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Front mirrors of ITER diagnostic systems are subject to high
thermal loads emitted by the plasma which thermally deform
the mirror and can reduce the optical quality of the measures.
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uncertainties in the parameters, the numerical model f of the
front mirror must be evaluated a large number of times N:

Parameters

p(1) y (1)f

. . .

p(N) y (N)f
Quantity of

interest

As N is typically large and f costly to evaluate, the total
CPU cost of the parametric computation is large.
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◮ The high performance computing library Trilinos
provides embedded capabilities targeting parametric
computations.
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◮ Developed by 225 contributors.

Trilinos provides a solver stack which includes
definitions of matrices, linear solvers, nonlinear solvers,
preconditioners, . . . templated on the data type.

Arrays, programming model
Shared-memory algebra

Distributed-memory algebra
Linear solvers

Parametric computations

This feature is a key feature for the work presented today.
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◮ Is a C++ Performance portability library;

◮ Enables single source performance portable codes;

◮ Provides programming model for shared-memory
parallelism;

◮ Provides data abstractions critical for performance
portability;

◮ Is open source and hosted on github:
https://github.com/kokkos/kokkos;

◮ Has dedicated developer staff at 5 US National
Labs.

Arrays, programming model

Those data abstractions and programming models are used in the work presented today
to implement the efficient GEMV discussed later.
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Context: Stokhos

Stokhos:

◮ Is the Trilinos package for embedded uncertainty
quantification methods;

◮ Provides an implementation of the Stochastic
Galerkin method;

◮ Provides an implementation of the embedded
ensemble propagation method;

◮ Is developed by Eric T. Phipps.

Parametric computations

The work presented today uses and contributes to the embedded ensemble propagation
method.
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Objective of the thesis

For a given set of samples, to reduce the wall-clock time to evaluate multiphysics models
on high performance clusters.

Multiphysics
models

Parametric
computations

HPC

This
thesis

This has been done using and contributing to the embedded ensemble propagation one of
the embedded strategies implemented in Stokhos.
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Ensemble propagation

In sampling-based parametric computation, instead of individually evaluating each instance of
the model, Ensemble propagation (EP) consists of simultaneously evaluating a subset of
samples of the model.

Given N samples and an ensemble size s, instead of looping over the N samples:

for i in range (0,N):

y[i] = f(p[i])

p(i) y (i)f
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samples of the model.

Given N samples and an ensemble size s, instead of looping over the N samples:

for i in range (0,N):

y[i] = f(p[i])

p(i) y (i)f

Ensemble propagation loops over sets of size s of the N samples:

for i in range (0,N,s):

y[i:i+s] = f(p[i:i+s])

fp(i), . . . , p(i+s−1) y (i), . . . , y (i+s−1)
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Ensemble propagation

Using EP increases the order of sample-dependent tensors by one:
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Algorithms should be adapted accordingly.
11 / 55



Ensemble propagation

Using EP increases the order of sample-dependent tensors by one:

Without EP With EP

Scalars

Vectors

Matrices

Algorithms should be adapted accordingly.
11 / 55



Ensemble propagation

Using EP increases the order of sample-dependent tensors by one:

Without EP With EP

Scalars

Vectors

Matrices

Algorithms should be adapted accordingly.
11 / 55



Ensemble propagation

EP was introduced by [Phipps, 2017], made available in Stokhos, and implemented using a
template-based generic-programming approach:

template <typename T, int ensemble_size >

class Ensemble {

T data[ ensemble_size ];

Ensemble <T, ensemble_size > operator + ( const Ensemble <T, ensemble_size > &v);

Ensemble <T, ensemble_size > operator - ( const Ensemble <T, ensemble_size > &v);

Ensemble <T, ensemble_size > operator * ( const Ensemble <T, ensemble_size > &v);

Ensemble <T, ensemble_size > operator / ( const Ensemble <T, ensemble_size > &v);

// ...

