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Abstract  

The kinetic energy released to the C4H4
+ and HCN fragments produced by the dissociation of the 

pyridine ion has been determined by a retarding field technique up to an internal energy of 4 eV above the 

reaction threshold. This extends our previous study limited to the metastable domain [Int. J. Mass Spectrom. Ion 

Process. 185/186/187 (1999) 155]. Retarding potential curves resulting from dissociative photo ionization using 

the He(I), Ne(I), and Ar(II) resonance lines have been analyzed by the maximum entropy method. The 

comparison between the experimentally measured curves and those calculated for the prior (i.e., most statistical) 

situation reveals the existence of dynamical constraints that prevent phase space from being fully explored. The 

"ergodicity index" F(E) that measures the efficiency of phase space sampling as a function of the internal energy 
E of the molecular ion is found to decrease steadily as a function of E and to level off at a value of about 50% 
when E > 2.5 eV. At these high internal energies where phase space exploration no longer decreases, 
spontaneous intramolecular vibrational energy redistribution (i.e., resulting from the anharmonicity of the 

molecular vibrations) is thought to contribute to internal energy randomization to a limited extent only. When the 

lifetime is short, phase space exploration is believed to result instead from the relaxation of the electronic energy 

via a cascade of non-radiative transitions, which leads to a great diversity of initial conditions, and thus, 

contributes to statisticity. 
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1. Introduction 

All statistical theories of mass spectra assume fast randomization of the internal energy before 

dissociation takes place. A molecule is said to behave ergodically if reactive nuclear trajectories sample the 

available part of phase space either fully or at least representatively before dissociation [1-4]. 

In 1981, Professors Helmut Schwarz and Chava Lifshitz started to investigate evidence for non-ergodic 

behavior in ionic fragmentations [5] and pointed out that the analysis of the translational energy distribution 

carried by the fragments of a unimolecular dissociation gives information about the ergodic nature of the reaction 

[3]. The present article wishes to follow-up this idea. A key concept studied in the Schwarz group, namely the 

seam between crossing potential energy surfaces [6-8], will be suggested to provide an important clue to the 

problem. Our paper is dedicated to Helmut, in recognition of his lifelong insistence that theory and experiment 

should always work in concert. 

The present contribution exploits a definition of the degree of ergodicity provided by the maximum 

entropy theory [9-12]. This method has been previously applied to simple reactions, consisting mainly in a 

straightforward bond cleavage leading to the loss of a halogen neutral atom [13-15]. We now turn to a more 

complicated reaction: 

 

This reaction is interesting and challenging for several reasons. First, it is one of the benchmark 

reactions that have been studied in the micro- and millisecond time scales and whose rate constant is known as a 
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function of internal energy [16-19]. Second, this reaction requires an important reorganization of the molecular 

structure. An aromatic six-membered ring generates a C4H4
+
 fragment whose most stable structure is that of the 

methylenecyclopropene [18-27]. Third, since the HCN fragment is characterized by a substantial dipole moment, 

the last step of the reaction is governed by a strongly anisotropic potential, in contradistinction to the reactions 

previously studied, which involved asymptotically isotropic long-range forces. Fourth, from an experimental 

point of view, the thermal energy is not negligibly small with respect to the translational energy release, so that a 

new method had to be developed to extract the kinetic energy release distribution from the raw data. 

The question we investigate in the present article is "to what extent is reaction (1) ergodic?". An answer 

to that question has already been provided when the internal energy is such that the reaction takes place in the 

microsecond time scale [28]. However, in the present paper, we wish to extend the analysis to a substantially 

broader range of internal energies. 

 

2. Experimental technique and data handling 

2.1. Apparatus and experimental working conditions 

The spectrometer is constituted by a Lindau-type electron energy analyzer and an ion retarding potential 

device coupled with a quadrupole mass analyzer [29,30]. Fig. 1 shows the ionization chamber together with the 

ion optics necessary to perform retarding field experiments. The effusive gas sample is ionized by photons 

produced by a rare gas discharge lamp, along a direction perpendicular to the figure plane. He(I) (21.21 eV), 

Ne(I) (16.65-16.87 eV) and Ar(II) (13.47eV) resonance lines were used in the present contribution. The device is 

surrounded by a mu-metal cylinder, protecting against residual magnetic fields. 

The ions are retarded within the chamber by applying a variable voltage to the EXE lens (see Fig. 1), 

while the ion chamber and the EXI extractor are kept at constant potential. Ions are focused to the entrance slit of 

the quadrupole mass spectrometer by two triplet lenses (L1 to L4) and by an intermediate F lens. 

The transmission of the ion optics-quadrupole system has been checked carefully. In the ion energy 

range of interest, and well above (up to 4 eV), the transmission is constant within maximum limits of ±10%. 

