation of the collagen
fibril network is observed. Hence, modeling the degradation of
the collagen fibrils in articular cartilage as a result of repeated
mechanical loading is an important step in the study of cartilage
degeneration. In one study (Mononen et al., 2016), a collagen
degeneration algorithm was implemented for the first time
in a human knee joint model, thereby representing damage
accumulation in overweight patients during physiological gait
loading. In this algorithm, the stiffness of the local collagen
fibril network was reduced when the maximum principal stress
in the tissue exceeded a threshold value based on a chosen
criteria as shown in Figure 3. By performing 100 iterative
simulations, the authors observed that fibril degeneration in the
medial tibial cartilage was more pronounced for obese subjects
compared to healthy humans. These results also confirmed based
on an experimental 4 year follow-up in patients. As such, this
study was one of the first in its kind demonstrating the huge
potential for simulation of patient-specific cartilage degeneration.
In another follow-up study (Liukkonen et al., 2017), the same
degeneration algorithm was used with patient specific FE models
representative of different grades of OA involvement. The
algorithm was able to predict OA progression when compared to
the experimental follow-up data for different subjects. Maximum
degeneration and degenerated volumes within the cartilage were
found to be significantly higher in OA subjects as compared to
healthy subjects.
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FIGURE 3 | The fibril degeneration algorithm (shown in the left side) was based on excessive maximum principal stresses in the medial compartment of the knee
joint. The stress distributions on the right are obtained at the first peak loading force of the stance phase of gait. The model was run iteratively to simulate gradual
degeneration of the collagen fibril network (Mononen et al., 2016).

Different opinions exist in literature regarding the physical
parameters influencing the degeneration of collagen fibrils. In
the aforementioned study (Mononen et al., 2016), maximum
principal stress in the tissue was considered to influence collagen
damage, whereas in another study (Wilson et al., 2006b), it was
shown that for relatively thick cartilage samples, collagen damage
is caused by excessive shear strains along the collagen fibrils,
whereas in thin samples, collagen damage is caused by both
excessive shear strains along the collagen fibrils and collagen fibril
tensile strains, at distinct locations. It was concluded that cartilage
damage starts due to excessive shear strain along collagen fibrils
and damage due to excessive fibrils strains occur at higher loads.

Apart from degradation of collagen fibrils, collagen network
disorganization could progress following cartilage injury, which
can lead to further cartilage degeneration (Ferizi et al., 2017).
Past works on computational modeling of collagen network
disorganization in injured articular cartilage include studies by
Wilson et al. (2006a) and Tanska et al. (2018). Tanska et al. (2018)
concluded that when the collagen reorientation algorithm was
based on both tensile tissue stress or strain and tensile collagen
fibril strain, substantial collagen reorientation was predicted
locally near a cartilage defect and particularly at the cartilage–
bone interface.

FE-modeling of combined collagen fibril and proteoglycan
degeneration: since the initiation and progression of OA is

characterized by collagen fibrillation, and an increase in fluid
fraction and proteoglycan depletion (Andriacchi et al., 2004;
Wilson et al., 2005b; Orozco et al., 2018), there is a need
to integrate all these mechanisms while developing a robust
computational model of cartilage degeneration. In this context,
a study by Hosseini et al. (2014) aimed to understand the
interaction between ground substance softening and fibril
degeneration and their combined effect on overall cartilage
degeneration. For the damage model, it was assumed that excess
deviatoric strain in the ground substance beyond a particular
threshold would lead to softening of the matrix. For the fibril
network, it was assumed that strain in the direction of the
fibers exceeding a threshold would lead to fiber softening. It
was observed that under applied indentation loading, ground
substance softening developed over a larger area than collagen
damage. Damage in the ground substance affected cartilage
softening earlier and to a greater extent than collagen damage. In
a similar study by Mononen et al. (2018), degeneration of collagen
fibrils and PG content, combined with an increase in cartilage
permeability of cartilage was modeled. While the degeneration of
collagen fibrils was triggered by excessive and cumulative tensile
stresses, degeneration of PG’s was modeled by a reduction in the
ground substance modulus due to excessive deviatoric strains.
A decrease in the proteoglycan content was equated with an
increase in the tissue permeability, leading to more fluid flow. The
detailed schematics of the study is shown in Figure 4.
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FIGURE 4 | This figure presents the detailed workflow followed to implement an iterative degeneration algorithm. The top row describes the steps followed to
develop the FE model to simulate knee joint stresses and strains. The middle row shows the different components of articular cartilage that are considered to be
degenerating in the algorithm. The last row presents the mathematical formulations used in the algorithm to model collagen fibril degeneration, proteoglycan
depletion, and increase of permeability of the cartilage due to excessive stresses and strains (Mononen et al., 2018).

