
LATEX TikZposter

GameCode: Choose your Own Problem Solving Path

Simon Liénardy Benoit Donnet

Université de Liège

simon.lienardy@uliege.be benoit.donnet@uliege.be

GameCode: Choose your Own Problem Solving Path

Simon Liénardy Benoit Donnet

Université de Liège

simon.lienardy@uliege.be benoit.donnet@uliege.be

Motivations

• CS2 course that introduces a rigorous methodology to write programs
using Loop Invariant [3], recursion, and basic data structures such as
Files, Lists, Queues, and Stacks;

• COVID-19 lock-down forced us to switch to remote teaching. Instead
of giving students yet another podcast in their course schedule, we gave
them homework exercises, we called GameCode, that they could do
at their own convenience.

• Exercises inspired by GameBooks in which the reader can choose the
path they takes to complete the story. With GameCode, students can
choose their own solving path for each exercise.

• Can be related to gamification [1, 2, 4, 5, 6]

Programming Methodology

Our programming methodology can be divided in four steps:

1. Introduce formal notations that will be helpful in the following;

2. Provide formal specifications (i.e. precondition and postcondition) of
the problem;

3. Find a formal Loop Invariant (or a recursive formulation);

4. Build the code upon the Loop Invariant [3] (resp. the recursive for-
mulation).

Algorithm 1 presents the links between the Loop Invariant and the code.
This last can be derived from the specifications and the Loop Invariant:
(i) from the Precondition, find the instructions INIT that lead to the
Loop Invariant; (ii) from the Loop Invariant and the Postcondition,
determine the condition under which the iteration must be stopped (i.e.
¬loop condition), negate it to find the loop_condition; (iii) from
the Loop Invariant and the loop_condition, derive the LOOP BODY

instructions; (iv) from Loop Invariant ∧ ¬loop condition, find the END

instructions that lead to the Postcondition and (v) show that the loop
ends thank to a Loop Variant. The first four steps can be done in any order.

1 // Precondition
2 INIT

3 // Loop Invariant
4 while(loop_condition){

5 // Loop Invariant ∧ loop_condition
6 LOOP BODY

7 // Loop Invariant
8 }

9 // Loop Invariant ∧ ¬loop_condition
10 END

11 // Postcondition

Algorithm 1: Links between code and Loop Invariant

GameCode

Front Page

Remainder about Stacks

Remainder about Expressions

Subject: write a program that evaluates a postfix espression

1. Notations 2. Specifications

3. Invariant4. Code writing

Result: code

Hint

 [YES] [NO]

Remainder

T.C.

Do it + Correction

[YES]

[NO]

Remainder

Do it + Correction

[NO][YES]

Warning!

[NO]

[YES]

Know
How?

Know
How?

Know
what?

Yours too
complex?

Need 3 infos

Hint 1

Hint 2

Hint 3

Know
what?

Know
How?

Hint++Remainder

Do it + Correction

INIT Loop
Condition

LOOP
BODY

END

Correction

Forum

Forum

Loop
Variant

Intro / remainderT.C.

Forum

[YES][YES]

[NO][NO]

T.C.

Figure 1: Example of GameCode map (with an exercise about Stacks and
expressions). The four brown rectangles represent the main parts of our pro-
gramming methodology and each of them should be read vertically. Plain
arrows represent transitions available to the student. Dashed red arrows rep-
resent links to previous or remote content (“Forum” is the course forum and
“T.C.” stands for theoretical course. Any GameCode exercise meets the
following requirements: (i) stand-alone book (a GameCode exercise is self-

sufficient and contains the minimal information to complete the exercise),
(ii) just-in-time theory (the theoretical reminders are placed where they are
needed and are as short as possible), (iii) “no spoilers hints” (hints given to
the students never reveal a solution, nor a part of it), and, (iv) no single solu-
tion (several solutions are always possible and a GameCode exercise always
references the course forum to discuss them).

Preliminary Data

T
ot
al
ly
D
is
ag
re
e

D
is
ag
re
e

N
eu
tr
al

A
gr
ee

T
ot
al
ly
A
gr
ee

Likert Scale

0.00

0.05

0.10

0.15

0.20

0.25

0.30

P
ro

po
rt

io
n

Figure 2: Survey: “I would have preferred
to watch a podcast showing exercises res-
olutions.” (N = 14)

0 5 10 15 20 25 30 35 40 45
Downloads per Student

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Figure 3: Number of GameCode exer-
cises (14 available) download per student
(N = 81).

• Few students took part in the exercises (See Fig. 3) (lower motivation
due to COVID-19 lock-down + courses abandonment);

• From the Survey (Fig. 2), if we remove those who did not do the ex-
ercise, the numbers of agreeing (43%) and disagreeing (50%) students
are close.

Future Work

We will address the following research questions:

RQ1 What are the typical paths followed by students in GameCode ex-
ercises? Answering this question should highlight the typical usage of
GameCode by students and how they get to grips with the concept.

RQ2 How long does it take, to a student, to complete a GameCode
exercise? Answering this question should provide clues on difficulties
encountered by students, leading to a better assistance to students
and an improvement in their productivity.

RQ3 Which step, in a GameCode exercise, appears to be the more
difficult to students? This RQ is the natural follow-up of RQ2 and
should refine conclusions drawn from RQ2.

RQ4 Which aspect of a GameCode exercise appears to be the most
effective to students? This RQ will help to calibrate a GameCode
exercise, in particular to focus on difficulties and students efficiency.

References

[1] Christo Dichev and Darina Dicheva. 2017. Gamifying education: what is known, what is believed and what remains
uncertain: a critical review. International journal of educational technology in higher education 14, 1 (2017), 9.

[2] Darina Dicheva, Keith Irwin, and Christo Dichev. 2019. OneUp: Engaging Students in a Gamified Data Structures
Course. In Proceedings of the 50th ACM Technical Symposium on Computer Science Education. 386–392.

[3] Edsger. W. Dijkstra. 1976. A Discipline of Programming. Prentice-Hall, Inc.

[4] Brian Harrington and Ayaan Chaudhry. 2017. TrAcademic: improving participation and engagement in CS1/CS2
with gamified practicals. In Proceedings of the 2017 ACM Conference on Innovation and Technology in Computer
Science Education. 347–352.

[5] Maria-Blanca Ibanez, Angela Di-Serio, and Carlos Delgado-Kloos. 2014. Gamification for engaging computer science
students in learning activities: A case study. IEEE Transactions on learning technologies 7, 3 (2014), 291–301.

[6] Gina Sprint and Diane Cook. 2015. Enhancing the CS1 student experience with gamification. In 2015 IEEE Integrated
STEM Education Conference. IEEE, 94–99.

mailto:simon.lienardy@uliege.be
mailto:benoit.donnet@uliege.be
mailto:simon.lienardy@uliege.be
mailto:benoit.donnet@uliege.be

