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in the results, and for proposing me to contribute to one of your papers.

Yury Krasikov, thanks a lot for your availability, our discussion about results, and all the data
that you provided me including CAD files and material properties.

I would like to thank the rest of my thesis committee: Prof. Christophe Geuzaine for helping me
to better use gmsh and for giving me the opportunity to present my work at the CECI Scientific
days 2019 and Prof. Pierre Duysinx for your time and support during thesis committee and for
your invitations to several of your research group events.

I would like to thank the rest of the examination committee: Prof. Bedřich Soused́ık and Dr.
Thomas Toulorge for the time that you have spent reading and evaluating this thesis.

Moreover, I would like to thank all the people that helped me with Trilinos and Kokkos: Luc
Berger, Eric C. Cyr, Christian Glusa, Glen Hansen, Mark Hoemmen, Kyungjoo Kim, Drew P.
Kouri, Siva Rajamanickam, Denis Ridzal, and Christian Trott.

Thanks a lot to all of those who helped me to feel at home in New Mexico: Daniel D. Barnett,
Marta D’Elia, Mauro Perego, and Julien Tranchida.

I would like to thank the rest of my colleagues for our discussions, your help, and support:
Pablo Alarcón, Simon Bauduin, Dominik Boemer, Arnaud Budo, Kevin Bulthuis, Maxime
Collet, Joffrey Coheur, Adrien Crovato, Edouardo Fernandez Sanchez, Luc Papeleux, Juliano
Todesco, and Denis Trillet.

Finally, I would like to thank my friends, with a special thanks to Arthur Longrée for his proof-

reading, my family, my in-laws, and my dear wife, Pauline Coulon, for their daily wholehearted

support.

i





Abstract

Parametric computations, and in particular, uncertainty quantification, are key compo-
nents of predictive simulation. Those computations in the context of multiphysics models
typically require a substantial number of realizations of costly finite element models. In
this work, we are particularly interested in problems with non-symmetric or indefinite
matrices. As an illustration of this class of problems, we consider contact mechanics prob-
lems in saddle point formulation and thermomechanical simulations. Embedded ensemble
propagation was proposed by Phipps et al. to improve the efficiency of nonintrusive un-
certainty quantification methods of computational models on emerging computational
architectures. It consists of simultaneously evaluating the model for a subset of samples
together, instead of evaluating them individually. This method replaces scalars by vec-
tors, vectors by matrices, and matrices by higher-order tensors. Having matrices instead
of vectors raises questions such as the definition of an inner product. A first approach
introduced to solve parametric linear systems with ensemble propagation is ensemble re-
duction. In Krylov methods for example, this reduction consists in coupling the samples
together using an inner product that sums the sample contributions. Ensemble reduction
has the advantages of being able to use optimized implementations of BLAS functions
and having a stopping criterion which involves only one scalar. However, the reduction
potentially decreases the rate of convergence of the iterative method due to the gathering
of the spectra of the samples. In the work of Phipps et al., they have investigated the
effect of ensemble propagation to solve symmetric and positive definite linear problems
using the conjugate gradient method. In this work, we investigate ensemble propagation
in the case of GMRES to be able to solve problems with non-symmetric or indefinite
matrices. In particular, we investigate GMRES without ensemble reduction to solve each
sample simultaneously but independently to improve the convergence compared to en-
semble reduction. This raises two new issues which are solved in this thesis: the fact that
optimized implementations of BLAS functions cannot be used anymore and that ensem-
ble divergence, whereby individual samples within an ensemble must follow different code
execution paths, can occur. We tackle those issues by implementing a high-performing
ensemble dense matrix-vector product (GEMV) and by using masks. The proposed en-
semble GEMV leads to a similar cost per GMRES iteration for both approaches, i.e.
with and without reduction. For illustration, we study the performances of the new lin-
ear solver on four academic problems including one non-linear contact problem. These
examples demonstrate improved ensemble propagation speed-up without reduction. Fi-
nally, the method is applied to accelerate the uncertainty quantification study of a model
problem relevant for the design of an optomechanical system for ITER, the fusion reactor,
for which the measured final speed-up of using embedded ensemble propagation is about
2.
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Chapter 1
Introduction

“Computers can do two things: (1) move data
from one place to another and (2) linear algebra.”

Mark Hoemmen, Sandia National Laboratories

Whether a GPU is used to train a neural network, a mobile phone is used to record
a video, or an HPC system is used to estimate the sea-level rise due to ice melting
in Antarctica, computers are either requesting data movements or computing simple
operations. Performance of finite element solvers is induced, among others, by how the
data movements and the linear algebra are executed.

In this thesis, we investigate how to implement these data movements and linear
algebra operations efficiently on emerging computational architectures with enhanced
vector extensions, such as Intel Skylake, in the context of parametric computations of
finite element models which lead to non-symmetric or indefinite matrices.

1



Chapter 1. Introduction

1.1 Context

The present work is motivated by three research axes: multiphysics models, parametric
computations, and high performance scientific computing (HPC) as illustrated in Fig. 1.1.
The overarching objective of this thesis is to accelerate parametric computations of mul-
tiphysics models on HPC architectures. In this section, we review those three axes and
define the key concepts to introduce precisely our contributions.

Multiphysics
models

Parametric
computations

HPC

Figure 1.1: The three research axes that motivated the presented work.

The first axis is multiphysics modeling. The industrial context that drives this work is
related to a mirror for one of the diagnostic systems of ITER, the largest tokamak fusion
reactor currently under construction (section 1.1.1). This industrial context provides
us with several multiphysics problems: due to the high temperatures it is exposed to,
the mirror undergoes thermomechanical deformations that modify its optical properties.
Moreover, the contact between the mirror and its mounts is altered, reducing the efficiency
of the cooling system. These coupled mechanisms result in model problems with non-
symmetric or indefinite matrices. These two properties of the matrices will impact the
strategies considered to perform the numerical simulations (section 1.1.8).

The second axis is parametric computations, by which we mean computations that
investigate the behavior of the predictions of physical engineering systems as a function
of their parameters (section 1.1.2). In particular, we investigate the following numerical
method to carry out parametric computation efficiently: embedded ensemble propagation
(section 1.1.3). Embedded ensemble propagation relies on solving the computational
model efficiently for several samples at the same time by improving the access to the
memory and improving the CPU operations on the samples. This in turn will reduce the
overall CPU cost at the expense of requiring modifications to the simulation code.

The last axis of this thesis is HPC. We want to contribute to the parametric com-
putations on HPC systems and emerging architecture (section 1.1.7). To do so, we use
the high-performance C++ software component library Trilinos (section 1.1.5) to investi-
gate embedded ensemble propagation (section 1.1.6). The implementation of embedded
ensemble propagation relies heavily on the C++ template mechanism (section 1.1.4).

Built on those three axes, the motivation is to accelerate the parametric computation
of problems with non-symmetric or indefinite matrices, such as the model problems of
the mirror of ITER, on HPC architectures.

1.1.1 Front mirror of the ITER CXRS diagnostic system

The leading numerical application of this work is related to the thermomechanical simu-
lation of the front mirror for one of the diagnostic systems of the fusion reactor ITER.

2



1.1. Context

In order for the deuterium-tritium fusion reaction to occur, deuterium and tritium
particles must have enough energy to overcome the Coulomb energy barrier by tunneling
effect. A possible way to reach that energy is to heat up the particles until they reach
a plasma state. The reached temperature being very high (about 150 000 000 ◦C), the
plasma must be confined to protect the plasma-facing surface of the reactor. In tokamak
fusion reactors such as ITER, the confinement of the plasma is done magnetically. In
order to operate both the heating and the confinement of the plasma, it is important to
measure the plasma properties such as the temperature or impurity concentrations.

Entrance
aperture

Front mirror

Intermediate
pupil and image

Vacuum window

Plasma-DNB interaction zone

Interspace transfer
telescope Cold dogleg

Lens system Fibre bundle

Figure 1.2: The CXRS core optical path and general setup. The front mirror is the
closest reflecting surface to the plasma. Picture by courtesy of Krimmer et al. [2019].

In this context, the research group of Philippe Mertens from FZ Jülich, Germany
is interested in the design of the front mirror of the Charge eXchange Recombination
Spectroscopy (CXRS) diagnostic system of ITER illustrated in Fig. 1.2. This diagnostic
system will include a sequence of mirrors that will reflect light emitted by the plasma
toward a spectrometer. The first mirror is designed by Krasikov et al. [2015]. One of the
key issues in the ongoing design process is that thermal fluxes and particle fluxes coming
from the plasma can cause thermomechanical deformations of these mirrors, especially
for the front mirror which is the closest to the plasma. The optical quality of this opto-
mechanical system – by which we mean mirrors, mounts, and other components of the
mirror sequence – can be adversely affected by those thermomechanical deformations.
Moreover, neutron irradiation can alter material properties such as the thermal conduc-
tivity of mirrors or mounts. A preliminary study of this design has been the subject of
my master thesis [Liegeois, 2015] and this issue will be investigated in more detail in this
work in the context of parametric study.

These coupled thermomechanical models are at the core of this thesis in order to
develop and analyze new parametric computation strategies.

1.1.2 Parametric computations and uncertainty quantification

Parametric computations investigate the behavior of the solution of a model as a func-
tion of its model parameters. Those computations can have several objectives such as
optimizing a design, performing a sensitivity analysis of the response, or evaluating the
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robustness of the response with respect to uncertainties in the model input parameters
[Ghanem et al., 2017; Soize, 2017].

We are interested in parametric computations of numerical models which can be seen
as a function f that associates a unique solution y to an instance of the input parameters
p as illustrated in Fig. 1.3.

p yf

Figure 1.3: Illustration of a numerical model seen as an “input/output” system.

Usually, the function f is not known explicitly as it is the case when f corresponds
to the solution of a numerical model, which is the focus of this thesis. In particular, we
are interested in the parametric computation of finite element discretizations of a system
of Partial Differential Equations (PDE).

Parametric computation strategies can be classified based on their impacts on the
source code of the numerical model. On the one hand, there are the so-called nonintrusive
methods, reviewed for instance by Arnst and Ponthot [2014], that can be implemented
as wrappers around existing solvers without requiring modification of their source code.
Nonintrusive methods have the advantage that they use the model f as a “black-box”.
On the other hand, there are the so-called intrusive methods or embedded methods that
require modification of the source code of the simulation software.

Nonintrusive methods for uncertainty quantification

The best-known example of a nonintrusive approach for uncertainty quantification is the
Monte Carlo method as described in Robert and Casella [2013]. This approach consists
in drawing N random samples p(1), . . . , p(N) of the uncertain input parameters based
on their probability density function and evaluating the computational model for each of
those samples as illustrated in Fig. 1.4. Based on the output values y(1), . . . , y(N) for
all of the N samples, it is then possible to have estimates of the statistical descriptors
related to y such as the expected value or the standard deviation. The cost of this
strategy depends both on N , the number of times that the model has to be evaluated,
and the CPU cost of the evaluation of one instance of the model.

p(1) y(1)f

. . .

p(N) y(N)f

Figure 1.4: Illustration of the N evaluations of the computational model f .

When the evaluation of the model f is computationally expensive, a well-known ap-
proach to reduce the cost of an uncertainty quantification method such as the Monte
Carlo method is to replace the so-called high-fidelity model f by a surrogate model f̂ .
The surrogate model f̂ is typically cheaper to evaluate.
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A standard approach to approximate the function f is to use a linear combination of d
polynomials φ(1), . . . , φ(d) which are orthonormal with respect to the probability density
function of the input parameters:

f(p) ≈ f̂(p) =
d∑

i=1

f̂ (i)φ(i)(p), (1.1)

where the weights f̂ (1), . . . , f̂ (d) have to be computed such that f(p) ≈ f̂(p). There are
different strategies to compute those weights depending on the sense of the approximation.

A well-known strategy to compute the weights of (1.1) is the NonIntrusive Spectral
Projection method (NISP) as described in Le Mâıtre and Knio [2010]. The weights
f (1), . . . , f (d) are computed using the orthogonality property by projecting f on the
polynomials φ(1), . . . , φ(d), called basis functions, using a multidimensional quadrature
rule

{(
w(k),p(k)

)
; k = 1, . . . , N

}
:

f̂ (i) ≈
N∑

k=1

w(k)f
(
p(k)
)
φ(i)
(
p(k)
)
, i = 1, . . . , d. (1.2)

A well-known limitation of this approach is the so-called curse of dimensionality : the
number of samples N increases exponentially with the number of random variables as
discussed in Le Mâıtre and Knio [2010]. Improvements have been proposed to mitigate
this curse of dimensionality by reducing the required number of samples with, for instance,
sparse grid quadratures, proposed by Smolyak [1963] in the context of multidimensional
quadrature and interpolation.

Surrogate-based approaches are used in other parametric computations than the un-
certainty quantification too. For instance, the surrogate models can be used in so-called
surrogate-based optimization or meta-model based optimization as done, for instance, in
Dakota [Adams et al., 2019] developed at Sandia National Laboratories and Minamo
[Baert et al., 2015] developed at Cenaero. Among others, Minamo provides surrogate
models which support mixed variables such as both continuous and discrete input vari-
ables as discussed by Beauthier et al. [2014], several interpolators such as radial basis
function networks and ordinary Kriging and automatic strategies to select and aggregate
surrogate models as discussed in [Beaucaire et al., 2019b,a], and strategies to evaluate
feasible regions of constrained optimization problems using surrogate models [Beauthier
et al., 2017].

Intrusive methods for uncertainty quantification

A strategy closely related to the NISP, which uses the concept of orthonormal polynomials
with respect to the probability density function, is the best-known intrusive method for
uncertainty quantification: the stochastic Galerkin method as described by Ghanem and
Spanos [1990, 1991]. The stochastic Galerkin method relies on the discretization of the
weak form of the stochastic PDE. The method seeks an approximation of the solution
u(x,p) of the stochastic PDE where x denotes a position in the computational domain:

û(x,p) =
m∑

i=1

d∑

j=1

u(i,j)ψ(i)(x)φ(j) (p) , (1.3)
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where ψ(1), . . . , ψ(m) and φ(1), . . . , φ(d) are the basis functions of the computational
domain and the stochastic space respectively, and

{
u(i,j); i = 1, . . . ,m, j = 1, . . . , d

}
are

the m× d degrees of freedom of the discretized stochastic problem such that:

E
[
Mh(û,p)φ(j)

]
= 0, j = 1, . . . , d, (1.4)

where E[·] is the mathematical expectation and Mh(û,p) the residual of the discretized
PDE. The output of the model y can then be evaluated using the approximated solution
û(x,p). Discretizing both the computational domain and the stochastic space impacts
the simulation software by modifying the system of equations that has to be solved. In
particular, this approach replaces the deterministic system resulting from the discretized
PDE with a so-called stochastic polynomial chaos system (1.4). This stochastic polyno-
mial chaos system has a larger size m×d instead of m, two nested sparsity patterns, and
raises challenges to be solved efficiently such as the choice of the preconditioner [Soused́ık
et al., 2014; Ullmann, 2010] or the choice of the ordering of the m × d degrees of free-
dom which impacts the memory access patterns [Phipps et al., 2014]. As illustrated in
Le Mâıtre and Knio [2010], the stochastic projection of non-differentiable problems will
generally exhibit a slow convergence with the expansion order d. In consequence, as
non-differentiable functions require larger expansion order, the size of their stochastic
polynomial chaos system increases. This increases the CPU cost of the method for those
types of problems.

