
fmicb-10-02327 October 21, 2019 Time: 15:38 # 1

ORIGINAL RESEARCH
published: 22 October 2019

doi: 10.3389/fmicb.2019.02327

Edited by:
Fred Asiegbu,

University of Helsinki, Finland

Reviewed by:
Mate Viragh,

Hungarian Academy of Sciences
(MTA), Hungary

Feyisara Eyiwumi Oni,
Ghent University, Belgium

*Correspondence:
Jérôme Muchembled

jerome.muchembled@isa-lille.fr;
jerome.muchembled@yncrea.fr

Specialty section:
This article was submitted to
Fungi and Their Interactions,

a section of the journal
Frontiers in Microbiology

Received: 27 July 2019
Accepted: 24 September 2019

Published: 22 October 2019

Citation:
Desmyttere H, Deweer C,

Muchembled J, Sahmer K, Jacquin J,
Coutte F and Jacques P (2019)

Antifungal Activities of Bacillus subtilis
Lipopeptides to Two Venturia
inaequalis Strains Possessing

Different Tebuconazole Sensitivity.
Front. Microbiol. 10:2327.

doi: 10.3389/fmicb.2019.02327

Antifungal Activities of Bacillus
subtilis Lipopeptides to Two Venturia
inaequalis Strains Possessing
Different Tebuconazole Sensitivity
Hélène Desmyttere1, Caroline Deweer1, Jérôme Muchembled1* , Karin Sahmer2,
Justine Jacquin1, François Coutte1 and Philippe Jacques3

1 Univ. Lille, INRA, ISA-Yncréa, Univ. Artois, Univ. Littoral Côte d’Opale, EA 7394 – ICV – Institut Charles Viollette, Lille,
France, 2 Civil and Geo-Environmental Engineering Laboratory (LGCgE), ISA – Yncréa, Lille, France, 3 MiPI, TERRA Teaching
and Research Centre, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium

Within the framework of biocontrol development, three natural substances produced by
Bacillus subtilis, called lipopeptides, have been studied: fengycin (F), surfactin (S), and
mycosubtilin (M). Their antifungal properties were tested in vitro, in liquid medium, on two
strains of Venturia inaequalis, ascomycete fungi causing apple scab. These two strains
were, respectively sensitive and less sensitive to tebuconazole, an active substance of
the triazole family. These three molecules were tested on their own, in binary (FS, FM,
SM) and ternary mixtures (FSM). The antifungal activities of lipopeptides were estimated
by calculating an IC50, compared to tebuconazole chemical substance. In tests involving
the sensitive strain, all lipopeptide modalities exhibited antifungal activity. However,
modalities involving fengycin and its mixtures exhibited the best antifungal activities;
the activity of fengycin alone being very similar to that of tebuconazole. Interestingly,
regarding the strain with reduced sensitivity to tebuconazole, surfactin and fengycin
alone were not efficient while mycosubtilin and the different mixtures showed interesting
antifungal activities. Specifically, the antifungal activity of FS and FSM mixture were
equivalent to that of tebuconazole. For both fungal strains, microscopic observations
revealed important morphological modifications in the presence of fengycin and in a less
important proportion in the presence of surfactin but not in the presence of mycosubtilin.
Overall, this study highlights the diversity in mode of action of lipopeptides on apple
scab strains.
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INTRODUCTION