In another study Párraga Quiroga et al. (2017) investigated
the effect of strain rate on cartilage damage. Given that cartilage
is poro-viscoelastic, strain-rate dependent effects are indeed
expected. The authors observed that with increasing strain rate
collagen damage increased, whereas damage in the non-fibrillar
matrix decreased. It must be noted that this study used the
same damage evolution as in Hosseini et al. (2014). However,
they incorporated a non-local damage theory, where, instead
of using the local strain in each integration point for damage
evaluation, a strain averaged over a specific volume around the
integration point was used. The results showed that the local
damage approaches result in larger damage areas, localized to

specific elements, whereas the non-local approach shows lower
damage values as a result of the weight-averaging damage based
on Gauss function.

Alternatively, phenomenological models have also been
developed to model the degradation of cartilage (Landinez-Parra
et al., 2011; Argatov and Mishuris, 2015; Men et al., 2017). In one
of these studies (Landinez-Parra et al., 2011), a phenomenological
mathematical damage model caused by mechanical action was
developed. The model considered tissue failure as a result of
chondrocyte death and matrix loss. It took into consideration
different factors modifying fatigue resistance such as age, body
mass index (BMI) and metabolic activity. These FE simulations
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were able to predict tissue failure at different loading frequencies,
variations in damage magnitude and also different damage sites.

FE models of subchondral bone changes in OA
Simplistic FE bone models have been developed to evaluate
the structural role of subchondral bone in OA progression
(Little et al., 1986; Amini et al., 2015). Such models, however,
disregard the intra-specimen spatial distribution of material
properties and also the subtle geometric difference between
subjects. QCT-FE models of subchondral bone have recently been
developed to monitor alterations of local structural stiffness at
the subchondral surface non-invasively and subject-specifically
(Nazemi et al., 2015, 2017). In such models, the QCT provides
information regarding the geometry and density of the imaged
bone whereas FE calculates the integral contribution of all factors
involved in the structural stiffness sensed at the subchondral
surface. More advanced imaging techniques, e.g., MRI/CT
imaging using contrast agents (Matzat et al., 2014), could
help to construct subject-specific FE models of the cartilage-
subchondral bone complex.

Coupled FE models of cartilage degeneration and
subchondral bone remodeling in OA
Since the degeneration of cartilage and remodeling of the
subchondral bone progress hand-in-hand in case of OA (Lories
and Luyten, 2011), both the processes must be coupled in
computational models for a more accurate (patho)physiological
description. In a study (Stender et al., 2016), the BCU was
modeled consisting of the articular cartilage, calcified cartilage,
subchondral cortical bone and subchondral trabecular bone,
however assuming a simple geometry. Bone remodeling was
assumed to occur in the subchondral cortical and trabecular
bone, and damage to articular cartilage could occur either via
damage to collagen fibrils or degradation of GAGs. Results from
spherical indentation on the articular cartilage surface of the BCU
indicated that damage to articular cartilage occurs at the articular
surface. Furthermore, bone remodeling was also predicted to
occur with a net stiffening of the subchondral bone plate. In
another study involving poro-elastic properties of BCU (Stender
et al., 2017), it was observed that the permeability of the articular
cartilage governs the poro-mechanical response of the BCU
while the permeability of calcified tissues exerts no appreciable
effect on the force-indentation response of the BCU. With OA
permeability properties for the bone and cartilage, higher fluid
velocities were observed. In vivo, this phenomenon would likely
lead to chondrocyte death, tissue remodeling, alterations in joint
lubrication, and the progression of osteoarthritis.

