Towards sub-quadratic learning of probability density
models in the form of mixtures of trees

F. Schnitzler!  P. Leray? L. Wehenkel!

fschnitzler@Qulg.ac.be
philippe.leray@univ-nantes.fr
L.WehenkelQulg.ac.be

LUniversity of Liege

2University of Nantes

29 avril 2010

F. Schnitzler (ULG) Sub-quadratic Mixtures of Trees ESANN 2010 1/17



The goal of this research is to improve the learning of
densities in high-dimensional problems.

This has great potential in many applications :
@ Bioinformatics

@ Power networks
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Bayesian networks model probability densities

@ Each node of the directed graph
= one random variable

@ Each local function = cond.
prob. table

PFICD)  _. Factorization of the probability

density

P(A,B,...F) =
P(A)P(B)P(C|A, B)...P(F|C, D)
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The choice of the structure search space is a compromise.

Sets of all bayesian networks
@ Ability to model any density

@ Superexponential number of structures
= Structure learning is difficult
= Overfitting

o Inference is difficult

Sets of simpler structures

@ Reduced modeling power

@ Learning and inference potentially easier

A tree is a graph without cycle where each variable has at most one
parent.
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Mixtures of trees combine qualities of bayesian networks
and trees.

A forest is a tree missing edges : A mixture of trees is an ensemble
method :
(2) 5
@ ©
@ © o
@
(4) 9
® ©
©—®

PMT(X) = Z W,'PTI.(X)
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Mixtures of trees combine qualities of bayesian networks
and trees.

@ Several models — large modeling power
@ Simple models — low complexity :

» inference is linear,
> learning : most algorithms are quadratic.

Quadratic complexity could be too high for very
large problems.
In this work, we try to decrease it.

Learning with mixtures of Trees, M. Meila & M.I. Jordan, JMLR 2001.
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Quadratic scaling is due to the Chow-Liu algorithm.

Dataset
n variables
N samples

l @ Maximize data likelihood
(a) o Composed of 2 steps :
'v‘ » Construction of a complete graph whose
‘ edge-weight are empirical mutual informations
(O(n*N))
i » Computation of the maximum width spanning tree
(O(n? log n))

Approximating discrete probability distributions with dependence trees, C. Chow & C. Liu,
IEEE Trans. Inf. Theory 1968.
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We propose to consider a random fraction o of the edges
of the complete graph.

Dataset
n variables
N samples
l o No longer optimal
@) (5) @ Reduction in complexity (for each

term)
e‘e » Construction of an uncomplete graph :
O(6n*N)
l » Computation of the maximum width
) spanning tree (O(dn? log n))
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Intuitively, the structure of the problem can be exploited to
improve random sampling.

In an euclidian space, similar problems can be approximated by

sub-quadratic algorithms. When 2 points B and C are close to A, they are
likely to be close as well.

B
d(B,C) < d(A, B) + d(A, C)

C A

Mutual information is not an euclidian distance. However the same
reasoning can be applied. If the pairs A ;B and A ;C have high mutual
information, 1(B;C) may be high as well.

H(A)
~__
I(A;B)  I(A;C)

I(B;C)

I(B; C) > I(A; B) + I(A; C) — H(A)

H(B) H(C)
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We want to obtain knowledge about the structure.
The algorithm aims at building :

@ a set of clusters on the variables,

@ relationships between these clusters,
and then exploit it to target interesting edges.
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We build the clusters iteratively :

A center (X5) is randomly chosen and compared to the 12 other variables.
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We build the clusters iteratively :

First cluster is created : it is composed of 5 members and 1 neighbour.
Variables are assigned to a cluster based on two thresholds and their
empirical mutual information with the center of the cluster.

F. Schnitzler (ULG) ESANN 2010 11 /17



We build the clusters iteratively :

The second cluster is built around Xi3, the variable the furthest away from
Xs. It is only compared to the 7 remaining variables.
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We build the clusters iteratively :

After 4 iterations, all variables belong to a cluster, the algorithm stops.
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We build the clusters iteratively :

Computation of mutual information among variables belonging to the
same cluster.
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We build the clusters iteratively :

Computation of mutual information between variables belonging to
neighboring clusters.
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Our algorithms were compared against two similar
methods.

Complexity reduction : Variance reduction :
Random tree sampling (O(n)), Bagging (O(n?log n)).
no connection to the data set.

Dataset
n variables
N samples

Dataset Dataset
n variables n variables
N samples N samples

v '
@06 [&—@

Probability Density Estimation by Perturbing and Combining Tree Structured Markov Networks,
S. Ammar and al. ECSQARU 2009.
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Experimental settings

Tests were conducted on synthetic binary problems :
@ 1000 variables,
@ Average on 10 target distributions x 10 data sets,
o Targets were generated randomly.

Accuracy evaluation :

@ Kullback-Leibler divergence is too computationally expensive :

P:(x)
DKL(P HP/) = P (X) |Og .
t Z t Pi(x)
— Monte carlo estimation :
Pt(x)

Dia(Pel|Pr) = log

XNPt

i)
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Variation of the proportion of edges selected

210 \
& >
A o
Results for a mixture of size 100 : A\
° is : .
> better than the optimal tree 180 \
for small data sets, 5
» worse for bigger sets, \g
@ The more edges considered, the gé :
closer to the optimal tree. o
&
—
150 ‘
0 500 1000
Samples

60%, 35%, 20%, 5% (-, =, ', )
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The fewer samples, the (relatively) better the randomized

methods.
For high-dimensional problems, data sets will be small.

210
\

=
4}
Results for a mixture of size 100 : i

190

@ Random trees ([J) are better
when samples are few,

@ Bagging (-) is better for N > 50,

o Clever edge targeting (V) is
always better than random edge

sampling ().

170

150

0 500 1000
Samples
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Methods can also be mixed :

210
\

KL

‘A <o
A combination () of bagging (-) and \

random edge sampling (-, 35%) :
@ Performance lies between base

methods. 180
@ Improve bagging complexity.
@ The fewer the sample, the closer
to bagging.
150
0 500 1000
Samples
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Conclusion

Our results on randomized mixture of trees :
@ Accuracy loss is in line with the gain in complexity.

@ The interest of randomization increases when the sample size
decreases.

@ Clever strategies improve results without hurting complexity
— Worth developing.

Future work :
@ Experiment other strategies,

@ Include and test those improvements in other algorithms for building
MT.
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The more terms in the mixture, the better the performance

300 samples :

@ More sophisticated methods 175
tend to converge slower, g

@ Random trees are always worse
than an optimal tree,

@ Other mixtures outperform CL
tree. 165

155 ‘
0 50 m 100




Computation time

Rand. trees ‘ Rand. edge sampling ‘ Clever edge sampling ‘ Bagging

2,063s | 64,569 s \ 59,687 s | 168,703 s

TABLE: Training CPU times, cumulated on 100 data sets of 1000 samples
(MacOS X; Intel dual 2 GHz; 4GB DDR3; GCC 4.0.1)
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