Apple scab, also known as black spot, is the foremost disease affecting commercial apple orchards
worldwide (Bowen et al., 2011). This disease is among the most economically important ones, being
accountable for huge crop losses, with up to 70% reduction in apple production (MacHardy, 1996).
The pathogen responsible for apple scab is a hemibiotrophic ascomycete fungus, called Venturia
inaequalis Cooke (Winter) for the teleomorph form and Spilocaea pomi Fries (or Fusicladium pomi)
for the anamorph. V. inaequalis attacks leaves, flowers and fruits, causing visible lesions, especially
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at the early stages of plant development, when they are
the most sensitive (Bowen et al., 2011). Consequently, yield
reductions result directly from unmarketable infected fruits,
and indirectly from repeated defoliation. Although apple scab
can be managed through integrated practices like genetic and
prophylactic methods, the use of fungicides remains the main
practice with up to 15–20 treatments per year (Parisi et al., 2004;
Brun et al., 2008; Carisse and Jobin, 2012). It has been estimated
that triazoles are the most used class of fungicides, accounting for
20% of fungicide use (Parker et al., 2014). However, the repeated
use of single-site chemical fungicide, such as demethylation
inhibitor fungicide (DMIs), has rapidly led over time to the
development of V. inaequalis strains with reduced sensitivity
to triazoles fungicides (Köller et al., 1995; Gao et al., 2009;
Xu et al., 2010; Villani et al., 2015). Besides, many cases of
resistant strains of V. inaequalis have been recorded worldwide:
in north and south America (Hildebrand et al., 1988; Köller
et al., 1991, 1995; Braun and McRae, 1992; Carisse and Pelletier,
1994; Mondino et al., 2015), in Europa (Kunz et al., 1997; Gao
et al., 2009; Xu et al., 2010) and in Asia (Shirane et al., 1996;
Vijaya Palani and Lalithakumari, 1999). In organic farming,
apple scab can be managed using sulfur or copper. However,
the heavy use of copper can lead to significant environmental
problems (European Food Safety Authority [EFSA], 2013).

Therefore, there is an increasing need for new safe and
environmental-friendly alternatives, such as biopesticides. These
are defined as living organisms or products derived from
them, which present an antagonistic activity against a targeted
pest. Members of the Bacillus species, for instance, are known
for producing a wide variety of antimicrobial compounds
(Ongena and Jacques, 2008). In particular, the rhizobacterium
Bacillus subtilis is one of the most commonly used and well-
studied organism (Caulier et al., 2019). With an average of
about 4–5% of its genome dedicated to secondary metabolites
synthesis, it has the potential to produce more than two dozen
structurally diverse antimicrobial compounds (Stein, 2005).
Henceforth, some B. subtilis strains have already been registered
and commercialized as biopesticides, such as SERENADE R©

(Bacillus subtilis str. QST 713) to control plant pathogens
(Falardeau et al., 2013).

The lipopeptides produced by B. subtilis or Bacillus velezensis
are considered as the main compounds involved in its biocontrol
effect (Ongena and Jacques, 2008). B. subtilis lipopeptides are
amphiphilic secondary metabolites produced by non-ribosomal
peptide synthetases (NRPSs), composed of a cyclic peptide
moiety (hydrophilic) linked to a fatty acid chain (hydrophobic)
(Stein, 2005; Jacques, 2011; Cochrane and Vederas, 2014).
According to their amino acid sequence, cyclic lipopeptides
(CLPs) are classified in three distinct families, as shown in
Figure 1: fengycin (fengycin and plipastatin), iturin (iturin,
mycosubtilin, bacillomycin, and mojavensin), and surfactin
(lichenysin and pumilacidin) (Ongena and Jacques, 2008;
Jacques, 2011). Members of the fengycin family are decapeptides
with a β-hydroxy fatty acid chain (C13–C19) (Hamley et al.,
2013; Caulier et al., 2019). Interest in fengycin arises from
its strong antifungal activity, specifically against filamentous
fungi (Deleu et al., 2008). Members of the iturin family are

heptapeptides with a β-amino fatty acid (C14–C18), displaying
limited antiviral but strong antiyeast and antifungal activity
(Maget-Dana and Peypoux, 1994). Surfactins are heptapeptides
containing a β-hydroxy fatty acid tail (C12–C16) (Hamley et al.,
2013; Caulier et al., 2019). Surfactin are mostly known for their
powerful biosurfactant properties (Ongena and Jacques, 2008;
Jacques, 2011), but are generally considered to have limited
fungitoxicity (Pérez-Garcia et al., 2011). Synergistic activity of
these lipopeptides have been already demonstrated for surfactin
and iturin, surfactin and fengycin and iturin and fengycin
(Ongena and Jacques, 2008).