Fig. 1: Schematic view of the ionisation chamber and ion optics. 

 

Pyridine (HPLC grade, 99.9% purity) and pyridine-d5 (100% atom purity) from Aldrich were used 
without further purification. The retarding potential curves of both the ionic fragment (C4H4

+
) of interest and the 

parent ion (C5H5N
+) were recorded sequentially. 

2.2. Data handling 

What we are interested in is the kinetic energy release distribution (KERD) of the pair of fragments, i.e., 
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the distribution of their relative translational energy when they fly apart in the three-dimensional space. The total 

translational energy released, ε, is shared among both fragments according to the conservation of linear 
momentum, so that the translational energy of the ionic fragment is εf = ε(mn/(mn + mf)), where mf and mn are, 
respectively, the masses of the ionic (C4H4

+) and neutral (HCN) fragments. Besides, the experimental device 

strongly discriminates in favor of the x direction (i.e., the optical axis of the spectrometer), so that the KERD, 
noted  (εf) or  (ε), cannot be directly equated to the derivative of the ion retarding curve, I(εf). However, ion 
trajectory simulations have shown that the KERD can be related to I(εf) by a simple empirical relationship [31]: 

 

where µ = 0.43 ± 0.03. The kinetic energy release εf is simply the product of the retarding potential by the charge 
of the ion. The εf

µ factor corrects for the discrimination effects. 

Eq. (2) is valid when the average kinetic energy that is delivered to the fragment ion upon dissociation 

strongly exceeds the thermal energy of the parent ion. If this is not the case, a deconvolution procedure must be 

applied, as now explained. The velocity of the fragment ion  is the vectorial sum of the initial velocity of the 

parent ion and of the velocity component associated with the release of translational energy upon 

dissociation: 

 

The three-dimensional velocity distribution can then be written as a convolution product: 

 

To solve this deconvolution problem, we first assume that both velocity distributions  and are 

isotropic, so that a simple equation relates the velocity distributions to the associated kinetic energy distributions. 

For the fragment ion, we can write   and, integrating 

over angular coordinates: 

 

A similar equation holds for the parent ion. 

The velocity distribution for the parent ion can be considered as a Maxwell distribution determined by 

the ion source temperature. One possible procedure would now consist in extracting the isotropic distribution 

 from the experimental retarding potential curve by using Eq. (2) together with Eq. (5). And then, in a 

second step, deconvolution via Eq. (4) leads to   , from which a KERD free from the thermal energy 
contribution could be deduced using again Eq. (5). However, the use of Eq. (2) implies a numerical 

differentiation, with a concomitant increase of the noise level of the experimental data, making the de-

convolution procedure quite hazardous. We decided, therefore, to work directly on the ion retarding curve, I(εf). 
Inserting Eq. (5) into Eq. (2) leads to 

 

The following procedure is now adopted: 

(i) The parent ion velocity distribution is assumed to correspond to Maxwell equation: 
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where A is a normalization coefficient and α is obtained by fitting the parent ion signal,  

(ii) The velocity distribution   is calculated, using Eq. (5), with an appropriate Ansatz for the corresponding 
kinetic energy release distribution. From our previous work in the metastable domain [28], we expect a 

monotonous Maxwell-Boltzmann-like distribution. This is also suggested by the structureless behavior of the 

retarding potential curves in the present photodissociation experiments. As will be shown below, the analytical 

form predicted by the maximum entropy method (see Section 3.2, Eq. (13)), which depends on Lagrange 

parameters, is an appropriate Ansatz for the present distributions. Anticipating on Section 3, we already give the 

appropriate analytical form of the KERD, for a given internal energy, E, of the parent ion: 

 

P(ε|E) is the probability to release a translational energy ε to the fragments if the internal energy of the parent ion 
is equal to E. P0(ε|E) is the so-called prior, i.e., most statistical distribution, discussed in Section 3.1. λ0 and λ1 
are internal energy dependent Lagrange parameters and εk is a constraint governing the energy transfers along the 
reaction coordinate during the dissociation process (more on this in Section 3.2). The distribution given by Eq. 

(8) has to be averaged over the internal energy distribution, T(E) of the parent ion (as explained in Section 5, Eq. 
(18)).  

(iii) The Maxwell distribution and the velocity distribution derived from the maximum entropy formalism are 

then convoluted analytically (Eq. (4)). The resulting distribution is introduced into Eq. (6), leading to Eq. (9), 

which takes the average over T(E) into account: 

 

where A' is a normalization coefficient. 

