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Abstract: Contact sites between mitochondria and endoplasmic reticulum (ER) are points in which
the two organelles are in close proximity. Due to their structural and functional complexity,
their exploitation as pharmacological targets has never been considered so far. Notwithstanding,
the number of compounds described to target proteins residing at these interfaces either directly or
indirectly is rising. Here we provide original insight into mitochondria–ER contact sites (MERCs),
with a comprehensive overview of the current MERCs pharmacology. Importantly, we discuss
the considerable potential of MERCs to become a druggable target for the development of novel
therapeutic strategies.
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1. Introduction

Mitochondria–endoplasmic reticulum contact sites (MERCs) have been so far the primary actor
in the scene of organelle contact sites. The latter are intracellular microenvironments “delimited”
by the juxtaposition of two (or more) organelles, where signals from diverse transduction cascades
converge, are integrated, and are sent to other subcellular structures. The reason why MERCs are so
heavily studied is historical. Since their discovery, mitochondria and endoplasmic reticulum (ER) have
been immediately recognized as fundamental for cell physiology—the former, as “energy factories”,
the latter, as the site for protein folding first and main store of intracellular Ca2+. Additional contact sites
are beginning to be studied, and this will certainly continue in the future, due to emerging techniques
and increased knowledge about their role and the role of other organelles in cell pathophysiology [1].

A full description of MERCs composition, structure, and functions is beyond the scope of this
review, and it has been covered by previously published articles, so we refer the reader to the
appropriate literature [1–3].

However, we need to point out a few characteristics of MERCs here.
First, they are highly dynamic interfaces, undergoing changes upon stress or metabolic cell

requests. This structural plasticity is highly connected to their functionality, that is, changes in MERCs
organization guarantee the fine tuning of the pathways that they modulate, impacting not only cell
physiology, but also that of the whole organism. For example, the MERCs resident protein mitofusin-2
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(MFN2) is fundamental in shaping the job of pro-opiomelanocortin (POMC) neurons and its ablation
leads to leptin resistance and whole-body energy imbalance [4]. This effect is specifically linked to
the tethering function of MFN2 at MERCs, although MFN2 possesses other subcellular tasks such
as participation in the mitochondrial fusion process. Hence, identification of a compound able to
modulate MFN2-related MERCs functions in POMC neurons may represent an interesting approach to
treat obesity [4].

Second, MERCs are highly tissue specific. According to previously published mass spectrometry
analyses, proteins enriched at MERCs vary markedly, depending on the organ from which they had
been extracted (Table S1, Supplementary Materials). This tissue specificity is further highlighted by the
fact that mutated forms of ubiquitously expressed MERCs proteins result in organ-specific pathologies.
For example, the brain is the primary region altered in Alzheimer’s and Parkinson’s disease caused
by mutated presenilin-1/2 and parkin, respectively, which have been shown to reside at MERCs and
impair Ca2+ exchange between the two organelles [3,5].

The third peculiarity that we would like to highlight is the ensemble of structural properties
of MERCs: (i) the length of the parallel juxtaposition between the outer mitochondrial membrane
and the ER surface; (ii) the distance separating the (surfaces of the) two organelles; (iii) the amount
(i.e., the number) of contact sites occurring in a cell at a well-defined condition; and (iv) the persistence
of these contact sites (e.g., how long they “last”) [2]. As happens in many biological systems, structural
parameters have an impact on MERCs functions; we have recently proposed that MERCs function could
be dual, that is, “vertical” or “horizontal” [6]. In the first case, we refer to processes demanding the
intimate physical proximity of the two organelles, such as phosphatidylcholine synthesis, which requires
the precursors to be transferred between the two organelles [7]. The second term refers to the activity
of enzymes located at MERCs interfaces that account for the quantity of molecules here produced
or processed, as in the case of cholesteryl esters [7]. Unfortunately, this “structure and function
relationship” has not yet been clarified, but future studies are guaranteed.

Because of these structural features and their pleiotropic nature, MERCs (and more in general all
membrane contact sites) appear as a highly complex system and a difficult target for drug discovery.
However, we believe they should be taken into account in the new branch of pharmacological research
known as structural systems pharmacology, which considers not only the specific properties of the
drug targets, but also their environment [8,9].

Although some drugs target MERCs resident proteins, either by direct binding or indirectly
through the modulation of their expression levels, the pharmacological profile of MERCs has been
neglected. In this review, we first summarize the main disorders linked with MERCs defects and
then provide a compendium of the compounds described so far that are able to modulate MERCs
function or structure. We also speculate on the possibility that chemical modulators of organelle contact
sites are the next frontier in pharmacology—in this context, not a single molecule but a whole set of
juxtaposing membranes (composed of specific subsets of lipids and proteins) will be exploited as a
novel druggable target.

