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The goal of this research is to improve the learning of
densities in high-dimensional problems.

This has great potential in many applications :

Bioinformatics

Power networks
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Bayesian networks model probability densities

P(A,B , ...,F ) =
P(A)P(B)P(C |A,B)...P(F |C ,D)

Each node of the directed graph
≡ one random variable

Each local function ≡ cond.
prob. table

⇒ Factorization of the probability
density
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The choice of the structure search space is a compromise.

Sets of all bayesian networks

Ability to model any density

Superexponential number of structures
⇒ Structure learning is difficult
⇒ Overfitting

Inference is difficult

Sets of simpler structures

Reduced modeling power

Learning and inference potentially easier

A tree is a graph without cycle where each variable has at most one
parent.
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Mixtures of trees combine qualities of bayesian networks
and trees.
A forest is a tree missing edges : A mixture of trees is an ensemble

method :

PMT (x) =
m∑

i=1

wiPTi
(x)
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Mixtures of trees combine qualities of bayesian networks
and trees.

Several models → large modeling power

Simple models → low complexity :
! inference is linear,
! learning : most algorithms are quadratic.

Quadratic complexity could be too high for very
large problems.
In this work, we try to decrease it.

Learning with mixtures of Trees, M. Meila & M.I. Jordan, JMLR 2001.

F. Schnitzler (ULG) Sub-quadratic Mixtures of Trees ESANN 2010 6 / 17



Quadratic scaling is due to the Chow-Liu algorithm.

Maximize data likelihood

Composed of 2 steps :
! Construction of a complete graph whose

edge-weight are empirical mutual informations
(O(n2N))

! Computation of the maximum width spanning tree
(O(n2 log n))

Approximating discrete probability distributions with dependence trees, C. Chow & C. Liu,

IEEE Trans. Inf. Theory 1968.
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We propose to consider a random fraction δ of the edges
of the complete graph.

No longer optimal

Reduction in complexity (for each
term) :

! Construction of an uncomplete graph :
O(δn2N)

! Computation of the maximum width
spanning tree (O(δn2 log n))
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Intuitively, the structure of the problem can be exploited to
improve random sampling.

In an euclidian space, similar problems can be approximated by
sub-quadratic algorithms. When 2 points B and C are close to A, they are
likely to be close as well.

d(B ,C ) ! d(A,B) + d(A,C )

Mutual information is not an euclidian distance. However the same
reasoning can be applied. If the pairs A ;B and A ;C have high mutual
information, I(B ;C) may be high as well.

I (B ;C ) " I (A;B) + I (A;C )− H(A)
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We want to obtain knowledge about the structure.
The algorithm aims at building :

a set of clusters on the variables,

relationships between these clusters,

and then exploit it to target interesting edges.
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We build the clusters iteratively :

A center (X5) is randomly chosen and compared to the 12 other variables.
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We build the clusters iteratively :
First cluster is created : it is composed of 5 members and 1 neighbour.
Variables are assigned to a cluster based on two thresholds and their
empirical mutual information with the center of the cluster.
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We build the clusters iteratively :

The second cluster is built around X13, the variable the furthest away from
X5. It is only compared to the 7 remaining variables.
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We build the clusters iteratively :

After 4 iterations, all variables belong to a cluster, the algorithm stops.
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We build the clusters iteratively :

Computation of mutual information among variables belonging to the
same cluster.
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We build the clusters iteratively :

Computation of mutual information between variables belonging to
neighboring clusters.
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Our algorithms were compared against two similar
methods.

Complexity reduction :
Random tree sampling (O(n)),
no connection to the data set.

Variance reduction :
Bagging (O(n2 log n)).

Probability Density Estimation by Perturbing and Combining Tree Structured Markov Networks,

S. Ammar and al. ECSQARU 2009.
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Experimental settings

Tests were conducted on synthetic binary problems :

1000 variables,

Average on 10 target distributions × 10 data sets,

Targets were generated randomly.

Accuracy evaluation :

Kullback-Leibler divergence is too computationally expensive :

DKL(Pt ||Pl) =
∑

x

Pt(x) log
Pt(x)

Pl(x)
.

→ Monte carlo estimation :

D̂KL(Pt ||Pl ) =
∑

x∼Pt

log
Pt(x)

Pl(x)
.
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Variation of the proportion of edges selected

Results for a mixture of size 100 :

Random edge sampling is :
! better than the optimal tree

for small data sets,
! worse for bigger sets,

The more edges considered, the
closer to the optimal tree.

60%, 35%, 20%, 5% (!, ♦, ", $)
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The fewer samples, the (relatively) better the randomized
methods.
For high-dimensional problems, data sets will be small.

Results for a mixture of size 100 :

Random trees ($) are better
when samples are few,

Bagging (-) is better for N > 50,

Clever edge targeting (%) is
always better than random edge
sampling (&).

F. Schnitzler (ULG) Sub-quadratic Mixtures of Trees ESANN 2010 15 / 17



Methods can also be mixed :

A combination (") of bagging (-) and
random edge sampling (&, 35%) :

Performance lies between base
methods.

Improve bagging complexity.

The fewer the sample, the closer
to bagging.
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Conclusion

Our results on randomized mixture of trees :

Accuracy loss is in line with the gain in complexity.

The interest of randomization increases when the sample size
decreases.

Clever strategies improve results without hurting complexity
→ Worth developing.

Future work :

Experiment other strategies,

Include and test those improvements in other algorithms for building
MT.
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The more terms in the mixture, the better the performance

300 samples :

More sophisticated methods
tend to converge slower,

Random trees are always worse
than an optimal tree,

Other mixtures outperform CL
tree.



Computation time

Rand. trees Rand. edge sampling Clever edge sampling Bagging
2,063 s 64,569 s 59,687 s 168,703 s

Table: Training CPU times, cumulated on 100 data sets of 1000 samples
(MacOS X ; Intel dual 2 GHz ; 4GB DDR3 ; GCC 4.0.1)
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