(iv) Eq. (9) is then fitted by non-linear least square analysis to the experimental retarding curve, providing us 

with the best-fit Lagrange multipliers, which are the basic ingredients of the maximum entropy method. Fig. 2 

displays a typical retarding curve fitted to Eq. (9). Note that exponent k is also a parameter but it is kept fixed in 
the fitting procedure. Several values of k are then tested sequentially (more on this in Section 5). The excellent 
agreement between the fit and the experimental data shows that the maximum entropy Ansatz is appropriate for 

the present experimental situation. It has been checked that the experimental uncertainty on the empirical µ 
exponent has no significant influence on the parameters derived from the fit. 

 

3. Maximum entropy formalism: a summary 

We now show that the maximum entropy method can provide an answer to our original question: To 

what extent is the lowest-energy fragmentation of the pyridine cation ergodic? 

3.1.  The prior distribution 

First of all, one has to look for a criterion for non-ergodicity. Consider a situation where the internal energy is 

totally randomized in the parent ion, i.e., where the reactive nuclear trajectories visit all parts of phase space 

before reacting. Then phase space is sampled in an ergodic way and all the quantum states of the system are 

equally probable. In this ideal situation, the probability to release an amount of translational energy ε if the 
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internal energy is equal to E is termed the prior distribution and is denoted P0(ε|E). By its very definition, it is 
proportional to the density of states [1,9-12]: 

 

where ε1/2 is proportional to the density of states of the three-dimensional relative translational motion of the 
centers of mass of the two fragments and Nint(E - ε) denotes their internal (vibrotational) density of states. The 
prior distribution is normalized, i.e., 

 

Fig. 2: A typical retarding curve and its fit to Eq. (9) with k = 1/2. The diamonds stand for the experimental 
curve and the solid line stands for the fit using Eq. (9). Note that the fit actually begins at εf = -0.001 eV. For the 
clarity of the figure, the diamonds give only one out of four experimental points. 

 

 

If the experimental distribution P(ε|E) differs from P0(ε|E), it can be suspected that the reaction is not 
totally ergodic. One or several dynamical constraints can be anticipated to introduce a bias in the exploration of 

phase space, favoring some quantum states at the expense of others. The most obvious constraints are the 

conservation of energy and angular momentum. Eq. (10) ensures that conservation of energy is included in the 

prior distribution, in contradistinction to the conservation of angular momentum. The role of the latter is 

currently under study. However, the maximum entropy formalism makes it possible to identify constraints that 

could be less widely known than the two ones that we have just mentioned. This question will be discussed in 

Section 3.2. 

3.2.  The reaction constraints 

In the maximum entropy method, the actual KERD P(ε|E) is related to the prior distribution by the following 
equation [9-12]: 

 

where k1, k2, k3, are rational numbers. The quantities λi(E) are energy-dependent Lagrange multipliers. The 
quantities εki are termed the constraints (or the informative variables). It has been demonstrated [32] that if the 
exponents k↓ as well as the functions λi(E) are correctly chosen, and if the number of factors exp[-λi(E)ε

ki
] is 

large enough, then the right-hand-side of Eq. (12) converges to an exact quantum-mechanical result for P(ε|E). 
However, the power of the method results from the fact that, in many instances, it is not really necessary to 

introduce a large number of factors into Eq. (12). In practice, the very simple expression 
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is found to provide already a very good approximation to P(ε|E) if the value of the exponent k is adequately 
chosen. At least two reasons can be given for this unexpected simplification in the present experimental 

situation. First, the measured retarding curve to be analyzed has a simple shape, without any fine structure. 

Second, the present experiment involves extensive averaging over a large energy range. Note that the function 

λ0(E) is determined by the condition that the KERD be normalized at each energy E: 

 

3.3.  The entropy deficiency DS and the ergodicity index F(E) 

In information theory, the entropy measures the missing information. The higher the entropy, the 

greater the uncertainty about the state of the system. (Recall that an entropy equal to zero means that the state is 

completely determined.) This can be done, both for the prior distribution P0
(ε|E) (giving the result S0) and for the 

actual KERD P(ε|E) (giving the result S). 

The quantity DS = S0 - S, termed the entropy deficiency, is always positive [9-12]. A non-zero entropy 
deficiency indicates a lack of energy randomization during the entire reactive process. It can be demonstrated 

that 

 

For example, when k = 1, ε  (E) represents the average translational energy release, defined as the first moment 

of an internal energy selected KERD. 

It can be demonstrated [11,33] that the quantity exp[-DS(E)] represents the ratio between the volume of 
phase space effectively explored during the reaction and the volume of phase space available to it at the internal 

energy E. Therefore, an ergodicity index: 

 

can be defined to measure the efficiency of phase space sampling as a function of the internal energy. The main 

purpose of the present work is to determine this function. 

