BinOMIAL ${ }^{3}$

COEFFICIENTS, EQUIVALENCE, COMPLEXITY...

Michel Rigo

http://www.discmath.ulg.ac.be/
joint work with Marie Lejeune and Matthieu Rosenfeld

One World Seminar on Combinatorics on Words
13th July 2020

BACKGROUND

The binomial coefficient of two finite words $x=x_{1} \cdots x_{p}$ and $y=y_{1} \cdots y_{q}$ counts occurrences of subsequences

$$
\binom{x}{y}=\#\left\{\left(j_{1}, \ldots, j_{q}\right) \mid 1 \leq j_{1}<\cdots<j_{q} \leq p \wedge x_{j_{1}} \cdots x_{j_{q}}=y\right\}
$$

$$
\binom{011010}{010}=
$$

Over a 1-letter alphabet

$$
\binom{\mathrm{a}^{p}}{\mathrm{a}^{q}}=\binom{p}{q}, \quad p, q \in \mathbb{N} .
$$

BACKGROUND

The binomial coefficient of two finite words $x=x_{1} \cdots x_{p}$ and $y=y_{1} \cdots y_{q}$ counts occurrences of subsequences

$$
\binom{x}{y}=\#\left\{\left(j_{1}, \ldots, j_{q}\right) \mid 1 \leq j_{1}<\cdots<j_{q} \leq p \wedge x_{j_{1}} \cdots x_{j_{q}}=y\right\}
$$

$$
\binom{011010}{010}=
$$

Over a 1-letter alphabet

$$
\binom{\mathrm{a}^{p}}{\mathrm{a}^{q}}=\binom{p}{q}, \quad p, q \in \mathbb{N} .
$$

BACKGROUND

The binomial coefficient of two finite words $x=x_{1} \cdots x_{p}$ and $y=y_{1} \cdots y_{q}$ counts occurrences of subsequences

$$
\binom{x}{y}=\#\left\{\left(j_{1}, \ldots, j_{q}\right) \mid 1 \leq j_{1}<\cdots<j_{q} \leq p \wedge x_{j_{1}} \cdots x_{j_{q}}=y\right\}
$$

$$
\binom{011010}{010}=6
$$

Over a 1-letter alphabet

$$
\binom{\mathrm{a}^{p}}{\mathrm{a}^{q}}=\binom{p}{q}, \quad p, q \in \mathbb{N} .
$$

BACKGROUND

Binomial coefficients of words have a long fascinating history:

- in Lothaire's book, Sakarovitch and Simon's chapter
- reconstruction problem: Let $k, n \in \mathbb{N}$. Words of length n are k-reconstructible whenever the multiset of scattered factors of length k (or k-deck) uniquely determines any word of length n [Kalashnik, Schützenberger 1973, Krasikov-Roditty 1997, Dudik-Schulman 2003,...]
- appear inside Parikh matrices
- link with piecewise testable languages [Simon 1975]
- noncommutative extension of Mahler's theorem on interpolation series [Pin-Silva 2014]
- generalized Pascal triangles [Leroy-R.-Stipulanti 2016]

BACKGROUND

- Abelian equivalence (Erdős 1957)

$$
\begin{gathered}
\text { astronomers } \sim \text { moonstarers } \sim \text { nomorestars }^{1} \\
\qquad \Psi(0110100)=\binom{4}{3}=\Psi(0101010)
\end{gathered}
$$

- Karhumäki 1980 : Generalized Parikh mappings and homomorphisms
- k-abelian equivalence counts factors of length up to k

	0	1	00	01	10	11
0110100	4	3	1	2	2	1
0101010	4	3	0	3	3	0

[Huova, Karhumäki, Saarela, Whiteland, Zamboni, ...]

[^0]
Definitions

Let $k \geq 1$. Two finite words x, y are k-binomially equivalent if

$$
x \sim_{k} y: \quad\binom{x}{u}=\binom{y}{u}, \quad \forall u \in A^{\leq k} .
$$

They have the same k-spectrum (formal polynomial introduced by Salomaa).
[Dudik-Schulman 2003]

$$
\text { if }|x| \geq k \geq|u|, \quad\binom{|x|-|u|}{k-|u|}\binom{x}{u}=\sum_{t \in A^{k}}\binom{x}{t}\binom{t}{u} .
$$

Corollary: Let $x, y \in A^{\geq k}, x \sim_{k} y$ if and only if

$$
\binom{x}{u}=\binom{y}{u}, \quad \forall u \in A^{k} .
$$

Definitions

- $x \sim_{1} y$ iff x and y are abelian equivalent
- consecutive refinements: $x \sim_{k+1} y$ implies $x \sim_{k} y$