}

and providing template specializations for some of the Trilinos functions and classes for this
new data type.
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Ensemble <T, ensemble_size > operator / ( const Ensemble <T, ensemble_size > &v);

// ...

}

and providing template specializations for some of the Trilinos functions and classes for this
new data type.

This implementation strategy allows to use EP in the full solver stack of Trilinos supporting
templated data types.
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Ensemble propagation

Advantages of the EP:

◮ Reuse of common variables;

◮ More opportunities for vectorization (more data parallelism);

◮ Improved memory access pattern;

◮ Reduction of Message Passing Interface (MPI) latency per sample.
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Parametric linear systems

We want to solve a parametric linear system for a subset of s samples of the parameters
together:

A::ℓ x :ℓ = b:ℓ for all ℓ = 1, . . . , s,

where matrices A::1, . . . , A::s are sparse and not symmetric or not positive definite.

Representation of a system for s = 4:

=

A X B

How to solve the sparse parametric linear system efficiently with EP?
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Right-preconditioned GMRES

r (0) = b − A x(0)

β = ‖r (0)‖
v : 1 = r (0)/β
for j = 1, . . . , m do

w = AM−1 v : j

h(1:j)j = V T

:(1:j)
w

v :(j+1) = w − V :(1:j) h(1:j)j

h(j+1) j = ‖v : (j+1)‖

if h(j+1) j 6= 0 then
v : (j+1) = v : (j+1)/h(j+1) j

else
m = j

break

if qT

:(j+1)
e1 ≤ ε then

m = j

break

y = arg minz ‖β e1 − H(1:m+1)(1:m) z‖

x(m) = x(0) + M−1V :(1:m) y
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m = j

break

y = arg minz ‖β e1 − H(1:m+1)(1:m) z‖

x(m) = x(0) + M−1V :(1:m) y

The GMRES method iteratively creates an
orthonormal basis v :1, . . . , v :j for the vector
space:

span

{

r (0), AM−1r (0), . . . ,
(

AM−1
)(j−1)

r (0)
}

using the orthonarmal basis of the current it-
eration v :1, . . . , v :j , applying AM−1 to the
last vector v :j and orthonormalize it with
v :1, . . . , v :j .

This process continues up to the point where
the basis allows to have a sufficiently small
error to the solution of the linear system.
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Reduced inner product

First approach [Phipps, 2017]: equivalent to gathering the sample matrices A::1, . . . , A::s

into a block diagonal matrix
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and to applying an iterative method on the block diagonal system.
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b:1
...

b:s






,

and to applying an iterative method on the block diagonal system.

This is mathematically equivalent to defining a reduced inner product:

= + + +

Advantages: No ensemble divergence and possibility to use efficient BLAS implementations,
Challenges: The samples are coupled together, the spectra of A::1, . . . , A::s are gathered,
and the condition number increases and is larger than the ones of A::1, . . . , A::s . The
number of iterations increases.
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Ensemble-typed inner product

Second approach [D’Elia, 2020]: to avoid the coupling of the samples together using an
ensemble-typed inner product:

=

It was first introduced for grouping purpose.
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Ensemble-typed inner product

Second approach [D’Elia, 2020]: to avoid the coupling of the samples together using an
ensemble-typed inner product:

=

It was first introduced for grouping purpose.

Advantage: No coupling: each sample converges as fast as if it was propagated alone,
Challenge: Every ensemble divergence has to be managed explicitly.
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Advantages and challenges of both approaches

With ensemble reduction:

Advantages:

◮ No control flow divergence;

◮ Use of standard libraries such as
the Intel Math Kernel Library.

Challenges:

◮ Convergence in the least-squares
sense;

◮ The spectrum of the ensemble
matrix is the union of the spectra of
the sample matrices: having a good
preconditioner is more complex;

◮ Increased number of iterations.