There are other intrusive methods for uncertainty quantification such as the pertur-
bation method which consists in computing derivatives of f and deducing how a small
variability of the input parameters influences the output as discussed by Martinelli et al.
[2010]. As opposed to previously mentioned methods, this approach is applicable only for
small uncertainties, due to the local nature of the Taylor expansion approximation used.
As in the case of the stochastic Galerkin method, this approach is not well suited for
non-differentiable functions due to the Taylor expansion approximation. This approach
is intrusive as it requires evaluation of derivatives with the automatic differentiation
[Griewank, 1989] strategy for instance.

Numerical strategies to evaluate the computational model

For the remainder of this work, we restrict ourselves to the parametric computations
methods which only require to evaluate the model f at N instances of the input variables
p(1), . . . , p(N) as illustrated in Fig. 1.4. These points can be random samples coming from
a Monte Carlo strategy or integration points from a multidimensional quadrature rule in
the case of the NISP strategy for instance. The largest CPU cost of these methods is the
N evaluations of the computational model f . In this work, we investigate strategies to
accelerate these computations without reducing the number of points N .

An interesting property of those parametric computation methods is the fact that the
N evaluations of the model f are independent from each other implying that they can be
evaluated in any order or simultaneously in parallel without modifying the results. The
easiest way to implement a parallel approach to evaluate these N instances is to run each
model evaluation independently from each other, using all the available nodes and cores
of the computational system used. This approach is usually called the embarrassingly
parallel approach and illustrated in Fig. 1.5. The drawbacks of this approach are that it
requires a large amount of computational resources and the CPU cost can remain high.

A strategy has been proposed to improve machine utilization by performing more
model evaluations concurrently using a single program-multiple data (SPMD) parallel
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p(1) y(1)f

. . .

Node 1

p(M) y(M)f

p(M+1) y(M+1)f

. . .

Node 2

p(N) y(N)f

Figure 1.5: Illustration of an embarrassingly parallel approach for the N evaluations
of the computational model f on two compute nodes of a supercomputer.

programming model. This has been studied in UQ Pipeline [Dahlgren et al., 2015] based
on CRAM [Gyllenhaal et al., 2014]. CRAM is a tool to pack a large number of MPI-
based simulations into a single job submitted to an HPC cluster. CRAM creates an MPI
sub-communicator per simulation and associates it to the corresponding simulation. This
approach reduces the memory pressure on the front-end node compared to submitting
each simulation as independent jobs and, therefore, increases the total number of concur-
rent model evaluations. There are alternatives to UQ Pipeline which relies on the same
principles such as CONDOR [Foster et al., 2017] and EMEWS [Ozik et al., 2016] which
rely on the Swift parallel scripting language [Wilde et al., 2011]. Moreover, the Dakota
library [Adams et al., 2019] provides this type of scheduling strategy, among others, for
which only one instance of Dakota is loaded on all the processors used. Such a strategy
has been studied in the context of machine learning to produce a massive physics-based
dataset using MERLIN [Peterson et al., 2019].

Hadjidoukas et al. [2015] have used the concept of task-based parallelism to accelerate
the evaluation of the model on massively parallel and hybrid computing architectures us-
ing the TORC library [Hadjidoukas et al., 2012], a task-parallel library for heterogeneous
cluster computing platforms.

Recently, a strategy has been proposed to minimize the idle CPU time of the embar-
rassingly parallel approach using prediction of the wall-clock time of the model evaluations
to optimize their scheduling [Künzner et al., 2019].

All the previously discussed strategies to evaluate the N instances are nonintrusive
as they do not require modification of the source code and can be implemented as scripts
which wrap the model evaluations. Phipps et al. [2017] proposed an alternative to evaluate
the instances of the computational model: the embedded ensemble propagation method.
Its main motivation is to reduce the total wall-clock time required to evaluate the N
instances of the function f . Embedded ensemble propagation relies on the partition of
the set of evaluation points p(1), . . . , p(N) into subsets, called ensembles, that share
common characteristics and on the overloading of the solver source code to evaluate
one ensemble at the time. This approach can be used with the other above-mentioned
strategies or on its own. This embedded ensemble propagation method is introduced in
the following section and impacts the solvers as discussed extensively in this thesis.

1.1.3 Embedded ensemble propagation

Phipps et al. [2017] proposed an embedded method for uncertainty quantification called
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embedded ensemble propagation to improve the so-called throughput, defined as the ratio
of the number of floating point operations and the wall-clock time for evaluating the
model at the sample values. Instead of propagating one sample at a time through the
high-fidelity model, ensembles of s samples are propagated all at once as illustrated in
Fig. 1.6.

fp(1), . . . , p(s) y(1), . . . , y(s)

Figure 1.6: Illustration of embedded ensemble propagation with ensemble of size s = 8
where different colors represent different samples propagated altogether through the
code.

Embedded ensemble propagation is an alternative to the embarrassingly parallel ap-
proach. Although being more complex to use as being embedded, this strategy has
advantages compared to the embarrassingly parallel approach such as opportunities for
vectorized instructions by looping over the samples, improved memory access patterns,
reduced memory usage by computing and storing only once the data which do not vary
from one sample to another (such as the mesh if all the samples share the same mesh),
and fewer MPI communications. However, the strategy comes with some challenges
such as ensemble divergence: different samples of a given ensemble may follow different
branches of the code. Ensemble divergence can be of two types: control-flow divergence
and function-call divergence. Control-flow divergence means that the samples within an
ensemble can take different branches in an if-then-else condition (if-then-else divergence)
or may require different numbers of iterations of a loop (loop divergence). Function-call
divergence is observed when a function that needs to be evaluated for all the samples of
an ensemble might not be implemented to support ensemble propagation, in this case,
the function has to be evaluated sample-wise leading to reduced performance. Those
advantages and challenges are discussed in more details in Chapter 2.

1.1.4 C++ template mechanism

The work presented in this thesis is heavily based on the C++ programming language
and on its template mechanism. The C++ template mechanism is one of the abstraction
mechanisms of C++ [Stroustrup, 2000]. Templates allow the programmer to define func-
tions or classes with values or types as parameters. They allow one to define functions
and classes once and allow their use with more than one data type.

As an example, let us assume that we want to define a vector type which can be used
with single and double precision and which is able to compute inner products. Instead
of defining two classes, one for each precision, we can implement a templated class as
done in Listing 1.1 where the class Vector has two template parameters: typename T, the
type of data that can be stored in the vector and int n, the number of entries that can
be stored. Those parameters are set using <>; for example, a vector that can store 100
entries in singe precision is declared as Vector<float, 100>. We use this example as it
is intrinsically linked to the solvers introduced later in this introduction.

1 template <typename T, int n>

2 class Vector

3 {
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4 T data[n];

5

6 public:

7 T dot(const Vector<T, n> &v) const

8 {

9 T tmp = 0.;

10 for (int i = 0; i < n; ++i)

11 tmp += data[i] * v.data[i];

12 return tmp;

13 }

14 }; �
Listing 1.1: Templated vector class of type T and fixed size n (The code has been
shortened for clarity reasons).

With the definition of Listing 1.1, it is possible to use the new class as illustrated in
Listing 1.2 where inner_1 is a float and inner_2 a double.

1 Vector<float, 100> vec_1, vec_2; // Initialize vec_1 and vec_2 ...

2 float inner_1 = vec_1.dot(vec_2);

3

4 Vector<double, 100> vec_3, vec_4; // Initialize vec_3 and vec_4 ...

5 double inner_2 = vec_3.dot(vec_4); �
Listing 1.2: Use of the templated vector class defined in Listing 1.1 with float and
double.

The basic idea of embedded ensemble propagation which is studied in this thesis is the
definition of a new C++ type called ensemble type. This type can then be used directly
in classes such as our vector class example as the type of the stored data T. To be able to
use this ensemble type in our vector class example, we have to define either an operator+

and an operator* or a dot function for the ensemble type.

1.1.5 Trilinos

Trilinos [Heroux et al., 2005] is a C++ software component library developed by Sandia
National Laboratories with the aim of breaking down PDE solvers into common building
blocks, optimizing those blocks, and constructing optimized computational models based
on those blocks. The library is made of several packages which are dedicated to specific
tasks. We briefly review some of them here to clarify the original contributions of this
thesis later in this introduction. Those packages have dependencies and are related to
each other: for instance, the parametric computation packages rely on the solver packages
which rely on the linear algebra packages.

The first key package for this work is the Tpetra package [Baker and Heroux, 2012]
which implements templated linear algebra structures such as sparse matrices and vectors.
Those data structures can be distributed over compute nodes which can communicate via
MPI and are templated on the data type of the entries of the vectors and matrices. Tpetra
provides member functions which allow one to compute linear algebra operations such as
applying a sparse matrix to a vector. If the matrix and the vector are distributed over
more than one compute node, Tpetra will take care of the distributed parallelism calling
MPI to access the non-local data transparently. Although Tpetra provides distributed
parallelism, Tpetra does not provide directly on-node parallelism, i.e. shared-memory
parallelism. Tpetra relies on Kokkos and KokkosKernels for the on-node parallelism.
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The Kokkos package [Edwards et al., 2012, 2014] provides templated array types,
called Kokkos views, to store templated tensors of up to 8 dimensions, with the possibility
to specify the memory layout of the entries of the tensor. Moreover, Kokkos provides
an abstract programming model for threaded loops. This programming model can be
seen as a wrapper around threading technologies such as CUDA on GPUs or OpenMP
on CPUs with the aim of portability.

Kokkos

KokkosKernels

Tpetra

Amesos2, Belos, MueLu

Sacado, Stokhos, ROL

Arrays, programming model

Shared-memory algebra

Distributed-memory algebra
Linear solvers

Parametric

computations

Figure 1.7: Illustration of some of the packages of the Tpetra solver stack.

On top of Kokkos, the KokkosKernels package [Deveci et al., 2016b] provides a tem-
plated interface to optimized implementations of so-called kernel functions : low level
threaded functions for on-node parallelism linear algebra such as BLAS functions [Black-
ford et al., 2002]. For example, KokkosKernels provides interfaces to the Intel Math
Kernel Libraries (MKL) for standard data types such as double. When no such op-
timized implementations are available for a given data type on a given computational
architecture, KokkosKernels provides a default implementation of the kernel functions.
This package is recent, not all the BLAS functions have a default implementation, and
the package was not existing at the beginning of this thesis.

Trilinos provides a full solver stack based on the Tpetra package, called, in the re-
mainder of this thesis, the Tpetra solver stack. This solver stack includes linear solvers,
non-linear solvers, time integration schemes, mesh structures, and parametric compu-
tations among others and is partially illustrated in Fig. 1.7. In the presented work,
four packages of the Tpetra solver stack are particularly used: Amesos2 [Bavier et al.,
2012], Belos [Bavier et al., 2012], MueLu [Prokopenko et al., 2014], and Stokhos [Phipps,
2015]. Amesos2 is the package related to direct linear solvers, Belos is the package related
to Krylov-based methods including Conjugate Gradient method (CG) and Generalized
Minimal Residual method (GMRES), MueLu is the package related to multigrid solvers
including multigrid preconditioners, and Stokhos is the package related to the embedded
uncertainty quantification: the stochastic Galerkin and embedded ensemble propagation
methods as discussed in section 1.1.6.

1.1.6 Embedded ensemble propagation in Trilinos

Stokhos is the embedded uncertainty quantification package of the Trilinos library in
which Phipps [2015] provides both an implementation of the intrusive stochastic Galerkin
method based on polynomial chaos discretizations [Ghanem et al., 2017; Phipps et al.,
2017] and an implementation of embedded ensemble propagation discussed in section 1.1.3.

Those implementations are part of the larger research effort about embedded analy-
sis capabilities as discussed by Pawlowski et al. [2012a,b]. This template-based generic
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programming approach has been used in Trilinos to embed augmented analysis such as
automatic differentiation [Phipps and Pawlowski, 2012] in the Sacado package and the
stochastic Galerkin and embedded ensemble propagation methods in the Stokhos package.

Embedded ensemble propagation was implemented by Phipps et al. [2017] in Stokhos
using a template-based generic-programming approach and the definition of a C++ en-
semble type, a new aggregate data type [Edwards et al., 2014] which stores the data for
each sample as illustrated in Listing 1.3 and discussed in detail in section 2.4.

1 template <int s>

2 class Ensemble

3 {

4 // Private member data to store the values for the s samples

5 double val[s];

6

7 public:

8 // Member function to access the value of sample e

9 double &operator[](int e) { return val[e]; }

10 // Constructor which sets the value of every samples to v

11 Ensemble(const double &v)

12 {

13 for (int e = 0; e < s; ++e)

14 val[e] = v;

15 }

16 // Simple assignment operator which copies the value sample-wise

17 Ensemble &operator=(const Ensemble &a)

18 {

19 for (int e = 0; e < s; ++e)

20 val[e] = a.val[e];

21 return *this;

22 }

23 // Addition assignment operator which adds the value sample-wise

24 Ensemble &operator+=(const Ensemble &a)

25 {

26 for (int e = 0; e < s; ++e)

27 val[e] += a.val[e];

28 return *this;

29 }

30 // ...

31 };

32

33 // Multiplication operator which multiplies the value sample-wise

34 template <int s>

35 Ensemble<s>

36 operator*(const Ensemble<s> &a, const Ensemble<s> &b)

37 {

38 Ensemble<s> c;

39 for (int e = 0; e < s; ++e)

40 c.val[e] = a.val[e] * b.val[e];

41 return c;

42 } �
Listing 1.3: Simplified ensemble type definition adapted from Phipps et al. [2017].
Only the portions relevant to the inner product routine are included, and complications
such as expression templates are excluded.
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The idea of the template-based generic-programming approach used to implement
embedded ensemble propagation in Trilinos is to adapt existing codes using either a scalar
type or an ensemble type as the data type. In other words, this new C++ ensemble type
can be used as the template parameter of classes and functions such as our vector example
defined in section 1.1.4. In Listing 1.4, we illustrate the use of ensemble propagation to
evaluate the inner product of 8 vectors.

If we consider the previous example of the inner product, the inner product is com-
puted sample-wise and no reduction is performed: the returned ensemble inner_1 stores
s = 8 values which correspond to the result of the inner product of the corresponding
sample.

1 Vector<Ensemble<8>, 100> vec_1, vec_2;

2 Ensemble<8> inner_1 = vec_1.dot(vec_2); // Returns an ensemble! �
Listing 1.4: Example of use of the ensemble type as a template argument of the
vector class defined in Listing 1.1. Thanks to the definition of the multiplication of
2 ensembles (Listing 1.3 line 36), the templated dot product of Listing 1.1 which was
used with float and double types is still valid and returns an ensemble (although most
algorithms which use this dot product expect a scalar!).

Embedded ensemble propagation can be used in any parts of a solver including the
matrix assembly processes or a non-linear iterative process. However, in this paragraph
we will zoom on the iterative methods for linear problems in order to highlight some of
the challenges. As discussed in [Phipps et al., 2017], Krylov-based methods [Saad, 2003],
being projection methods, rely on the results of inner products and norm calculations.
One of the challenges with such methods with embedded ensemble propagation is the
notion of inner product of vectors of ensemble such as vec_1 and vec_2 of Listing 1.4.
There are currently two approaches to use embedded ensemble propagation in Krylov-
based methods. Phipps et al. [2017] introduced the so-called ensemble reduction: a
strategy that defines an inner product that couples the samples together. This inner
product computes the sum of all the sample-wise inner products of an ensemble and can
be used to deduce norms and projections. Ensemble reduction has the advantages of
being able to use optimized implementations of BLAS functions, for example, the inner
product of two vectors of ensembles of size n and ensemble size s can be implemented
as a classical inner product of 2 vectors of size n × s. Moreover, ensemble reduction
fully removes the occurrences of ensemble divergence inside Krylov-based methods as
inner products and norms return a double: this removes the loop-divergence and if-then-
else divergence when the followed branch depends on values of norms or inner products.
D’Elia et al. [2020] introduced a second approach based on an inner product without
ensemble reduction, as the one of Listing 1.4. The initial aim of this second approach
is to easily access the norm of the residual of each sample individually to monitor their
convergence. That information has been used in D’Elia et al. [2020] to group together
samples that require similar number of iterations of the Krylov-based method. The use
of this inner product without ensemble reduction raises challenges of ensemble divergence
inside Krylov-based methods, which were solved in [D’Elia et al., 2020] for the particular
case of CG [Saad, 2003].

