GameCode: Choose your Own Problem Solving Path

Simon Liénardy
Université de Liege, Montefiore Institute — Belgium
simon.lienardy@uliege.be

ABSTRACT

This abstract focuses on a CS2 course in which gamified home-
work exercises are provided to students instead of in-class exercise
sessions. The course, provided to first-year Computer Science stu-
dents, introduces a rigorous methodology to write programs using
Loop Invariants [2], recursion, and basic data structures such as
Files, Lists, Queues, and Stacks. In early 2020, the COVID-19 pan-
demic caused a lock-down in our country. The universities decided
to fully switch to remote teaching. As the exercises sessions pre-
viously consisted of solving problems on a blackboard, we had to
design in a hurry course materials that would cope with remote
teaching. Instead of giving students yet another podcast in their
course schedule, we gave them homework exercises, we called
GameCode, that they could do at their own convenience. These ex-
ercises are inspired by GameBooks in which the reader can choose
the path she takes to complete the story. With GameCode, students
can choose their own solving path for each exercise. This can be
related to gamification [1, 3-5].

CCS CONCEPTS

« Theory of computation — Algorithm design techniques;
« Social and professional topics — Computing education.

KEYWORDS

Loop Invariant, Problem Solving, CS2, Gamification, GameBook

1 ADAPTING GAMEBOOKS TO GAMECODE

Fig. 1 illustrates the principle of any GameCode exercise. A plain
arrow represents a jump to a particular item in that same part of
the document while a dashed one illustrates a jump between two
parts of the documents. A GameCode exercise is made of three
main parts: a general theoretical reminder on the subject covered
by the exercise, possibly divided into several “Items” (in red), the
description of the subject of the exercise (in purple), and the exer-
cise resolution (in blue). This last part is divided in several “Steps”
(labeled from 1 to m in fig. 1) corresponding to a division of our
programming methodology and containing at least these parts: (i)
Introduces formal notations that will be helpful in the following, (ii)
Provides formal specifications of the problem, (iii) Finds a formal
Loop Invariant (or a recursive formulation), and (iv) Builds the code
upon the Loop Invariant (resp. the recursive formulation).

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ICER °20, August 10-12, 2020, Virtual Event, New Zealand

© 2020 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-7092-9/20/08.

https://doi.org/10.1145/3372782.3408122

Benoit Donnet
Université de Liége, Montefiore Institute — Belgium
benoit.donnet@uliege.be

Exercise
Step: Stepm

Reminder

+ Preamble + Preamble
E~ Reminder E Reminder

« Hint
+ Solution

« Hint
« Solution

Figure 1: General architecture of any GameCode exercise.

Each Step is typically divided into four sub-parts: a “Preamble”
allowing the student to directly jump to their preferred sub-part,
a theoretical “Reminder”, a “Hint”, and the “Solution” to this step.
Each sub-part contains pointers to each other.

Moreover, any GameCode exercise meets the following require-
ments: (i) stand-alone book (a GameCode exercise is self-sufficient
and contains the minimal information to complete the exercise),
(ii) just-in-time theory (the theoretical reminders are placed where
they are needed and are as short as possible), (iii) “no spoilers hints”
(hints given to the students never reveal a solution, nor a part of it),
and, (iv) no single solution (several solutions are always possible
and a GameCode exercise always references the course forum to
discuss them).

2 PRELIMINARY EVALUATION

A preliminary evaluation on the number of GameCode down-
loads shows that few students took part in the exercises. This can
be explained by the COVID-19 lock-down (lower motivation) but
also by the fact that, at this stage of the year, lots of students have
abandoned their courses. A survey was organized and we got 14
answers, confirming the number of courses abandonment. A slight
majority declared they would have preferred podcast but if we re-
move those who did not do the exercise, the numbers of agreeing
(43%) and disagreeing (50%) students are close.

REFERENCES

[1] Darina Dicheva, Keith Irwin, and Christo Dichev. 2019. OneUp: Engaging Stu-
dents in a Gamified Data Structures Course. In Proceedings of the 50th ACM
Technical Symposium on Computer Science Education. 386-392.

Edsger. W. Dijkstra. 1976. A Discipline of Programming. Prentice-Hall, Inc.

Brian Harrington and Ayaan Chaudhry. 2017. TrAcademic: improving partic-

ipation and engagement in CS1/CS2 with gamified practicals. In Proceedings

of the 2017 ACM Conference on Innovation and Technology in Computer Science

Education. 347-352.

[4] Maria-Blanca Ibanez, Angela Di-Serio, and Carlos Delgado-Kloos. 2014. Gam-
ification for engaging computer science students in learning activities: A case
study. IEEE Transactions on learning technologies 7, 3 (2014), 291-301.

[5] Gina Sprint and Diane Cook. 2015. Enhancing the CS1 student experience with
gamification. In 2015 IEEE Integrated STEM Education Conference. IEEE, 94-99.

—r—
)


https://doi.org/10.1145/3372782.3408122

	Abstract
	1 Adapting GameBooks to GameCode
	2 Preliminary Evaluation 
	References