2. MERCs and Neurodegenerative Disorders

Most of the MERCs-linked disorders include neurodegenerative symptoms, either at the central
nervous (CNS) or peripheral nervous system (PNS). Despite the finding that mutated forms of MERCs
resident proteins are the genetic determinants of some disorders, the respective cause-and-effect
relationship is still obscure: do MERCs changes actively participate to disease onset, or are they a
consequence of the pathological condition? In some diseases, the causative role of MERCs changes is
supported by several lines of evidence.

One of the most interesting examples is that of amyotrophic lateral sclerosis (ALS). Indeed,
among genetic causes of ALS are mutations of the valosin-containing protein (VCP), vesicle-associated
membrane protein-associated protein B/C (VAPB), protein tyrosine phosphatase interacting protein 51
(PTPIP51), and the TAR DNA-binding protein 43 (TDP-43) [10,11]. These proteins have two common
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traits: first, they are involved in the control of autophagy; second, they all reside at MERCs [2,5,11].
As MERCs have been recently identified as a site of autophagosome formation, it is likely that
MERCs-mediated autophagy plays a key role in the pathogenesis of ALS [1,11]. Other MERCs
functions appear disrupted by mutated forms of VAPB/PTPIP51/TDP-43; for example, overexpression
of TDP-43 is sufficient both to lower ER–mitochondria Ca2+ exchange and to mimic (in rodents) the
disease phenotype caused by a mutation in the 3’ untranslated region of the TDP-43 gene that enhances
its expression level [10,11]. Another MERCs protein known as sigma-1 receptor, whose mutations
are linked to familial ALS cases, has also been reported to decrease mitochondria–ER crosstalk [12],
reinforcing the causative role of MERCs in ALS.

Another example is that of Alzheimer’s disease (AD). Since its discovery, several hypotheses
have been proposed to explain its underlying molecular mechanisms. First, we note the beta-amyloid
(Aβ) cascade hypothesis, which suggests that neuronal death is caused by the accumulation of
extracellular plaques of Aβ, the cleavage product of the amyloid precursor protein (APP) in the
brain [13]. Second, there is the Ca2+ hypothesis, where changes in intracellular Ca2+ homeostasis
cause all the subcellular defects (altered lipid and Ca2+ signaling, mitochondrial dysfunctions,
increased susceptibility to cell death) described in both patient- and mice model-derived cells [14].
However, the evidence that lipid metabolism/synthesis was also imbalanced in AD patients called for
alterations at the crossroad among all these pathways. MERCs, also known as mitochondria-associated
ER membranes (MAMs, if isolated through biochemical fractionation [2]) appeared to be the ideal
candidate, leading to the formulation of the MAM hypothesis [15]. This theory is corroborated by the
fact that the core subunits of the APP cleavage complex, the presenilin proteins, are enriched at MAMs
where Aβcan also be produced.

Another neurodegenerative disorder associated with MERCs defects is Parkinson’s disease (PD).
PD is characterized by the death of dopaminergic neurons and by the presence of cytosolic aggregates
of alpha-synuclein [16]. The latter has been retrieved at MAMs, where its PD-associated mutants impair
both MERCs structure and Ca2+ transfer between the two organelles [17]. Furthermore, most genes
responsible for inherited PD cases either reside at MERCs or modulate them, e.g., parkin,
whose overexpression increases interaction between the two organelles [18,19].

Defective organelle function also affects peripheral nerves, leading to motor and sensory
peripheral neuropathies (PNs [20]). The family of PNs includes a heterogeneous group of diseases
characterized by loss of sensitivity and autonomic nervous system dysfunctions. Some forms of
inherited PNs, known as Charcot–Marie–Tooth disease (CMT), are also linked to defective MERCs,
no matter whether their phenotype is mainly demyelination or axonal degeneration of motor
neurons [6,20,21]. Accordingly, the axonal CMT type 2a is caused by MFN2 mutations impairing its
mitochondria–ER tethering activity and, consequently, the cholesteryl ester/Ca2+ homeostasis [6,22,23].
Ganglioside-induced differentiation-associated protein 1 (GDAP1) and diacylglycerol O-acyltransferase
2 (DGAT2), responsible for demyelinating CMT4A and axonal CMT2 disorders, respectively, have also
been retrieved at MAMs [21,24]. Interestingly, changes in the expression levels of GDAP1 and DGAT2
compromise MERCs architecture and function, which further sustains a possible link between the
onset of PN and dysfunctional organelle crosstalk [21,24,25].