The choice of using ensemble reduction is made at the compilation time as it im-
pacts the return type of inner products and norms, impacting kernel functions and their
optimization.

We observe in Listing 1.4 that the inner product returns an ensemble type as List-
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ing 1.1 defined the return type of dot as a T. As a consequence, Listing 1.4 illustrates the
use of embedded ensemble propagation without ensemble reduction. If we want to use
ensemble reduction with the vector class of Listing 1.1, we have to implement a template
specialization of the dot function to return the sum of all the entries as illustrated in
Listing 1.5.

1 template <int s, int n>

2 class Vector<Ensemble<s>, n>

3 {

4 Ensemble<s> data[n];

5

6 public:

7 // Member function to compute the reduced inner product.

8 // The function returns a double instead of an Ensemble<s>.

9 double dot(const Vector<Ensemble<s>, n> &v2)

10 {

11 double tmp = 0.;

12 for (int i = 0; i < n; ++i)

13 for (int j = 0; j < s; ++j)

14 tmp += data[i][j] * v2.data[i][j];

15 return tmp;

16 }

17 }; �
Listing 1.5: Simplified example of a partial template specialization of the vector class
example of Listing 1.1 to use ensemble reduction. The main difference is the return
type. Now the inner product returns the sum (the reduction) of the s inner products.

Phipps et al. [2017] have done a huge implementation work to define new specializa-
tions for the ensemble type such that the Tpetra solver stack, including the packages
Amesos2, Belos, and MueLu, can be compiled with it and used efficiently. Embedded
ensemble propagation being embedded impacted all the packages used including the low-
level packages such as Kokkos and KokkosKernels. This implementation work includes
partial template specialization of classes as illustrated in Listing 1.5, template specializa-
tion of functions, testing, and performance optimization of kernel functions for ensemble
type with and without ensemble reduction.

At the beginning of this work, the ensemble type class was fully implemented and
was compiled with and without ensemble reduction. Moreover all the fundamental work
needed to use embedded ensemble propagation in the Tpetra solver stack was done and
maintained using ensemble reduction. The nightly build tests of Trilinos were testing
ensemble reduction implementation. The Tpetra solver stack was not automatically
tested without ensemble reduction. This work addresses issues occurring in the Tpetra
solver stack without ensemble reduction.

1.1.7 New computational architectures

Current computational architectures based on CPUs rely on three nested parallelism lev-
els: the distributed-memory parallelism, the shared-memory parallelism, and the vector
instructions. In this work we consider computational architectures which have more than
one CPU per compute node.

The distributed-memory parallelism consists in distributing the computational work
among different CPUs which do not necessarily share a common memory but can com-

13



Chapter 1. Introduction

municate together by sending and receiving messages, typically using MPI. The shared-
memory parallelism consists in distributing the computational work among different
threads of a same compute node which have access to a common main memory. This is
typically done using a threading library such as OpenMP, Pthreads, or Intel Threading
Building Blocks (TBB). The last level, the vector instructions, corresponds to the Single
Instruction Multiple Data (SIMD) parallelism. One thread is able to apply one operation
to a set of data altogether. The vector length is the number of operations that can be
treated together by a vector instruction. For instance, on Intel architectures which sup-
port AVX-512, 512-bit Advanced Vector Extensions SIMD instructions for x86 instruction
set architecture, one thread can apply a vector instruction to compute an operation with
8 double or 16 float altogether. Older Intel SIMD extensions such as AVX2 could have
been considered too but we observed that they reach smaller performance than AVX-512
instructions on the examples considered. Moreover, AVX-512 includes more instructions
than AVX2 such as masked instructions discussed and used in this thesis.

Emerging computational architectures, such as Intel Cascade Lake, come with more
and more vector capabilities; the number of available Intel Intrinsics functions, the C++
functions that the compiler replaces with the proper assembly vector instructions, grows
at each new AVX release. Therefore, the efficient usage of fine-grained SIMD parallelism
is important to efficiently use the supercomputers of tomorrow. However, it is not obvious
to implement all PDE solvers to efficiently use those SIMD instructions as, for instance,
FEM solvers typically rely on sparse data structures that are unknown at the compilation
time. There are two approaches to use the SIMD instructions in C++, either using the
intrinsics such as the Intel Intrinsics or relying on the autovectorization done by the
compiler: the compiler can vectorize loops specified by the user providing that those
loops fulfill several criteria described later in this thesis.

Moreover, current computational architectures based on CPUs rely on memory hi-
erarchy to accelerate memory access. The memory hierarchy separates the storage into
different levels to reduce the response time accessing data. Typically, the storage is sep-
arated in high-speed but small capacity cache levels (such as L1, L2, and L3 cache) used
to store frequently accessed data and in low-speed but high capacity main memory used
to store all the required data.

Three other concepts of memory architecture are used in this thesis: the non-uniform
memory access (NUMA) regions, the Translation Lookaside Buffer (TLB), and the unit-
stride loads. Those concepts are described in more details in [Hennessy and Patterson,
2011].

In the case of multiprocessing, NUMA is a memory design where the response time of
the main memory depends on the memory location relative to the processor: a processor
accesses faster the memory associated to itself (its own NUMA region) than the memory
associated to another processor. With that design in mind, it is important to allocate
memory in the correct NUMA region and, if possible, avoid accessing this allocated
memory with threads of another processor.

The TLB is a memory cache which stores the translation of the virtual memory
address to corresponding physical memory address for the recent memory access. Taking
into account the size of the TLB is important to reuse previously translated addresses
while they are still in the TLB to avoid losing time in the translation process.

To hide latency of memory access, programs must access data that are stored con-
tiguously in the memory, i.e. data which are stored with consecutive physical memory
addresses. Such data loads are called unit-stride loads. The unit-stride load is an impor-
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tant concept which drove the design of the implementations presented in this work.
In this thesis, we discuss the influence of these details of the computer architecture

of modern computers when using embedded ensemble propagation. We only briefly dis-
cuss the distributed-memory parallelism; we mainly address shared-memory parallelism,
vectorization, and cache usage.

The performances presented in this thesis have been measured on the cluster called
Blake of Sandia National Laboratories described in Appendix A.

1.1.8 Non-symmetric or indefinite matrices

The thermomechanical model problem of the mirror presented in section 1.1.1 has non-
symmetric matrices due the coupling between the temperature field and the displacement
fields. This corresponds to the first of the two classes of problems considered in this work.
The second class of problems is contact problems in saddle-point formulation discretized
with the Mortar finite element method which have indefinite matrices. Both of those two
classes are described mathematically in Chapter 5.

In this work, we focused on the Generalized Minimal Residual method (GMRES)
[Saad and Schultz, 1986; Saad, 2003] for the solution of linear problems with non-
symmetric or indefinite matrices.

The typical implementation of GMRES [Saad and Schultz, 1986; Saad, 2003] relies on
five steps:

1. the construction of an orthonormal basis, whose vectors are called Arnoldi vectors,
of the Krylov subspace using a classical Gram-Schmidt approach and the construc-
tion of an upper Hessenberg matrix which stores the inner products of the vectors
before orthogonalization,

2. if the last Arnoldi vector has a zero norm, GMRES encounters a lucky breakdown
and the solution is exact,

3. the construction of a triangular system using the norm of the initial residual and
applying Givens rotations on the upper Hessenberg matrix,

4. the solution of the triangular system to compute the coefficients of the approxima-
tion of the solution in the orthonormal basis,

5. the computation of the norm of the residual and the convergence test.

The application of ensemble propagation to the GMRES method introduces three
types of ensemble divergence which will be addressed in the following chapter of this
thesis:

1. an Arnoldi vector may require a normalization for certain samples but not for other
samples for which GMRES encounters a lucky breakdown, example of if-then-else
divergence,

2. different samples may require different numbers of iterations to converge and hence
to exit the for loop in GMRES after different trip counts, example of loop divergence,

3. called BLAS functions, such as GEMV for the dense matrix-vector operations, may
not support ensemble-typed inputs, example of function call divergence.
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1.2 Contributions

The contributions of this thesis can be grouped into three axes: ensemble divergence, the
effect of ensemble reduction, and ensemble propagation on non-academic problems.

• Ensemble divergence:

– The main contribution of this thesis related to ensemble divergence consists in
the implementation and the evaluation of the performance of a GEMV (dense
matrix-vector product) with ensemble types, a key ingredient of the orthogo-
nalization process inside ensemble GMRES without ensemble reduction. Not
using ensemble reduction prevents us from using optimized implementations of
BLAS. Moreover, the existing templated kernel available in Trilinos does not
perform optimally not reaching the theoretical maximal performance. Since it
is important to have optimal performance of this kernel to have results that
can be compared with optimized kernels for standard data type, we imple-
mented a new dense matrix-vector product using the Kokkos programming
model with better performance than the default dense matrix-vector product
of KokkosKernels. This new implementation uses a cache blocking strategy
usually used in dense matrix-matrix products [Smith et al., 2014].

The originalities of this contribution are the efficient implementation of the
GEMV with ensemble types which reach theoretical maximal performance, its
comparison with the default implementation of KokkosKernels, the study of
the impact of the ensemble size on the implementation, and the comparison
with the performance of the GEMV with ensemble reduction.

– The other contributions are related to control-flow divergence. They aim at
extending the work of D’Elia et al. [2020] to GMRES. Ensemble GMRES with
ensemble reduction was already working before the work presented in this
thesis; it was possible to compile the templated GMRES of Belos with the
ensemble type using ensemble reduction and ensemble GMRES with ensemble
reduction was tested. It was not the case for ensemble GMRES without en-
semble reduction: none of the if-then-else divergences and the loop divergences
were managed and the GEMV used was a default templated implementation of
KokkosKernels which does not reach the theoretical maximal performance of
the CPU. The convergence test implemented by D’Elia et al. [2020] for the CG
cannot be directly used for ensemble GMRES without ensemble reduction as
the templated GMRES of Belos relies on implicit norm computation deduced
during the triangularization of the upper Hessenberg matrix.

∗ A new strategy has been developed to deal with ensemble divergence using
masks to ease readability and maintenance of code with some inspiration
from the implementation introduced in Kretz and Lindenstruth [2012] for
SIMD data type.

∗ Status tests have been implemented to test the convergence of all the
samples and stop the iterative process when they have all converged for
ensemble GMRES without ensemble reduction based on the work of D’Elia
et al. [2020] for the CG but using masks.

∗ Divisions by zero have been prevented during the normalization of vectors
in ensemble GMRES without ensemble reduction based on the work of
D’Elia et al. [2020] for the CG but using masks.
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∗ A strategy to manage the lucky breakdown in ensemble GMRES without
ensemble reduction has been developed and implemented using masks.

∗ A strategy to use embedded ensemble propagation with contact problems
where contact can have different status, locally active or inactive, for dif-
ferent samples of an ensemble has been developed and implemented using
masks.

• Effect of ensemble reduction:

– The impact of ensemble reduction on the convergence of ensemble GMRES
has been studied to highlight that ensemble reduction leads to deteriorated
convergence compared to ensemble GMRES without ensemble reduction. This
influence on the convergence impacts the speed-up of ensemble GMRES.

The originality of this contribution is the highlighting of the impacts of ensem-
ble reduction on the convergence of ensemble GMRES both using convergence
theory and numerical examples.

– The CPU costs per iteration of ensemble GMRES have been measured to
illustrate that they are similar independently of the use of ensemble reduction.
This implies that the use of ensemble reduction impacts the total CPU cost
mainly by impacting the number of iterations to converge.

– The performance of ensemble GMRES has been evaluated on academic prob-
lems, including one contact problem, which have non-symmetric or indefinite
matrices with and without ensemble reduction. These evaluations illustrate
that the speed-up of ensemble GMRES without ensemble reduction is better
than the speed-up of ensemble GMRES with ensemble reduction due to the
negative effect of the reduction on the convergence.

• Ensemble propagation on non-academic problems:

– Embedded ensemble propagation has been used for the first time on a non-
academic problem to accelerate an uncertainty quantification study of a model
problem relevant for the design of the ITER mirror.

– An open-source multiphysics finite element simulation code which supports
embedded ensemble propagation has been provided.

1.3 Publications

The presented work on ensemble GMRES without ensemble reduction and the compari-
son with ensemble GMRES with reduction has been published in [Liegeois et al., 2020].
The paper includes the Chapters 2 and 3 and parts of the Chapters 4 and 7: the sec-
tions 4.2.1, 4.2.4, 4.3, and 7.3.

Moreover, the ITER mirror model discussed in Chapter 8 has been used in [Mertens
et al., 2019], a paper which I am one of the coauthors.

1.4 Outline of the thesis

The remainder of this thesis is organized as follows:

17



Chapter 1. Introduction

In Chapter 2, we introduce embedded ensemble propagation as a way to improve the
throughput and the efficiency of nonintrusive parametric computation methods. More-
over, the advantages of the approach are listed and illustrated in the case of a sparse
matrix-vector product. Possible causes of ensemble divergence are defined and classified.
Parametric linear systems are introduced using a tensor notation. Finally, the use of a
template-based generic-programming approach is discussed as a way to embed ensemble
propagation into existing codes.

In Chapter 3, we discuss the use of ensemble propagation in the GMRES linear solver.
To do so, we start by a review of GMRES with and without preconditioners in order to
highlight the list of potential occurrences of ensemble divergence. Two approaches are
then discussed. The first one uses ensemble reduction whereas the second one needs to
take care of each divergence explicitly. Finally, a theoretical discussion on the impact of
ensemble reduction on the convergence of ensemble GMRES is given at the end of the
chapter.

In Chapter 4, we implement strategies to take care of each case of divergence of ensem-
ble GMRES without ensemble reduction. In particular, we discuss the use of ensemble
propagation in the dense matrix-vector product of the orthogonalization process of GM-
RES and how to implement it efficiently. We compare the performance of this proposed
dense matrix-vector product with the performance of the corresponding dense matrix-
vector product with ensemble reduction using optimized BLAS and show that they are
similar. Finally, the mask strategy is discussed as a way to manage ensemble divergence
in GMRES.

Chapter 5 is devoted to the description of thermomechanical and contact problems
discretized with the mortar finite element method. Those classes of problems will be used
in Chapter 7 as examples of problems with non-symmetric or indefinite matrices that are
solved with GMRES.

In Chapter 6, we discuss the implemented code called Katoptron1, mirror in Greek,
used to analyze the performance of ensemble GMRES.

Chapter 7 illustrates the efficiency of ensemble GMRES and compares ensemble GM-
RES with and without ensemble reduction on four examples: a first example that illus-
trates the effect of the coupling on the convergence, a second example that illustrates
speed-up of ensemble propagation as a function of the problem size, and two examples
that illustrate speed-up on mesh-tying and contact problems.

In Chapter 8, we apply the previously discussed work as a way to improve the efficiency
of an industrial model problem: an uncertainty quantification study to investigate the
robustness assessment of the first mirror to uncertainty in the heat conduction coefficient
of spacers.

Finally, the conclusion of Chapter 9 summarizes the contributions and results of this
work and gives some comments on possible future work.