Gene Regulatory Network Models
Computer models can also provide a formal framework to
study the dynamics of genetic programs happening inside a cell.
Such computational approaches are highly relevant for systems
biology, a field that has gained quite some importance in the
field of tissue engineering and regenerative medicine over the
last years. One family of models, the (gene) regulatory network
(G)RN models, can be particularly interesting to decipher
signaling and cell responses implied in cell fate decisions. Since

the complex interplay of different factors present in signaling
networks can impossibly be dealt with by human intuition,
in silico models involving formal computer languages can
provide unique insights. There exist quite some examples in
literature (Woolf et al., 2005; Xia et al., 2006; Aldridge et al.,
2009; Saez-Rodriguez et al., 2009) where in silico models were
successfully used to decipher biological complexity and give new
biological insights.

The overview of different methods that can be used to generate
the (G)RN models are shown in Figure 5 (Lesage et al., 2018).
The first step is to generate a network graph, which provides
a static (unchanging) representation of the biological processes
under study. This network graph can be either inferred directly
from the experimental data (data-driven approach) or derived
from mechanisms and pathways already available in the literature
(knowledge-based approach). Once a network is established, a
dynamic analysis is performed to simulate the temporal evolution
of the different network elements under specific conditions and
to study the possible outcomes (stable states) of the established
network. Various modeling approaches can be used to simulate
the evolution of the network components over time. Quantitative
models use ordinary differential equations (ODEs) to describe
the temporal evolution of species (cell density, etc.) and can also
include spatial resolution by using partial differential equations.
Qualitative models on the other hand use logical statements to
describe the evolution of species (Morris et al., 2010).

Advantages and Limitations
Regulatory networks can be useful to study the molecular
mechanisms of joint degeneration. In the adult stage, the
chondrocytes in the articular cartilage remain in a stable
phenotype characterized by a low rate of proliferation
and the production of ECM rich in Col-II and Aggrecan.
However, some degenerative diseases such as OA may lead
to dysregulation of the stable cartilage phenotype, modifying
the chondrocyte’s proliferation rate and triggering its switch
toward hypertrophy, thereby leading to abnormal ossification
of the joints. (G)RN models of stable chondrocytes can be
useful to study the intracellular activation of different pathways
following mechanical and chemical signals, thereby leading to
cell phenotype changes due to cell dedifferentiation, inducing
OA. Since these regulatory network graphs are sometimes
constructed on the basis of experimental results published
in literature (knowledge-based models), conflicting opinions
in literature can lead to problems in decision making from
the perspective of the model developer. Additionally, most of
these (G) RN models are either qualitative or semi-quantitative
in nature (Kerkhofs and Geris, 2015; Kerkhofs et al., 2016),
which makes it difficult to be integrated with quantitative
methods like the FEM. Also, the ability for quantitative model
predictions is limited.

Examples
In a recent study (Hodgson et al., 2019) systems biology
approaches combining experimental and computational findings
studied the mechanism by which TGFβ protects against pro-
inflammatory responses and how this mechanism changes with
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FIGURE 5 | Description of modeling framework for regulatory networks. Firstly, a static network graph is generated from experimental data and mechanisms
reported in literature. Then, various modeling approaches can be used to simulate the temporal evolution of the components of the network. Quantitative models use
ODE to describe the temporal evolution of species (cell density etc.) and can also include spatial resolution by using partial differential equations. Qualitative models
on the other hand use logical statements to describe the evolution of species (Lesage et al., 2018).