In vitro, the antagonism of a variety of B. subtilis strains,
or their cell-free supernatant (followed by lipopeptide
identification) as well as the direct activity of isolated lipopeptides
have been assessed on a broad range of pathogenic fungi (Touré
et al., 2004; Leclère et al., 2005; Romero et al., 2007a; Kim
et al., 2010; Dunlap et al., 2011; Tao et al., 2011; Liu et al.,
2014; Arroyave-Toro et al., 2017; Mejri et al., 2017; Mihalache
et al., 2017). A novel approach is to consider these microbial
compounds as future biocontrol agent. Purified molecules have
been thus tested in vivo on major pathogens such as Botrytis
cinerea (Farace et al., 2015), Zymoseptoria tritici (Mejri et al.,
2017), and Fusarium oxysporum (Mihalache et al., 2017).

Therefore, as natural substances of microbial origin,
lipopeptides represent a promising biocontrol agent, which has
been increasingly studied in recent years. The aim of this study is
to exhaustively assess, for the first time, the potential antifungal
properties of fengycin, mycosubtilin, and surfactin CLPs of
B. subtilis lipopeptides against the causal agent of apple scab.

MATERIALS AND METHODS

Culture Conditions and Inoculum
Preparation
The two V. inaequalis strains were provided by IRHS ECOFUN
team, INRA Angers-Nantes centre (France). These two
strains were distinguished by Muchembled et al. (2018) being
respectively sensitive to tebuconazole (S755) and with reduced
sensitivity to tebuconazole (rs552). Both strains were maintained
on malt agar medium at 20◦C, in the dark. Spores were collected
from 20 days old cultures in glucose peptone (1.43% glucose
and 0.71% bactopeptone). Spore suspensions were calibrated at
5× 104 spores ml−1.

Lipopeptide Production
Lipopeptides used in this study were produced in shaked
flasks using modified Landy media according to Coutte et al.
(2010a) for surfactin and fengycin production and Béchet et al.
(2013) for mycosubtilin production. They were purified from
the fermentation broth using two steps ultrafiltration methods
on 10 kDa membrane including four steps of diafiltration as
previously described by Coutte et al. (2010b) and Jauregi et al.
(2013). After freeze drying, the obtained powders of lipopeptides
were then characterized using RP-HPLC and HPLC-MS as
previously described (Mejri et al., 2017). In brief, surfactin
are composed of isoforms with fatty acid chain of C12–C16,
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FIGURE 1 | General representation of the chemical structure of lipopeptides from each family: fengycin n C16, mycosubtilin iso C16, and surfactin iso C15.

mycosubtilin with fatty acid chain of C15–C18 and fengycin with
saturated and unsaturated fatty acid chain of C14–C18.

These three lipopeptides were tested alone (F, M, S), in
binary (FS, FM, SM) and ternary mixtures (FSM) (Table 1). The
antifungal activities of lipopeptides were compared to the active
substance of reference: tebuconazole (Sigma-Aldrich, St. Louis,
United States) which is a penetrating and systemic fungicide,
from the triazoles family (DMIs).

In vitro Assay
Direct activity of lipopeptides onV. inaequaliswas tested in liquid
medium within microplates (Muchembled et al., 2018). Sterile
flat-bottomed polystyrene 96-well plates were used (Corning R©

Costar R© 3595). Lipopeptides or tebuconazole powders were
solubilized in dimethyl sulfoxide (DMSO), and mixed in glucose
peptone (1.43% glucose and 0.71% bactopeptone), in order to get

TABLE 1 | Lipopeptides used in this study and their Bacillus subtilis producing
strains.