 

4. Computation of the prior distribution 

4.1. Structure of the C4H4
+
 fragment 

As shown in Eq. (10), the calculation of the prior distribution requires the evaluation of the vibrotational 

density of states of the fragments as a function of the internal energy. The HCN fragment has the hydrogen 
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cyanide structure [34-36]. Several low-energy isomeric forms of C4H4
+, however, coexist and could be produced 

upon dissociation of the pyridine cation. Early studies of the metastable dissociation of C5H5N
+
 [18,19,21-23] 

based on appearance energy measurements, ion-molecule reactions and collisional activation, led to the 

conclusion that the C4H4
+  fragment produced at low internal energy has a low enthalpy of formation (∆fH = 

1177kJmol
-1
), and must therefore, correspond to either a single cyclic structure or to a mixture of two structures, 

one of them being cyclic. The methylenecyclopropene as well as the cyclobutadiene structures have been 

suggested. At higher internal energies, a mixture of two isomers has been pointed out [22]. Photoelectron 

spectroscopy of methylenecyclopropene leads to the determination of the enthalpy of formation of its cation                                      

(∆f H = 1178kJmol-1) [24]. Together with CAD measurements on C4H4
+
 resulting from direct ionization of 

methylenecyclopropene, this argument provides strong evidence that the cyclic structure formed at low internal 

energy is that of methylenecyclopropene. New activation techniques were developed in the late eighties, in 

particular neutralization-reionization mass spectrometry (NRMS), as diagnostic tools for the structure of ions 

and neutrals. The isomeric C4H4
+ 
cations vinylacetylene, butatriene, methylenecyclopropene and cyclobutadiene 

were investigated by the group of McLafferty and coworkers [37] and this information was later used to perform 

mixture analysis for various dissociations leading to C4H4
+ 
[38], unfortunately not that of the pyridine cation. 

Ion-molecule reactions of the same four C4H4
+
 isomers were investigated by Shay et al. [39]. More recently, 

Koster and van der Hart [40] explored the photoinduced isomerization of C4H4
+
 and concluded that the barrier 

connecting ionized vinylacetylene to the methylenecyclopropene structure lies below its dissociation limit. On 

the whole, it is now generally accepted that the C4H4
+
 cations generated by the fragmentation of a wide variety of 

precursor ions are a mixture of cations having the methylenecyclopropene structure (~68% if the precursor is the 

benzene ion [38]) or the vinylacetylene ion structure (~32% if the precursor is C6H6
+ [38]). Unfortunately, the 

yields for reaction (1) have not been determined. 

Several ab initio calculations, carried out by different authors, are available in the literature [25-27]. For 

our part, we studied the stable isomers with the B3LYP density functional and QCISD methods using different 

basis sets, up to Dunning's correlation-consistent triple-dzeta basis set. (The significance of standard quantum-

chemical acronyms is explained in many textbooks, e.g., [41].) A search for transition states was also attempted 

with the low-cost B3LYP/6-31G(d) method and intrinsic reaction coordinate calculations were then carried out 

to ascertain the interconnections between isomers. However, we could not detect any other saddle points than 

those previously studied by Hrouda et al. [25] and by Koster and van der Hart [27] with methods more elaborate 

than DFT. To summarize all available results, the calculations unanimously predict the existence of four low-

lying isomers of the C4H4
+
 ion of comparable energies, separated by potential barriers found in all the 

calculations to be as high as 2.2 eV or more. The most stable C4H4
+  
isomer has the methylenecyclopropene 

structure. The other isomers are the cations of vinylacetylene, butatriene, and cyclobutadiene. The 

cyclobutadiene cation exists in two different forms, denoted rectangular or rhombic, but this is of no importance 

in the problem at hand. The most reliable results in our opinion are given in Table 1. It is particularly gratifying 

to note that three different methods to take into account the electronic correlation generated energy values that 

are in nearly quantitative agreement with one another. More details on the potential energy surface are given in 

refs. [25,27]. We recommend the use of the values calculated by Hrouda et al. [25] using the coupled-cluster 

method with a correlation-consistent triple-dzeta basis set (second column of Table 1). 

4.2. Calculation of the prior distribution 

The vibrational frequencies and rotational constants of the four low-lying isomers, as well as those of 

the corresponding perdeuterated species were calculated at the B3LYP/6-31G(d) level of theory recommended 

by Scott and Radom for that purpose [42]. The densities of states of the different species were then calculated by 

a Beyer-Swinehart state-counting algorithm [1,2] and substituted into Eq. (10) to determine the corresponding 

prior distributions. 

The densities of states Nint(E) of the two most likely isomers of the C4H4
+ fragment ion (i.e., 

methylenecyclopropene and vinylacetylene) were found to increase at the same rate and their ratio was observed 

to remain nearly constant over the entire energy range from 0 to 8eV. The same is true for the butatriene cation. 

It can, therefore, be concluded that the prior distribution is independent of the nature and relative amount of the 

isomers generated in the photodissociation. In other words, the possible simultaneous production of these 

isomers in an unknown ratio has in this case no influence on the maximum entropy analysis of the problem, and 

can therefore, be ignored. 