19 / 55



Advantages and challenges of both approaches

With ensemble reduction:

Advantages:

◮ No control flow divergence;

◮ Use of standard libraries such as
the Intel Math Kernel Library.

Challenges:

◮ Convergence in the least-squares
sense;

◮ The spectrum of the ensemble
matrix is the union of the spectra of
the sample matrices: having a good
preconditioner is more complex;

◮ Increased number of iterations.

Without ensemble reduction:

Advantages:

◮ Convergence of an iterative method
implies the convergence for every
sample;

◮ The spectra are not gathered;

◮ Global convergence rate controlled
by the slowest sample.

Challenges:

◮ Control flow divergence has to be
treated explicitly;

◮ No current implementation of the
needed BLAS routines in the Intel
Math Kernel Library. 19 / 55
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Occurrence of ensemble divergence in GMRES

r (0) = b − A x(0)

β = ‖r (0)‖
v : 1 = r (0)/β
for j = 1, . . . , m do

w = AM−1 v : j

h(1:j)j = V T

:(1:j)
w

v :(j+1) = w − V :(1:j) h(1:j)j

h(j+1) j = ‖v : (j+1)‖

if h(j+1) j 6= 0 then
v : (j+1) = v : (j+1)/h(j+1) j

else
m = j

break

if qT

:(j+1)
e1 ≤ ε then

m = j

break

y = arg minz ‖β e1 − H(1:m+1)(1:m) z‖

x(m) = x(0) + M−1V :(1:m) y

Ensemble divergence in GMRES:

1. a vector can require a normalization or
not: if-then-else divergence;

21 / 55



Occurrence of ensemble divergence in GMRES

r (0) = b − A x(0)

β = ‖r (0)‖
v : 1 = r (0)/β
for j = 1, . . . , m do

w = AM−1 v : j

h(1:j)j = V T

:(1:j)
w

v :(j+1) = w − V :(1:j) h(1:j)j

h(j+1) j = ‖v : (j+1)‖

if h(j+1) j 6= 0 then
v : (j+1) = v : (j+1)/h(j+1) j

else
m = j

break

if qT

:(j+1)
e1 ≤ ε then

m = j

break

y = arg minz ‖β e1 − H(1:m+1)(1:m) z‖

x(m) = x(0) + M−1V :(1:m) y

Ensemble divergence in GMRES:

1. a vector can require a normalization or
not: if-then-else divergence;

2. different samples may require different
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Control flow divergence: example of the normalization

The ensemble class comes with some utility functions which allow to access its i-th element.
Therefore, it is feasible to explicitly loop over the samples of the ensemble and evaluate
the if-statement for each sample one at the time in the normalization process.

typedef EnsembleTrait <T> ET;

const int s = ET :: ensemble_size ;

bool all_zeros = true ;
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}

else

ET :: coeff (norm_inv , l) = 0.;

if ( all_zeros ) return has_converged ;

for (int i = 0; i < n; ++i)

v[i] *= norm_inv ;

This is correct, but not concise and relies on the compiler to optimize the code.
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Control flow divergence: Mask class

The control flow divergence, both the if-then-else divergence and the loop divergence,
can be solved by defining a Mask class equivalent to:

template <int ensemble_size >

class Mask{

bool data[ ensemble_size ];

// ...

}

which stores the result of any comparison of ensembles sample-wise.
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This mask can then used for masked assignments and logical reductions:

T norm_inv ;

if (AND(norm == 0)) return has_converged ;

MaskAssign (norm > 0, norm_inv ) /= {1. , norm , 0.};

for (int i = 0; i < n; ++i)

v[i] *= norm_inv ;

This second implementation is more concise, potentially more readable, and helps the
optimization performed by the compiler.
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Occurrence of ensemble divergence in GMRES

r (0) = b − A x(0)
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y = arg minz ‖β e1 − H(1:m+1)(1:m) z‖

x(m) = x(0) + M−1V :(1:m) y

Ensemble divergence in GMRES:

