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Aims To obtain the normal range for 2D echocardiographic (2DE) measurements of left ventricular (LV) layer-specific
strain from a large group of healthy volunteers of both genders over a wide range of ages.

...................................................................................................................................................................................................
Methods
and results

A total of 287 (109 men, mean age: 46 ± 14 years) healthy subjects were enrolled at 22 collaborating institutions of
the EACVI Normal Reference Ranges for Echocardiography (NORRE) study. Layer-specific strain was analysed
from the apical two-, three-, and four-chamber views using 2DE software. The lowest values of layer-specific strain
calculated as ±1.96 standard deviations from the mean were -15.0% in men and -15.6% in women for epicardial
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strain, -16.8% and -17.7% for mid-myocardial strain, and -18.7% and -19.9% for endocardial strain, respectively.
Basal-epicardial and mid-myocardial strain decreased with age in women (epicardial; P = 0.008, mid-myocardial; P =
0.003) and correlated with age (epicardial; r = -0.20, P = 0.007, mid-myocardial; r = -0.21, P = 0.006, endocardial;
r = -0.23, P = 0.002), whereas apical-epicardial, mid-myocardial strain increased with the age in women (epicardial;
P = 0.006, mid-myocardial; P = 0.03) and correlated with age (epicardial; r = 0.16, P = 0.04). End/Epi ratio at the
apex was higher than at the middle and basal levels of LV in men (apex; 1.6 ± 0.2, middle; 1.2 ± 0.1, base 1.1 ± 0.1)
and women (apex; 1.6 ± 0.1, middle; 1.1 ± 0.1, base 1.2 ± 0.1).

...................................................................................................................................................................................................
Conclusion The NORRE study provides useful 2DE reference ranges for novel indices of layer-specific strain.
! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
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Introduction

Two-dimensional (2D) speckle tracking echocardiography (STE) ena-
bles quantitative evaluation of cardiac mechanics through image-
based analysis of myocardial deformation.1 Although left ventricular
(LV) ejection fraction is the most commonly used parameter to as-
sess LV mechanics, 2D-STE can detect latent LV dysfunction prior to
a decline in LV ejection fraction by assessing mid-myocardial longitu-
dinal strain.2 Recently, technological advances in 2D-STE has enabled
the assessment of layer-specific strain, thus allowing the measure-
ment of epicardial, mid-myocardial, and endocardial longitudinal
strain. The LV myocardium is divided into three myocardial layers
consisting of circumferential fibres in the mid-myocardial layer and
longitudinal fibres in the epicardial and endocardial layers.3 In most
heart diseases except some, such as sarcoidosis or hypertrophic car-
diomyopathy, myocardial injury occurs predominantly in the endo-
cardial fibres in the early stages of the disease.4 Endocardial strain
may have the potential to be more sensitive to assess myocardial
function compared to epicardial or mid-myocardial strain in different
cardiovascular diseases.5–9 However, normal ranges for each type of
layer-specific strain remain, to date, poorly defined.10,11 The aim of
this study was to establish the normal ranges of layer-specific strain
from a large group of healthy volunteers of both genders over a wide
range of ages.

The NORRE (Normal Reference Ranges for Echocardiography)
study is the first European, large prospective, multicentre study per-
formed in 22 laboratories accredited by the European Association of
Cardiovascular Imaging (EACVI) and in one American laboratory,
which has provided reference values for all 2D echocardiographic
(2DE) measurements of all cardiac chambers,12 Doppler parame-
ters,13 aortic dimensions,14 3D echocardiographic measurements of
the LV volumes and strain,15 2DE measurements of LV strain,16 2D
and 3D measurements of left atrial function,17 and myocardial indi-
ces.18 This study aimed to (i) establish normal reference limits for
layer-specific strain in healthy adults and (ii) examine the influence of
age and gender on these normal reference ranges.

Methods

Patient population
A total of 734 healthy European subjects constituted the final NORRE
study population. The local ethics committees approved the study proto-
col. After the exclusion of patients that had incompatible image formats

and/or poor image quality, the final study population consisted of 287
(39%) healthy subjects.