Lipopeptide(s) Code B. subtilis strain References

Fengycin F Bs2504 Ongena et al. (2007)

Mycosubtilin M BBG125 Béchet et al. (2013)

Surfactin S BBG131 Coutte et al. (2010a)

Fengycin +
Mycosubtilin

FM Mix (50:50 w/w)

Fengycin+ Surfactin FS Mix (50:50 w/w)

Surfactin +
Mycosubtilin

SM Mix (50:50 w/w)

Fengycin+ Surfactin
+ Mycosubtilin

FSM Mix (33:33:33 w/w/w)

a final 0.1% v/v of DMSO. Briefly, for each of the eight treatments
(F, M, S, FM, FS, MS, FSM, T), a range of eight concentrations
was made (Table 2), and 140 µl per well was distributed in
microplates, one concentration per line. Thereafter, 60 µl of a
calibrated spore suspension was added to eight wells per line (for
a final volume of 200 µl of medium), which corresponds to eight
replicates per concentration. The first four columns were left free
from spore suspension (60 µl glucose peptone added instead)
and used as a control to measure the net optical density (OD).
The microplates were then sealed and left agitating (140 rpm) for
6 days at 20◦C, in the dark.

Data Analysis
On the sixth day, the OD values were read at 635 nm with a
microplate reader (Biotek EL 808; Sharma et al., 2004), in order
to determine the IC50 (concentration of the substance to which
50% of the fungal development is inhibited), using a non-linear
regression (logistic model). The experiment was repeated four
times independently, to manage the intra- and inter-experiments
variability. Differences between modalities (treatments× strains)
were tested with an F-test comparing a non-linear regression
model with distinction between modalities, to a model without
this distinction (Ritz and Streibig, 2008). Different F-tests
were performed. Some F-test compared lipopeptide treatments

TABLE 2 | Concentrations of the different products used in the microplates
experiment.

Product Concentrations (mg l−1)

Lipopeptides 0 0.0244 0.0977 0.3906 1.5625 6.25 25 100

Tebuconazole 0 0.0152 0.0533 0.1866 0.6531 2.2857 8 28
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for each strain independently: firstly without tebuconazole
to compare lipopeptides among each other, and secondly
with tebuconazole, to compare lipopeptide activity to that of
tebuconazole. Other F-tests compared results of both strains for
each modality. Calculated from four independent repetition, each
IC50 value is supported by its 95% confidence interval. Statistical
analyses were performed using R-software (R Core Team, 2016.
R: A language and environment for statistical computing. R
Foundation for Statistical Computing, Vienna, Austria)1.

Optical Microscopy
Right after microplates reading, V. inaequalis was observed
under an optical microscope in order to check the fungus
morphology (Nikon Eclipse 80i, with Nikon Digital Camera
Ddxm1200c). Three samples of each single compound (F, M,
S, and tebuconazole) were taken from microwells at IC50
concentration and were compared to untreated control. First, a
5 µl drop of lactophenol blue solution was placed on glass slides.
Then, 5 µl of sample (mycelium fragment in glucose peptone
from microwells) were added before applying the coverslip.

RESULTS

Effect of Lipopeptides on V. inaequalis
Growth
The effect of the different samples of lipopeptides were first
tested on the tebucanozole sensitive strain, S755 (Figure 2). The
fengycin with an IC50 of 0.03 mg l−1 ([0.02–0.04]) was the

1https://www.R-project.org/

lipopeptide with the most remarkable antifungal activity among
the three lipopeptides tested alone. With respectively 2.84 mg l−1

([2.23–3.56]) and 5.15 mg l−1 ([4.28–6.18]), mycosubtilin and
surfactin were the lipopeptides with lower antifungal activities
than fengycin. Among the mixtures, the combination of the three
lipopeptides was more effective than fengycin + mycosubtilin,
and fengycin + surfactin, while surfactin + mycosubtilin being
the least effective. However, this surfactin +mycosubtilin binary
mixture is significantly more effective than mycosubtilin or
surfactin alone. It can be noted that the three lipopeptide mixture
(FSM, 0.045 mg l−1 [0.04–0.05]) was almost as effective as
fengycin alone (0.03 mg l−1 [0.02–0.04]).