1. a vector can require a normalization or
not: if-then-else divergence;

2. different samples may require different
numbers of iterations to converge: loop
divergence;

1. called BLAS functions, such as GEMV
for the dense matrix-vector operations
in the orthogonalization process (inner
products and update), may not support
ensemble-typed inputs, leading to
function call divergence.
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GEMV with ensemble propagation for the update of GMRES

The GEMV with ensemble propagation takes the form
of tensors contractions as follows:

y :ℓ = βℓ y :ℓ + αℓ A::ℓ x :ℓ for all ℓ = 1, . . . , s,
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Interleaved memory layout of the n× j × s third-order
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Interleaved memory layout of the n× j × s third-order
tensor A due to EP:

aikℓ ←[ a [(i − 1) s + (k − 1) n s + (ℓ− 1)] ,

with n the number of degrees of freedom per sample, j
the Krylov subspace dimension, and s the ensemble size;

Challenge: the memory layout prevents us from
using efficiently a scalar-typed GEMV implementation
sequentially s times.

Tall skinny third-order tensor A
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GEMV with ensemble propagation for the update of GMRES

Such an operation has a low arithmetic intensity as, for every aikℓ loaded from memory only
two operations are performed.

The throughput of this computation is therefore limited by the memory bandwidth on
standard architectures.The speed-up of this tensors contraction versus s GEMV with unit stride
cannot be greater than 1 providing that both implementation reach maximal throughput.

How should we implement the contraction such that theoretical performance is achieved?
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GEMV and GEMM in the literature

To reach full bandwidth, we have to:

◮ Exploit the parallelism of the architecture:

◮ Use every physical core as much as possible.

◮ Transfer data efficiently through the memory hierarchy:

◮ Keep reusable data in cache;
◮ Use unit stride loads.

◮ Exploit CPU power:

◮ Keep reusable data in registers;
◮ Use vector load and store, avoid vector gather.
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GEMV with ensemble propagation for the update of GMRES

parfor t = 1 to n − nc + 1 by mc do
for i = t, . . . , t + nc − 1 do

yiℓ = βℓ yiℓ for all ℓ = 1, . . . , s

for k = 1, . . . , j do
γℓ = αℓ xkℓ for all ℓ = 1, . . . , s
for i = t, . . . , t + nc − 1 do

yiℓ = yiℓ + γℓ aikℓ for all ℓ = 1, . . . , s
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parfor t = 1 to n − nc + 1 by mc do
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γℓ = αℓ xkℓ for all ℓ = 1, . . . , s
for i = t, . . . , t + nc − 1 do

yiℓ = yiℓ + γℓ aikℓ for all ℓ = 1, . . . , s

◮ Tiling:
◮ Each thread applies a tile at a time;
◮ Cache blocking of Y .

◮ Vectorization:
◮ Vectorization of the loops over the samples;
◮ Intel Intrinsics or overloaded operators.
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GEMV with ensemble propagation for the update of GMRES

parfor t = 1 to n − nc + 1 by mc do
for i = t, . . . , t + nc − 1 do

yiℓ = βℓ yiℓ for all ℓ = 1, . . . , s

for k = 1, . . . , j do
γℓ = αℓ xkℓ for all ℓ = 1, . . . , s
for i = t, . . . , t + nc − 1 do

yiℓ = yiℓ + γℓ aikℓ for all ℓ = 1, . . . , s

◮ Tiling:
◮ Each thread applies a tile at a time;
◮ Cache blocking of Y .

◮ Vectorization:
◮ Vectorization of the loops over the samples;
◮ Intel Intrinsics or overloaded operators.

◮ Choice of the tile size nc to keep Y (t:t+nc −1): in cache.