Echocardiographic examination
A comprehensive echocardiographic examination was performed using
state-of-the-art echocardiographic ultrasound system (GE Vivid E9;
Vingmed Ultrasound, Horten, Norway) following a recommended proto-
col approved by EACVI.19,20 All echocardiographic images were
recorded in a digital raw-data format (native DICOM format) and central-
ized for further analysis, after anonymization, at EACVI Central Core la-
boratory at the University of Liège, Belgium.

2D LV layer-specific strain
Quantification of layer-specific strain measurements were performed off-
line with dedicated software (EchoPAC V.203, GE). For measuring layer-
specific strain, attention was taken to cover the entire myocardial wall
thickness with the region of interest (ROI) of each segment and to avoid
to include the pericardium. Calculation of transmural variation of longitu-
dinal strain across the entire myocardium was based on the assumption
of linear distribution. Endocardial and epicardial strain were measured on
the endocardial and epicardial ROI border, respectively, whereas the mid
(centre line) of the ROI represented the average values of the transmural
wall thickness. The layer-specific strain values were obtained by averaging
the peak longitudinal strain of 17 segments (Figure 1). The ratio of endo-
cardial to epicardial was calculated using the End/Epi ratio for the assess-
ment of the strain gradient.

Statistical analysis
Continuous variables were expressed as mean ± standard deviation (SD).
The 95% confidence interval was calculated as ±1.96 SDs from the mean.
Differences between groups were analysed for statistical significance with
the unpaired t-test for normally distributed continuous variables.
Comparison of continuous variables according to age groups was done
with one-way analysis of variance test. When a significant difference was
found, post hoc testing with Bonferroni comparisons to identify specific
group differences was used. Correlation between continuous variables
was performed using the Pearson correlation test. Multivariable linear re-
gression analyses were performed to examine the independent corre-
lates between layer-specific strain and baseline parameters. Intra-
observer and inter-observer variability were assessed in 20 randomly
selected subjects using Bland–Altman analysis. P < 0.05 was considered
statistically significant. All statistical analyses were performed using JMP
11.0 statistical software (SAS Institute, Cary, NC, USA).
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Demographic data
Table 1 summarizes the demographic data of the NORRE population
analysed in the present study. A total of 109 men (mean age
46± 14 years) and 178 women (mean age 45 ± 14 years) were
included. Systolic blood pressure was higher in men (mean age
123 ± 10 mmHg) than in women (116± 15 mmHg). Strain values may
be affected by LV afterload. However, it remains to be clarified
whether the strain values correlate with the LV afterload, and few
studies have reported.21 The mean frame rate was on the apical view
were 63± 10/s (men 63 ± 11/s, women 64± 9/s, P = 0.73). Layer-
specific strain results from the entire study population are depicted in
Table 2. All average layer-specific strains were significantly higher in
women than in men. The lowest values of layer-specific strains were
-15.0% in men and -15.6% in women for epicardial strain, -16.8% and
-17.7% for mid-myocardial strain, and -18.7% and -19.9% for endo-
cardial strain, respectively. The highest values of layer-specific strain
were -22.3% in men and -23.5% in women for epicardial strain,
-25.1% and -26.0% for mid-myocardial strain, and -28.4% and -29.1%
for endocardial strain, respectively.

Relationship between age, gender, and
layer-specific strain
Relationships between gender and age with layer-specific strain in all
apical views are shown in Table 3 and Figure 2. No significant correla-
tions were observed between age and layer-specific strains for all ap-
ical chamber views. In all age groups, layer-specific strain, including
epicardial, mid-myocardial, and endocardial strain tended to be
higher in women compared to men. In the age group between 20 and
40 years (epicardial, mid-myocardial, and endocardial strain) and in
the age group >60 years, layer-specific epicardial and mid-myocardial
strains were significantly higher in women than men.

Relationships between age and layer-specific strains in the apical,
middle, and basal levels of the LV are shown in Table 4 and Figure 3.
No significant age dependency was observed with respect to layer-
specific strain in all segments in men. However, the basal-epicardial
and mid-myocardial strain decreased with age in women (epicardial;
P = 0.008, mid-myocardial; P = 0.003) and correlated with age (epi-
cardial; r = -0.20, P = 0.007, mid-myocardial; r = -0.21, P = 0.006, and
endocardial; r = -0.23, P = 0.002). In contrast, theapical-epicardial and
mid-myocardial strains increased with age in women (epicardial; P =
0.006 and mid-myocardial; P = 0.03) and correlated with age

Figure 1 Layer-specific strain curves measurement by 2D speckle tracking echocardiography. A2C, apical two-chamber; A3C, apical three-cham-
ber; A4C, apical four-chamber; Epi, epicardial strain; Mid, mid-myocardial strain; End, endocardial strain; BE, bull’s eye of layer-specific strain.