1https://gitlab.uliege.be/am-dept/waves

18

https://gitlab.uliege.be/am-dept/waves


Chapter 2
Ensemble propagation

In this first chapter, we introduce embedded ensemble propagation as a way to improve
the throughput and the efficiency of parametric computation methods.

In section 2.1, we start by defining the speed-up, the measure of the gained per-
formance due to ensemble propagation and by listing the advantages and challenges of
embedded ensemble propagation. In particular, we define and classify the occurrences of
ensemble divergence, the main challenge addressed in this thesis.

After that, in section 2.2, we revisit parametric linear systems with embedded en-
semble propagation as introduced in Phipps et al. [2017] but with an original formalism
based on tensors to ease the discussion of the following chapters.

Section 2.3 relies on both of the previous sections and illustrates the usage of the
tensor formalism to discuss the sparse matrix-vector product. Moreover, the example
is used to illustrate the advantages of embedded ensemble propagation over a simpler
approach such as embarrassingly parallel computations.

Section 2.4 is dedicated to the discussion of the implementation of ensemble propa-
gation using C++ templates in Trilinos as a way to embed ensemble propagation into
existing code.
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2.1 Advantages and challenges

Embedded ensemble propagation consists in propagating subsets of samples, called en-
sembles, through a high-fidelity model instead of propagating one sample at a time.
Ensemble propagation can reduce the total wall-clock time of evaluating samples of the
high-fidelity model and therefore the wall-clock time of parametric computations.

In this work, it is important to say that we compare the sequential runs of parallelized
sample runs with sequential runs of parallelized ensemble runs on the same architecture
with the same amount of resources. From that, we can directly extrapolate these results
to cases where several runs are launched at the same time using a distributed approach on
different compute nodes as those runs are independent. It is, however, less straightforward
to extrapolate to cases where different computations are launched at the same time on a
same node with different threads as physical bounds such as the amount of memory and
the memory bandwidth play a role. This is discussed in Appendix B. The reduction of
the total wall-clock time is measured by the notion of speed-up defined in [Phipps et al.,
2017] as:

S =

∑s
`=1 T

(`)

T (e)
, (2.1)

where, for a given ensemble, s is the number of samples in the ensemble, also called
the ensemble size, T (`) is the wall-clock time of evaluating the sample ` alone using all
the available cores, and T (e) the wall-clock time of evaluating the ensemble using the
same number of cores. Whenever the speed-up is greater than one, the use of ensemble
propagation reduces the total wall-clock time of evaluating all the samples. For example,
assuming that we have s = 8 and 1 CPU with 4 cores, T (e) is the wall-clock time of
evaluating the 8 samples together using the 4 cores and T (1) is the wall-clock time of
evaluating the first sample using the 4 cores. In this thesis, except in Appendix B, we
do not consider the case where different cores can be associated to the computation of
different samples.

As identified in [Phipps et al., 2017], ensemble propagation acts on the speed-up S in
four ways:

(i) Samples of the same ensemble share common data which therefore need to be only
computed, stored, and loaded once per ensemble. Typical examples include spatial
meshes, graphs of sparse matrices, maps containing the distribution of rows of
matrices on different MPI processes, or the Jacobian matrix of a given mesh element.

(ii) Arithmetic operations on ensembles facilitate autovectorization during the compi-
lation.

(iii) Storing the elements of an ensemble with consecutive memory addresses reduces the
total number of random memory accesses and therefore improves data prefetching
and cache line usage.

(iv) Message passing costs are reduced by sending fewer but larger messages and there-
fore reducing the total MPI latency.

The impact of those improvements on the speed-up depends on the occurrence of
ensemble divergence [Phipps et al., 2017]: for a given ensemble, different samples may
follow different branches of the code. Ensemble divergence can be of two types:
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(i) Control-flow divergence [Coutinho et al., 2011]: the samples within an ensemble
can take different branches in an if-then-else condition (if-then-else divergence) or
may require different numbers of iterations of a loop (loop divergence).

(ii) Function-call divergence: a function that needs to be evaluated for all the samples
of a given ensemble might not be implemented to support ensemble propagation,
in this case, the function has to be evaluated sample-wise potentially leading to
reduced performance.

Ensemble divergence depends both on how the samples are grouped in ensembles
and on the way the algorithm is implemented. Grouping methods have been proposed
in [D’Elia et al., 2020] and [D’Elia et al., 2018] to reduce the loop divergence. Those
strategies have been illustrated on the Conjugate Gradient (CG) method and improved
the speed-up of ensemble propagation. Those grouping strategies are not the focus of
this work.

A second challenge of ensemble propagation is the increased memory usage; as we need
to store data for all the samples of the ensemble, more memory is needed compared to
one sample alone. Depending on ensemble divergence, and especially the loop divergence,
the amount of memory used with ensemble propagation can be smaller or larger than the
amount of memory used by s samples alone. If there is no ensemble divergence at all, the
amount of memory used with ensemble propagation is necessarily smaller as common data
such as matrix graphs are stored only once per ensemble. If there is some loop divergence
such as in an iterative solver and if each iteration of the loop requires some memory
allocation, the memory saved by storing only once common data may not compensate
the required extra memory.

2.2 Parametric linear systems

In this section we set up a parametric linear system, which serves in the next chapters
as a concrete framework to describe our contributions to iterative linear solvers with
embedded ensemble propagation. We will do so with the help of a new tensor-based
formalism. By revisiting the description of the impact of ensemble propagation on the
sparse matrix-vector product [Phipps et al., 2017], we will also recall key aspects of
ensemble propagation and describe how they can be articulated in this new tensor-based
formalism.

In this context, we are interested in the solution of a linear system, a ubiquitous
computational operation in the solution of a computational mechanics model, for a subset
of samples of the parameters together. That is, in the solution of a parametric linear
system of the form

A
(
ξ(`)
)
x
(
ξ(`)
)

= b
(
ξ(`)
)

for all ` = 1, . . . , s; (2.2)

here, we denote by ξ(1), . . . , ξ(s) the subset of samples of the parameters, with s the
ensemble size and by the n-dimensional square matrices A(ξ(1)), . . . , A(ξ(s)) and vectors
b(ξ(1)), . . . , b(ξ(s)) and x(ξ(1)), . . . ,x(ξ(s)) the system matrices and right-hand sides
and solution vectors for the samples ξ(1), . . . , ξ(s), respectively. Thus, n denotes the
number of physical degrees of freedom per sample. The matrices A(ξ(1)), . . . , A(ξ(s))
are nonsingular sparse matrices resulting from the discretization of systems of partial
differential equations with a discretization strategy such as the finite element method,

21



Chapter 2. Ensemble propagation

(a) Solution and right-hand-side vectors. (b) System matrices.

Figure 2.1: Ensemble propagation for parametric linear system: illustration of collect-
ing vector and matrix samples in second-order and third-order tensors with 4 samples,
respectively. Each color refers to a sample.

the finite volume method, the finite difference method, or the spectral element method.
In this work, we restrict ourselves to the finite element method. We are particularly
interested in the case in which these matrices are not necessarily symmetric positive
definite.

Ensemble propagation was formalized in [Phipps et al., 2017] with a formalism based
on the Kronecker product. This formalism involved gathering the n-dimensional square
matrices A(ξ(1)), . . . , A(ξ(s)) along the diagonal of a block-diagonal ns-dimensional
square matrix and concatenating the n-dimensional vectors b(ξ(1)), . . . , b(ξ(s)) and
x(ξ(1)), . . . ,x(ξ(s)) into two ns-dimensional vectors. This formalism relied on a notion
of commuted Kronecker product to highlight key aspects of ensemble propagation; in
particular, the resulting permutations of degrees of freedom were used to highlight the
contiguous storage in memory of the sample values per physical degree of freedom, which
we mentioned in performance benefit (iii) in the section 2.1. This formalism was well
adapted to formalizing ensemble propagation as it was introduced in [Phipps et al., 2017]
with reduced inner products that sum inner products across ensembles; however, it lends
itself less well to formalizing ensemble propagation as it was more recently set up in
[D’Elia et al., 2020] with ensemble inner products without this ensemble reduction; we
will expand on the latter approach in this thesis.

To overcome this drawback, we introduce a new formalism based on three-dimensional
tensors, by which we mean multidimensional arrays as in the review paper of Kolda and
Bader [2009] (not to be confused with tensors from physics and engineering such as stress
and strain tensors and tensor fields).

In the remainder of this thesis, we use the system of notation of [Kolda and Bader,
2009], which we will now recall concisely. The number of dimensions of a tensor is called
order. Vectors (tensors of order one) are denoted by boldface lowercase letters such as y,
matrices (tensors of order two) by boldface uppercase letters such as Y , and higher-order
tensors by boldface Euler script letters such as Y . The i-th entry of y is denoted by
yi, the (i, j)-th entry of Y by yij, and the (i, j, k)-th entry of third-order tensor Y by
yijk. A colon is used to indicate all elements of a dimension. A fiber is obtained by fixing
every index but one. The j-th column of Y is the fiber denoted by y:j, and the i-th row
of Y is the fiber denoted by yi:. Third-order tensors have column, row, and tube fibers,
denoted for Y by y:jk, yi:k, and yij:, respectively. Slices are obtained by fixing all but
two indices. Third-order tensors have horizontal, lateral, and frontal slices denoted for
Y by Y i::, Y :j:, and Y ::k, respectively.

Collecting b(ξ(1)), . . . , b(ξ(s)) and x(ξ(1)), . . . ,x(ξ(s)) into column fibers of two second-
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=

s = 4

A X B

Figure 2.2: Ensemble propagation for parametric linear system: illustration of the
parametric linear system in tensor-based formalism with 4 samples.

order tensors B and X (Fig. 2.1a),

x:` = x
(
ξ(`)
)

for all ` = 1, . . . , s, b:` = b
(
ξ(`)
)

for all ` = 1, . . . , s, (2.3)

that is,

X =
[
x
(
ξ(1)
)

. . . x
(
ξ(s)
)]
, B =

[
b
(
ξ(1)
)

. . . b
(
ξ(s)
)]
, (2.4)

and A(ξ(1)), . . . , A(ξ(s)) as frontal slices of a third-order tensor A (Fig. 2.1b),

A::` = A
(
ξ(`)
)

for all ` = 1, . . . , s, (2.5)

we rewrite the parametric linear system in (2.2) as follows (Fig. 2.2):

A::` x:` = b:` for all ` = 1, . . . , s. (2.6)

2.3 Ensemble sparse matrix-vector product

We will now recall key aspects of ensemble propagation and illustrate how they can be
articulated within our tensor-based formalism. We will revisit, using the new formalism,
the example of Phipps et al. [2017] of computing a sparse matrix-vector product for s
samples together (Fig. 2.3):

z:` = A::` y:` for all ` = 1, . . . , s; (2.7)

the matrix-vector product is a ubiquitous kernel in Krylov iterative methods to solve
linear systems.

We assume that the matrix samples in the frontal slices A::1, . . . , A::s are represented
using a Compressed Row Storage (CRS) format. Assuming that these frontal slices share
a common sparsity pattern, such as a common sparsity pattern inherited from a common
mesh, and hence row-offset and column-index arrays, we represent A with the following
data structure:

• a column-index array c, a first-order tensor, that collects the column indices of the
entries present in the sparsity pattern listed row by row;

• a row offset array r, a first-order tensor, that collects the positions of the beginning
of each row in c; the length of r is n + 1, and rn+1 is set equal to the number of
entries present in the sparsity pattern plus one;
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A Y

s = 4

Figure 2.3: Illustration of the sparse matrix-vector product with 4 samples. Each color
refers to a sample. Each non-zero element of the third-order tensor A and second-
order tensor Y is represented as a small cube. The highlighted cubes represent the
non-zero elements used during the application of a horizontal slice Ai:: to Y .

• a value array D, here a second-order tensor, that here gathers in its column fibers
d:1, . . . , d:s the values of the represented entries of the frontal slices A::1, . . . , A::s

listed row by row.

Under the aforementioned assumptions, the column-index array and the offset array
are sample-independent, so that they need to be stored in memory and streamed from
it only once per ensemble, thus providing an illustration of performance benefit (i) that
can be realized with ensemble propagation.

Using this CRS format, the sparse matrix-vector product for s samples together
of (2.7) is obtained as follows:

zk` =

rk+1−1∑

i=rk

di` yci` for all k = 1, . . . , n, for all ` = 1, . . . , s. (2.8)

In an implementation based on (2.8), the entries zk` are obtained through a loop over
the samples (` = 1, . . . , s), a loop over the rows (k = 1, . . . , n), and a loop over the
entries present in the sparsity pattern for the given row (i = rk, . . . , rk+1− 1) performing
a multiply-add operation, with the loop over the entries present in the sparsity pattern
for the given row (i = rk, . . . , rk+1 − 1) being the innermost loop.

Because there are no dependencies between the samples, the calculation in (2.8) is
mathematically equivalent to the calculation

zk: =

rk+1−1∑

i=rk

di: ∗ yci: for all k = 1, . . . , n, (2.9)

in which ∗ is the Hadamard product of matrices, that is, the element-wise product of
matrices. In an implementation based on (2.9), it is the loop over the samples (` =
1, . . . , s) that is the innermost loop.
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Although (2.8) and (2.9) are mathematically equivalent, the ordering of the loops
used in the implementation has a performance impact. Whereas opportunities for use of
vector parallel instructions in an implementation based on (2.8) depend on the sparsity
pattern, an implementation based on (2.9) allows the loop over the samples to be parallel-
lized with vector parallel multiply-add instructions, thus providing an illustration of how
performance benefit (ii) can be realized with ensemble propagation through a reordering
of loops.

There are different ways of storing tensors into the memory. Second-order tensors
can be stored using column-major layout, row-major layout, or even other layouts. A
layout sets the ordering of the entries in memory by providing for each entry the memory
address in terms of an offset from the memory address of the first entry. To store the
(n × s)-dimensional second-order tensor Y in the memory, a row-major layout involves
storing the (k, `)-th entry with an offset of (k − 1) s+ `, which we denote as follows:

yk` ←[ y [(k − 1) s+ `] . (2.10)

Using this layout results in storing consecutive entries of a same row contiguously in
memory and consecutive entries of a same column with a stride of s. Thus, the sample
values yk1, . . . , yks for a given physical degree of freedom indexed by k, that is, yk:, are
stored in contiguous memory; and the physical degrees of freedom y1`, . . . , yn` for a given
sample `, that is, y:`, are stored in interleaved memory (Fig. 2.4).

k =1

` =1
` =2
` =3
` =4
` =5
` =6
` =7
` =8

k =2

` =1
` =2
` =3
` =4
` =5
` =6
` =7
` =8

k =3

` =1
` =2
` =3
` =4
` =5
` =6
` =7
` =8

k =4

` =1
` =2
` =3
` =4
` =5
` =6
` =7
` =8

Figure 2.4: Illustration of the memory layout of a vector of 4 ensembles of size 8.

The choice of layout has a performance impact on (2.9) because if Y , D, and Z
are stored using row-major layout, the entries di: and yci: can be loaded using packed
loads from contiguous memory from the offsets (i − 1) s and (ci − 1) s, respectively,
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and the entries zk: can be stored using packed stores to contiguous memory from the
offset (k − 1) s. Packed loads and stores from and to contiguous memory result in more
efficient transfers through the memory hierarchy, thus providing an illustration of how
performance benefit (iii) can be realized with ensemble propagation by ensuring ensemble
values are contiguous in memory.