Outer level

n =

nc

+

j
Tile level

= +

Column level

= +
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Choice of the tile size nc : example on Intel 8100-Series (Skylake)

Measured bandwidth (1 NUMA region):

101.2108 GB/s
Deduced maximal throughput:

25 GFLOPS
Parameters:

◮ Third order tensor A of size
n × j × s;

◮ n = 768000, j = 300, s is the
ensemble size;

◮ only evaluated nc such that n is a
multiple of Nnc where N = 48 is
the number of threads.

The highlighted value of nmax
c s =

32768 corresponds to the case where
Y (t:t+nc −1): takes at most half of the L2
cache [Goto, 2008].
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GEMV: results - Intel(R) Xeon(R) Platinum 8160 CPU

The tile size is chosen based on n and
nmax

c to have evenly distribute work
among the threads:

nc =

⌈

n

N
⌈

n
N nmax

c

⌉

⌉

.
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Parameters:

◮ Threads N = 48;

◮ n = 30000;

◮ nmax
c = 4096, 2048, 1365, and 1024

for s = 8, 16, 24, and 32
respectively.

Performance similar to the ensemble

reduction with MKL used to compute

the update.
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K. Liegeois, R. Boman, E. T. Phipps, T. Wiesner, M. Arnst, GMRES with embedded ensemble propagation for
the efficient solution of parametric linear systems in uncertainty quantification of computational models,

Computer Methods in Applied Mechanics and Engineering, 2020

In [Liegeois, 2020], we describe and implement an efficient ensemble GMRES without
ensemble reduction.

31 / 55



K. Liegeois, R. Boman, E. T. Phipps, T. Wiesner, M. Arnst, GMRES with embedded ensemble propagation for
the efficient solution of parametric linear systems in uncertainty quantification of computational models,

Computer Methods in Applied Mechanics and Engineering, 2020

In [Liegeois, 2020], we describe and implement an efficient ensemble GMRES without
ensemble reduction.
The implementation is available in Stokhos. This implementation includes template
specialization of GMRES related classes and of the GEMV function for ensemble type and
the definition of the Mask. The implementation of the GEMV function relies on the Kokkos
programming model.

31 / 55



K. Liegeois, R. Boman, E. T. Phipps, T. Wiesner, M. Arnst, GMRES with embedded ensemble propagation for
the efficient solution of parametric linear systems in uncertainty quantification of computational models,

Computer Methods in Applied Mechanics and Engineering, 2020

In [Liegeois, 2020], we describe and implement an efficient ensemble GMRES without
ensemble reduction.
The implementation is available in Stokhos. This implementation includes template
specialization of GMRES related classes and of the GEMV function for ensemble type and
the definition of the Mask. The implementation of the GEMV function relies on the Kokkos
programming model.

The control flow divergence and the function call divergence have been solved by:

◮ Implementing a Mask class which is used to apply masked assignment and logical
reduction;

◮ Implementing an efficient ensemble GEMV for the orthogonalization process.

31 / 55



K. Liegeois, R. Boman, E. T. Phipps, T. Wiesner, M. Arnst, GMRES with embedded ensemble propagation for
the efficient solution of parametric linear systems in uncertainty quantification of computational models,

Computer Methods in Applied Mechanics and Engineering, 2020

In [Liegeois, 2020], we describe and implement an efficient ensemble GMRES without
ensemble reduction.
The implementation is available in Stokhos. This implementation includes template
specialization of GMRES related classes and of the GEMV function for ensemble type and
the definition of the Mask. The implementation of the GEMV function relies on the Kokkos
programming model.

The control flow divergence and the function call divergence have been solved by:

◮ Implementing a Mask class which is used to apply masked assignment and logical
reduction;

◮ Implementing an efficient ensemble GEMV for the orthogonalization process.

Those two contributions lead to:

◮ An equivalent cost per iteration of ensemble GMRES with and without reduction;
◮ A safe implementation which is able to deal with early-converged samples.