On the tebuconazole reduced sensitivity strain, rs552
(Figure 3), mycosubtilin with an IC50 of 3.28 mg.l−1 [2.21–
4.86] was the only lipopeptide with an important antifungal
activity in comparison to fengycin and surfactin. In the light
of the 95% confidence interval, similar levels of antifungal
activity were obtained with M-containing binary mixtures:
SM (IC50 = 2.37 mg l−1 [1.92–2.93]) and FM (IC50 = 3.75 mg
l−1[2.79–5.04]). Even though the fengycin and surfactin alone
did not show any antifungal activity, their combination (FS)
have showed a higher antifungal activity than mycosubtilin with
an IC50 of 1.79 mg l−1 [1.65–1.94]. A synergistic effect between
fengycin and surfactin might therefore be occurring. Moreover,
the ternary mixture FSM (1.81 mg l−1 [1.67–1.95]) showed an
equivalent antifungal activity to FS.

F-tests were carried out for each modality allowing
comparison between strains (Table 3). While fengycin and
surfactin did not have any effect on the rs552 strain, mycosubtilin
revealed a very close antifungal activity on both strains (2.32 mg
l−1 [1.96–2.74] for S755 and, 3.34 mg l−1 [2.62–4.25] for

FIGURE 2 | IC50 with 95% confidence interval of lipopeptides modalities on the sensitive strain of V. inaequalis to tebuconazole (F = 256.77, 6 and 1595 df,
p-value < 0.0001).
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FIGURE 3 | IC50 with 95% confidence interval of lipopeptides modalities on the V. inaequalis strain with reduced sensitivity to tebuconazole (F = 24.559, 4 and 1210
df, p-value < 0.0001).

rs552). Moreover, every lipopeptides mixtures (FM, FS, SM, and
FSM) were always significantly more effective on the sensitive
strain S755. The IC50 of tebuconazole was statistically lower
for S755 (0.02 mg l−1 [0.02–0.03]), than for rs552 (1.65 mg l−1

[1.50–1.82]), being less sensitive.
Moreover, two other F-tests were run for each strain to

compare all modalities with tebuconazole as a reference (data
shown in Supplementary Material). On the sensitive strain
(F = 305.67, 7, and 1804 df, p-value < 0.0001), it can be
outlined that fengycin (0.03 mg l−1 [0.02–0.04]), exhibited a
strong antifungal activity at the same level as tebuconazole
(0.02 mg l−1 [0.02–0.03]). Likewise, on the strain with reduced
sensitivity (F = 21.97, 5 and 1452 df, p-value < 0.0001), the most
important antifungal activities were FS (1.8 mg l−1 [1.67–1.94])
and FSM (1.82 mg l−1 [1.7–1.95]) that showed an IC50 as low as
tebuconazole (1.86 mg l−1 [1.68–2.05])

Effect of Lipopeptides on V. inaequalis
Morphology
The untreated mycelium of V. inaequalis has first been observed
under photonic microscopy, in order to confirm the regular
morphology in the absence of CLPs (Figure 4). For both strains,
mycelium appeared to be well developed, with long hyphae
in the control (Figures 4A,B). V. inaequalis has also been
observed under tebuconazole treatment. On the sensitive strain,
oval-shaped swollen structures, of small sizes, were observed
along the mycelium, with a concentration-dependent effect
(Figure 4C). However, on the strain with reduced sensitivity,
no such morphological changes were noticed. The mycelium

looked well developed, although looking slightly more branched
and thicken on hyphae’s tips (Figure 4D). In the presence of
fengycin, original swollen structures were observed, mainly at
the tip of hyphae (Figures 4E,F). Interestingly, these vesicle-like
structures seemed of varied type: from slightly swollen cells to
large clear bag-like structures, which even looked torn at times.
These modifications were observed on both strains, but were
less ubiquitous on rs552. These structures were different from
the kind observed under tebuconazole treatment. Although the
presence of vesicle-like structures is systematic in the presence
of fengycin, these same structures can be observed in a less
systematic way in the presence of surfactin. On the contrary, in
the case of mycosubtilin, no vesicle-like structures were observed
on both strains. Therefore, the mycelium in the presence of
mycosubtilin had a morphology identical to that of the control.