However, conservation of angular momentum is not introduced in the derivation of the prior 

distribution for the following reason. The constraints resulting from the conservation theorems might only be 

taken into consideration in a secure way when the potential between separating fragments is central (as in the 
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ion-induced dipole interaction) over a substantial part of reaction path and, even then, at great pains. This is not 

 

Table 1 : Energies (in eV) calculated for the stable isomers and transition states of the C4H4
+ ion measured with 

respect to the most stable conformation 

Method 

CCSD(T)/cc-pVTZ// MRCI//ROHF/ QCISD/cc-pVTZ// 

QCISD/6-31G(d) 6-31G(d,p) QCISD/cc-pVDZ 

Reference 

[25] [27] This work 

Size of AO basis set 

 

176 80 176 

MCP 0 0 0 

VA 0.43 0.48 0.47 

BT 0.32 0.26 0.39 

CB 0.32 0.39 0.40 

TVA 2.35 2.52  

TBT 2.19 2.47  

TCB 2.70 3.17  

MCP = methylenecyclopropene; VA = vinylacetylene; BT = butatriene; CB = cyclobutadiene. TVA, TBT, and TCB denote the height of the 
barrier which separates the isomers VA, BT, and CB, respectively, from the most stable isomer MCP. 

 

the case for the present reaction, which involves the loss of a HCN fragment characterized by a substantial dipole 

moment. We therefore preferred to choose a reliable starting point by including only the conservation of energy. 

As a consequence, part of the entropy deficiency deduced from our analysis could be due to the constraint of the 

conservation of angular momentum. 

 

5. The distribution of internal energy T(E) 

In principle, the course to be adopted in a maximum entropy analysis is as follows. The prior 

distribution is determined from ab initio calculations. The exponent k involved in the constraint εk is given a 
fixed value (i.e., either k = 0.5, or 1, or 2, from past experience). The numerical treatment then aims at 
determining the unknown function λ1(E) by fitting Eq. (13) to the experimentally determined KERD P(ε|E). The 
function λ0(E) is determined via Eq. (14). The calculation of the entropy deficiency DS and of the ergodicity 
index F(E) follows from Eqs. (15) to (17). 

However, our experimental set-up does not generate energy-resolved measurements, because the parent 

ions C5H5N
+
 are created by photoionization at fixed wavelength. They are characterized by a distribution of 

internal energies that is given by the photoelec-tron spectrum of pyridine. In addition, not all of the C5H5N
+
 ions 

dissociate via reaction (1) (whose threshold is located 11.95eV above the ground state of the neutral pyridine 

[18]), because other dissociation channels may be open if the internal energy is high enough. Therefore, the 

KERD P
~
(ε) that has to be considered in the present experiment is given by an average over a distribution 

function T(E) that is equal to the product of the photoelectron spectrum and the appropriate branching ratio: 
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Three photon energies were available: the Ar(II) resonance line at 13.47eV, the Ne(I) doublet at 16.67-

16.85 eV, and the He(I) resonance line at 21.21 eV. Each of them generates its own distribution function T(E), 
leading to average internal energies of C5H5N

+
 (measured with respect to the dissociation asymptote) equal to 

1.13 eV (for Ar(II)), to 2.22 eV (for Ne(I)) and to 2.76 eV (for He(I)). Note that for the first two wavelengths 

these values are lower than the isomerization barriers reported in Table 1. 

 

6. Results 

6.1. Lagrange parameters and kinetic energy release distributions 

Fitting the retarding potential curves to Eq. (9) requires choosing an appropriate trial function for the 

variation of the Lagrange parameter λ1 with internal energy E. We tried three functional forms: a constant, a 
linear function and an exponential function. The Lagrange parameters resulting from the fitting procedure were 

then inserted into Eq. (13) leading to the corresponding kinetic energy release distributions. Based on our 

previous experience, we tested two constraints, viz. ε1/2 and ε. The quality of the fits (see Fig. 2), as measured by 
the χ2 values, was not significantly different for each of the two constraints, whatever the resonance line used. 
Probably due to the large internal energy covered by these experiments, we cannot draw any conclusion as to the 

precise nature of the constraint. Based on our previous study in the metastable range [28], which unambiguously 

identified ε1/2 as the appropriate constraint, we shall mainly show data obtained with this constraint. The 
important physical observables, i.e., the average kinetic energy release or the ergodicity index, are however, only 

slightly dependent on the choice of the constraint (see Section 6.3). 