Another example of a MAM-linked disorder is hereditary spastic paraplegia (HSP). Its main
genetic cause are mutated forms of ER-shaping proteins, such as receptor expression-enhancing protein
1 (REEP1), atlastin, spastin, and strumpellin [26]. Mutants of these proteins have been reported to
alter organelle contact sites, either involving mitochondria or not. As an example, REEP1 resides
at MERCs, where it positively controls organelle interaction. Its HSP-linked mutants instead fail to
do so and impair neurite growth and axon function [27]. Atlastin, REEP1, and strumpellin mutants
also change the interaction between ER and endosomes, which is necessary for endosomal tubule
fission [28]. Whether the endosome–ER contact alterations are a consequence or a cause of MERCs
defects in HSP remain to be established.
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Even rarer disorders are linked to MERCs defects; for example, the MEGDEL syndrome caused
by mutated serine active site-containing protein 1 (SERAC1 [29]). Features of this disorder include
methylglutaconic aciduria (MEG), deafness (D), encephalopathy (E), and Leigh-like disease (L).
At MERCs, SERAC1 controls the remodeling of the cardiolipin precursor phosphatidylglycerol;
its mutant forms thus impair mitochondrial and in turn cell physiology [29,30].

As underlined by the former evidence (for more details, refer to [1,2,31]), many MERCs-associated
conditions belong to the spectrum of neurodegenerative diseases. This is likely due to the peculiar
structure of neural cells, including neurons, astrocytes, and oligodendrocytes. For example, the shape
of neurons “determines” their function, as axons and dendrites convey electrochemical signals [32,33].
Thus, processes that influence the MERCs will in turn modify neuronal cell physiology and functionality,
impacting the overall biology of the CNS. While this rule holds true for all cell types, it is likely to fit
even more tightly to neural cells, because each CNS cell is unique in its shape, position, and ability to
transmit signals to other brain cells or compartments. Any subcellular alteration (including MERCs
defects) ending up in disrupting cell extensions (as axons or dendrites) is thus likely to impact the
overall CNS cell connectivity and signaling. Similarly, the “wiring economy” of neurons [34,35] is also
to be affected, proportionally to the extent of the MERCs damage.

3. MERCs and Metabolic Disorders

Besides MERCs role in CNS disorders, much evidence underlines their contribution also to
metabolic syndromes. Two key functions of these interfaces must be taken into account in this context.

First, we note their contribution to lipid homeostasis.
For example, the formation of phosphatidylcholine (PC) starts with the synthesis of

phosphatidylserine (PS) in the ER, which is then transferred into mitochondria where it is
converted into phosphatidylethanolamine (PE). The latter is then transported back to the ER
where it is converted into PC. It has been shown that abnormal PE production impairs autophagy,
as covalent attachment of PE to the autophagy protein Atg8 is pivotal for the formation of
autophagosomes [36–39]. Altered phospholipid synthesis, due to the defective PS exchange at MERCs,
has been shown as the key mechanism underlying a widespread human disorder, non-alcoholic
steatohepatitis [40]. Even steroidogenesis, the process through which steroid hormones are produced
from cholesterol, is controlled by MERCs. This is fostered by cholesterol import into mitochondria,
mediated by the interaction of the two MERCs resident proteins, namely voltage-dependent
anion-selective channel protein 2 (VDAC2) and steroidogenic acute regulatory protein (StAR) [41].
Additionally, lipoid congenital adrenal hyperplasia, an endocrine lethal disorder, is caused by the
defective import of cholesterol into mitochondria caused by mutated forms of StAR [42].

The second MERCs function is that of being the site at which ER and mitochondria exchange
Ca2+ [2]. Indeed, the activity of three mitochondrial dehydrogenases depends on the levels of Ca2+ in
the mitochondrial matrix. Increased Ca2+ concentration fosters the citric acid cycle, hence increasing
NADH levels and ATP production [43]. Notably, changes in the matrix Ca2+ concentration indirectly
control fatty acid β-oxidation; by regulating the levels of acetyl-CoA, the key β-oxidation enzyme
3-ketoacyl-CoA thiolase is inhibited [44].

MERCs-mediated Ca2+ transfer is therefore fundamental for the cell to switch from glucose
metabolism to fatty acid oxidation, a possibility which is often referred to as “metabolic flexibility”.
As such, altered Ca2+ transfer would result in metabolic inflexibility, a condition typical for metabolic
disorders such as obesity, insulin resistance (IR), and diabetes (type 2 especially) [45]. Several pieces
of experimental evidence further corroborate the finding that defective MERCs (more specifically,
impairment of their Ca2+- and phospholipid-related tasks) underlie these pathological conditions [43].

For instance, a mouse knockout model for cyclophilin D, a mitochondrial protein that likely interacts
with the multiprotein complex responsible for Ca2+ transfer (especially with VDAC), is characterized
by a lower number of contacts between the two organelles and by hepatic IR. Interestingly, restoring the
MERCs structure has been enough to rescue IR [46]. In line with this, genetic manipulation of MERCs by
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expression of fetal and adult testis-expressed 1 (FATE-1) dampened insulin response in rat hepatocytes
and mouse livers [47].