DISCUSSION

Lipopeptide Have a Good Efficacy
Against V. inaequalis
Our results revealed, for the first time, the existence of in vitro
antifungal properties of CLPs from B. subtilis on V. inaequalis,
and in some cases, the concentration range was comparable with
the chemical reference tebuconazole.

Even though surfactin is generally considered as having little
or no antifungal properties on its own (Ongena and Jacques,
2008; Gonzalez-Jaramillo et al., 2017), we highlighted a clear
antifungal activity against S755 strain like other studies (Inès
and Dhouha, 2015; Krishnan et al., 2019). Mycosubtilin inhibited
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TABLE 3 | Comparison of all modalities IC50 with 95% confidence interval between strains with different sensitivity to tebuconazole (four independent experiments).

S75 5 strain rs552 strain

F value p-value IC50 (mg L−1) Confidence interval (95%) IC50 (mg L−1) Confidence interval (95%)

F Non-calculable 0.033 [0.025–0.043] >100

M 6.918 (1 and 492 df) 0.0087 2.315 [1.955–2.740] 3.339 [2.623–4.252]

S Non-calculable 5.984 [4.188–8.551] >100

FM 401.02 (1 and 487 df) <0.0001 0.079 [0.062–0.100] 3.21 [2.656–3.879]

FS 227.57 (1 and 486 df) <0.0001 0.102 [0.084–0.123] 2.191 [1.876–2.559]

SM 23.445 (1 and 440 df) <0.0001 1.756 [1.605–1.922] 2.647 [2.182–3.213]

FSM 360.56 (1 and 425 df) <0.0001 0.043 [0.035–0.054] 2.085 [1.823–2.385]

Tebuconazole 862.15 (1 and 450 df) <0.0001 0.022 [0.019–0.025] 1.65 [1.499–1.815]

FIGURE 4 | Effect of tebuconazole and fengycin on the morphology of V. inaequalis mycelium. Optical microscopy photos were taken on the sixth day after
microplate’s inoculation with calibrated spores’ suspension, with lactophenol blue staining. (A) S755 control; (B) rs552 control; (C) S755 treated with tebuconazole
(0.65 mg l−1); (D) rs552 treated with tebuconazole (0.65 mg l−1); (E) S755 treated with fengycin (0.39 mg l−1); (F) rs552 treated with fengycin (0.39 mg l−1).

both strains, with a statistically similar antifungal activity
(IC50 = 2.32 mg l−1 [1.96–2.74] on S755 and 3.34 mg l−1 [2.62–
4.25 mg l−1] on rs552). Mycosubtilin has already been showed

to inhibit several phytopathogenic fungi (Leclère et al., 2005;
Mejri et al., 2017). Comparing our IC50 results to other studies
is not straightforward, since most of them evaluated the CLPs
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antifungal efficacy by using inhibition or growth rate/percentage
(Touré et al., 2004; Leclère et al., 2005; Romero et al., 2007b;
Dunlap et al., 2011; Tao et al., 2011; Liu et al., 2014; Arroyave-
Toro et al., 2017; Mihalache et al., 2017). However, in a recent
work of Mejri et al. (2017), the IC50 of mycosubtilin, in liquid
medium, was evaluated at 1.4 mg l−1 on Z. tritici, which is close
to our results. In this study on Z. tritici, IC50 were above 100 mg
l−1 for fengycin and surfactin treatments (Mejri et al., 2017), like
our results on rs552. Interestingly, this study was conducted on
the T01193 strain, which also has reduced sensitivity to several
DMIs (S. Mejri, personal communication).