Let \mathbf{w} be an infinite word and $\operatorname{Fac}_{n}(\mathbf{w})$ be its set of factors of length n. The k-binomial complexity function is

$$
\begin{gathered}
\mathrm{b}_{k, \mathbf{w}}: n \mapsto \#\left(\operatorname{Fac}_{n}(\mathbf{w}) / \sim_{k}\right) \\
\mathrm{b}_{1, \mathbf{w}}(n) \leq \cdots \leq \mathrm{b}_{k, \mathbf{w}}(n) \leq \mathrm{b}_{k+1, \mathbf{w}}(n) \leq \cdots \leq \mathrm{p}_{\mathbf{w}}(n)
\end{gathered}
$$

An example

The twelve factors of length 5 of the Thue-Morse word:

$$
\begin{array}{rl|ll|cc}
& \left(\begin{array}{c}
\dot{0})
\end{array}\right. & (\dot{1}) & \left(\begin{array}{c}
\dot{01})
\end{array}\right. & \left(\begin{array}{c}
\dot{10})
\end{array}\right. \\
\cline { 2 - 6 } 11010 & 2 & 3 & 1 & 5 \\
\hline 10110 & 2 & 3 & 2 & 4 \\
\binom{u}{\mathrm{aa}}=\binom{|u|_{\mathrm{a}}}{2}, & 11001 & 2 & 3 & 2 & 4 \\
\hline 01101 & 2 & 3 & 4 & 2 \\
& 10011 & 2 & 3 & 4 & 2 \\
\hline 01011 & 2 & 3 & 5 & 1 \\
\hline & 10100 & 3 & 2 & 1 & 5 \\
\hline 01100 & 3 & 2 & 2 & 4 \\
10010 & 3 & 2 & 2 & 4 \\
\hline 00110 & 3 & 2 & 4 & 2 \\
& 01001 & 3 & 2 & 4 & 2 \\
\hline & 00101 & 3 & 2 & 5 & 1 \\
\mathbf{b}_{2, \mathbf{t}}(5) & =8<\mathbf{p}_{2, \mathbf{t}}(5)=12 .
\end{array}
$$

Some results on binomial complexity

R.-Salimov TCS 2015

- Let \mathbf{s} be a Sturmian word, then

$$
\mathrm{b}_{2, \mathrm{~s}}(n)=n+1, \quad \forall n \geq 0
$$

Hence, $\mathrm{b}_{k, \mathbf{s}}(n)=n+1$ for all $k \geq 2$ and all $n \geq 0$.

- A Parikh constant morphism f is such that

$$
\Psi(f(\mathrm{a}))=\Psi(f(\mathrm{~b})) \text { for all letters } \mathrm{a}, \mathrm{~b}
$$

Let $k \geq 1$. If \mathbf{w} is a fixed point of f, then there exists a constant C_{k} such that

$$
\mathrm{b}_{k, \mathbf{w}}(n) \leq C_{k}, \quad \forall n \geq 0
$$

- This is one of the few cases, with arithmetical complexity, where Sturmian words don't have minimal complexity among aperiodic words.

Some results on binomial complexity

Lejeune-Leroy-R. JCTA 2020

- For the Thue-Morse word \mathbf{t}, we know the constant C_{k} (as a function of k). Let $k \geq 1$.
Short factors. For all $n \leq 2^{k}-1$, we have

$$
\mathrm{b}_{k, \mathbf{t}}(n)=\mathrm{p}_{\mathbf{t}}(n)
$$

Longer factors. For all $n \geq 2^{k}$, we have

$$
\mathrm{b}_{k, \mathbf{t}}(n)= \begin{cases}3 \cdot 2^{k}-3, & \text { if } n \equiv 0 \quad\left(\bmod 2^{k}\right) \\ 3 \cdot 2^{k}-4, & \text { otherwise }\end{cases}
$$

Example: $\mathrm{b}_{2, \mathbf{t}}(5)=8$.
$f^{k}(0) \sim_{k} f^{k}(1)$ but $f^{k}(0) \not \chi_{k+1} f^{k}(1)$ [Ochsenschläger 1981]

Some results on binomial complexity

Lejeune-R.-Rosenfeld AAM 2020

- Let \mathbf{T} be the Tribonacci word 010201001 ... then

$$
\mathrm{b}_{2, \mathbf{T}}(n)=2 n+1, \quad \forall n \geq 0
$$

Hence, $\mathrm{b}_{k, \mathbf{T}}(n)=2 n+1$ for all $k \geq 2$ and all $n \geq 0$.
We adapt a notion of template and ancestor [Aberkane, Currie, Rampersad, ...]