Mice harboring liver-specific mutation of inositol 1,4,5-triphosphate receptor 1 (IP3R1), the Ca2+

releasing unit of the ER, display hyperglycemia and higher susceptibility to dietary-induced
diabetes [48]. Not only liver but also skeletal muscles of these animal models are characterized by a
lower number of organelle interactions that likely underlie the subsequent mitochondria dysfunctions.
Similar evidence was retrieved in myotubes isolated from obese patients and from individuals affected
by type 2 diabetes [49–51].

In contrast, hepatocytes from different models of obese mice (leptin-deficient and diet-induced)
are characterized by enhanced mitochondria–ER proximity [52] and altered mitochondrial dynamics,
which could be counteracted (at least in cardiomyocytes) by melatonin administration [53].

Interestingly, IR could be a consequence not only of lower interaction between the organelles,
but also of its increase. Indeed, it has been recently shown that livers from obese mice are characterized
by overexpression of phosphofurin acidic cluster sorting protein (PACS2) and IP3R and by enhanced
Ca2+-related MERCs function, and that insulin sensitivity can be ameliorated upon downregulation of
these two proteins [52,54]. Although apparently contradictory, these results could be explained by the
use of different experimental models (e.g., likely with different genetic background, potentially also
impacting MERCs [55]) and by the fact that the analysis was performed in tissues with different metabolic
requirements. In any case, these lines of evidence highlight the fact that interaction between the ER and
mitochondria contributes to insulin and/or glucose signaling in liver and insulin-sensitive peripheral
tissues. MERCs hyper- or hypo-association leads to the development or enhanced susceptibility to
metabolic disorders [51]. Therefore, MERCs could be considered as a new intracellular target to handle
insulin action and secretion as well as glucose dyshomeostasis in the context of metabolic diseases.

4. MERCs and Cancer

The study of MERCs involvement in the growth and metastatization of different types of cancer is
an exponentially growing field. Here, we briefly summarize a few concepts of cancer research, being in
our perspective one of the pathological scenarios where MERCs-targeting compounds could provide
a big “therapeutic” step forward (in-depth description of cancer biology is beyond the scope of this
review; therefore, we refer the reader to specific works such as [56,57]).

Oncogenes and tumor suppressors can benefit from the MERCs functions, as this platform
can promote metabolic reprograming, restriction or hyperactivation of Ca2+-dependent signaling,
antioxidant response, and apoptosis (reviewed in [58,59]). This is supported by the findings
that the products of oncogenes or tumor suppressors have been found at the mitochondria–ER
interfaces [59,60]. A well-established example is the promyelocytic leukemia protein (PML), encoded by
a tumor-suppressor gene implicated in leukemia. At MERCs, PML controls the phosphorylation
state of IP3R and hence Ca2+ transfer between ER and mitochondria. Under normal conditions,
PML modulates the activity of the serine/threonine kinase Akt by recruiting the protein phosphatase
2a (PP2a); Akt inhibits IP3R-mediated Ca2+ release by phosphorylating it, whereas PP2a counteracts
this event [61]. Therefore, mutations affecting the PML gene (and resulting in lower expression of
PML) hamper the recruitment of PP2a and lead to hyper-phosphorylation of IP3R and reduction
of ER Ca2+ release as well as to susceptibility to pro-apoptotic stimuli [62,63]. The role of PML at
MERCs does not concern only Ca2+ homeostasis, as PML loss has also been linked to hyperactivation
of autophagy [61]. This could also contribute to its carcinogenic activity, as sustained autophagy has
been described in many types of cancer as a way to fulfill the energetic demands associated with high
cellular proliferation rates and survival within restrict environments.

The tumor suppressor p53 was also found at MERCs, where it regulates the activity of the
sarco-endoplasmic reticulum Ca2+ ATPase (SERCA), the pump responsible for Ca2+ re-uptake into
the ER upon its release into the cytosol [64]. Other examples of MERCs resident Ca2+ modulators
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described with pro- and anti-oncogenic actions include phosphatase and tensin homolog (PTEN),
breast cancer type 1 (BRCA1), and B-cell lymphoma 2 (BCL-2) (reviewed in [58]).

One of the pro-survival oncogenic adaptations is the increased resistance to apoptosis; in particular,
changes in the localization or expression of proteins that modulate Ca2+ efflux from ER to mitochondria
can interfere with the opening of the mitochondrial permeability transition pore (mPTP) [65], which in
turn causes mitochondrial depolarization and activation of cell death programs.

The interplay between MERCs and cancer is nowadays highly studied. Understanding the
implication of MERCs in the initiation or progression of tumors and metastasis is highlighting new
molecular targets in chemotherapeutic drug development.