Furthermore, little is known about lipopeptides’ activity
while in mixtures, although they could act in a synergistic
manner (Ongena and Jacques, 2008). In our experiments,
better efficacies were obtained with SM mixtures on S755
than lipopeptides on their own. On rs552, the M-containing
binary mixtures (FM and SM) were relatively as effective as
mycosubtilin alone. Also, a very strong synergistic effect was
observed with the mixture FS transforming two non-inhibitory
molecules in an efficient complex. Synergistic activities have
already been showed on phytopathogenic fungi, with the mixture
surfactins + mycosubtilins or surfactins + iturins (Maget-Dana
et al., 1992; Romero et al., 2007b; Deravel et al., 2014; Mejri et al.,
2017; Mihalache et al., 2017). It is also known that anionic and
non-ionic biosurfactants as for example surfactins and iturins can
form mixed micelles, acting more efficiently than simple micelles
on biological membranes (Maget-Dana et al., 1992; Muñoz et al.,
2004; Jauregi et al., 2013). However, less information are available
about the potential synergistic effect of fengycin and surfactin
which are both anionic biosurfactants.

Lipopeptides Differently Induce Fungal
Morphological Modifications
Through our microscopic observations, we noticed consistent
morphological modifications on V. inaequalis under fengycin
treatments. Many vesicle-like swollen structures were observed
on both strains. Morphological damages by B. subtilis
lipopeptides have already been noticed on other fungi. However,
this is the first time such swollen structures on mycelium are
well characterized in the presence of isolated fengycin. Under
scanning electron microscopy (SEM), Romero et al. (2007a)
observed a loss of turgidity of Podosphaera fusca conidia
following treatment with a cell-free supernatant of B. subtilis.
Increase vacuolization and disorganization of the cytoplasm,
resulting from membrane disruption by small vesicle-like
structures, was visualized with transmission electron microscopy
(TEM) (Romero et al., 2007a). Mihalache et al. (2017) also
spotted deeply folded, shrunken, wrinkled and partially distorted
hyphae, as well as subterminal vesicles and intercalary swelling on
F. oxysporum mycelium, under M or SM treatments, using SEM.
More recent data, from Park et al. (2019), have shown vesicle-like
structures with surfactin (from B. velenzenis) on Colletotrichum
gloeosporioides. The surface of the mycelium was rugged and
unusually swollen and rough, suggesting the peptide affects
directly the fungal cell wall components (chitin, glucans, and
glycoproteins) to exhibit antifungal activity (Park et al., 2019).

Clear disruptions were observed after linking antifungal
activity data with morphological microscopic observations.
Indeed, on S755, for the same level of antifungal activity, we
did not observe the same type of morphological modifications
according to treatments: large vesicle-like structures could be
seen in the presence of fengycin, while small oval-shaped swollen
structures, of small sizes, could be observed with tebuconazole.
Moreover, in the case of fengycin, the same kind of vesicle-like
structures were observed on both strains even though fengycin
had a strong activity on S755 but did not show any activity on
rs552. The same goes for surfactin-treated fungi, where similar
vesicle-like structures were seen on both strains, irrespective of
the activity. A work by Vanittanakom et al. (1986) also relates for
the first time morphological changes in different fungi (bulging,
curling, emptying) but this does not seem directly related to
antifungal activity. This is in agreement with our results, for
which the presence of original vesicle-like structures does not
seem correlated with antifungal activity. Regarding mycosubtilin,
we never observed vesicles (neither on S755, nor on rs552), even
if there was always antifungal activity for both strains.

Lipopeptides Differently Inhibit
Tebuconazole Sensitive and Less
Sensitive V. inaequalis Strains
Another originality of our approach is to compare, for the
first time, CLPs activity on fungal strains possessing different
sensitivity to fungicides. Our tests clearly confirmed the
difference in tebuconazole sensitivity between both 755 and
552 (Muchembled et al., 2018). Tebuconazole is an inhibitor of
sterol biosynthesis (DMIs), which specifically targets the 14α-
demethylase (or CYP51), an important regulatory enzyme in the
ergosterol biosynthetic pathway (Yoshida and Aoyama, 1987).
Inhibition of this enzyme disrupts ergosterol synthesis, leading
to the reduction of ergosterol content and thus the formation
of cell membranes with altered structure and functions, such
as fluidity and permeability (Leroux et al., 2008; Price et al.,
2015). Three major mechanisms may be implicated in DMI-
resistance (Cools et al., 2013; Price et al., 2015). The first is
the alteration of the target enzyme, which results in reduced
affinity to fungicides (Leroux et al., 2008; Cools et al., 2013;
Parker et al., 2014). The second mechanism involves the
overexpression of CYP51 (Schnabel and Jones, 2001; Pfeufer and
Ngugi, 2012; Villani et al., 2016) while the third mechanism is
an efflux phenomenon, enabling a decrease of the intracellular
drug accumulation, attributed to overexpression of membrane
transporter proteins involved in multidrug resistance (MDR)
(Leroux et al., 2008; Cools et al., 2013). Two efflux systems
are involved in MDR: the ATP-Binding Cassette (ABC), which
utilizes energy from ATP hydrolysis, and the Major Facilitators
Superfamily (MFS) transporters, which employ the proton
motive force (Deising et al., 2008).