Equivalence classes

From the paper The binomial equivalence classes of finite words, Lejeune-R.-Rosenfeld, IJAC 2020, arXiv:2001.11732.

Take a finite alphabet A, what can be said about A^{*} / \sim_{k} ? How look like the k-binomial equivalence classes ?
R.-Salimov, for a binary alphabet:

$$
\begin{aligned}
& \#\left(\{0,1\}^{n} / \sim_{2}\right)=\frac{n^{3}+5 n+6}{6}=\binom{n+1}{3}+n+1 \\
& \mathrm{~A} 000125=1,2,4,8,15,26,42,64,93,130,176, \ldots
\end{aligned}
$$

Cake numbers: maximal number of pieces resulting from n planar cuts through a cube
and, for an arbitrary k : polynomial growth of the number of classes

$$
\#\left(\{0,1\}^{n} / \sim_{k}\right) \in \mathcal{O}\left(n^{2\left((k-1) 2^{k}+1\right)}\right)
$$

Equivalence classes

an equivalence class: $[w]_{\sim}=\left\{u \in A^{*} \mid u \sim w\right\}$
In Whiteland's thesis, for k-abelian equivalence, study of

- The language made of lexicographically least element of each equivalence class

$$
\mathrm{LL}(\sim, A)=\left\{w \in A^{*} \mid \forall u \in[w]_{\sim}: w \leq_{l e x} u\right\} .
$$

Note that $\underbrace{\#\left(\mathrm{LL}(\sim, A) \cap A^{n}\right)}_{\text {pick one word of each class }}=\#\left(A^{n} / \sim\right)$.

- The language made of singleton classes

$$
\operatorname{Sing}(\sim, A)=\left\{w \in A^{*} \mid \#[w]_{\sim}=1\right\} .
$$

Equivalence classes

[Whiteland's thesis] Let $k \geq 1$. For the k-abelian equivalence, $\mathrm{LL}\left(\sim_{k, a b}, A\right)$ and $\operatorname{Sing}\left(\sim_{k, a b}, A\right)$ are regular languages.
[Karhumäki-Puzynina-Rao-Whiteland TCS 2017]
Study of singleton k-abelian classes: connections with cycle decompositions of the de Bruijn graph, necklaces and Gray codes.

What can we learn for k-binomial equivalence?

2-BINOMIAL EQUIVALENCE OVER A BINARY ALPHABET

Example, for $A=\{0,1\}$ and $k=2$:
Among the 32 words of length 5 in $\{0,1\}^{*}$

- 20 give rise to a singleton class and,
- there are 6 classes of size 2 for the 2 -binomial equivalence :

$$
\begin{aligned}
& \{10110 ; 11001\},\{01110 ; 10101\},\{01101 ; 10011\} \\
& \{01100 ; 10010\},\{01010 ; 10001\},\{00110 ; 01001\}
\end{aligned}
$$

It is easy to see that $x 01 y 10 z \sim_{2} x 10 y 01 z$.
So

$$
\#\left(\operatorname{Sing}\left(\sim_{2},\{0,1\}\right) \cap\{0,1\}^{5}\right)=20
$$

and

$$
\#\left(\operatorname{LL}\left(\sim_{2},\{0,1\}\right) \cap\{0,1\}^{5}\right)=26
$$

2-BINOMIAL EQUIVALENCE OVER A BINARY ALPHABET

From a result of Fossé and Richomme (2004):
They introduced a switch (equivalence) relation \equiv such that $x 01 y 10 z \equiv x 10 y 01 z$ and its reflexive and transitive closure \equiv^{\star}.

The following assertions are equivalent:

- $u, v \in\{0,1\}^{*}$ are 2-binomially equivalent, $u \sim_{2} v$,
- u, v have the same Parikh matrix,
- $u \equiv^{\star} v$.

Corollary: $\operatorname{Sing}\left(\sim_{2},\{0,1\}\right)$ is a regular language

$$
0^{*} 1^{*}+1^{*} 0^{*}+0^{*} 10^{*}+1^{*} 01^{*}+0^{*} 101^{*}+1^{*} 010^{*}
$$

and, from a DFA, we can easily find the growth function of this language (and thus $\#\left(\{0,1\}^{n} / \sim_{2}\right)$).

2-BINOMIAL EQUIVALENCE OVER LARGER ALPHABETS

It's more complicated over a larger alphabet:

$$
1223312 \sim_{2} 2311223
$$

but there is no sequence of "switches" from one word to the other. Otherwise stated

$$
u \equiv^{\star} v \Rightarrow u \sim_{2} v \text { but the converse does not hold. }
$$

We have computed the first few values of

$$
\begin{gathered}
\#\left(\{1,2,3\}^{n} / \sim_{2}\right) \\
\mathrm{A} 140348=1,3,9,27,78,216,568,1410, \ldots
\end{gathered}
$$

founded in 1964 by N. J. A. Sloane
1, 3, $9,27,78,216,568,1410$
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
(Greetings from The On-Line Encyclopedia of Integer Sequences!)