5. Mechanisms for Chemical Modulation of MERCs

The classical pharmacological approach infers the presence of a target (commonly proteins, sugars,
or lipids) for the design and development of a specific drug. Compounds are designed to (pro)fit into
a protein scaffold, thus either hampering its interaction with other partners or cofactors or blocking
its (enzymatic) activity. It is quite obvious, however, that MERCs pharmacological modulation is
more complex than this. We tried to rationalize the possible MERCs modulators by clustering them
into three classes: (i) compounds characterized by direct interaction with proteins located at MERCs,
especially those responsible for organelle tethering (ii) molecules inducing changes in the expression
levels of MERCs resident proteins; and (iii) compounds targeting signal transduction cascades that
ultimately lead to changes in MERCs structure or function (Figure 1).

In the following sections, we sum up the current literature regarding each of these classes.
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reticulum contact sites (MERCs) structure and function.

6. MERCs Modulator Class I: Targeting MERCs Structural Components

As stated above, due to the outgrowing interest in organelle contact sites, we have now access to
an extensive list of molecules known to control or compose these heterotypical membrane proximities.
One of the most explored groups of molecules are those able to connect two organelles, namely the
tethers. They are defined as resident or transitory elements that physically connect the surfaces of
the two organelles, by means of protein–protein or protein–lipid interactions [66]. Tethers are also
assumed to possess specific molecular functions, e.g., participating in the transfer of ions and lipids [67].
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Therefore, they could be considered as a second signaling messenger, which shapes the cell physiology
by adjusting the distance, length, number, and localization of MERCs [68]. Our increasing knowledge
about the identity of these tethering structures, as well as about their structural and functional roles,
makes them promising biological targets for chemical modulators.

A well-described MERCs tethering complex is composed of the ER protein vesicle-associated
membrane protein-associated protein B (VAPB) and the mitochondrial protein tyrosine
phosphatase-interacting protein 51 (PTPIP51) [69]. Modulation of VAPB or PTPIP51 directly impacts
the ER–mitochondria contacts distance, that is, their overexpression or loss results in MERCs tightening
or loosening, respectively [69]. In terms of cell functionality, the VAPB–PTPIP51 complex has been
described to be involved in Ca2+ exchange between the two organelles with implications for basal
and chemical-induced autophagy progression [70]. These findings reinforced the idea that MERCs
can shape autophagy, a cellular process of great interest in terms of chemical modulation [71,72].
The recent discovery of a small molecule named LDC-3/Dynarrestin that directly targets PTPIP51 is in
this review’s interest [73]. First, this aminothiazole was characterized by its antagonistic actions in
cytoplasmic dynein with consequent disturbance of the Hedgehog signaling [73]. Later on, LDC-3
was found to have high binding affinity to PTPIP51 during a small molecule high-throughput screen,
with implications for PTPIP51 downstream signaling [74]. Although LDC-3 was shown to increase
the interaction between PTPIP51 and VAPB, its effects on MAM biology have not been explored.
Nevertheless, it is possible that LDC-3 itself or its analogs can be exploited as a MERCs-targeting
molecule of relevance to neurodegeneration and cancer-related pharmacological research.

Another complex, composed of the inositol 1,4,5 triphosphate receptor (IP3R)/glucose-regulated
protein 75 (GRP75)/voltage-dependent anion channel (VDAC), drives Ca2+ exchange at MERCs [75].
IP3R is a calcium channel located on the ER membrane that controls Ca2+ efflux from the ER into the
cytosol. At points of high proximity with mitochondria, the amount of Ca2+ released as well as its
efflux and reuptake rates shape the formation of microdomains of high Ca2+ concentration on the
surface of mitochondria. The outer mitochondrial membrane protein VDAC, coupled to the inner
mitochondrial membrane Ca2+ uniporter (MCU), drives Ca2+ entry [2,41,66]. IP3R is bound to VDAC
through GRP75. Molecules able to change their interaction could therefore be exploited as therapeutics
to correct eventual MERCs-dependent Ca2+ defects [62].

Of note, many compounds target VDAC1 and modulate its activity (reviewed in [76–78]).
For example, König’s polyanion (KPa) can induce VDAC1 closure in vitro, although in live cells it
works either as a pro- or anti-apoptotic drug, depending on the cell type and experimental condition [79].
The commonly used anti-inflammatory compound aspirin also targets VDAC, promoting apoptosis
through mitochondria depolarization, suggesting its potential use for cancer treatment [80]. Similarly,
the class of compounds known as “avicins” leads to VDAC inhibition, cytochrome c release, and cell
death [81,82].