In distributed-memory parallelism, the matrix-vector product calculation necessitates
communicating entries of Y between compute nodes. Gathering these MPI communi-
cations required to access nonlocal entries of the right-hand side vector per ensemble
reduces the total communication cost by amortizing the MPI latency. This provides an
illustration of how performance benefit (iv) can be realized with ensemble propagation
by sending fewer but larger messages.

2.4 Implementation based on templates

Building on the earlier work of [Pawlowski et al., 2012a] for automating embedded analysis
capabilities, Phipps et al. [2017] proposed to use the template-based generic-programming
approach introduced in Chapter 1 and expression templates [Veldhuizen, 1995] to incor-
porate ensemble propagation into codes and made available this approach in the Stokhos
package [Phipps, 2015] of the Trilinos library [Heroux et al., 2005]. This embedded ensem-
ble propagation consists in transforming code into one capable of propagating ensembles
by using templating and operator-overloading capabilities of the C++ language. Con-
cretely, as discussed in Chapter 1, it consists in implementing application code templated
on the data type instead of using a floating-point type such as double. The templated
implementation can then be instantiated with double to find back the algorithm with one
sample at a time. The same implementation can be used with a new ensemble type that
stores an ensemble of s values to use embedded ensemble propagation. Using expression
templates, arithmetic and other operations are overloaded with ensemble loops that apply
the operations sample-wise. The autovectorization capabilities of the compiler are relied
upon to realize these ensemble loops with vector parallel instructions. The ensemble size
s, which implies the number of iterations in the ensemble loops, is set at compilation time.
Setting the trip count (which is the number of iterations in the loop, the ensemble size s
in our case) at compilation time and the property that there are no backward loop-carried
dependencies (the current iteration of the loop is not impacted by results computed at
previous iterations of the loop) aid the compiler with the autovectorization as discussed
in [Jeffers et al., 2016]. Best performance is reached when s is both a multiple of the
vector instruction length and a multiple of the number of entries storable on a cache line.
For example, for architectures that support AVX-512 and have 512-bit cache line, when
using double, s should be 8, 16, 24, or 32.

2.5 Conclusions

In this chapter, we have introduced embedded ensemble propagation as a way to improve
the throughput and the efficiency of parametric computations. The advantages of the
approach have been listed and illustrated in the case of a sparse matrix-vector product.
The ensemble divergence has been defined and its occurrences have been classified. Para-
metric linear systems have been introduced using a tensor notation. Finally, the use of
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2.5. Conclusions

a template-based generic-programming approach has been discussed as a way to embed
ensemble propagation into existing code.

The originality of this chapter is that, as compared with the work of Phipps et al.
[2017], we have classified the occurrences of ensemble divergence, have introduced embed-
ded ensemble propagation using tensor notation, and have revisited the sparse matrix-
vector product using the tensor notations.

The speed-up defined in this chapter is used in all the results sections to highlight the
interest of ensemble propagation. The types of ensemble divergence are used in Chapter
3, 4, and 5 to discuss strategies to handle them in algorithms. The tensor formalism
of this chapter is used in Chapter 3 to formally introduce ensemble GMRES to solve
parametric linear system.
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Chapter 3
Ensemble GMRES

In this chapter, we formally introduce ensemble GMRES, a solver for parametric linear
systems which is able to deal with problems with non-symmetric or indefinite matrices.

In section 3.1, we first start by recalling GMRES applied to solve one linear system
at a time. In particular, section 3.1.1 introduces a right preconditioner to accelerate
the convergence of GMRES to solve one linear system. Finally, section 3.1.2 lists the
types of ensemble divergence that can occur when solving parametric linear systems with
ensemble GMRES.

Two methodological approaches are then explained to tackle those types of ensemble
divergence.

Section 3.2 is dedicated to ensemble GMRES with ensemble reduction following the
same approach as the one used in [Phipps et al., 2017] for CG with ensemble reduction.
This approach solves one linear system which couples the s linear systems together and
minimizes the root mean square of the norm of the residual of the samples. A zero norm
of the residual of the coupled system is achieved only if all the residuals of each linear
systems have a zero norm. This approach with reduction, due to the template-based
generic programming approach chosen in section 2.4 and due to the implementation work
of Phipps et al. [2017], was working before this thesis.

Section 3.3 is dedicated to ensemble GMRES without ensemble reduction. In this
second approach, the systems are not coupled together to maintain the same convergence
as if they were propagated alone in GMRES. In this approach it is necessary to deal
with all occurrences of ensemble divergence explicitly. This second approach required
implementation work discussed in Chapter 4.

In section 3.4, we discuss the impact of ensemble reduction on the convergence of
ensemble GMRES. To do so, we use theoretical results on the convergence of GMRES
for systems with normal matrices to discuss how the coupling of the samples influences
the convergence. This is illustrated on an analytical example of a bar problem.

3.1 GMRES for one sample

Let us concisely recall the Generalized Minimal Residual (GMRES) method [Saad and
Schultz, 1986; Saad, 2003] for solving the n-dimensional linear system

Ax = b. (3.1)
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Chapter 3. Ensemble GMRES

The GMRES method is a projection method that seeks an approximate solution x(m)

from x(0)+Km(A, r(0)), where x(0) is an initial guess, r(0) = b−Ax(0) is the corresponding
residual, and Km(A, r(0)) is the Krylov subspace

Km(A, r(0)) := span
{
r(0),Ar(0), . . . ,Am−1 r(0)

}
, (3.2)

by imposing that

b−Ax(m)⊥A(Km(A, r(0))), (3.3)

that is

zT (b−Ax(m)) = 0 for all z ∈ A(Km(A, r(0))). (3.4)

The approximate solution x(m) minimizes the norm of the residual:

x(m) = arg min
x∈x(0)+Km(A,r(0))

‖b−Ax‖. (3.5)

There exist several implementation strategies to generate an orthonormal basis of
the Krylov subspace such as strategies based on classical Gram-Schmidt orthonormal-
ization, modified Gram-Schmidt orthonormalization, Householder orthonormalization,
DGKS [Daniel et al., 1976], or TSQR [Demmel et al., 2008]. In this work, we restricted
ourselves to the strategies relying on the level-2 BLAS function GEMV which allows
the possibility to have more cache reuse than the level-1 BLAS functions. Other strate-
gies such as those based on the level-1 BLAS functions can be considered too. The
expected speed-up of both the strategies based on the level-1 BLAS functions and the
strategies based on the level-2 BLAS function GEMV, being limited by the memory
bandwidth, is expected to be equal to 1. All the results of this thesis are generated
using the DGKS strategy: the classical Gram-Schmidt orthonormalization followed by a
second orthonormalization if required to improve the numerical stability. Therefore, the
considered implementation of the GMRES method is based on the Arnoldi method that
builds an orthonormal basis v1, . . . , vm+1, whose vectors are named Arnoldi vectors, by
Gram-Schmidt orthonormalization of r(0), Ar(0), . . . , Amr(0). Specifically, the Arnoldi
method successively multiplies the previous vector vj with A and orthonormalizes the re-
sulting w against all previous vi’s. Let the resulting v1, . . . , vm+1 be collected as column
vectors in the n×(m+1)-dimensional matrix V and the coefficients of the Gram-Schmidt
orthonormalization in the (m+1)×m-dimensional upper Hessenberg matrix H .

As a consequence of the orthonormality property, the solution to the reduced-
dimensional problem in (3.4) is given by

x(m) = x(0) + V :(1:m) y, (3.6)

with y in Rm such that

‖β e1 −H y‖2 = min
z∈Rm

‖β e1 −H z‖2, (3.7)

with β = ‖r(0)‖ and e1 the first column of the appropriately sized identity matrix.
This least-squares problem is solved by factoring H into the product of an orthogonal

matrix Q and an upper triangular matrix U ,

H = Q

[
U
0

]
. (3.8)
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3.1. GMRES for one sample

This factorization is performed using a progressive manner, as discussed in the section
6.5.3 in [Saad, 2003], using Givens rotations at each iteration of the GMRES method.

The factorization (3.8) is such that

∥∥∥∥
[
g
e

]
−
[
U
0

]
y

∥∥∥∥
2

= min
z∈Rm

∥∥∥∥
[
g
e

]
−
[
U
0

]
z

∥∥∥∥
2

, with

[
g
e

]
= QTβ e1. (3.9)

As a result, the solution to the reduced-dimensional problem in (3.4) can be computed
as

x(m) = x(0) + V :(1:m)U
−1 g, (3.10)

and the norm of the residual is given, assuming infinite precision, by

‖b−Ax(m)‖ = e. (3.11)

In this thesis, we consider two types of stopping criterion: the stopping criterion
based on the implicit norm e of (3.9) and the stopping criterion based on the explicit
norm ‖b−Ax(m)‖. The advantage of using the implicit norm is that we have a way to
evaluate an approximation of the norm of the residual without extra cost as we do not
need to compute x(m). The advantage of using the explicit norm is that this approach
is more precise. However it requires to compute x(m) and to evaluate the norm of the
residual.

The algorithm is shown in Algo. 1. For brevity’s sake, we do not cover the case where
the maximal number of iterations is not sufficiently large to enforce the convergence of the
solution in the sense of the considered convergence test and we do not explicitly describe
the progressive factorization of H .

Algorithm 1: GMRES for a single sample individually.

1 r(0) = b−Ax(0)

2 β = ‖r(0)‖
3 v: 1 = r(0)/β
4 for j = 1, . . . ,m do
5 w = Av: j

6 h(1:j)j = V T
:(1:j)w

7 v:(j+1) = w − V :(1:j) h(1:j)j

8 h(j+1) j = ‖v: (j+1)‖
9 if h(j+1) j 6= 0 then

10 v: (j+1) = v: (j+1)/h(j+1) j

11 else
12 m = j
13 break

14 if qT
:(j+1)e1 ≤ ε then

15 m = j
16 break

17 y = arg minz ‖β e1 −H(1:m+1)(1:m) y‖
18

inner products

update

normalization

lucky breakdown

convergence test

x(m) = x(0) + V :(1:m) z
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Chapter 3. Ensemble GMRES

3.1.1 Right-preconditioned GMRES

Preconditioning is known as a way to improve robustness and efficiency of iterative tech-
niques as described in [Saad, 2003]. In this thesis, we consider right-preconditioned
GMRES as described in this subsection.

Given a right preconditioner M−1, the right-preconditioned GMRES solves (3.1) by
solving

AM−1 u = b, (3.12)

M x = u. (3.13)

The right-preconditioned GMRES method is a projection method that seeks an ap-
proximate solution x(m) from x(0)+M−1(Km(AM−1, r(0))), where x(0) is an initial guess,
r(0) = b−Ax(0) is the corresponding residual, and Km(AM−1, r(0)) is the Krylov sub-
space

Km(AM−1, r(0)) := span
{
r(0),AM−1 r(0), . . . ,

(
AM−1

)m−1
r(0)
}
, (3.14)

by imposing that

b−Ax(m)⊥AM−1(Km(AM−1, r(0))). (3.15)

The algorithm is shown in Algo. 2.
For the remainder of this thesis the term GMRES is used to denote the right-

preconditioned GMRES.

Algorithm 2: Right-preconditioned GMRES for a single sample individually.

1 r(0) = b−Ax(0)

2 β = ‖r(0)‖
3 v: 1 = r(0)/β
4 for j = 1, . . . ,m do
5 w = AM−1 v: j

6 h(1:j)j = V T
:(1:j)w

7 v:(j+1) = w − V :(1:j) h(1:j)j

8 h(j+1) j = ‖v: (j+1)‖
9 if h(j+1) j 6= 0 then

10 v: (j+1) = v: (j+1)/h(j+1) j

11 else
12 m = j
13 break

14 if qT
:(j+1)e1 ≤ ε then

15 m = j
16 break

17 y = arg minz ‖β e1 −H(1:m+1)(1:m) y‖
18

inner products

update

normalization

lucky breakdown

convergence test

x(m) = x(0) +M−1 V :(1:m) y

3.1.2 Challenges in applying ensemble propagation to GMRES

Let us now consider the application of ensemble propagation to the GMRES method for
solving the n-dimensional parametric linear system (2.6). The application of ensemble
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3.2. Ensemble GMRES with ensemble reduction

propagation to the GMRES method introduces the three types of ensemble divergence
introduced in Chapter 1:

1. an Arnoldi vector may require a normalization for certain samples but not for other
samples, so-called if-then-else divergence,

2. different samples may require different numbers of iterations to converge and hence
exit the for loop in Algo. 1 after different trip counts, so-called loop divergence,

3. called BLAS functions, such as GEMV for the dense matrix-vector operations, may
not support ensemble-typed inputs, so-called function call divergence.

There are two ways to overcome the stated challenges. The first one involves a math-
ematical reformulation of the GMRES, using ensemble reduction, to suppress every en-
semble divergence. The second one consists in explicitly managing every occurrence of
ensemble divergence. We will call this second approach ensemble GMRES without en-
semble reduction.

3.2 Ensemble GMRES with ensemble reduction

Ensemble reduction was introduced by Phipps et al. [2017] as a way of overcoming
ensemble-divergence challenges arising in the application of ensemble propagation to
Krylov-based linear solvers.

Formally, ensemble reduction is mathematically equivalent to the gathering of the
system matrices along the diagonal of a block-diagonal matrix and the concatenation of
the left-hand-side and right-hand-side vectors



A::1

. . .

A::s






x:1
...
x:s


 =



b:1
...
b:s


 , (3.16)

followed by the application of the GMRES method to this ns-dimensional system with
the projection defined with the inner product of the ns-dimensional Euclidean vector
space, that is, the so-called reduced inner product that involves a summation over the
ensemble, as illustrated in Fig. 3.1 and in Listing 1.5.

= + + +

Figure 3.1: Illustration of the reduced inner product of two vectors of ensemble values.
Each color refers to a particular sample. The result is drawn in white to represent the
fact that it is not related to a particular sample.

It is important to stress that this block-diagonal matrix and vectors are never com-
puted in practice. This mathematical equivalence is discussed in order to ease the inter-
pretation of the impact of ensemble reduction on the convergence.
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Chapter 3. Ensemble GMRES

In order to formalize ensemble reduction within our tensor-based formalism, it is
convenient to associate a linear operator A to the third-order tensor A

A : Rn×s → Rn×s (3.17)

: X =
[
x:1 . . . x:s

]
7→ A(X) =

[
A::1x:1 . . . A::sx:s

]
; (3.18)

then, the parametric linear system reads as

A(X) = B. (3.19)

Moreover, associating a linear operator M to the right preconditioner:

M : Rn×s → Rn×s (3.20)

: X =
[
x:1 . . . x:s

]
7→ M(X) =

[
M−1

::1 x:1 . . . M−1
::s x:s

]
, (3.21)

allows us to write the preconditioned parametric linear system as

A ◦M(U) = B, (3.22)

X =M(U). (3.23)

The GMRES method with ensemble propagation and ensemble reduction then involves
seeking an approximate solution X(m) from X(0) +M(Km(A M ,R(0))), where X(0) is
an initial guess, R(0) = B −A(X(0)) is the corresponding residual, and
Km(A M ,R(0)) is the Krylov subspace

Km(A M ,R(0)) ≡ span
{
R(0),A ◦M(R(0)), . . . , (A ◦M)m−1(R(0))

}
, (3.24)

by imposing that

B −A(X(m))⊥A ◦M(Km(A M ,R(0))), (3.25)

that is

s∑

`=1

zT
:` (b:` −A::` x

(m)
:` ) = 0 for all Z ∈ A ◦M(Km(A M ,R(0))). (3.26)

The Arnoldi method now involves building an orthonormal basis V :1:, . . . , V :(m+1):

by Gram-Schmidt orthonormalization of R(0), A ◦M(R(0)), . . . , (A ◦M)m(R(0)) with
respect to the reduced inner product. As this approach uses the reduced inner product
and the Krylov subspace of (3.24) the coefficients are still scalars and collected in the
(m+1)×m-dimensional upper Hessenberg matrix H .