Search: seq: 1,3,9,27,78,216,568,1410

| Displaying 1-1 of 1 result found.
 Sort: relevance \| references | number | modified | created | Format: long \| short | data | page 1 |
| :--- | :--- | :--- |

A140348 Growth function for the submonoid generated by the generators of the free $\begin{array}{r}+30 \\ 1\end{array}$ nil-2 group on three generators.
1, 3, 9, 27, 78, 216, 568, 1410, 3309, 7307, 15303 (list; graph; refs; listen; history; text; internal format)
OFFSET 0,2

COMMENTS
The process of expressing a word in generators as a sorted word in generators and commutators is Marshall Hall's 'collection process'.
Since this monoid 'lives in' a nilpotent group, it inherits the growth restriction of a nilpotent group. So according to a result of Bass, $a(n)=0($ $n^{\wedge} 8$).
It seems this is the correct growth rate. This sequence may well have a rational generating function, though, according to a result of M Stoll, the growth function of a nilpotent group need not be rational, or even algebraic.
Computations on a free nilpotent group, or on submonoids, may be aided by using matricies. I. D. MacDonald describes how to do this in an American Mathematical Monthly article and he gives a recipe explicitly for the nil-2, 3 generator case.

NiL-2 GROUP

Let (G, \cdot) be a multiplicative group.
The commutator of 2 elements : $[x, y]=x^{-1} y^{-1} x y$

$$
x y=y x[x, y] \quad \forall x, y \in G .
$$

Note that $[x, y]^{-} 1=[y, x]$.
A nil-2 group: the commutators belong to the center $Z(G)$, i.e.,

$$
(\bullet): \quad[x, y] z=z[x, y] \quad \forall x, y, z \in G \text {. }
$$

Let $\Sigma=\{1, \ldots, m\}$ be a set of m generators. The free nil- 2 group on Σ is the quotient of the free monoid $\left(\Sigma \cup \Sigma^{-1}\right)^{*}$ under the relations $x x^{-1}=\varepsilon$ and (\bullet).

$$
12321=(12[2,1])[1,2] 321=21[1,2] 321=213(21[1,2])=21312
$$

natural projection on the quotient: $\pi(12321)=\pi(21312)$.

NiL-2 GROUP

Theorem:
Let $\Sigma=\{1, \ldots, m\}$. The monoid Σ^{*} / \sim_{2} is isomorphic to the submonoid, generated by Σ, of the nil- 2 group $N_{2}(\Sigma)$.

Otherwise stated, if $r \in N_{2}(\Sigma), \pi^{-1}(r) \cap \Sigma^{*}$ is an equivalence class for \sim_{2}; and conversely.

Generating the \sim_{2}-Class of A word

Two possible questions:

- Given two words u, v, decide whether or not $u \sim_{k} v$ (Freydenberger, Gawrychowski, Karhumäki, Manea, Rytter 2015)
- deterministic polynomial time algorithm (based on NFA)
- Monte-Carlo algorithm with running time $\mathcal{O}\left(|u| k^{2}+k^{4}\right)$
- Given a word u, list the words in $[u]_{\sim_{k}}$

Here, we explain how to list words in $[u]_{\sim_{2}}$ for an arbitrary alphabet

Generating the \sim_{2}-Class of a word

A "switching" algorithm on words:
Input: a finite word $w=1223312$
Output: a particular sequence of words $\ell_{0}, \ell_{1}, \ldots, w$

- starting from the lexicographically least element $\ell_{0}=1122233$ in the abelian class of w
- at each step, perform a single switch $a b \mapsto b a$, with $a<b$
- the longest common prefix with w is non-decreasing:

$$
\left|\ell_{i} \wedge w\right| \leq\left|\ell_{i+1} \wedge w\right|
$$

- we have $\ell_{i}=p c x$ and $w=p d y$ with $c<d$; consider the leftmost occurrence of d in $x: c x=\underline{c u d v}$ and proceed to $|u|+1$ switches to bring d in front.