Other chemicals impinge on VDAC activity, although not through its direct inhibition, but by
blocking its interaction with partner molecules, e.g., hexokinase (HK) and the adenine nucleotide
transporter (ANT). Such molecules include antimycotic drug clotrimazole [83], pyruvate analogue
3-bromopyruvate [84], and the plant stress hormone methyl jasmonate, which all induce detachment of
HK from VDAC and stimulate apoptosis [85]. In addition, a selective peptide was shown to dislocate
HK from MAMs in colon and breast cancer cells, and consequently to induce mitochondria Ca2+

overload [86]. With respect to ANT, its association with VDAC is disrupted by arsenites, ionidamine,
and steroid analogs [87].

Another example of direct pharmacological modulation concerns mitofusin-2 (MFN2). It is
characterized by different conformational states; phosphorylation of a serine residue favors an “open”
conformation, which enables MFN2 pro-fusion activity. Recently, small molecules or mini-peptides
mimicking the peptide interface involved in this structural change have been identified as MFN2
agonists, promoting its fusogenic activity [88]. The specificity of these molecules is a premise for the
treatment of MFN2-associated disorders (e.g., inherited peripheral neuropathy Charcot–Marie–Tooth
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disease type 2A (CMT2A) [89]) and for the possibility to control the different cell pathways in which
MFN2 is involved. While this protein specificity is promising, a careful evaluation of the subcellular
effects of these drugs is needed. Generally speaking, proteins participate in many processes, and this
is also the case of MERCs resident proteins. As a consequence, different subcellular pathways are
modulated at once, underlying potential side effects. Whether a compound is able to control directly the
MERCs-associated function of its target needs to be carefully evaluated from two points of view—on the
one hand, through in vitro assays to estimate the (enzymatic) activity of the target protein or its binding
to the drug (e.g., with nuclear magnetic resonance spectroscopy) and, on the other hand, by measuring
the effects of compounds on MERCs structure (electron and fluorescence microscopy approaches [90])
as well as function (measurement of Ca2+ and lipids transfer). These approaches will highlight
potential side effects due to the presence of different protein variants—with different functions—or to
different localization (as an example, MFN2 resides both at the ER and outer mitochondrial membrane).
Therefore, once selective inhibitors are available, a “second selectivity step” to benefit only from
MERCs resident variants would be needed. To our knowledge, this challenging task has not been
addressed yet. A possible solution could be to generate compounds with dual specificity, e.g. targeting
two MERCs resident proteins at once.

7. MERCs Modulator Class II: Transcriptional Modulators

The second type of MERCs modulators encompasses those affecting expression levels of MERCs
resident proteins, likely by acting on transcription factors that promote the RNA synthesis of MERCs
components. These compounds have obvious specificity issues, unless transcription factors play a
selective role and are not generally used for many genes.

A wide range of plant-derived compounds have been described with implications for MFN2
expression, including the crude flavonoid extract from Erigeron breviscapus (named breviscapine) [91],
the glucoside salidroside [92], the anti-inflammatory and anti-oxidant polyphenol resveratrol [93],
and nicotine [94].

For example, treatment of some cancer cell lines with resveratrol, or with another polyphenol,
piceatannol, has been shown to alter both structurally and functionally MERCs, i.e., a 36-h exposure
of the cells to these compounds enhanced ER–mitochondria tethering and Ca2+ transfer between the
two organelles, thereby inducing cell death [95]. Curiously, in some cell types resveratrol can trigger
autophagy, in an IP3R-dependent manner, likely by passive leak. This in turn dampens agonist-induced
Ca2+ release and alters physiological signaling pathways [96]. Besides modulating the expression of
MERCs resident proteins, resveratrol has been reported to activate or repress several transcription
factors such as AP-1, CREB, Egr-1, Elk-1, and Nrf2, in a cell-type specific manner [97], which could be
at the basis of undesired side effects.

Another mixture of compounds with described effects on MERCs-associated proteins is
breviscapine. It has been explored for its protective action in models of hepatic, neuronal, and cardiac
ischemia reperfusion (I/R) [91,98,99]. Breviscapine upregulates MFN2 expression in hepatocytes
during I/R, and in parallel exerts protective functions through a poorly explored mechanism.
Indeed, MERCs dynamics in response to I/R are not yet clear, and could be part of a feedback
loop initiated by other I/R signaling pathways [100]. Understanding the effect of breviscapine on
MERCs, and how the targeting of these interfaces can have an impact on I/R injury, will provide
valuable therapeutic insights.

Another transcriptional modulator of MERCs is the alkaloid berberine, already known for its broad
effects on metabolism, particularly the induction of glycolysis and fatty acid β-oxidation [101–103].
Berberine injection in a mouse xenograft model resulted in decreased levels of MFN2 as well as reduced
complex I activity and mitochondrial membrane potential [101–103].