The solution to the reduced-dimensional problem in (3.26) is then given by

x
(m)
:` = x

(0)
:` +M−1

::` V :(1:m)` y for all ` = 1, . . . , s, (3.27)

with y in Rm such that

‖β e1 −H y‖2 = min
z∈Rm

‖β e1 −H z‖2, (3.28)

with β =

√∑s
`=1 ‖r

(0)
:` ‖2.
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3.2. Ensemble GMRES with ensemble reduction

We can see that ensemble reduction couples the samples together as they share the
same reduced degrees of freedom y.

The use of ensemble reduction is shown in the Algo. 3.

Algorithm 3: GMRES with ensemble reduction.

1 r
(0)
:` = b:` −A::` x

(0)
:` for all ` = 1, . . . , s

2 β =

√∑s
`=1 ‖r

(0)
:` ‖2

3 v:1` = r
(0)
:` /β for all ` = 1, . . . , s

4 for j = 1, . . . ,m do
5 w:` = A::`M

−1
::` v:j` for all ` = 1, . . . , s

6 h(1:j)j =
∑s

`=1 V
T
:(1:j)`w:`

7 v:(j+1)` = w:` − V :(1:j)` h(1:j)j for all ` = 1, . . . , s

8 h(j+1)j =
√∑s

`=1 ‖v:(j+1)`‖2

9 if h(j+1)j 6= 0 then
10 v:(j+1)` = v:(j+1)`/h(j+1)j for all ` = 1, . . . , s

11 else
12 m = j
13 break

14 if qT
:(j+1)e1 ≤ ε then

15 m = j
16 break

17 y = arg minz ‖β e1 −H(1:m+1)(1:m) z‖
18

inner products

update

normalization

lucky breakdown

convergence test

x
(m)
:` = x

(0)
:` +M−1

::` V :(1:m)` y for all ` = 1, . . . , s

This ensemble reduction suppresses every ensemble divergence as, conceptually, this
approach is equivalent to applying the GMRES method to an ns-dimensional system.
This implies that samples will always follow the same branch in the normalization process
at line 9 in Algo. 3 and will always have the same trip count in GMRES at line 14 in Algo.
3 as the norms are computed reducing the norm of each sample. Moreover, H is of order
two and, therefore, BLAS functions for scalar-typed inputs are sufficient, this suppresses
the function call divergence. The drawback of ensemble reduction is that samples are
coupled to each other which impacts both convergence and accuracy:

• the mathematical equivalence with the block-diagonal matrix (3.16) implies the
union of the spectrum of the system matrices, as discussed in [Phipps et al., 2017],
and the union of their singular values. The union of the spectrum implies a poten-
tially slower convergence of GMRES compared to GMRES applied to each sample
individually. The union of the singular values implies a potentially increased con-
dition number.

• using the reduced norm impacts the convergence criterion. In particular, using an

absolute criterion based on

√∑s
`=1 ‖r

(j)
:` ‖2, the reduced norm of the residual at

the iteration j, leads to an increased number of iterations to converge compared
to using a GMRES on each sample individually with a same tolerance value. To
overcome this issue, we use a relative convergence criterion, by which we mean

a convergence criterion based on the ratio

√∑s
`=1 ‖r

(j)
:` ‖2/

√∑s
`=1 ‖r

(0)
:` ‖2. This
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Chapter 3. Ensemble GMRES

convergence criterion implies the convergence of the root mean square of the norm
of the residual of each sample which is a weaker convergence than the relative
convergence of all the samples which will be used as the convergence criterion for
GMRES without ensemble reduction in the next section. Mathematically, the latter
is a sufficient condition for the former:

‖r(j)
:` ‖

‖r(0)
:` ‖
≤ ε for all ` = 1, . . . , s ⇒

√∑s
`=1 ‖r

(j)
:` ‖2

√∑s
`=1 ‖r

(0)
:` ‖2

≤ ε. (3.29)

3.3 Ensemble GMRES without ensemble reduction

Using an ensemble inner product without ensemble reduction in Krylov-based solvers
has already been proposed in [D’Elia et al., 2020]. It means that an inner product of 2
vectors of Ensemble<s> returns an Ensemble<s>, as discussed in Chapter 1, instead of a
scalar as in the previous case with reduction. In [D’Elia et al., 2020], the motivation for
introducing this inner product without ensemble reduction was to enable a fine-grained
monitoring of the convergence of each sample individually so as to facilitate the grouping
of samples. The use of this inner product without ensemble reduction raises challenges
of ensemble divergence, which were solved in [D’Elia et al., 2020] for the particular case
of the conjugate gradient method using the EnsembleTrait proposed by Phipps et al.
[2017] and discussed in section 4.1. Here, we show that the use of the inner product
without ensemble reduction can have a performance impact by accelerating convergence
as compared with the use of the inner product with ensemble reduction. And we highlight
and solve the new challenges of ensemble divergence in the case of GMRES.

This approach requires explicit modifications of the algorithm, as said in Chapter 1,
to manage the if-then-else and the loop divergences. In this work, those modifications
rely on the so-called masked assignments [Kretz and Lindenstruth, 2012] and the so-
called logical reduction functions [Kretz, 2015]. The masked assignments are conditional
assignments which assign different values depending on the value of a conditional. The
logical reduction functions are logical operations applied on a set of booleans such as for
all or for at least one as discussed in detail in the next chapter.

Conceptually, this approach solves the s linear systems at the same time by continuing
the Arnoldi method for every sample of the ensemble, independently of whether they have
individually converged, up to the convergence of all of them.

The GMRES method with ensemble propagation without ensemble reduction involves
seeking an approximate solution x

(m)
:` from x

(0)
:` +M−1

::` Km(A::`M
−1
::` , r

(0)
:` ) for all ` = 1,

. . . , s, where x
(0)
:` is an initial guess and r

(0)
:` = b:`−A::` x

(0)
:` is the corresponding residual,

by imposing that

b:` −A::` x
(m)
:` ⊥A::`M

−1
::` (Km(A::`M

−1
::` , r

(0)
:` )) for all ` = 1, . . . , s, (3.30)

that is

zT
:` (b:` −A::` x

(m)
:` ) = 0 for all z:` ∈ A::`M

−1
::` (Km(A::`M

−1
::` , r

(0)
:` ))

for all ` = 1, . . . , s.
(3.31)

The Arnoldi method now involves building an orthonormal basis v:1`, . . . , v:(m+1)` by

Gram-Schmidt orthonormalization of r
(0)
:` , A::`M

−1
::` r

(0)
:` , . . . , (A::`M

−1
::` )m r

(0)
:` for all
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3.3. Ensemble GMRES without ensemble reduction

` = 1, . . . , s. Because there is no reduction, the coefficients are sample-dependent
and collected in the (m+1)×m×s-dimensional tensor H .

The solution to the reduced-dimensional problem in (3.31) is then given by

x
(m)
:` = x

(0)
:` +M−1

::` V :(1:m)` y:` for all ` = 1, . . . , s, (3.32)

with Y in Rm×s such that

‖β` e1 −H ::` y:`‖2 = min
z:`∈Rm

‖β` e1 −H ::` z:`‖2 for all ` = 1, . . . , s, (3.33)

with β` = ‖r(0)
` ‖ for all ` = 1, . . . , s.

We can see that the samples are not coupled together and that the degrees of freedom
are sample-dependent.

The normalization process of the Arnoldi vectors is managed with a loop over the
samples around an if-then-else statement as shown at line 9 in Algo. 4. This loop will be
implemented using a masked assignment as discussed in the next chapter.

Algorithm 4: GMRES without ensemble reduction.

1 r
(0)
:` = b:` −A::` x

(0)
:` for all ` = 1, . . . , s

2 β` = ‖r(0)
:` ‖ for all ` = 1, . . . , s

3 v: 1 ` = r
(0)
:` /β` for all ` = 1, . . . , s

4 for j = 1, . . . ,m do
5 w:` = A::`M

−1
::` v:j` for all ` = 1, . . . , s

6 h(1:j)j` = V T
:(1:j)`w:` for all ` = 1, . . . , s

7 v:(j+1)` = w:` − V :(1:j)` h(1:j)j` for all ` = 1, . . . , s
8 h(j+1)j` = ‖v:(j+1)`‖ for all ` = 1, . . . , s
9 for ` = 1, . . . , s do

10 if h(j+1)j` 6= 0 then
11 v:(j+1)` = v:(j+1)`/h(j+1)j` for all ` = 1, . . . , s

12 if h(j+1)j` = 0 for all ` = 1, . . . , s then
13 m = j
14 break

15 for ` = 1, . . . , s do
16 if hj(j−1)` = 0 then
17 hjj` = 1
18 h(j+1)j` = 0

19 if qT
:(j+1)`e1 ≤ ε for all ` = 1, . . . , s then

20 m = j
21 break

22 y:` = arg minz:` ‖β` e1 −H(1:m+1)(1:m)` z:`‖ for all ` = 1, . . . , s

23

inner products

update

normalization

lucky breakdown

convergence test

x
(m)
:` = x

(0)
:` +M−1

::` V :(1:m)` y:` for all ` = 1, . . . , s

3.3.1 Loop divergence

As already highlighted, different samples may require different numbers of iterations to
converge. In order to manage this loop divergence, we require the GMRES method to
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Chapter 3. Ensemble GMRES

continue the Arnoldi method until the reduced basis is sufficiently rich for every sample to
have converged. Doing so enforces that the accuracy of the approximations is at least as
good as that of the approximations computed without ensemble propagation. Thus, the
sample-dependent convergence criteria are replaced with an overall convergence criterion
that involves a logical ensemble reduction of the type AND to stop only if every sample
has converged. As already stated in (3.29), this convergence criterion is stronger than the
relative convergence criterion with ensemble reduction with the same tolerance value.

3.3.2 If-then-else divergence

Continuing to update the approximation of all samples to reach convergence for all sam-
ples raises a new issue: if a sample ` encounters a lucky breakdown at an iteration j` or
has a vanishing norm h(j`+1) j` ` due to underflow, the least-squares problem to be solved
for this sample is no longer well posed. The most straightforward way to address this
issue would be to solve individually the least-squares problems with a sample-dependent
size j`, however, this would prevent the use of ensemble propagation inside the least-
squares solve. An alternative approach is therefore preferred and involves maintaining
least-squares problems of the same size m and modifying them such that y(j`+1:m)` = 0.

A way to enforce y(j`+1:m)` = 0 is to enforce that H(1:m+1)(1:m)` is full rank. It can be
proven that H(1:j`+1)(1:j`)` is full rank, therefore, the corrections

hii` = 1 for all i = j` + 1, . . . ,m, (3.34)

h(i+1)i` = 0 for all i = j` + 1, . . . ,m, (3.35)

are sufficient to enforce the full rank of H(1:m+1)(1:m)`.
The algorithm shown in Algo. 4 treats the control-flow divergence using two masked

assignments, i.e. two conditional assignments, one for the normalization at lines 10 to 11
of Algo. 4 and one for the lucky breakdown at lines 16 to 18 of Algo. 4, and one logical
reduction function per stopping criterion. Those notions will be extensively discussed in
Chapter 4.

3.3.3 Function call divergence

As opposed to GMRES with ensemble reduction, this approach does not allow the efficient
use of implementations of BLAS functions for scalar types and the function call divergence
must be overcome implementing BLAS functions that support ensemble-typed inputs as
discussed in Chapter 4.

3.4 Discussion on the impact of ensemble reduction

on the convergence of ensemble GMRES

In this section, we discuss the consequences of ensemble reduction on the convergence of
ensemble GMRES. To do so, we first discuss the convergence of GMRES for one sample,
we then discuss how the reduction impacts the convergence coupling the samples together,
and finally we illustrate this influence on an example.

The theory for the convergence of GMRES in the general case is complex as discussed
in [Meurant and Tebbens, 2015]. Therefore, in this section, we restrict ourselves to the

38



3.4. Discussion on the impact of ensemble reduction on the convergence of ensemble
GMRES

case of GMRES applied to normal matrices. In this particular case, the convergence of
GMRES is fully determined by two quantities [Meurant and Tebbens, 2015]: eigenvalues
and components of the initial residual in the eigenvector basis.

3.4.1 Convergence of GMRES

Let
∑

Ik
denote the summation over all possible sets Ik of k indices i1, . . . , ik such that

1 ≤ i1 < . . . < ik ≤ n where n is the number of degrees of freedom. The residual at
iteration k of GMRES with a zero initial guess applied to the system

Ax = b, (3.36)

where A is a normal matrix with distinct eigenvalues and spectral factorization A =
ΦΛΦ? and b is a right-hand side of unit norm is [Meurant and Tebbens, 2015]:

∥∥r(1)
∥∥2

=

∑
I2
ωi1ωi2

∏
i`<ij∈I2

∣∣λij − λi`
∣∣2

∑n
i=1 ωi |λi|

2 for k = 1, (3.37)

∥∥r(k)
∥∥2

=

∑
Ik+1

[∏k+1
j=1 ωij

]∏
i`<ij∈Ik+1

∣∣λij − λi`
∣∣2

∑
Ik

[∏k
j=1 ωij

∣∣λij
∣∣2
]∏

i`<ij∈Ik
∣∣λij − λi`

∣∣2
for all k = 2, . . . , n− 1,

(3.38)

where ωij = |eTijc|2 with c = Φ?b and eij is the ij–th column of the appropriately sized
identity matrix.

This theorem tells us that the more the eigenvalues are close to each other (the more
they are clustered) the faster the convergence of GMRES. Moreover, the more the pro-
jection of the initial residual on the eigenvectors is spread the slower the convergence of
GMRES. The best convergences occur when the initial residual can be precisely repre-
sented by a limited number of eigenvectors whose eigenvalues are similar. And the worst
cases occur when the initial residual has a non-zero projection on all the eigenvectors
which have disparate eigenvalues.

When we have the λi and ωi, although the theorem above holds, it is infeasible to
compute the convergence of a large problem using (3.37) and (3.38) due to the large
number of computational operations. The cardinality of the set {Ik} is

# {Ik} =
n−k∑

i1=1

n−k+1∑

i2=i1+1

. . .
n∑

ik=ik−1+1

1 = Ck
n, (3.39)

which is intractable for large n with large k.

3.4.2 Insight into impact of ensemble reduction

We now consider the equivalent block diagonal system arising in ensemble GMRES with
ensemble reduction as discussed in section 3.2:



A::1

. . .

A::s






x:1
...
x:s


 =



b:1
...
b:s


 , (3.40)

0A normal matrix is a matrix which commutes with its conjugate transpose.
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where we assume now that A::1, . . . , A::s are normal matrices.
Based on the formulas (3.37) and (3.38), we can deduce the impact of ensemble

reduction on the convergence of ensemble GMRES. Due to the reduction, the spectrum
of the block-diagonal matrix is the union of the spectra of the different samples of the
ensemble and the projections of the normalized block right-hand side is the union of the
projections of the right-hand sides of the different samples. If the sample variability is
small enough, in other words, if the blocks A::1, . . . , A::s are similar, the spectra of the
different samples should be similar. Therefore, the convergence should not be impacted
too much as long as the projections of the initial residual on the eigenvectors are similar
too.

3.4.3 Illustration on a Dirichlet problem for the Laplacian

In order to illustrate the influence of ensemble reduction on the convergence of ensemble
GMRES, we look into a Dirichlet problem for the Laplacian:




−κd

2u

dx2
= b in ]0, 1[

u = 0 at x = 0 and x = 1
. (3.41)

We discretize the domain ]0, 1[ using n + 1 linear elements which leads to the linear
system:

Ax = b, (3.42)

where:

A = κ




2 −1
−1 2 −1

. . . . . . . . .