age. Computational modeling revealed that two independent
mechanisms were needed to explain the crosstalk between TGFβ

and pro-inflammatory signaling pathways. Further insights into
the mechanisms that cause TGFβ signaling to change from
a protective to a detrimental pathway in cartilage with aging
were provided. This systems biology approach suggests that
the restoration of the protective role of TGFβ can be a
potential therapy to prevent loss of cartilage in aging patients.
Similar studies to identify other factors leading to cartilage
breakdown and identification of curative and protective targets
can be found in Proctor et al. (2014); Hui et al. (2016), and
Kerkhofs et al. (2016).

Multiscale Models of Joint Degeneration
It is well-known from literature that moderate mechanical
loading is essential to maintain cartilage homeostasis (Sah et al.,
1989; Quinn et al., 1998; Bader et al., 2011) and excessive
mechanical loading may trigger degeneration of cartilage.
However, to understand the sequence by which mechanical
signals are transferred from the joint level to the cellular level
and how these signals trigger intracellular processes, multi-scale
modeling is necessary (Halloran et al., 2012; Kapitanov et al.,
2016). A brief framework of multiscale modeling for articular
cartilage is shown in Figure 6.

Advantages and Limitations
Multi-scale modeling can be an important tool to evaluate the
intricately linked mechanical states of the tissue and the cells,

which can lead to the onset and progression of OA. A feed-
forward post-processing approach (translating from the macro-
scale tissue level to the micro-scale cell level) for multiscale
modeling has the advantage of being less computationally
intensive because the micro and macro scale models need to be
solved only once for a particular loading scenario. However, in
a uni-directional feed-forward approach, the reverse direction
(i.e., translating from the micro to macro scale) is generally not
implemented, which is important when tissue properties may
change due to tissue damage or regeneration as in OA. This step
would involve a computational homogenization approach like
Geers et al. (2010) to infer the changes in the macro-scale tissue
properties from the changes in micro-scale cartilage or bone
properties due to intracellular processes. Such a homogenization
procedure comes with specific computational challenges, a
discussion of which is beyond the scope of this paper.

Examples
Multiscale modeling approaches allows to calculate (Sibole and
Erdemir, 2012; Sibole et al., 2013) chondrocyte deformation
due to physiological loading in the knee joint. In this post-
processing approach, the macro-scale tissue level model was
mechanically coupled to the micro-scale cellular model by
passing the deformation gradient from the tissue level to the
cell level. It was observed that micro-scale models calculated
amplified deformations of the chondrocytes compared to
those predicted at the macro-scale when simulating one body
weight compressive loading at the tibio-femoral joint. Also,
it was observed in Sibole et al. (2013) that first-order data
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FIGURE 6 | The pathway of mechanical signal from joint level to cellular (intra-cellular) level can be understood by developing computational models at different
length scales which interact with each other. (A) Musculoskeletal (MSK) modeling approaches coupled with gait analysis can calculate the kinematics and the forces
in the joint during locomotion. (B) Finite element analysis of the whole joint with inputs from MSK models can provide contact pressures and forces, and the
macroscopic stresses and strains in the tissues. (C) Micro-scale finite element analysis of chondrocytes in the extracellular environment, with inputs from
macroscopic finite element analysis of the tissue can produce deformations and stresses in the chondrocytes in their native environment. (D) Micro-scale fiber
architecture and multiphase modeling can make the cellular-level models event more integrated. (E) The intracellular processes triggered by mechanical signals
acting on the cell can be modeled by (Gene) Regulatory networks (modified from Halloran et al., 2012).

passing (considering the first gradient of the deformation, i.e.,
deformation gradient tensor, as the link between macro and
micro scales) between the different spatial scales appeared to be
sufficient for simplified loading conditions. In a similar study
using a post-processing approach (Tanska et al., 2015), a 3D
multi-scale model was developed to compare chondrocyte and
surrounding peri- and ECM responses under loading during gait
in healthy and medial meniscectomy knee joints. Displacements
and pore pressures at the nodes of a compartment level model
(consisting only the medial compartment of knee joint) were
used as boundary conditions for the cell level model. Medial
meniscectomy per se was found not to alter chondrocyte
deformations substantially during gait. However, abnormal joint
loading following meniscectomy did expose the chondrocytes
to higher magnitudes of fluid pressure and maximum principal
strains. These changes might lead to loss of cell viability and
contribute to the onset of OA.