31 / 55



Impact of the reduction on the convergence of ensemble GMRES

Example using a discretized Dirichlet
problem for the 1D Laplacian with n = 6:

A x = b,

where:

A = κ
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Katoptron

◮ Fully templated C++ code heavily
based on Trilinos which provides a fully
templated solver stack;

◮ Embedded in a Python interface. This
eases the looping around samples, the
grouping of samples together, etc;

◮ Hybrid parallelism based on Tpetra
with MPI for distributed memory and
Kokkos with OpenMP for shared
memory;

◮ Uses Gmsh to import 3D meshes and
VTK to write the output files;

◮ Open source and freely available on
https://gitlab.uliege.be/am-dept/waves.
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Mesh-tying problem

◮ Plate with a hole pulled on
two opposite sides;

◮ Two meshes glued with the
Mortar finite element
method in saddle point
formulation;

◮ Lamé parameters
represented as a lognormal
random field;

◮ Multigrid preconditioner
with saddle point matrix on
each multigrid level;

◮ 32088 degrees of freedom
per sample;

◮ 1 Intel Skylake CPU.

t

t
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Realization 1:
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Realization 2:
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Preconditioners: Full multigrid approach

Introduced in [Wiesner, 2015] for contact problem.

◮ Main idea: use coarser representations of fine level
problems in order to speed up the solution process;

◮ Uses the multigrid approach on the full matrix, preserving
the saddle-point structure on all levels;

◮ Algebraic multigrid: no special information is necessary to
build the multigrid hierarchies;

◮ Mutligrid hierarchies are independent of the activity of
the Lagrange multipliers;

◮ Implemented in MueLu with already existing codes and
contributions of this thesis;

◮ Due to EP, level matrices are now third-order tensors but
prolongation and restriction operators are sample
independent.
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Mesh-tying example: speed-up of one GMRES iteration

Speed-up: relative gain in wall-clock time (architecture dependent):

S(e) =

∑

ℓ∈e Timeℓ

Timee

.
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Mesh-tying example: convergence and total speed-up
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Beam contact problem

◮ Size: L = 50 cm,W = 5 cm,H = 5 cm,d = 1 cm;

◮ Elements: 60× 6× 6 hexahedra;

◮ Number of Dofs: 9 394;

◮ Depending on the pressure p, the contact is fully open or
partially closed;

◮ Uncertainties:

◮ Young’s modulus: E ∼ U(205, 215) [GPa];
◮ Pressure: p∼ U(5, 25) [MPa].

◮ Quantity of Interest: displacement along z at point
(L, 0, H/2);

◮ 640 Halton Quasi Monte Carlo samples;

◮ Solved on 1 Intel Skylake CPU.
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Ensemble propagation for mechanical contact problem

Instead of individually solving the mechanical contact problem for each instance of the
model, we have to solve simultaneously the mechanical contact problem for a subset of
samples of the model.
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Instead of individually solving the mechanical contact problem for each instance of the
model, we have to solve simultaneously the mechanical contact problem for a subset of
samples of the model.

Challenges of the EP for mechanical contact problem:

◮ Different samples can have different active Lagrange multipliers,

Inactive Active

If

End

◮ Samples may require a different number of active set iterations.

Those challenges have been solved using the developed Mask class and waiting for the
convergence of all samples in the active set strategy.
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Contact example: convergence and total speed-up
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The reduced number of iterations to converge without ensemble reduction improves the
speed-up compared to ensemble reduction. 42 / 55
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Front mirror context

First mirrors of optical diagnostics in ITER:
◮ are exposed to high radiation and fluxes of particles

which escape the plasma;

◮ are the most vulnerable in-vessel optical components,
being subject to erosion or to deposition of impurities.

Material selected for the reflecting surface must combine:
◮ a high optical reflectivity in a wide spectral range;

◮ a sufficient resistance to physical sputtering.