Echocardiographic reference ranges for normal LV layer-specific strain 3
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(epicardial; r = 0.16, P = 0.04). Although all strain values tended to in-
crease from the epicardium to the endocardium, this tendency was
stronger at the apical compared to the basal LV. Therefore, End/Epi
ratio at the apex was higher than at the middle or the basal LV levels
in men (apex; 1.6± 0.2, middle; 1.2± 0.1, base 1.1± 0.1) and women
(apex; 1.6 ± 0.1, middle; 1.1 ± 0.1, base 1.2± 0.1), and this relationship
was preserved at all ages (Table 4 and Figure 3).

Layer-specific strains determinants
Multivariable analysis for layer-specific strain showed that epicardial,
mid-myocardial, and endocardial strain increased with body surface
area (epicardial; b-coefficient = 0.32, P = 0.009, mid-myocardial; b-co-
efficient = 0.29, P = 0.02, endocardial; b-coefficient = 0.26, P = 0.03),
whereas the End/Epi ratio was not related to body surface area.
There was a significant increase in epicardial, mid-myocardial, and
endocardial strain according to body surface area in univariable

analysis but no association was observed after adjustment for con-
founders (Table 5).

Repeatability and reproducibility
Intra-observer and inter-observer variability for layer-specific strain
are summarized in Table 6. Intra-observer and inter-observer analy-
ses showed good repeatability and reproducibility in layer-specific
strain (Table 6 and Figure 4).

Discussion

The present prospective, EACVI multicentre study provides contem-
porary normal references values for 2DE measurements of layer-
specific strain in a large cohort of healthy volunteers of both genders
over a wide range of ages. Myocardial heterogeneity is characterized
by higher deformation amplitude in the endocardial compared with

....................................................................................................................................................................................................................

Table 1 Characteristics of the population

Parameters Total (n 5 287) Male (n 5 109) Female (n 5 178) P-value

Age (years) 46 ± 14 46 ± 14 45 ± 14 0.54

Height (cm) 170 ± 10 179 ± 8 165 ± 7 <0.001

Weight (kg) 69 ± 12 78 ± 10 63 ± 9 <0.001

Body surface area (m2) 1.8 ± 0.2 2.0 ± 0.1 1.7 ± 0.1 <0.001

Systolic blood pressure (mmHg) 119 ± 14 123 ± 10 116 ± 15 <0.001

Diastolic blood pressure (mmHg) 74 ± 9 75 ± 8 73 ± 9 0.02

Glucose (mg/dL) 91 ± 11 95 ± 9 89 ± 11 <0.001

Cholesterol (mg/dL) 182 ± 30 186 ± 26 180 ± 32 0.17

....................................................................................................................................................................................................................

Table 2 2DE parameters of layer-specific strain

Total
mean 6 SD

Total 95% CI Male
mean 6 SD

Male 95% CI Female
mean 6 SD

Female 95% CI P-value

Epicardial strain (%)

Apical two-chamber -19.8 ± 2.6 -14.7 to -24.8 -19.4 ± 2.4 -14.6 to -24.1 -20.0 ± 2.6 -14.9 to -25.1 0.03

Apical three-chamber -18.8 ± 2.5 -13.8 to -23.7 -18.1 ± 2.3 -13.6 to -22.6 -19.2 ± 2.6 -14.1 to -24.3 <0.001

Apical four-chamber -19.0 ± 2.4 -14.4 to -23.7 -18.5 ± 2.5 -13.6 to -23.4 -19.4 ± 2.3 -14.9 to -23.8 0.95

Average -19.2 ± 2.0 -15.3 to -23.1 -18.7 ± 1.9 -15.0 to -22.3 -19.5 ± 2.0 -15.6 to -23.5 <0.001

Mid-myocardial strain (%)