Metformin, a well-described antidiabetic drug with multi-organ/tissue benefits in terms of glucose
metabolism and production, was also able to revert the disruption of MERCs structure observed
in high-fat and high-sucrose diet-induced insulin-resistant mice, mediated by lower expression of
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VDAC1 and PACS2 and higher levels of MFN2 [104,105]. Another compound, found in broccoli
sprouts and named sulforaphane, has been proposed as an antidiabetic treatment for its ability to
increase MAM protein content, diminish ER stress markers, and restore the VDAC1–IP3R1 interactions
in the same murine models. Interestingly, cumulative pieces of evidence have enlightened the fact that
mitochondria–ER interactions are the key player in the metabolism of hepatocytes. Moreover, chemicals
able to modulate MERCs structure appear curative of insulin resistance (at least in experimental
models). Altogether, other studies are therefore expected to come in the next years, to clarify MERCs
contribution to the physiology of hepatocytes and to assess the effects of drugs for the treatment of
liver disorders [49,106].

A vast number of chemotherapeutics is also known to indirectly modulate mitochondrial/ER
functions at MERCs. These agents include anthracycline doxorubicin (brand name Adriamycin),
cisplatin, trastuzumab (Herceptin), arsenic trioxide (Trisenox), and mitoxantrone (Novantrone).

Doxorubicin is a compound likely exerting MERCs-related effects, although this aspect has
never been investigated in depth. This drug is widely applied for the treatment of leukemias,
lymphomas, and solid tumors, although it is characterized by a dose-dependent toxicity in several
organs (e.g., the heart, brain, liver, lung, and skeleton), cardiomyopathy being the most devastating
side effect [107]. Of note, exposure of neonatal rat cardiomyocytes to doxorubicin caused oxidative
stress and apoptosis, associated with lower MFN2 expression. Whether this is a tissue-specific effect
(e.g., occurring only in heart) or it is a general mechanism of doxorubicin action remains to be
defined [108]. Whether doxorubicin affects primarily MERCs or MERCs changes are a consequence
of other subcellular targets is not clear. Indeed, doxorubicin can also decrease the expression of
Bcl2, promoting oxidative stress and enhancing sensitivity to cell death stimuli in breast cancer cell
lines [109].

Cisplatin is another anticancer drug with potential effects on MERCs homeostasis [110–112].
Indeed, its cytotoxic effect is either mediated or modulated by IP3R, in a complex feedback mechanism
likely contributing to the development of cisplatin resistance [111]. Furthermore, a small molecule
named ABT-737, able to inhibit Bcl-2, has been shown to restore cisplatin sensitivity by the upregulation
of MFN2 and GRP75 levels [112–114].

Considering that doxorubicin and cisplatin are able to control different steps of the apoptotic
cascade, their exact mechanism of action appears hard to establish. More specific (MERCs-related)
experimental approaches will be necessary to dissect their complex subcellular effects.

Accordingly, it must be noted that the transcriptional effects of the class II MERCs modulators
could either directly change the levels of a certain MERCs resident protein or modulate a signaling
pathway, which induces changes in the structure or function of these dynamic interfaces.

The discovery of molecular MERCs modulators can transcend the screening of bioactive
compounds by focusing on post-transcriptional regulatory molecules such as microRNAs (miRNAs).
These non-coding small RNAs (20–23 nucleotides) entered their target mRNAs by recognizing sequences
at its 3’-UTR, ultimately leading to inhibition of their translation or to degradation of the mRNA itself.
This endogenous way of interfering with protein expression has been of great interest, since miRNAs
are extremely specific and since their levels are altered under pathological conditions. miRNA mimetics
or inhibitors appear to be a promising therapeutic application to modulate the expression levels of
their targets [115]. As an example, several miRNAs have been shown to target the fission protein
1 (FIS1), which has been described to interact with B-cell receptor-associated protein 31 (Bap31) at
MAMs following apoptotic stimuli [116]. Bap31 participates in the quality control system of the ER
(e.g., specifically, in the ER-associated degradation, which ensures clearance of misfolded proteins).
Its binding to FIS1 promotes Bap31 cleavage into a pro-apoptotic form (named p20) that supports
Ca2+ transfer from the ER to mitochondria and mitochondrial fission followed by the cytochrome c
release [117]. In this context, lowering FIS1 expression via miR-484 reduced mitochondrial fission and
apoptosis under hypoxic conditions [118]. Likely miR-484-induced FIS1 downregulation lowers its
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interaction with Bap31; miR-484 mimetics could, therefore, represent an alternative strategy to shape
the Ca2+-mediated pro-apoptotic function of MERCs.

8. MERCs Modulator Class III: Targeting MERCs through Modulation of Upstream Signaling

Several signaling pathways controlling MERCs architecture have been described. For example,
it has been shown that the induction of ER stress enhances the interaction between the two organelles,
as an adaptive mechanism [119]. The metabolic shift occurring in the liver upon feeding is accompanied
by an increase in MERCs length [2,120], supporting the hypothesis that MERCs are fundamental in
shaping mitochondrial metabolic function.