A different multiscale framework was developed by Shim
et al. (2011) and Fernandez et al. (2012), aiming at studying the
initiation of OA at the bone-cartilage interface due to anterior
cruciate ligament damage (ACLD). In the framework (shown
in Figure 6), which was coded in CellML (Nickerson and
Hunter, 2005), the cell level model involved a bone remodeling
algorithm (Pivonka et al., 2008) based on the RANK–RANKL–
OPG pathway that predicted the number of active osteoblasts

(to deposit bone) and osteoclasts (to absorb bone). Similarly, a
cartilage damage prediction model was used (based on the work
of Nam et al., 2009), which quantitatively described the action
of NF-κB signaling cascade under mechanical stimulation. Peak
cartilage strains were used to excite IKK which activated the NF-
κB pathway, thereby inducing a number of pro-inflammatory
genes. It was observed using this model that ACLD resulted
in subchondral bone thickening with a reduction in cartilage
thickness. Also increased peak cartilage strains of the ACLD
knee resulted in increase of inflammatory cytokines in the
medial femoral condyle. One of the main contributions of this
multi-scale approach was its ability to incorporate the effect of
subchondral bone remodeling on cartilage inflammation.

Data Driven Approaches
Artificial intelligence approaches such as machine learning (Du
et al., 2018; Nelson et al., 2018; Jamshidi et al., 2019) constitute
a different modeling approach to predict OA progression. The
difference between these approaches to the others discussed in
previous sections is that these approaches are fed purely with
data and do not rely on underlying physics-based modeling
approaches. In this section, the examples will focus on models
based on patient reported outcome measures (PROMs). Other
areas where data-driven approaches are commonly use are related
to image processing and (G) RN inference.
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Advantages and Limitations
The data-driven approaches are designed to deal with uncertainty
and imprecision which are commonly present in clinical data
sets such as those from OA studies. Generally, such prediction
models are developed using input and output variables, with
input variables consisting typically of baseline demographic or
imaging data (Ashinsky et al., 2017; Du et al., 2018), and outcome
variables consisting data related to the presence of knee OA as
assessed by specific methods such as, Kellgren–Lawrence grade
for classification of knee OA. The resulting model is then used to
predict the outcome variables from a new data set (typically from
independent patient data). The choice of the input variables is of
great importance in this approach as it can affect the accuracy of
the predictive models. Generally, known risk factors for OA are
included in the list of input factors. The risk factors commonly
include age, sex, and BMI. Some other suggestions for risk factors
can be pharmacological treatments, genetic factors, varus or
valgus misalignment of the knee, ethnicity, physical activity, etc.
(Jamshidi et al., 2019). It is very important to identify the most
important risk factors, as their inclusion will not only increase
the accuracy of the prediction model but also reduce the number
of redundant variables, thereby saving time and cost during the
training phase of the model.

Examples
In Long et al. (2017), a model for the prediction of knee
OA was developed. Kinetic variables from the hip and knee
and the quality of life outcome score were combined to
create a prediction model for predicting the risk of knee OA
in post-traumatic individuals (with the least prediction error
of 0.02). Imaging-based information incorporated in machine
learning-based prediction models were found to improve their
performance (Lazzarini et al., 2017). In Ashinsky et al. (2017),
a disease classification model was developed using a machine
learning algorithm to select features of articular cartilage from
MRI (performed in vivo) indicative of OA progression. The
selected features correlated with the Western Ontario and
McMaster Universities Arthritis Index (WOMAC) score. The
developed model predicted which patients would progress to
having symptomatic OA with 75% accuracy.