Apical two-chamber -22.0 ± 2.7 -17.3 to -27.2 -21.6 ± 2.5 -16.6 to -26.5 -22.2 ± 2.8 -16.8 to -27.6 0.045

Apical three-chamber -21.2 ± 2.8 -15.8 to -28.6 -20.5 ± 2.6 -15.5 to -25.6 -21.7 ± 2.8 -16.2 to -27.1 <0.001

Apical four-chamber -21.1 ± 3.5 -14.2 to -28.1 -20.7 ± 2.7 -15.4 to -26.1 -21.3 ± 4.0 -13.6 to -29.1 0.11

Average -21.5 ± 2.2 -17.3 to -25.7 -20.9 ± 2.1 -16.8 to -25.1 -21.8 ± 2.1 -17.7 to -26.0 <0.001

Endocardial strain (%)

Apical two-chamber -24.5 ± 3.0 -18.6 to -30.3 -24.1 ± 2.9 -18.5 to -29.7 -24.7 ± 3.0 -18.8 to -30.6 0.08

Apical three-chamber -24.0 ± 4.2 -15.8 to -32.2 -23.4 ± 3.1 -17.3 to -29.5 -24.4 ± 4.7 -15.2 to -33.6 0.03

Apical four-chamber -23.7 ± 2.9 -18.1 to -29.3 -23.2 ± 3.2 -17.0 to -29.4 -24.0 ± 2.6 -18.8 to -29.2 0.03

Average -24.1 ± 2.4 -19.3 to -28.9 -23.6 ± 2.5 -18.7 to -28.4 -24.5 ± 2.3 -19.9 to -29.1 0.002

End/Epi ratio 1.3 ± 0.1 1.15 to 1.37 1.3 ± 0.1 1.15 to 1.38 1.3 ± 0.1 1.15 to 1.36 0.19

CI, confidence interval; SD, standard deviation.
P-value differences between genders.
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.the epicardial layer.22 Layer-specific strain is a novel method that is
capable of assessing each layer of the myocardial function. Moreover,
the absence of differences between vendors for layer-specific strain
values makes this technique a useful tool for feasibility, accuracy, and
reproducibility.23

Our results are consistent with previous studies showing good
concordance with the absolute values of layer-specific strain and that
all layer-specific strains in women were consistently higher than in
men.10,24,25 However, the relationship between layer-specific strain
and age dependency is inconsistent. As reported by Nagata et al. and
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..Shi et al.10,24 no significant age dependency was observed concerning
all layer-specific strains. In contrast, as reported by Alcidi et al. all
layer-specific strains were progressively reduced with increasing age.
The relationship between layer-specific strain and age dependence
was inconsistent and different from the previous NORRE study of
2D strain.16 This difference may be due to the smaller number of
enrolled patients in this study than in previous NORRE study.
Interestingly, the layer-specific strain gradient increased from the epi-
cardial towards the endocardial layer. The mechanism underlying
these findings remains unclear, but some considerations have been
reported. The differences between epicardial and endocardial strain
might be secondary to the ability of the endocardial fibres to stretch

more potently compared to the epicardial fibres during end-dia-
stole.26 In addition, differences in coronary perfusion and metabolic
demands between the epicardial and endocardial layers may also
contribute to these differences.27,28 In this context, the End/Epi ratio
at the apex was higher than that at the middle or basal LV levels in
both genders. (Table 4 and Figure 3). The End/Epi ratio differs depend-
ing of the type of LV hypertrophic diseases, such as aortic stenosis29

or hypertrophic cardiomyopathy,30 and may have the potential to
diagnose, not only these disease but also other forms of hypertrophic
diseases. The hypertrophied myocardium may remodel differently in
response to a variety of aetiologies, resulting in different epicardial
and endocardial strains. Moreover, the results of our multivariable

....................................................... .........................................................

....................................................................................................................................................................................................................