GEnERATING THE \sim_{2}-CLASS OF A WORD

```
w=1223312
\ell }=1\underline{122233 common prefix with w: 1; c=1<d=2
perform a switch 12\mapsto21
w=1223312
\ell}=12\underline{12233 common prefix with w:12;c=1<d=2
perform a switch 12\mapsto21
w=1223312
\ell2}=122\underline{1233}3\mathrm{ common prefix with w:122;;c=1<d=3
perform two switches 23 \mapsto 32 and 13\mapsto31
w=1223312
\ell }=122132
\ell 
perform two switches 23\mapsto32 and 13\mapsto31
\ell5}=122313
\ell6}=1223312=
```


Generating the \sim_{2}-Class of a word

$w=1223312$
$\ell_{0}=\underline{122233}$ common prefix with $w: 1 ; c=1<d=2$
perform a switch $12 \mapsto 21$
$w=1223312$
$\ell_{1}=12 \underline{12233}$ common prefix with $w: 12 ; c=1<d=2$

$w=1223312$
$\ell_{2}=122 \underline{1233}$ common prefix with $w: 122 ; ; c=1<d=3$
perform two switches $23 \mapsto 32$ and $13 \mapsto 31$
$w=1223312$
$\ell_{3}=1221323$
$\ell_{4}=1223123$, common prefix with $w: 1223 ; c=1<d=3$
perform two switches $23 \mapsto 32$ and $13 \mapsto 31$
$\ell_{5}=1223132$
$\ell_{6}=1223312=w$

Generating the \sim_{2}-Class of A word

$w=1223312$
$\ell_{0}=1 \underline{122233}$ common prefix with $w: 1 ; c=1<d=2$
perform a switch $12 \mapsto 21$
$w=1223312$
$\ell_{1}=12 \underline{12233}$ common prefix with $w: 12 ; c=1<d=2$
perform a switch $12 \mapsto 21$
$w=1223312$
$\ell_{2}=122 \underline{1233}$ common prefix with $w: 122 ; ; c=1<d=3$
perform two switches $23 \mapsto 32$ and $13 \mapsto 31$
$w=1223312$
$\ell_{3}=1221323$
$\ell_{4}=1223123, \quad$ common prefix with $w: 1223 ; c=1<d=3$
perform two switches $23 \mapsto 32$ and $13 \mapsto 31$
$\ell_{5}=1223132$

Generating the \sim_{2}-Class of A word

$w=1223312$
$\ell_{0}=1 \underline{122233}$ common prefix with $w: 1 ; c=1<d=2$
perform a switch $12 \mapsto 21$
$w=1223312$
$\ell_{1}=12 \underline{12233}$ common prefix with $w: 12 ; c=1<d=2$
perform a switch $12 \mapsto 21$
$w=1223312$
$\ell_{2}=122 \underline{1233}$ common prefix with $w: 122 ; ; c=1<d=3$
perform two switches $23 \mapsto 32$ and $13 \mapsto 31$
$w=1223312$
$\ell_{3}=1221323$
$\ell_{4}=1223 \underline{123}$, common prefix with $w: 1223 ; c=1<d=3$
perform two switches $23 \mapsto 32$ and $13 \mapsto 31$

Generating the \sim_{2}-Class of A word

$w=1223312$
$\ell_{0}=1 \underline{122233}$ common prefix with $w: 1 ; c=1<d=2$
perform a switch $12 \mapsto 21$
$w=1223312$
$\ell_{1}=12 \underline{12233}$ common prefix with $w: 12 ; c=1<d=2$
perform a switch $12 \mapsto 21$
$w=1223312$
$\ell_{2}=122 \underline{1233}$ common prefix with $w: 122 ; ; c=1<d=3$
perform two switches $23 \mapsto 32$ and $13 \mapsto 31$
$w=1223312$
$\ell_{3}=1221323$
$\ell_{4}=1223123$, common prefix with $w: 1223 ; c=1<d=3$
perform two switches $23 \mapsto 32$ and $13 \mapsto 31$
$\ell_{5}=1223132$
$\ell_{6}=1223312=w$

Generating the \sim_{2}-Class of A word

The lexicographically least element has the largest vector

$$
\left.\binom{\ell_{0}}{12} \quad\binom{\ell_{0}}{13} \quad\binom{\ell_{0}}{23}\right)
$$

(for lexicographic order on \mathbb{N}^{3})

ℓ_{i}	$(\dot{12})$	$(\dot{13})$	$(\dot{23})$
$1 \underline{122233}$	6	4	6
$12 \underline{12} 233$	5	4	6
$122 \underline{233}$	4	4	6
$122 \underline{132}$	4	4	5
$12231 \underline{23}$	4	3	5
$122 \underline{132}$	4	3	4
1223312	4	2	4

1
A switch $a b \mapsto b a(a<b)$ decreases by one the value of $\binom{u}{a b}$

Generating the \sim_{2}-Class of a word

Some remarks:

- The \sim_{2}-equivalence class of a word u is completely determined by

$$
\left(\binom{w}{1},\binom{w}{2},\binom{w}{3},\binom{w}{12},\binom{w}{13},\binom{w}{23}\right) .
$$

- $u \sim_{2} v$ implies that u, v are abelian equivalent
- In particular, if two words are abelian equivalent, they are 2-binomially equivalent if they agree on

$$
\left(\binom{\cdot}{12},\binom{\cdot}{13},\binom{\cdot}{23}\right) .
$$

Generating the \sim_{2}-Class of A word

Two abelian equivalent words are 2-binomially equivalent if and only if the total number of exchanges of $a b \mapsto b a(a<b)$ when applying the algorithm, is the same.