Rhodiuma is identified as a promising candidate, due to:
◮ low sputtering in most cases;

◮ high optical reflectance;

◮ optical reflectance insensitive to large temperature
changes.

aP. Mertens, R. Boman, S. Dickheuer, Y. Krasikov, A. Krimmer, D. Leichtle, K. Liegeois, C. Linsmeier,
A. Litnovsky, O. Marchuk, M. Rasinski, M. De Bock, On the use of rhodium mirrors for optical diagnostics in
ITER, Fusion Engineering and Design, 146:2514–2518, 2019.
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ITER test case

◮ Thermomechanical problem;

◮ The contact interfaces are not modeled, the
mesh is fused at the common interface of the
components;

◮ The assembly is heated by surface and
volumetric loads;

◮ Rigid body motions are prevented by setting zero
displacements close to the bolt holes;

◮ Temperature at the cooling channel is set to 70 ◦C;

◮ 1.7 106 elements and 1.31 106 degrees of
freedom per sample;

◮ 3-level multigrid preconditioner with block
Gauss-Seidel level smoother and Klu as smoother
on the coarsest level;

◮ Solved on 4 Intel Skylake CPUs.
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ITER test case: Uncertainties and quantities of interest

◮ Uncertainties: the irradiation due to neutron
damage of the mirror modifies the material
properties of the used material; we consider
the heat conductivity of the AlN
(Aluminum nitride) ceramic spacers as
random variables; k1 is the thermal
conductivity of the two small AlN spacers and
k2 is the thermal conductivity of the largest
AlN spacer.

◮ Quantities of interest:

◮ maximal temperature reached on the
mirror surface;

◮ deformation of the mirror surface;

◮ Uncertainty quantification strategy:
evaluate the model at some samples to build
a surrogate model using the nonintrusive
spectral projection method.
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ITER test case: Quantities of Interest
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As the thermal conductivities influence the temperature distribution, they impact the
deformation of the mirror surface and its curvature.
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ITER test case: Surrogate models
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As the thermal conductivities influence the temperature distribution, they impact the
deformation of the mirror surface and its curvature.
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ITER test case: total speed-up of ensemble GMRES without reduction
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The total speed-up of ensemble GMRES is between 1.5 and 2 and is smaller than the
speed-up of the sparse matrix vector product or the preconditioner due to the
othogonalization process.
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ITER test case: full assembly

◮ Thermomechanical problem
on the full assembly;

◮ The contact interfaces are not
modeled;

◮ 12.8 106 elements and 9.15 106

degrees of freedom per
sample;

◮ 3-level multigrid preconditioner
with block Gauss-Seidel level
smoother and Klu as smoother
on the coarsest level;

◮ Solved on 32 Intel Skylake
CPUs.
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ITER test case: full assembly
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The total speed-up of ensemble GMRES is about 1.5 and is smaller than the speed-up of the
preconditioner due to the othogonalization process.
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Conclusion and contributions

Extension of the embedded ensemble propagation method from CG to GMRES:
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◮ Two variants of ensemble GMRES can currently be used: with ensemble reduction and
without ensemble reduction;

◮ Implementation of an efficient ensemble GEMV;

◮ Cost per iteration of ensemble GMRES is independent of coupling the samples
together with ensemble reduction;

◮ Ensemble GMRES without reduction is faster due to an improved convergence
compared to ensemble GMRES with reduction;

◮ Implementation of a Mask class for ensemble types which is now used in ensemble
GMRES with ensemble reduction;

◮ The implementation related to GMRES without reduction has been merged into the
official Trilinos repository on github.
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Conclusion and contributions

◮ Handling of contact constraints with embedded ensemble propagation;
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Conclusion and contributions

◮ Handling of contact constraints with embedded ensemble propagation;

◮ An open-source software, Katoptron, has been developed to test ensemble GMRES;

◮ Application to thermomechanical problems relevant for the front mirrors in ITER;

◮ Observed total speed-up of about 2 in all cases.