VERIFICATION, VALIDATION, AND
UNCERTAINTY QUANTIFICATION OF
COMPUTATIONAL MODELS

Establishing credibility of in silico models of biological processes
follows a series of well-defined steps, summarized by the
abbreviation VVUQ: verification, validation, and uncertainty
quantification. The verification step refers to ensuring that
the simulation outcomes correspond to the mathematical
model. This means, amongst others, ensuring that no mistakes
were made in the implementation of the model, that proper
convergence studies were executed and that the solution
proposed by the software is correct. In the validation step,
one has to demonstrate that the simulation results correspond
to the physical reality. This requires running simulations

to predict conditions, within the model’s context of use,
for which high-quality well-documented experimental data is
available and performing the comparison between experimental
and simulation results. For these first steps (verification and
validation), a standard has recently been published for medical
devices (ASME, 2018). This standard allows to assess the
amount of V&V that is necessary to include in regulatory
filing of a medical device, depending on the influence and
consequence of the in silico model on the functioning of the
device. Recently, it was elaborated how these same concepts
can be applied to physiologically-based pharmacokinetic- models
typically used in the context of drug development (Kuemmel
et al., 2019). Finally, in the uncertainty quantification step,
the aim is to obtain an understanding of the impact of the
assumptions that were made while establishing the model
and its parameters on the model outcome. Several excellent
reviews describe the process of VVUQ in further detail for a
variety of models and medical applications, see for instance
(Steinman and Migliavacca, 2018; Parvinian et al., 2019) and
references within. In the area of knee joint modeling, a
recent paper by Erdemir et al. (2019) explicitly addresses
issues such as reproducibility, model training, standards and
regulatory affairs.

For validating musculoskeletal models, the first step is
to compare the outputs of the developed model (which is
calibrated from experimental data) with independent data sets.
Most commonly, electromyography (EMG) data is compared to
calculated muscle activation and force profiles. Less common
is the comparison of the calculated joint contact forces
against available experimental measures of joint loading from
instrumented implants (Fregly et al., 2012). Ideally, the
simulation is based on the corresponding experimental data
for which the measured joint loading is available. Unique data
sets are currently available in the biomechanics community for
this purpose. Alternatively, musculoskeletal simulation outcomes
(i.e., joint angles and moments, muscle activations and forces,
muscle fiber and tendon velocities and internal joint loads) can
be compared to the results obtained from previously validated
published models, on the condition that identical input data
(3D Motion capture and ground reaction force data) are used
(Hicks et al., 2015).

Verification of FE models involves a wide range of approaches
including mesh convergence studies, and has been extensively
reported in literature (Jones and Wilcox, 2008; Erdemir et al.,
2012). For FE models aimed at studying the sensitivity of
general outcomes to some input parameters, a detailed validation
may not be necessary. While developing FE models of subject
specific in vivo cases, such as the knee or the hip joint,
validation can be quite challenging due to unavailability of
suitable experimental data (for example, measurement of joint
contact forces in vivo) for both practical and ethical reasons.
In such cases, partial validation of the in vivo model with
experimental data for other specimens can be done. Non-invasive
imaging techniques such as MRI can also be used to map
the deformation of the cartilage, hence providing experimental
data for validation. For validation of FE based degeneration
models, one can use already established databases such as the OA
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initiative database, or use results from ongoing cohort studies.
Since progression of OA is a long term phenomenon, in case
of ongoing cohort studies, one has to wait for a long time
to get the experimental data for the validation of prospective
computational models. Some studies have used the OA database
to compare their (retrospective) model predictions (Mononen
et al., 2016; Liukkonen et al., 2017), which provided confidence
in the predictive capability of the models.