Normally, drugs exert two types of actions, namely therapeutic and side effect. Given the
pleiotropic nature of MERCs and their ability to quickly adapt to intracellular pathways, it is obvious
that drugs targeting key signaling players also influence their structure or function. Of course,
this event might be either positive (e.g., reinforcing the curative effect) or negative (e.g., responsible for
the generation of side effects), and might occur in a dose-dependent manner, according to the drug
pharmacokinetics. In addition, as MERCs are modulable in a tissue-specific manner, the phenotypic
outcome of a drug treatment might affect MERCs at different extents in different organs.

For example, lithium treatment, used in patients affected by bipolar disorder and likely exerting
neuroprotective effects [121,122], changes the expression levels of several genes in astrocytes,
including Krüppel-like factor 4 (KLF4) and PARK2 co-regulated (PARKRG) [123]. The protein
products of these two genes are particularly interesting as they are involved in key processes, in which
MERCs remodeling also takes part. In particular, the transcription factor KLF4 controls the expression
of autophagic genes [124], while PARKRG can suppress cell death and induce autophagy [125,126].
Similarly, different doses of levodopa, used for the treatment of PD, induce homeostatic changes
through transcriptional regulation of mitogen-activated protein kinase (MAPK) cascades:protein
kinases (MAPK) cascades: these also account MERCs resident proteins as substrates to exert their
functions related to cell differentiation and proliferation, mitosis, and cell survival/death [127,128].

Another molecule that can indirectly alter MERCs is quercetin, which has been shown to alter
the activity of the AMP-activated protein kinase (AMPK) [129]. AMPK acts as a sensor of the
energetic status of the cell, regulating processes or proteins that can promote ATP production [130].
Notably, AMPK affects the activity or expression of the MERCs resident protein thioredoxin-interacting
protein (TXNIP) by direct phosphorylation or indirectly by blocking the DNA-binding region of its
transcription factor carbohydrate response element-binding protein (CREB) [131,132]. Quercetin can
therefore influence TXNIP function, especially the MERCs-related one, which is important for
inflammatory response. Indeed, TXNIP accumulates at MERCs in response to oxidative stress
and mediates production of interleukin (IL)-1β [129,133,134].

An interesting RNA sequencing screen highlighted the transcriptional changes occurring in
primary cerebrocortical cultures from mice brain following treatment with clinically approved
drugs [135]. The authors provide a compendium of the transcriptional changes induced by these
conditions, which can be used to get insights on blood–brain barrier-penetrant therapeutics and provide
a basis for drug repurposing. Besides using their database to identify drugs that can up-/downregulate
MERCs resident proteins (e.g., according to their database, the compound rivastigmine, used to
treat different types of dementia including AD, can upregulate MFN2 and downregulate sterol
O-acyltransferase 1, (SOAT1) [135]), it will be possible to identify the different signaling pathways
induced by these compounds. Although “influenced” by the cell type used and experimental conditions,
datasets like this could shed light not only on additional therapeutic use but also on the mechanisms
underlying the associated side effects.

As a final remark, it is worth noting that although the cell-type specificity mentioned above could
be exploited to design tissue-specific therapeutics, normal cell toxicities could also occur. Here are two
examples—first, the antitumor activity of a compound able to promote MERCs-mediated cell death
of cancer cells could result in the reduced viability of normal cells; and second, a molecule able to
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decrease a disease-linked upregulated ER–mitochondria proximity could result in lower sensitivity to
cell death and promote carcinogenesis.

9. Conclusions

Mitochondria–ER interactions appear to be the key players in a number of human pathologies.
The possibility to exploit such dynamic interfaces as therapeutic target has not yet been explored,
likely due to their complexity both in terms of structure and function. Nonetheless, compounds able to
alter MERCs have been already described. In this review, we proposed their classification based on
the type molecular targeting of the MERCs interface—first, direct interaction of small molecules of
synthetic or biological origin with well-described MERCs resident proteins (in other words, disrupting
or enhancing the interaction of tethering proteins with protein or lipid); second, compounds inducing
changes in the levels of MERCs resident proteins; and third, modulation of signaling pathways in turn
altering MERCs biology. Finally, we highlighted that some compounds already used in clinics exert
their specific activity or side effects by impinging on MERCs biology. Whether this applies to other
drugs as well is likely to be explored in the future, enhancing our knowledge about their tissue-specific
action and offering the possibility to ameliorate their phenotypic outcomes.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4409/9/7/1637/s1,
Table S1. In this table, we highlight the proteins that have been identified at MERCs by means of different
proteomic studies. We highlight proteins that are either tissue-specific or common among mitochondria-associated
membranes isolated from different cell types or organs.
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