Table 5 Univariable and multivariable analysis for layer-specific strain

Variables Univariable analysis Multivariable analysis

Coefficients P-value b-coefficients P-value

Epicardial strain (%)

Age (years) 0.02 0.70

Male gender (=1) 0.21 <0.001

Body mass index (kg/m2) 0.07 0.25

Body surface area (m2) 0.24 <0.001 0.32 0.009

Systolic blood pressure (mmHg) 0.04 0.57

Diastolic blood pressure (mmHg) 0.03 0.64

Glycaemia (g/dL) 0.04 0.60

Cholesterol (g/dL) 0.01 0.87

Mid-myocardial strain (%)

Age (years) 0.05 0.42

Male gender (=1) 0.20 <0.001

Body mass index (kg/m2) 0.07 0.21

Body surface area (m2) 0.22 <0.001 0.29 0.02

Systolic blood pressure (mmHg) 0.04 0.58

Diastolic blood pressure (mmHg) 0.06 0.32

Glycaemia (g/dL) 0.07 0.33

Cholesterol (g/dL) 0.04 0.57

Endocardial strain (%)

Age (years) 0.07 0.24

Male gender (=1) 0.18 0.002

Body mass index (kg/m2) 0.07 0.25

Body surface area (m2) 0.19 <0.001 0.26 0.03

Systolic blood pressure (mmHg) 0.03 0.63

Diastolic blood pressure (mmHg) 0.09 0.17 0.19 0.03

Glycaemia (g/dL) 0.10 0.19

Cholesterol (g/dL) 0.07 0.38

End/Epi ratio

Age (years) -0.12 0.04

Male gender (=1) 0.08 0.19

Body mass index (kg/m2) -0.02 0.80

Body surface area (m2) 0.10 0.08

Systolic blood pressure (mmHg) -0.0002 0.10

Diastolic blood pressure (mmHg) -0.14 0.03 -0.20 0.02

Glycaemia (g/dL) -0.15 0.05

Cholesterol (g/dL) -0.12 0.11
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..analysis (Table 5) suggest that the End/Epi ratio may have the poten-
tial to be a useful marker regardless of age, gender, or body surface
area. Our data showed good reproducibility for the assessment of
layer-specific strains, reinforcing the possibility of a promising applica-
tion of this new advanced echocardiographic index in clinical
practice.

Limitations
This study presents several limitations. First, only one-third of the
patients included in the NORRE database could be analysed by
the current available software. Second, since this study was

conducted only on GE equipment, data on other equipment, such
as Philips, is not available. However, in our previous study, we
reported that no differences were noted between GE and Philips
equipment with regard to longitudinal strain.16 Third, the number
of patients enrolled in this study was lower than in the previous
NORRE study of LV 2D strain.16 Therefore, the relationship be-
tween layer-specific strain and age dependency was inconsistent.
The same tendency was observed for the basal and middle LV
levels of all layer-specific strain. Fourth, whether the NORRE
study results can be extrapolated to non-Caucasian European indi-
viduals is still unknown.

Figure 4 Bland–Altman analysis for assessing intra-observer and inter-observer variability of layer-specific strain. Dotted lines represent bias and
95% limits of agreement for measurements performed in 20 patients.

....................................................................................................................................................................................................................

Table 6 Repeatability and reproducibility of 2D echocardiographic data

Variables Mean 6 SD Mean 6 SD Bias P-value 95% LOA

Intra-observer

Average epicardial longitudinal strain (%) -19.4 ± 1.9 -18.6 ± 1.6 -0.46 0.005 -19.7 to -19.1

Average mid-myocardial longitudinal strain (%) -21.6 ± 2.1 -21.0 ± 2.0 -0.50 0.001 -22.1 to -21.5

Average endocardial longitudinal strain (%) -24.4 ± 2.4 -23.5 ± 2.2 -0.60 0.003 -24.9 to -24.1

Inter-observer

Average epicardial longitudinal strain (%) -19.4 ± 1.9 -18.3 ± 1.7 1.05 <0.001 -18.2 to -17.4

Average mid-myocardial longitudinal strain (%) -21.6 ± 2.1 -20.8 ± 1.9 0.82 0.001 -20.1 to -19.9

Average endocardial longitudinal strain (%) -24.4 ± 2.4 -23.5 ± 2.2 0.90 <0.001 -23.6 to -23.1

LOA, lower limits of agreement; SD, standard deviation.

Echocardiographic reference ranges for normal LV layer-specific strain 9
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..Conclusion

The NORRE study provides applicable 2DE reference ranges for
layer-specific strain. Multivariable analysis did not show any significant
association between layer-specific strain and age or gender.
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