−1 2 −1
−1 2



, b = h2




b (x1)
b (x2)

...
b (xn−1)
b (xn)



, (3.43)

where h = 1/(n+ 1).
We can deduce analytically the n eigenvectors φ1, . . . , φn which we store as columns

in the matrix Φ and the n associated eigenvalues λ1, . . . , λn of the system (3.42):

φk =




sin (khπ)
sin (2 khπ)

...
sin ((n− 1) khπ)

sin (n khπ)




for all k = 1, . . . , n, (3.44)

λk = 2κ (1− cos (khπ)) for all k = 1, . . . , n. (3.45)

Given a right-hand side with unit norm and a zero initial guess, we can now compute
the convergence of GMRES applied to the system (3.42) with the equations (3.37) and
(3.38) as we have λ1, . . . , λn, X, and b.

We provide numerical results for n = 6 and four test cases:

• Test case (1): κ = 1 and bT =
[
0 0 0 1 0 0

]
,
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• Test case (2): κ = 1 and bT =
[
0 0 0 0 0 1

]
,

• Test case (3): κ = 1.5 and bT =
[
0 0 0 1 0 0

]
,

• Test case (4): κ = 1.5 and bT =
[
0 0 0 0 0 1

]
.

Tests (1) and (2) share the same spectrum as they share the same value of κ. However
their projections of b on the eigenvectors are different as b is changed. The tests (1) and
(3), although they do not have the same spectrum as κ has changed, share the same
projection of b on the eigenvectors as b is the same and as Φ is not influenced by κ.

For those four test cases, the eigenvalues λ1, . . . , λn and the weights ω1, . . . , ωn can
be computed and stored into vectors:

• Test case (1):

λT =
[
0.198 0.753 1.555 2.445 3.247 3.802

]
, (3.46)

ωT =
[
0.272 0.054 0.175 0.175 0.054 0.272

]
, (3.47)

• Test case (2):

λT =
[
0.198 0.753 1.555 2.445 3.247 3.802

]
, (3.48)

ωT =
[
0.054 0.175 0.272 0.272 0.175 0.054

]
, (3.49)

• Test case (3):

λT =
[
0.297 1.130 2.332 3.668 4.870 5.703

]
, (3.50)

ωT =
[
0.272 0.054 0.175 0.175 0.054 0.272

]
, (3.51)

• Test case (4):

λT =
[
0.297 1.130 2.332 3.668 4.870 5.703

]
, (3.52)

ωT =
[
0.054 0.175 0.272 0.272 0.175 0.054

]
. (3.53)

First the convergence of each test alone are computed using (3.37) and (3.38) and are
illustrated in Fig. 3.2. We observe that the tests (1) and (3) have the same convergence
despite the fact the spectra are different. The same behavior can be observed for the tests
(2) and (4). This is explained by the equations (3.37) and (3.38), although the spectra
are different they are the same up to a constant multiplier. If all the eigenvalues are

multiplied by α, we have obviously that
∥∥r(1)

∥∥2
is not impacted due to (3.37). We have

the same property for
∥∥r(k)

∥∥2
too and it can be deduced from (3.38) that the numerator

has been multiplied by (α2)C
2
k+1 and the denominator by (α2)k (α2)C

2
k which is the same

due to the fact that:

C2
k+1 =

(k + 1)!

2!(k − 1)!
=
k (k + 1)

2
=
k (k − 1)

2
+ k =

k!

2!(k − 2)!
+ k = C2

k + k. (3.54)
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Figure 3.2: Convergence of GMRES for each test alone.

A second simpler interpretation of this result can be given based on the Krylov sub-
space. Multiplying the matrix by a non-zero scaling factor α impacts the Krylov subspsace
as follows:

Km(αA, r(0)) = span
{
r(0), αAr(0), . . . , αm−1Am−1 r(0)

}
≡ Km(A, r(0)), (3.55)

in other words, the Krylov subspace of the scaled matrix is the same as the Krylov
subspace of the initial matrix. This results in the fact that the norm of the residual at
an iteration k is independent of the scaling factor α due to the equation (3.5).

From the convergence curves of each test alone, we observe that b influences the
convergence due to its projection on the eigenvectors as test cases (1) and (2) do not
share the same convergence. The test case (2) converges faster because its weights ω1,
. . . , ωn are more clustered than test (1), i.e. the eigenvalues with the larger weight are
closer in the case of the test (2).

We can now look on how ensemble reduction influences GMRES. To do so, we couple
two test cases into an ensemble of two samples, we gather their n eigenvalues in a vector
of 2n eigenvalues, and compute the 2n projections of the normalized gathered right-hand
sides.

The convergence curves are then computed (Fig. 3.3). The first observation is that
gathering (1) and (2) into one ensemble (1,2) (or equivalently (3) and (4)), we gather
the same spectrum and, as we cannot find more than n different values of λk, GMRES
converges in n iterations. The convergence of the ensemble reduced norm is included
between convergence curve of (1) and (2) as we now look into the convergence of the
root mean square of the residual of the samples. This illustrates the impact of ensemble
reduction on the convergence of GMRES through the gathering of ω alone.

The second observation is that coupling samples (1) and (3) (or equivalently (2) and
(4)) increases the number of iterations to reach a zero residual and increases the norm
of the residual at any fixed iteration as, now, there are 2n different eigenvalues. This
illustrates the impact of ensemble reduction on the convergence of GMRES through the
coupling of the spectra alone.
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Figure 3.3: Convergence of ensemble GMRES with reduction.

Coupling samples (1) and (4) together combines the two effects: we have 2n different
eigenvalues and different ω. However the predominant effect here is linked to the aggre-
gation of the spectra. The second effect can be isolated comparing the curves (2,4) and
(1,4); they both have the same aggregated spectrum but different ω; they both converge
to 0 slower but (2,4) converges faster as (1) converges slower than (4) and (2).

3.5 Conclusions

In this chapter, we have introduced ensemble GMRES both with and without ensemble
reduction to solve the parametric linear system of Chapter 2 with ensemble propagation.
We have discussed the potential occurrences of ensemble divergence in GMRES and how
both approaches treat them.

The originality of this chapter is that, we have formally reviewed the existing ensemble
GMRES with ensemble reduction with tensor notations, formally introduced ensemble
GMRES without ensemble reduction with tensor notations, and highlighted ensemble
divergence in ensemble GMRES. Those discussed occurrences of ensemble divergence
are more complex than the occurrences of ensemble divergence in CG due to the need
of BLAS functions for ensemble type such as the GEMV and the impact of the lucky
breakdown on GMRES as discussed in section 3.3. Moreover, we have discussed, using a
numerical example and theoretical convergence results, how ensemble reduction influences
the convergence of ensemble GMRES.

In Chapter 4, the implementation work required for ensemble GMRES without ensem-
ble reduction is discussed. In Chapter 7, both approaches, ensemble GMRES with and
without reduction, are compared both in terms of speed-up and impact on the number
of iterations to converge.
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Chapter 4
Efficient ensemble GMRES without ensemble
reduction

In this chapter, we will discuss how the code divergence highlighted in the previous
chapter is treated. In particular, we will discuss masked assignment, logical reduction,
and function-call divergence in the context of the template-based generic programming
approach as discussed in Chapter 2.

Section 4.1 describes more precisely the implementation context of ensemble GMRES
without ensemble reduction in Trilinos.

Section 4.2 is dedicated to the General Matrix Vector product (GEMV) used in lines
6 and 7 of Algo. 4. An efficient GEMV implementation for ensemble type is necessary for
the efficiency of lines 6 and 7 of Algo. 4. In section 4.2.1, we discuss the update process
of the orthogonalization, i.e. line 7 of Algo. 4. In section 4.2.2, we discuss the inner
products of the orthogonalization, i.e. line 6 of Algo. 4.

In section 4.3, the control-flow divergence has been tackled using masks, a data type
that stores an array of booleans which are the results of comparison operators sample-wise
and that can be used to do masked assignment, in other words, conditional assignment,
or logical reduction.

In this chapter, to alleviate the text, we use GMRES instead of ensemble GMRES
and reduction instead of ensemble reduction.

4.1 Implementation context

The presented GMRES without reduction has been implemented in this thesis in the
Trilinos library introduced in section 1.1.5. This implementation work relies on the
existing templated GMRES of Belos.

During the orthogonalization process, Belos calls the Tpetra package to compute the
inner products and the update of lines 6 and 7 of Algo. 4 respectively. Tpetra relies
on the GEMM of KokkosKernels for the on-node parallelism of those operations. When
using the ensemble propagation without reduction, the GEMM of KokkosKernels calls
the GEMV of KokkosKernels if the left-hand side has only one column as in our case.

In this context, we have observed that the performance of the default GEMV of
KokkosKernels, the templated package which provides templated interface to optimized
implementations of kernel functions as discussed in section 1.1.5, was not optimal for the
ensemble types on the tested architecture as illustrated later in this chapter. Therefore,

45



Chapter 4. Efficient ensemble GMRES without ensemble reduction

and in order to be able to compare GMRES without reduction with GMRES with reduc-
tion, which uses optimized implementations of the GEMV such as the one provided by
the MKL, we study, propose, and implement an efficient GEMV for ensemble types in
this work.

The implementations related to GEMV discussed in this chapter are made as a C++
template specialization of the GEMV function of the KokkosKernels package from Trili-
nos. This way, the Tpetra function calls made by Belos to compute lines 6 and 7 of
Algo. 4 are unchanged. Those implementations are based on the Kokkos programming
model [Edwards et al., 2012, 2014] discussed in the introduction.

GMRES without reduction has been implemented in a template specialization of
classes of Belos to introduce the required modifications as discussed in section 3.3.
In order to tackle the control-flow divergence, we investigated an alternative to the
EnsembleTrait proposed by Phipps et al. [2017] and described in section 4.3.1. This
alternative is to define and use masks for ensemble types as discussed in section 4.3.3
with some inspiration from the work of Kretz and Lindenstruth [2012]. Those masks
improve the readibility of the code, make the maintenance easier, and are better suited
to the autovectorization, or can be mapped to vector instructions.

The ensemble sparse matrix-vector product is not discussed in this chapter as the
ensemble sparse matrix-vector product used in ensemble GMRES is the one used in the
ensemble conjugate gradient method which was already implemented.

All the implementations discussed in this chapter, except the implementation of the
mask based on the Intel Intrinsics, have been made available in Trilinos. The imple-
mentation of the mask based on the Intel Intrinsics will be included in Trilinos later.
There is some discussion about using a common SIMD data type for different Trilinos
packages. This data type should provide a mask implementation and an interface to the
Intel Intrinsics. We are currently waiting the output of this discussion before including
the implementation of the mask based on the Intel Intrinsics.

4.2 Efficient dense matrix-vector product for ensem-

ble propagation

In this section we are interested in the efficient computation of the generalization of the
scalar-typed General Matrix Vector product (GEMV) to ensemble-typed GEMV which
can be written as a tensor contraction:

w:` = α` w:` + β` C::` z:` for all ` = 1, . . . , s, (4.1)

where tensors are stored using the interleaved memory layout as illustrated in Fig. 2.4
for W and Z. Such a computation is limited by the memory bandwidth as its arithmetic
intensity, which is of 2 flops per loaded cik`, is significantly smaller than the machine
flops/byte ratio of most commonly available systems. It is worth emphasizing the fact
that the third-order tensor C of (4.1) is dense. In the case of GMRES without reduction
C of (4.1) is the tensor used to store the Arnoldi vectors. Such a BLAS operation
with interleaved memory layout is known as Compact BLAS [Kim et al., 2017] and has
been initially developed to reduce the wall-clock time of computing the BLAS/LAPACK
routines on large groups of very small matrices.

As the scalar-typed GEMV is memory bound and as its implementations such as in the
MKL or in the BLIS [Van Zee and Van De Geijn, 2015] are highly optimized, we cannot
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expect to reach ensemble propagation speed-up greater than 1 for the GEMV. However,
having an optimized implementation of the tensor contraction for ensembles remains
essential not to deteriorate ensemble propagation speed-up of GMRES without reduction
in comparison to the speed-up of GMRES with reduction; the latest uses optimized BLAS
implementations which reach theoretical throughput. To be comparable with GMRES
with reduction, GMRES without reduction requires optimal implementations of the kernel
functions.

As the GEMV is limited by the memory bandwidth, we present here measured memory
bandwidth using the STREAM Triad Memory Bandwidth benchmark [McCalpin, 1995],
which consists in computing a = b+ q c where a, b, and c are vectors and q is a scalar,
on the considered architecture: one compute node with 2 Intel(R) Xeon(R) Platinum
8160 CPUs which have 24 cores per CPU. This test has been performed with a fixed
problem size of 2.4 GB, different numbers of threads with compact affinity and using
hyper-threading, and different vector instructions and is illustrated in Fig. 4.1. The best
measured memory bandwidth are 101.2108 GB/s and 199.7486 GB/s while using 1 and
2 CPU respectively. Because we are using the default first touch policy to control the
memory placement and because the threaded loops in the STREAM benchmarks are
simple enough, we place ourselves in a case where the threads access only local memory
inside the threaded loops. This implies that all the threads of the CPU 1 access a first
NUMA region whereas all the threads of the CPU 2 access a second NUMA region. The
results of Fig. 4.1 confirm the importance of using enough cores and vectorization.
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Figure 4.1: Benchmarked STREAM Triad Memory Bandwidth on a Skylake node
with 2 Intel(R) Xeon(R) Platinum 8160 CPU with a problem size of 2.4 GB with a
maximum of 24× 2× 2 threads.

For the remainder of this work, we will restrict ourselves to cases where only one
NUMA region is used per MPI process. This way, we remove the difficulty of defining in
which NUMA region the entries of the tensors are allocated. The 2 NUMA regions can
still be used using 2 MPI process and binding them to a particular region.

With that restriction in mind, from the maximal measured bandwidth, the fact that
a double type requires 8 bytes to be stored, and that 2 operations (one addition and one
multiplication) are computed per loaded cik`, we deduce that the maximal throughput
that we can expect is about 101× 2/8 ≈ 25 GFLOPS.

In the literature about dense matrix-matrix multiplications in BLAS implementations
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[Goto and van de Geijn, 2008; Smith et al., 2014; Van Zee and Van De Geijn, 2015],
among other discussions, strategies are discussed to improve the memory usage of dense
matrix-matrix multiplications.

By analyzing the implementations discussed in those papers for dense matrix-matrix
products, we deduced that there are three key aspects to reach the maximal theoretical
throughput in the case of dense matrix-vector products. First, the code has to exploit as
much as possible the parallelism of the architecture as the memory bandwidth grows with
the number of threads used. Second, transfers through the memory hierarchy should be
done as efficiently as possible using unit-stride loads and reusing data from the cache.
Third, vector instructions have to be used correctly, for instance the gather-scatter mem-
ory addressing should be avoided.

Although computing sequentially s GEMVs with scalar-typed inputs is feasible and
will give the correct outputs, the performance of this approach will be bad. Due to the
interleaved memory layout of C , we will not be able to load C::` for a given ` with a unit
stride. Therefore, we must write an efficient implementation of the tensor contraction
compatible with the interleaved memory layout which is able to use unit stride reading,
as many threads as possible, and as efficiently as possible the vector instructions.

Two different GEMVs occur in GMRES in lines 6 and 7 of Algo. 4, the inner products
and the update for which the corresponding matrices C::` are short fat and tall skinny
matrices respectively. As those two cases are different, we have chosen to implement two
algorithms, one for each case.