Moreover, Vijaya Palani and Lalithakumari (1999) found that
some DMIs-resistant V. inaequalis strains were characterized
by significantly reduced total lipid and ergosterol biosynthesis.
They postulated that the reduction in ergosterol content could
lower membrane permeability, thus hampering the transport
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of toxicant in the resistant strains. Another study stated that
low ergosterol content is linked with increased membrane
interaction and destabilization (Falardeau et al., 2013). High
fungal ergosterol could buffer fluidity changes, increasing CLPs
tolerance (Falardeau et al., 2013).

These modifications of membrane properties and ergosterol
concentrations could be correlated with the biological activities
of the CLPs on both V. inaequalis strains. Previous studies
acknowledged that CLPs can interact with biological membranes
and especially ergosterol (Pérez-Garcia et al., 2011). However,
the mode of action can differ according to the family of
CLPs considering that fengycin and surfactin are negatively
charged molecules while mycosubtilin is a neutral compound
(Falardeau et al., 2013). Polarity appears to be key in these
membrane-CLPs interactions depending on the charge of both
lipopeptides and membranes (Deleu et al., 2003; Buchoux
et al., 2008; Razafindralambo et al., 2009; Juhaniewicz-Dębińska
et al., 2019). While iturin is known to possess an ion-
conducting pore-forming activity (Maget-Dana and Peypoux,
1994), fengycin and surfactin have concentration-dependent
mode of action. At low concentration, fengycin and surfactin
induce limited perturbation, such as pore formation (Deleu
et al., 2005; Heerklotz and Seelig, 2007; Pérez-Garcia et al., 2011;
Cochrane and Vederas, 2014). At higher concentrations, they
operate by a detergent mechanism, with complete disruption
and solubilization of the lipid bilayer (Deleu et al., 2003,
2005; Ongena and Jacques, 2008; Cochrane and Vederas,
2014). In a study, Patel et al. (2011) suggested the all-or-
none leakage/membrane permeabilization effect of fengycin,
highlighting crucial interaction with membrane and lipids.

Fluid state of membrane lipids may also be key for effective
CLPs insertion (Deleu et al., 2008; Mantil et al., 2019). In
agreement, more recent studies, on model membrane, showed
that bilayers containing higher levels of ergosterol exhibited an
increased tolerance to activity of fengycin at low doses (Mantil
et al., 2019). All these information could explain the differences
measured in lipopeptide antifungal activity between tebuconazole
sensitive and reduced sensitivity strains of V. inaequalis.

CONCLUSION

Finally, this study revealed a diversity of responses of two strains
of V. inaequalis exposed to different families of lipopeptides,
highlighting the distinct modes of action of each lipopeptide.
On both strains, the lipopeptides with the most remarkable
antifungal activities (F for S755; FS and FSM for rs552) were very
close to the activity of tebuconazole. These antifungal activities

obtained in vitro present promising results for CLP development
as biopesticides. Moreover, according to several ecotoxicity
evaluations, CLPs are amongst the least toxic substances and
could thus constitute eco-friendly alternatives to chemical
pesticides. In the future, we suggest further investigation under
in vivo and in situ experiments, to validate lipopeptides’ efficacy
as biocontrol agents in apple orchards.
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