ℓ_{i}	$(\dot{12})$	$(\dot{13})$	$(\dot{23})$
$1 \underline{12} 2233$	6	4	6
$\underline{1212233}$	5	4	6
$2112 \underline{233}$	4	4	6
$211 \underline{2323}$	4	4	5
$21 \underline{132} 23$	4	4	4
$2 \underline{13} 1223$	4	3	4
2311223	4	2	4

ℓ_{i}	$\left(\begin{array}{c}\dot{12})\end{array}\right.$	$(\dot{13})$	$(\dot{(\dot{23}})$
$1 \underline{122233}$	6	4	6
$12 \underline{12} 233$	5	4	6
$122 \underline{233} 3$	4	4	6
$122 \underline{1323}$	4	4	5
$12231 \underline{23}$	4	3	5
$1223 \underline{132}$	4	3	4
1223312	4	2	4

2 switches of each of the three types

Generating the \sim_{2}-Class of A word

To determine all the words in $[1223312]_{\sim_{2}}$, we have to

- list all the words that can be obtained from 1122233
- when applying 2 switches of each of the three types $12 \mapsto 21,13 \mapsto 31$ and $23 \mapsto 32$.

Remark:
The number of switches $a b \mapsto b a, a<b$, is given by

$$
\begin{gathered}
\binom{\ell_{0}}{a b}-\binom{w}{a b}=\binom{w}{b a} \\
\binom{1223312}{21}=\binom{1223312}{31}=\binom{1223312}{32}=2
\end{gathered}
$$

Generating the \sim_{2}-Class of a word

- edges black: $12 \mapsto 21$; red : $13 \mapsto 31$; green $23 \mapsto 32$

- Since w is given, limited number of edges of any given color. For instance, if no more red edge is available:

Generating the \sim_{2}-Class of a word

- Two paths with the same origin and destination must use the same number of edges of any given color.

- There is always the path coming from the algorithm.

Generating the \sim_{2}-Class of a word

Ex. cont. Building a graph (then reduced to a tree) with edges in black: $12 \mapsto 21$; red: $13 \mapsto 31$; green $23 \mapsto 32$ no more than 2 black/red/green edges on each path going downwards
$1 \underline{122 \underline{2} 3}$

first four levels

Generating the \sim_{2}-Class of a word

Ex. cont. Building a graph (then reduced to a tree) with edges in black: $12 \mapsto 21$; red: $13 \mapsto 31$; green $23 \mapsto 32$ no more than 2 black/red/green edges on each path going downwards

first four levels

Generating the \sim_{2}-Class of a word

Ex. cont. Building a graph (then reduced to a tree) with edges in black: $12 \mapsto 21$; red: $13 \mapsto 31$; green $23 \mapsto 32$ no more than 2 black/red/green edges on each path going downwards

first four levels

Generating the \sim_{2}-Class of a word

Ex. cont. Building a graph (then reduced to a tree) with edges in black: $12 \mapsto 21$; red: $13 \mapsto 31$; green $23 \mapsto 32$
no more than 2 black/red/green edges on each path going downwards

first four levels

Generating the \sim_{2}-Class of a word

Ex. cont. Building a graph (then reduced to a tree) with edges in black: $12 \mapsto 21$; red: $13 \mapsto 31$; green $23 \mapsto 32$
no more than 2 black/red/green edges on each path going downwards

first four levels

Generating the \sim_{2}-Class of a word

Ex. cont. Building a graph (then reduced to a tree) with edges in black: $12 \mapsto 21$; red: $13 \mapsto 31$; green $23 \mapsto 32$
no more than 2 black/red/green edges on each path going downwards

first four levels

Generating the \sim_{2}-Class of a word

Ex. cont. Building a graph (then reduced to a tree) with edges in black: $12 \mapsto 21$; red: $13 \mapsto 31$; green $23 \mapsto 32$
no more than 2 black/red/green edges on each path going downwards

Generating the \sim_{2}-Class of a word

Ex. cont. Building a graph (then reduced to a tree) with edges in black: $12 \mapsto 21$; red: $13 \mapsto 31$; green $23 \mapsto 32$
If there are more than one path from the root to a vertex, keep the one corresponding to the algorithm.

first four levels

Generating the \sim_{2}-Class of A word

Ex. cont. Building a graph (then reduced to a tree) with edges in black: $12 \mapsto 21$; red: $13 \mapsto 31$; green $23 \mapsto 32$
We can keep track of the coefficients for $12,13,23$ the total sum decreases by one on each level.