The KERDs resulting from the fits are an average over the corresponding internal energy distributions, 

T(E). It is, therefore, not surprising that the values of the Lagrange parameters will be most reliable at energies 
where the internal energy distribution is larger. In keeping with this argument, the Lagrange parameters resulting 

from the three kinds of energy dependence investigated (constant, linear or exponential) are found to overlap in 

an energy domain close to the average internal energy. We trust that these values of λ1 are particularly robust, so 

that, in the discussion, we will only mention, for each kind of experimental condition, the results obtained in the 

energy region where the three trial functions overlap. By using three different resonance lines (He(I), Ne(I) and 

Ar(II)), we sample different energy regions, and are therefore, able to observe the evolution of the reaction 

dynamics as a function of internal energy. For the three resonance lines, Fig. 3 shows the kinetic energy release 

distributions P(ε|E) obtained with this particularly reliable value of λ1 and the corresponding prior distributions 
P0(ε|E). It is straightforward from this figure that the experimental KERDs are substantially narrower than the 
corresponding prior ones. This indicates that the dynamical constraint plays an essential role that will be 

discussed in Section 7.1. 

6.2. Average translational energy release 

The average kinetic energy release has been evaluated using Eq. (19) at the energies at which a reliable 

value of λ1 could be obtained, as explained in Section 6.1: 

 

The results are plotted in Fig. 4 for both constraints ε1/2 or ε. The average released translational energy 
ε  (E) calculated from the two possible constraints shows the same evolution as a function of the internal energy 

E. 

The function ε  (E) can also be calculated for the prior distribution. This information is also included 

in Fig. 4 which then compares the actual average release with that to be expected if the reaction proceeded in a 

totally ergodic way. This comparison reveals clearly that phase space sampling for reaction (1) is incomplete. 

Furthermore, as already deduced from Fig. 3, it also clearly shows that the effect of the constraint is to 

discriminate against large translational energy releases. This result is in agreement with our previous studies [13-

15,28], and will be discussed in Section 7. 

6.3. Evolution of the ergodicity index with internal energy 
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The Lagrange parameters λ0(E) and λ1(E) obtained in the first step of the maximum entropy analysis 
(Section 6.1) can be inserted into Eq. (15) to find the entropy deficiency, DS(E), and the associated ergod-icity 
index, F(E), that is displayed in Fig. 5 for both isotopomers. At threshold (E = 0), the phase space reduces to one 
single cell. Then the system necessarily occupies 100% of its available phase space. Note that the data obtained 

in the metastable window [28] fit in very well with the present results. In line with previous studies [15,43], an 

initial decrease of the ergodicity index from the statistical situation at threshold is followed by a leveling-off at 

internal energies higher than 2.5 eV. It is, however, not possible to decide from the data whether F will increase 
again at higher energies. Fig. 5 shows also that the impact of perdeuter-ation on phase space sampling is not 

easily assessed. At least at high energy, the exploration of phase space seems to be slightly better for the 

deuterated ion. 

Fig. 3: Kinetic energy release distributions for the reaction C5H5N
+ → C4H4

+ + HCN. Solid line: P(ε|E) 
calculated at the internal energy E where the λ1(E) value is particularly reliable (see text). Top: E = 1.1 eV for 
Ar(II); middle: E = 2.6 eV for Ne(I); bottom: E = 3 eV for He(I). Dashed line: P0(ε|E) at the same internal 
energies. The constraint is assumed to be ε1/2. 

 

 

7. Discussion 

7.1. Phase space sampling 

The dissociation of the pyridine ion in the metastable range, corresponding to internal energies of the 

order of 0.6-0.9 eV above the dissociation threshold, has been previously studied by the MIKES technique [28]. 

In this low-energy range, the appropriate value of the exponent k to be used in Eq. (13) is found to be equal to 
0.5. In other words, a single constraint, unambiguously identified as ε1/2 (i.e., representing the linear momentum) 
suffices to account for the experimentally observed KERD. 
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Fig. 4: Averaged kinetic energy release ε  (E). The circles correspond to the present measurements. The full 

circles are derived from an assumed constraint εk = √ε and the empty circles from εk = ε. The diamonds are 
relative to the metastable experiments [28]. The star in (E = 0, ε = 0) means that exactly at the dissociation 

threshold, there is no translational energy release. The solid line stands for ε
0, i.e., the averaged kinetic energy 

release for the prior distribution P0(ε|E). 

 

Fig. 5:. Ergodicity index F as a function of internal energy E. The circles correspond to the present 
measurements on undeuterated pyridine C5H5N

+, the squares correspond to the present measurements on 
deuterated pyridine C5H5N

+. The full symbols stand for the constraint εk = √ε and the empty symbols for εk = ε. 
The diamonds are derived from the metastable experiments [28]. The star indicates a fully statistical situation at 
threshold. An error bar gives an estimate of the measurement uncertainties. 