54 / 55



Directions for future work

◮ Investigate the impact of the preconditioners on the influence of the reduction on the
convergence;

◮ Investigate and apply the strategy on the mirror problem with contact losses;

◮ Investigate the use of ensemble GMRES on other problems such as fluid mechanics
problems or ice sheet problems;

◮ Study grouping strategies for non-linear problems;

◮ Consider adaptive ensemble sizes;

◮ Test the method on transient problems.
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Contributions to the Trilinos repository

◮ Implemented from scratch:

◮ Mask class, mask assignments, logical reduction in Stokhos;
◮ Ensemble GEMV;
◮ Coordinate type in Teuchos;
◮ Map from Lagrange multipliers to DOF, and relative checks in Moertel;
◮ Interface aggregation strategy, Interface mapping transfer.

◮ Implemented relying on specializations:

◮ Ensemble GMRES without reduction;
◮ Orthogonalization manager: DGKS, ICGS, IMGS;
◮ Status tests: explicit and implicit;
◮ ROTG, TRSM.

◮ Corrections of small bugs;

◮ Inclusion of new tests;

◮ Update the Trilinos automatic tests to compile EP with and without reduction;

◮ Packages impacted: Stokhos, Belos, Ifpack2, KokkosKernels, MueLu, Teuchos, Moertel,
Xpetra, Galeri.



Mechanical contact problem
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do
Given Ak , compute the solution of
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{

q ∈ Ph,s
c : pk+1

q + c eT
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> 0
}

k ← k + 1

while Ak 6= Ak−1

Algorithm 1: Active set strategy

Inner nodes: i, potential contact nodes: c, at iteration k, inactive set: Ik , and active set: Ak .



The algebraic full form as a way to handle activities

The matrix of the system:

◮ has a constant size but its graph varies with the active set,

◮ can be stored using an extended graph which is the union of all the possible graphs,

◮ has a saddle-point structure,

◮ is not positive definite (if at least one Lagrange multiplier is active).



Ensemble propagation

Example sparse matrix vector product:

// CRS matrix - vector product z = A*x for arbitrary

// floating - point type T

template <typename T>

void crs_mat_vec ( const CrsMatrix <T >& A,

const T *x, T *z) {

for (int row =0; row <A. num_rows ; ++ row) {

const int entry_begin = A. row_map [row ];

const int entry_end = A. row_map [row +1];

T sum = 0.0;

for (int e = entry_begin ; e< entry_end ; ++e) {

const int col = A. col_entry [e];

sum += A. values [e] * x[col ];

}

z[row] = sum;

}

}



GEMV: results - Intel(R) Xeon(R) Phi Knights Landing (KNL)
Xeon Phi KNL in quadrant cache mode
Measured bandwidth of the MCDRAM:
320 GB/s

Deduced maximal throughput:
80 GFLOPS

Parameters:

◮ Threads N = 128

◮ nc = 1024 for s = 8, n = 8 N nc ,

◮ for a given n, data size independent
of s.

Performance greater than the MKL,

Performance similar to the theoretical

limit,

Sensibility to the order of the operations.

0

20

40

60

80

T
h
ro

u
gh

p
u
t

[G
F

L
O

P
S
]

Overloaded operators

MKL s = 8

s = 16 s = 24

s = 32

0 50 100 150 200 250 300
0

20

40

60

80

Krylov subspace dimension j

T
h
ro

u
gh

p
u
t

[G
F

L
O

P
S
]

Intel intrinsics

MKL s = 8

s = 16 s = 24

s = 32



Inner product case

=

Storing
nc

team 0 team 1

n

m

◮ The atomic adds introduced a fixed cost linked to the desynchronization of the threads
that all want to access the first entries of the left-hand side vector at the same time.

◮ We used a cycling technique such that the threads start at different rows evenly
distributed among m. This reduces the desynchronization cost for larger m.

◮ To reduce the fixed cost for small m, we gather threads per team of 4, do a parallel
reduction per team and then do the atomics.