Generating the \sim_{2}-Class of a word

black: $12 \mapsto 21$; red: $13 \mapsto 31$; green $23 \mapsto 32$

Generating the \sim_{2}-Class of A word

To prove the result about the nil- 2 group, we have introduced generalized binomial coefficients to the free group
For all words u over the alphabet $\Sigma \cup \Sigma^{-1}$ and $v \in \Sigma^{t}$

$$
\left[\begin{array}{l}
u \\
v
\end{array}\right]=\sum_{\left(e_{1}, \ldots, e_{t}\right) \in\{-1,1\}^{t}}\left(\prod_{i=1}^{t} e_{i}\right) \quad\binom{u}{v_{1}^{e_{1}} \cdots v_{t}^{e_{t}}}
$$

Example:

$$
\left[\begin{array}{c}
a b a^{-1} b \\
a b
\end{array}\right]=\underbrace{\binom{a b a^{-1} b}{a b}}_{2}-\underbrace{\binom{a b a^{-1} b}{a^{-1} b}}_{1}-\underbrace{\binom{a b a^{-1} b}{a b^{-1}}}_{0}+\underbrace{\binom{a b a^{-1} b}{a^{-1} b^{-1}}}_{0}
$$

Generating the \sim_{2}-Class of a word

If two words u, v over $\Sigma \cup \Sigma^{-1}$ are such that $\pi(u)=\pi(v)$, i.e. they represent the same element of the nil- 2 group, then

$$
\left[\begin{array}{l}
u \\
x
\end{array}\right]=\left[\begin{array}{l}
v \\
x
\end{array}\right]
$$

for $x=1,2,3,12,13,21,23,31,32$.

$$
\Phi(w):=\left(\left[\begin{array}{l}
w \\
1
\end{array}\right],\left[\begin{array}{l}
w \\
2
\end{array}\right]\left[\begin{array}{c}
w \\
3
\end{array}\right],\left[\begin{array}{c}
w \\
12
\end{array}\right],\left[\begin{array}{c}
w \\
13
\end{array}\right],\left[\begin{array}{c}
w \\
21
\end{array}\right],\left[\begin{array}{c}
w \\
23
\end{array}\right],\left[\begin{array}{c}
w \\
31
\end{array}\right],\left[\begin{array}{c}
w \\
32
\end{array}\right]\right)
$$

If $u, x \in \Sigma^{*}$, then

$$
\left[\begin{array}{l}
u \\
x
\end{array}\right]=\binom{u}{x} .
$$

Corollary: if $u, v \in \Sigma^{*}$ are such that $\pi(u)=\pi(v)$, then $u \sim_{2} v$.

Generating the \sim_{2}-Class of a word

For the converse, if $u, v \in \Sigma^{*}$ are such that $u \sim_{2} v$, we have to prove that $\pi(u)=\pi(v) \rightsquigarrow$ we make use of the algorithm.

Growth order

- Salimov-R. bounds for binary alphabet
- In Lejeune's master thesis:

$$
\#\left(A^{n} / \sim_{k}\right) \in \mathcal{O}\left(n^{\frac{m}{(m-1)^{2}}\left(1+m^{k}(k m-k-1)\right)}\right)
$$

- Let $A=\{1, \ldots, m\}$ be an alphabet of size $m \geq 2$ and $k \geq 1$

$$
\begin{aligned}
& \#\left(A^{n} / \sim_{k}\right) \in \mathcal{O}\left(n^{k^{2} m^{k}}\right) \\
& \#\left(A^{n} / \sim_{2}\right) \in \Theta\left(n^{m^{2}-1}\right)
\end{aligned}
$$

when n tends to infinity.

Non context-Freeness

In comparison with Witheland's result, we get:
For any alphabet A of size at least 3 and for any $k \geq 2$, the languages $\operatorname{LL}\left(\sim_{k}, A\right)$ and $\operatorname{Sing}\left(\sim_{k}, A\right)$ are not context-free.