 

This observation has been rationalized in terms of the "momentum gap law" [14,28]. Most unimolecular 

reactions can be described as vibrational predissociations [1,44]. In quantum-mechanical terms, the predis-

sociation rate constant (i.e., the transition probability) is determined by the magnitude of the square modulus of 

the off-diagonal matrix element represents the stable state,  is the unbound state, and  is 

the interaction operator. The higher the translational momentum, the more rapidly the wave function of the 

unbound state  oscillates along the reaction coordinate, the smaller the overlap  and the matrix element 

, and finally, the less probable the transition. This observation is termed the "momentum gap law" and 
the constraint is then associated with a value k = 1/2 [14,28]. Its effect is to discriminate against states 
characterized by a large translational momentum, and therefore, against a large kinetic energy release. In other 

words, the momentum gap law can be viewed as an extension of the Franck-Condon principle, which says that 

nuclei are able to change their linear (translational) momentum only reluctantly. 

The present experiments sample a much wider range of internal energies than the MIKES 

measurements. Any change in the nature of the constraint (e.g., ε1/2 at low energies and ε at high energies) might 
indicate that the reaction mechanism changes as a function of the internal energy or might indicate a kind of 

transition state switching [45-51]. Therefore, several values of the exponent k in Eqs. (9) and (13) were tried. As 
mentioned in Section 6.1, values k = 1/2 and 1 both led to satisfactory fits to the experimental data. Thus, neither 
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the exact specification of the constraint (i.e., the appropriate value of the coefficient k), nor the function λ1(E) 
(which depends of course on the choice of k) can be unequivocally determined. However, what determines the 
relationship between P(ε|E) and P0(ε|E) is the product λ1(E)ε

k. It is gratifying to note that the uncertainty on their 
product, i.e., on the argument of the exponential appearing in Eq. (13), is less than the individual uncertainties on 

each factor. For that reason, the entropy deficiencies DS and ergodicity indices F(E) calculated from the two 
possible constraints ε1/2 or ε do not greatly differ. Therefore, the variation of the ergodicity index as a function of 
the internal energy, F(E), represented in Fig. 5, is believed to be quite reliable. 

Although the efficiency of phase space sampling is found to be lower than 100%, it does not follow that 

reaction (1) is non-ergodic at high internal energies. An important distinction between full phase space sampling 
and representative sampling has to be introduced. Statistical theories can be applied even if the entire phase 
space is not completely sampled, i.e., even if F is less than 100%. What matters is the representativity of the 
sampling on the time scale of the dissociation. 

Research based on the theory of autocorrelation functions applied to dissociating systems has shown 

that what determines the representativity is the selectivity of the initial preparation process [52]. A non-selective 

excitation process that initially populates even a moderate fraction of the available phase space gives rise to an 

apparent statistical behavior. This result has been confirmed by classical trajectory calculations [53]. A more 

stringent experimental test of non-statistical behavior could only be derived from a highly selective initial 

excitation, i.e., could be obtained only by methods in which the energy is initially deposited in a very small part 

of the reactant phase space. This is not the case in the present experiment, for reasons that will be examined 

presently. 

Consider again Fig. 5. In the metastable range (low internal energies), the ergodicity index is found to 

be of the order of 75%. As the internal energy, E increases, the lifetime decreases. The molecule has less time to 
sample phase space before dissociating and, understandably enough, the ergodicity index decreases. 

Nevertheless, F(E) seems to stabilize at internal energies higher than 2.5 eV A similar behavior has already been 
observed in two cases: loss of a Br atom from C2H3Br

+
 [15] and loss of I from C2H5I

+ 
[43]. In the latter cases, a 

minimum is reached in the F(E) curve, i.e., the leveling off is followed by an increase in the efficiency of phase 
space sampling. This unexpected increase or even leveling off is thought to result from the multiplication of 

initial conditions as the energy increases. In fact, following the excitation, internal energy is originally deposited 

in the electronic degrees of freedom by a large number of vertical Franck-Condon transitions or by 

autoionization and then relaxes to vibrational and rotational excitation as a result of a cascade of non-radiative 

transitions. As the internal energy increases, the density of electronic states increases extremely rapidly, and non-

adiabatic transitions between potential energy surfaces become extremely frequent. Potential energy surfaces 

cross along multidimensional lines denoted seams and each point along the seam can serve as an initial condition 

for a trajectory. The role played by surface crossings in the mechanism of energy randomization had been 

conjectured by Rosenstock and Krauss 40 years ago [54]. 

To summarize, the present experiments involve extensive averaging over both a large energy range, and 

therefore, over a set of presumably very different lifetimes and, furthermore, over widely scattered initial 

conditions. The resulting multiplication of initial conditions increases considerably both the ergodicity index and 

the representativity of the sampling. 