Validation of multi-scale models invokes the need for
experimental setups which can capture deformations or changes
in the micro-scale cellular level due to changes in inputs in the
macro-scale. Such multi-scale experimental setups can use multi-
photon laser microscopy to measure chondrocyte deformations
in both osteochondral grafts as well as intact joints (Fick et al.,
2016; Moo et al., 2018). Parameters such as cell aspect ratio,
volume and height and width are generally used to validate the
simulation results with experiments (Sibole and Erdemir, 2012;
Erdemir et al., 2015).

DISCUSSION AND CONCLUSION

With a worldwide increase in OA prevalence, there is an
urgent need of gaining a detailed understanding of the factors
contributing to disease initiation, progression and remediation.
The last decade, significant progress in the development of
computational tools to study the complex biomechanical factors
involved in OA was made, using computational models.
Musculoskeletal and finite element modeling (Hosseini et al.,
2014; Mononen et al., 2018) as well as (gene) regulatory networks
(Shim et al., 2011) were used to study the initiation and
progression of damage in the joint. This approach is widely
regarded as one of the emerging approaches that can aid
clinicians in planning timely interventions. Advanced imaging
(Jadin et al., 2007; Xia et al., 2018; Honkanen et al., 2019)
coupled with sophisticated computer modeling techniques can
help in achieving this goal. In terms of modeling approaches,
finite element models have been quite promising in predicting
degeneration of different constituents of articular cartilage
(Hosseini et al., 2014; Mononen et al., 2016) and the role of
the subchondral bone in the disease process. However, there
is still room for improvement in terms of the development of
patient specific models. The primary bottleneck in developing
patient specific in silico models of joint degeneration is the huge
variability in joint geometry as well as mechanical properties of
the corresponding tissues.

As evident from this review, algorithms for damage modeling
of the different constituents of articular cartilage, i.e., the
collagen fibrils, proteoglycans, and permeability of ground
matrix have evolved from simpler damage models triggered
by principal or deviatoric strains (Hosseini et al., 2014) to
more complex damage models that take into account the
cumulative effect of loading (Mononen et al., 2018) or using
non-local damage theories (Párraga Quiroga et al., 2017).
These algorithms are coupled with finite element models
of the knee joint, and hence, are capable of predicting
local cartilage degeneration due to biomechanical overloading

of the joint. Another possible approach would be to add
biomechanical factors into the statistical or machine learning-
based predictive models. This would involve the use of data-
driven methods with FE models and damage algorithms, which
would provide information about the biomechanical factors
in the model. However, this would require FE analysis of
100s of subjects which is a cumbersome and time consuming
task. Furthermore, statistical or machine learning methods can
possibly reduce the level of subject-specificity in terms of
geometry and mechanics of the joint, by approaching a template-
based analysis.

In this review paper, we also discussed the role of regulatory
network models and their potential in predicting cell fate as a
result of biomechanical and biochemical stimuli. To improve
the robustness of such models, a complete description of the
intracellular signaling pathways is needed thereby requiring
unique experimental data that is increasingly made available from
a range of microarray and RNA sequencing studies that describe
the effect of mechanical loading on cell fate decisions. Also,
if these regulatory networks were to be coupled with a larger
multi-scale framework, the effect of abnormal joint loading on
chondrocyte transcriptional activity and hence the phenotype
change responsible for OA progression could ultimately be
monitored. A major challenge in this field is to relate the changes
in cell phenotype to macro level changes in the joint loading,
which would require not only extensive experimentation to
characterize the change in matrix constituents with change in cell
phenotype, but also the application of computationally intensive
homogenization methods for homogenization of micro-scale
mechanical properties to the macro scale.

In conclusion, as described in this paper, a substantial number
of computational tools are available that can be used to model
joint degeneration in OA. In the future, efforts should be made
to integrate the different modeling techniques into an open
access more robust computational framework that should not
only be efficient to predict OA progression but also easily
allow individualized risk assessment for use in screening in
clinical practice.
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