- From the previous slide, we have a polynomial bound $\#\left(\operatorname{Sing}\left(\sim_{k}, A\right) \cap A^{n}\right) \leq \#\left(\mathrm{LL}\left(\sim_{k}, A\right) \cap A^{n}\right)=\#\left(A^{n} / \sim_{k}\right) \leq P(n)$.
- [Ginsburg-Spanier]

A context-free language L is bounded, $L \subseteq w_{1}^{*} w_{2}^{*} \cdots w_{\ell}^{*}$, if and only if it has a polynomial growth, $\#\left(L \cap A^{n}\right) \leq Q(n)$.
\rightsquigarrow it is enough to show that $\operatorname{LL}\left(\sim_{k}, A\right)$ and $\operatorname{Sing}\left(\sim_{k}, A\right)$ are not bounded.

Non context-Freeness

If L is bounded and $M \subseteq L$, then M is bounded:

$$
M \subseteq L \subseteq w_{1}^{*} w_{2}^{*} \cdots w_{\ell}^{*}
$$

Hence, M not bounded implies L not bounded.
Strategy: define a particular (sub)family of singletons

over $\{1,2,3\}$, where $a \equiv n(\bmod 3)$, and we take $s_{n}=2 \times 8^{8^{n}}$

Non context-Freeness

If L is bounded and $M \subseteq L$, then M is bounded:

$$
M \subseteq L \subseteq w_{1}^{*} w_{2}^{*} \cdots w_{\ell}^{*}
$$

Hence, M not bounded implies L not bounded.
Strategy: define a particular (sub)family of singletons

$$
\underbrace{\left\{\rho_{p, n} \mid p, n \in \mathbb{N}\right\}}_{\text {not bounded }} \subseteq \operatorname{Sing}\left(\sim_{k}, A\right) \subseteq \operatorname{LL}\left(\sim_{k}, A\right) .
$$

$$
\rho_{p, n}:=1^{p} 2^{s_{n-1}} 3^{s_{n-2}} 1^{s_{n-3}} \cdots a^{s_{1}}
$$

over $\{1,2,3\}$, where $a \equiv n(\bmod 3)$, and we take $s_{n}=2 \times 8^{8^{n}}$.

Conclusions

k-binomial equivalence \sim_{k}

- $\# A=2, k=2$, switch equivalence - everything is fine
- $\# A \geq 3, k=2$, algorithm and algebraic description of \sim_{2}-equivalence classes
- $\# A \geq 3, k=2$, no simple operation corresponding to switch equivalence is known.
- $\# A \geq 3, k \geq 3$, extension of the above results?
- \# $A=2, k=2, \operatorname{LL}\left(\sim_{2}, A\right)$ is context-free
- \# $A \geq 3, k \geq 2, \operatorname{LL}\left(\sim_{k}, A\right)$ is not context-free, what about its descriptional complexity, automaticity?
- \#A $=2, k \geq 3, \mathrm{LL}\left(\sim_{k}, A\right)$ - conjecture: not context-free, one needs to find an unbounded set of singletons...

Conclusions

Similar intricate "problems" for Parikh matrices/equivalence over larger alphabets ; see for instance A. C. Atanasiu, Parikh Matrix Mapping and Amiability over a ternary alphabet

Open question : give some (geometrical) interpretation of k-binomial equivalence/complexity

Some references

- J. Cassaigne, J. Karhumäki, S. Puzynina, and M. A. Whiteland, k-abelian equivalence and rationality, Fund. Infor. 154 (2017).
- S. Fossé, G. Richomme, Some characterizations of Parikh matrix equivalent binary words, Inform. Process. Lett. 92 (2004).
- D. D. Freydenberger, P. Gawrychowski, J. Karhumäki, F. Manea, W. Rytter, Testing k-binomial equivalence, in Multidisciplinary Creativity: homage to Gheorghe Paun on his 65th birthday, 239-248, Ed. Spandugino, Bucharest, Romania (2015).
- M. Lejeune, J. Leroy, M. Rigo, Computing the k-binomial complexity of the Thue-Morse word, J. Comb. Theory, ser. A 176 (2020).
- M. Lejeune, M. Rigo, M. Rosenfeld, Templates for the k-binomial complexity of the Tribonacci word, Adv. Appl. Math. 112 (2020).

Some references

- M. Lejeune, M. Rigo, M. Rosenfeld, On the binomial equivalence classes of finite words, to appear in IJAC, arXiv:2001.11732
- M. Rigo, P. Salimov, Another generalization of abelian equivalence: binomial complexity of infinite words, Theoret. Comput. Sci. 601 (2015).
- M. A. Whiteland, On the k-Abelian Equivalence Relation of Finite Words, Ph.D. Thesis, TUCS Dissertations 241, Univ. of Turku (2019).

[^0]: ${ }^{1}$ wordsmith. org Internet Anagram Server