7.2. Isotope effect on phase space sampling 

The experiments that have been carried out on the reaction C5D5N
+
 → C4D4

+
 + DCN detected only a 

marginal isotope effect on the efficiency of phase space sampling (see Fig. 5). 

To analyze the possible existence of an isotope effect on phase space sampling, one has to distinguish 

between bound and unbound molecules. Consider the former first. In general, both experimental [55,56] and 

theoretical studies [57,58] have focused on the early stages of intramolecular energy redistribution and often do 

not go beyond the Fermi golden rule level. The autocorrelation function approach [59-61] is much more relevant 

for the present case of a dissociation process, where an analysis of the long-time limit is required. This approach 

makes it possible to evaluate Heller's ratio which is equivalent to the ergodicity index, F. The former is defined 
[59,60] as F = N∞/N*, where N∞ denotes the number of phase-space cells (i.e., the volume in phase space) that is 
actually explored in the long-time limit [59-61] and N* is the volume in phase space that would have been 
sampled if the dynamics were completely chaotic (i.e., the number of all energetically available phase-space cells 

consistent with the law of energy conservation alone [62]). It is found that there is no isotope effect on the ratio 

F for bound systems because both the numerator [61] N∞ and the denominator [62] N* are found to be 
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proportional to (suitably averaged) densities of states. Hence, both N∞ and N* are individually subject to an 
isotope effect, but their ratio is not. 

Let us now examine the situation where a molecule is excited above its dissociation threshold. The flow 

in phase space is slower for the deuterated species, but its dissociation lifetime increases, both for adiabatic and 

for non-adiabatic processes. It is difficult to see to what extent the two effects cancel. The differences in phase 

space sampling for bound and unbound molecules have been analyzed by Remacle and Levine [52]. Dissociating 

molecules still in a quasibound state can sample the bound part of their phase space faster than what happens 

below the dissociation asymptote, because they can randomize their energy via overlap with the dissociation 

continuum. The physical interpretation is termed healing and can be understood in classical terms as a recrossing 

of the transition state surface leading to a different region of the bound part of phase space. Remacle and Levine 

conclude, however, that "while healing can significantly enhance the rate of exploration of phase space, it 

typically is not enough for representative sampling on the time scale of dissociation." However, as emphasized in 

Section 7.1, the efficiency of phase space sampling in the long-time limit depends on the degree of delocalization 

of the initial excitation, which is the same for both isotopomers under our experimental conditions. These 

arguments support, therefore, the observed lack of any significant isotope effect. 

 

8. Concluding remarks 

In conclusion, as shown by many authors, the study of translational energy releases provides important 

information on the underlying reaction dynamics [1,3,47,63-68]. 

Figs. 3 and 4 show that the translational energy that is actually released in the dissociation of the 

pyridine ion is definitely less than what is predicted by the prior distribution, i.e., is less than what is expected 

from a fully statistical theory. The maximum entropy theory translates this observation into an ergodicity index, 

represented in Fig. 5. The results of the present and also of previous studies can be summarized as follows: 

(1)  Just as has been observed in a number of previously studied reactions [13-15,28], phase space is not 

ergodically explored prior to dissociation. As shown by Remacle and Levine [52], it never can be fully explored 
in a unimolecular reaction. All what can be hoped for is representative sampling. 

(2)  The observation that the translational energy release is less than the statistical prediction is satisfactorily 

accounted for by the momentum (constraint = ε1/2) or energy (constraint = ε) gap laws, which have been 
thoroughly studied in the dissociation of van der Waals clusters [69-72]. This systematic tendency against large 

kinetic energy release implies that the reaction coordinate cannot be treated on equal footing with the bath of the 

remaining 3N-7 bound degrees of freedom that make up the transition state. 

(3)  This being said, our study also shows that the gap law, which involves only the energy stored in the reaction 

coordinate, is the only correction that is needed to improve the statistical treatment. In other words, there is no 

reason to doubt that energy flows freely among the 3N-7 bound degrees of freedom, i.e., within the transition 

state. This provides support for the validity of the statistical approach to unimolecular reactions. 

(4)  The leveling off of the ergodicity index as the internal energy increases strongly suggests that randomization 

does not result only from spontaneous IVR (i.e., does not mainly result from the anharmonicity of vibrations) but 

is a consequence of the multiplication of initial conditions, at least at high internal energies. 

(5)  What remains unclear is this. An unknown part of the entropy deficiency DS and of the fraction of 

unexplored phase space [1 - F(E)] results from the constraint of angular momentum conservation. The remaining 
part of DS can be accounted for by the momentum gap law. Unfortunately, the influence of the conservation of 

angular momentum can so far be rationalized only when the potential between separating fragments is 

spherically symmetric, which is definitely not the case for reaction (1). In the future, we hope to be able to sort 

out these two possible sources of dynamical constraints. 
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