The strategies described and used in this section can be used for the implementation
of GEMV for other data types providing that the tile size, a parameter introduced in this
section, is changed accordingly based on the size of the data type.

4.2.1 Case of the update

In this subsection, we will restrict ourselves to the case of the update of line 7 of Algo. 4.
Therefore, we are interested in the tensor contraction of the form (4.1) where the third
order tensor C has the dimension n× j × s and is stored with the following layout:

cik` ←[ c [(i− 1) s+ (k − 1)n s+ `] , (4.2)

meaning that two ensembles cik: and c(i+1)k: are stored contiguously in the memory.
Moreover, the first dimension, n, in our case, is the number of degrees of freedom per
sample, which is expected to be high and is fixed, j is the dimension of the current Krylov
subspace, which is increased by one at every iteration of GMRES and is expected to be
significantly smaller than n, and s is the ensemble size which is fixed by the user. This
so-called left layout has been chosen in the Belos package to store the Arnoldi vectors
as it has the advantages that adding a new Arnoldi vector does not modify the memory
addresses of the previously allocated vectors as j does not appear in (4.2).

First, we review the default implementation of the GEMV of the KokkosKernels
package. This implementation is illustrated in Algo 5 where parfor stands for a threaded
loop. The algorithm consists in a parallel loop over the rows, a loop over the columns, and
a loop over the samples. The memory access pattern of this implementation is illustrated
in Fig. 4.4a. Due to the memory layout of the third order tensor C , the memory access of
C in line 4 of Algo 5 are not ideal for CPU as cik: and ci(k+1): are not stored contiguously
in the memory. For small ensemble size, this results in jumps in the memory which are not
amortized by a sufficiently large amount of streamed memory to load ci(k+1):. However,
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Figure 4.2: Throughput of the update in GMRES when using the default implemen-
tation of the GEMV of the KokkosKernels package.

if s is large, this effect is reduced: the ratio between the number of memory jumps and
the size of loaded memory decreases.

Algorithm 5: Update: default implementation of KokkosKernels

1 parfor i = 1 to n do
2 wi` = α`wi` for all ` = 1, . . . , s
3 for k = 1, . . . , j do
4 wi` = wi` + β` cik` zk` for all ` = 1, . . . , s

Fig. 4.2 illustrates the throughput of the update of GMRES on a problem of size
n = 32000 with the default implementation of the KokkosKernels. We observe that
the performance of the default implementation nearly reaches the theoretical limit for
ensemble of size of at least 16. However, for ensembles of size 8, the performance of
the default implementation reaches 60% of the theoretical limit. This is due to the fact
that the jump in the memory address moving from cik: to ci(k+1): is not amortized over a
sufficiently large load as discussed earlier.

In this work, we propose an alternative implementation of the GEMV which improves
the memory access for the considered memory layout. We have used a cache blocking
strategy to reuse entries of the left-hand side matrix W from cache using a tiling strategy.
The algorithm is listed in Algo. 6 and is illustrated in Fig. 4.3. This algorithm loops over
the tiles, over the columns, over the rows, and over the samples. The memory access
pattern of this implementation is illustrated in Fig. 4.4b.

Algorithm 6: Update: threaded tiled approach

1 parfor t = 1 to n− nc + 1 by nc do
2 for i = t, . . . , t+ nc − 1 do
3 wi` = α`wi` for all ` = 1, . . . , s

4 for k = 1, . . . , j do
5 γ` = β` zk` for all ` = 1, . . . , s
6 for i = t, . . . , t+ nc − 1 do
7 wi` = wi` + γ` cik` for all ` = 1, . . . , s

Over the tiles

Over the columns

Over the rows
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Figure 4.3: Illustration of the threaded tiled approach of the GEMV for the case of
the update of line 7 of Algo. 4 with ensembles of size 4.
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Figure 4.4: Illustration of the memory access patterns to read C::` from the main
memory with the default GEMV and the tiled approach with 3 threads. The arrows
represent the memory access pattern of a thread (one color per thread). The dashed
red line represents the left layout. The default GEMV suffers from jumps in the
memory address moving from one column to the next one while the tiled approach
follows the layout.

This algorithm splits the leading dimension of size n into tiles of size at most nc.
Such a strategy is called strip mining and allows cache blocking of W(t:t+nc−1)(1:s). We
have chosen to parallelize this leading dimension because it was the one that, being the
largest one, has the most opportunities for threading and because this dimension does
not vary during the simulation. We have chosen to parallelize it with tiles instead of
simply the rows as for any entry cik` there is no entry into the tube fiber cik: such that
they are contiguous in the memory; in other words, we cannot have a load with a unit
stride longer than s while looping on the entries of a given row for a given thread. This is
not the case when we are using tiles, we have unit-stride loads of ncs entries for a given
thread. Increasing nc allows larger unit-stride loads but increases the cache pressure; the
choice of nc is a trade-off between those considerations.

Whereas usual dense-matrix functions require vectorization to be introduced explicitly
for the GEMV of standard data type, we inherit opportunities for the vectorization from
ensemble propagation and the fact that the loop over the samples is the innermost loop
in Algo. 6. On the tested modern architecture with modern compilers, we observe that
the autovectorized assembly code of the ensemble GEMV is performing optimally.

Ensemble propagation impacts this algorithm in three ways: the ensemble size s affects
the memory use per tile and, therefore, the tile size nc has to be inversely proportional
to s to keep W(t:t+nc−1)(1:s) in cache, ensemble propagation adds an extra loop over the
samples `, and the vectorization of the ensemble loop takes place at the elementary
operation levels.

First, we have to choose the values of the tile size nc for different ensemble sizes for
the considered architecture. To deduce nc we have to consider both the memory consid-
erations and the requirement of having all the threads computing as often as possible.
We will first deduce values of nc from examples where all the threads are used and, then,
explain how to correct nc to enforce the second consideration.

In order to do so, we have evaluated the tensor contraction for a fixed size n× j× s of
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Chapter 4. Efficient ensemble GMRES without ensemble reduction

the third order tensor C where n = 2× 24× 16000 = 768000, j = 300, and s = 8, 16, 24,
and 32, and have evaluated the throughput as functions of the tile size nc and the ensemble
size s. In order to remove the impact of unevenly distributed work among the threads,
we have only evaluated nc such that n is a multiple of Nnc where N = 48 is the number
of threads. The results are illustrated in Fig. 4.5.

We perform those tests on the above-mentioned Skylake CPU which has a 1 MB L2
cache per core and 2 threads per core, therefore, using 2 threads per core, each thread
can at most store 65536 = 1024× 1024/8/2 double in the L2 cache.
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Figure 4.5: Influence of nc on the throughput of the proposed implementation of
the GEMV, the vertical dashed line represents the value of nmax

c s = 32768, which
is half of the maximum number of double that can be stored in L2 cache, and the
shading represents the nc such that nc ≤ nmax

c . The scaled tile size corresponds to the
multiplication of the tile size nc by the ensemble size s.

We choose the scaled ncs in such a way that the reused data W(t:t+nc−1): uses at most
about half of the smallest value among the memory addressable by the TLB and the
size of the L2 cache as described in the practical rule of Goto and van de Geijn [2008].
Therefore, for a given ensemble size s, we have that the maximal tile size nmax

c is given
by:

nmax
c s ≤ 65536

2
, (4.3)

where the value 2 comes from the practical rule of Goto and van de Geijn [2008]. The
corresponding nmax

c are listed in Table 4.1.

52



4.2. Efficient dense matrix-vector product for ensemble propagation

s 8 16 24 32
nmax
c 4096 2048 1365 1024

nmax
c s 32768 32768 32760 32768

Table 4.1: Maximal tile size nmax
c for the different ensemble sizes. In the case of s = 24,

32768 cannot be divided by s leading to a scaled nmax
c s which is not 32768.

From the results of Fig. 4.5, we see that increasing the size of the unit-stride load ncs
improves the throughput up to a certain nmax

c s = 32768 where the cache pressure starts
to reduce the throughput. In particular, if we increase ncs beyond that threshold, the
throughput tends to half of the maximal throughput as both the entries of C and W
have to be streamed from the main memory.

The results of Fig. 4.5 show that the ensemble size s influences the optimal values of
nc; the larger the ensemble size s the larger the memory to store the tile.
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Figure 4.6: Impact of the correction (4.4) on the throughput of the update in GMRES.

Due to the fact that both the products of the values of nmax
c and the number of available

threads are relatively large, especially for small ensemble size, choosing nc = nmax
c leads

to unevenly distributed work among the threads for small n. As a consequence, nc cannot
be independent of n if we want to use evenly all the threads. Given a maximal admissible
tile size nmax

c which is limited by the cache size as discussed above, we compute a smaller
n?c which distributes evenly the n rows among the N threads as follows:

n?c :=




n

N
⌈

n
N nmax

c

⌉



, (4.4)

where dxe is the least integer greater than or equal to x.
This way, we have that each thread will have the same number of tiles which is⌈
n

N nmax
c

⌉
. Although n?c is unknown, n?c is necessarily smaller than the maximal admissible

tile size nmax
c due to (4.4) which enforces the cache blocking and is necessarily in the

shaded region of Fig. 4.5.
We show the impact of that correction on an example where we apply the update of

GMRES on a problem of relatively small size n = 30000 for different Krylov subspace
dimensions, for ensemble size s = 8 and s = 32 with and without the correction (4.4).
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The throughput of that example is shown in Fig. 4.6. We see that the correction improves
the throughput for the two ensemble sizes but the effect is more important for smaller
ensemble sizes as expected.
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Figure 4.7: Comparison of throughput of the update in GMRES when using the default
Trilinos implementation (nc = 1) and our tiled approach (nc = n?c).

Finally, we compare in Fig. 4.7 the throughput of the update of GMRES on a problem
of size n = 32000 with the default implementation and our proposed implementation with
nmax
c chosen as in Table 4.1. The KokkosKernels default GEMV implementation is similar

to the one presented in this thesis with nc = 1. On the tested cases, the throughput of
our implementation is larger than the throughput of the default KokkosKernels GEMV
due to the improved memory access and is less sensitive to the ensemble size.

In order to prove that the choice of nmax
c s is related to L2 cache size, we have measured

the cache misses of all cache levels during the numerical experiment shown in Fig. 4.5.
Those misses have been measured with PAPI [Terpstra et al., 2010] which provides a
portable tool for use of the performance counter hardware such as cache misses and hits.
The measured data are shown in Fig. 4.8. We can observe that, for large values of the
ncs, the cache misses of all levels tend to 1.2 106 per sample which corresponds to the
case where the entries of W(t:t+nc−1): are not reused from cache and have to be reloaded
from main memory. However, for smaller values of ncs, we observe that both L2 and L3
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Figure 4.8: Influence of the scaled ncs on the L1, L2, and L3 cache misses per sample.
For large values of the scaled ncs, the cache misses of all level tend to the same value
because the entries of W(t:t+nc−1): are not reused from cache. For smaller values, we
see a correlation between L2 cache misses and the throughput of the tiled algorithm.
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cache misses are about 0.6e6 per sample which is consistent with the fact that entries
of W(t:t+nc−1): are reused from cache. Finally, we observe that the highlighted nmax

c s
consistent with Goto and van de Geijn [2008] is necessarily related to L2 and not L1 nor
L3.

4.2.2 Case of the inner products

In this section, we will restrict ourselves to the case of the inner products of line 6 of
Algo. 4. Therefore, we are interested in the tensor contraction of the form (4.1) where
the third order tensor C the dimensions j × n × s where n is the number of degrees of
freedom per sample and j is the dimension of the current Krylov subspace as in the case
of the update. Moreover the third order tensor C is now stored with the following layout:

cik` ←[ c [(i− 1)n s+ (k − 1) s+ `] , (4.5)

meaning that two ensembles cik: and ci(k+1): are stored contiguously in the memory. The
layout is different from the case of the update because we use the same data for both the
inner products and the update and one of the operations requires a transpose operation.
This tensor contraction is strongly related to the update of the previous subsection.

First, once again, we review the default implementation of the KokkosKernels package
in the case of the inner products. This implementation is illustrated in Algo 7 where
parred stands for a parallel reduce: a parallel loop which, here, computes the sum of the
contribution of each thread. The algorithm consists in a parallel reduce over the columns,
followed by a loop over the rows, and finally a loop over the samples. Once again, this
default implementation has not an ideal memory access pattern for CPU especially for
small ensemble sizes. The memory access pattern of this implementation is illustrated in
Fig. 4.10a.

Algorithm 7: Inner products: default implementation of KokkosKernels

1 parfor k = 1, . . . , j do
2 wk` = α`wk` for all ` = 1, . . . , s

3 parred i = 1 to n do
4 for k = 1, . . . , j do
5 wk` = wk` + β` cki` zi` for all ` = 1, . . . , s

In this work, we propose a tiled strategy which relies on the transpose of the one of
the update with some modifications. Just applying the transpose of the strategy of the
update directly leads to the Algo. 8 which does not perform correctly due to data race.

Although this algorithm streams data with the same unit stride as the update algo-
rithm and reuses Z(t:t+nc−1): from L2 providing that nc is sufficiently small, this algorithm
is incorrect as it is not thread safe. Data races occur when the threads try to update wk`.

In order to solve that issue, we use two strategies:

• Firstly, the threads are grouped in teams of W threads which are run on nearby
hardware threads such as threads which share a common cache. This is controlled
by the indexing of the threads and how they are bonded to hardware threads. On
CPUs which support hyper-threading, we can create teams of 2 threads which are
bonded to a same physical core. Those two threads will, therefore, share all their
cache levels. Those teams are created using Kokkos.
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Algorithm 8: First threaded tiled approach

1 parfor k = 1, . . . , j do
2 wk` = α`wk` for all ` = 1, . . . , s

3 parfor t = 1 to n− nc + 1 by nc do
4 for k = 1, . . . , j do
5 γ` = 0 for all ` = 1, . . . , s
6 for i = t, . . . , t+ nc − 1 do
7 γ` += cik` zi` for all ` = 1, . . . , s

8 wk` += β` γ` for all ` = 1, . . . , s

A parallel reduce is then used to compute the γ` of the full team which is then used
to update the value of wk` by only one thread of the team. This reduces the number
of threads which try to access and update wk` simultaneously in the main memory.

• Secondly, instead of looping on the rows starting at the first index and ending at
the index j, the loop is split into two loops and the first index is evenly distributed
among the j rows.

Those two strategies lead to the Algo. 9 which is a richer implementation than the default
implementation in KokkosKernels.The memory access pattern of this implementation is
illustrated in Fig. 4.10c.

Algorithm 9: Second threaded tiled approach

1 parfor k = 1, . . . , j do
2 wk` = α`wk` for all ` = 1, . . . , s

3 parfor t = 1 to n−W nc + 1 by W nc do
4 Get team id T
5 f = mod(T, j)
6 for k = f, . . . , j do
7 γ` = 0 for all ` = 1, . . . , s
8 parred i = t, . . . , t+W nc − 1 do
9 γ` += cik` zi` for all ` = 1, . . . , s

10 wk` += β` γ` for all ` = 1, . . . , s

11 for k = 1, . . . , f − 1 do
12 γ` = 0 for all ` = 1, . . . , s
13 parred i = t, . . . , t+W nc − 1 do
14 γ` += cik` zi` for all ` = 1, . . . , s

15 wk` += β` γ` for all ` = 1, . . . , s

Finally, we show in Fig. 4.9 the throughput of the inner products of GMRES on a
problem of size n = 32000 with the default GEMV implementation of the KokkosKernels
to compute the inner product without reduction and with our proposed implementation
with W = 4. The values of nmax

c of Table 4.1 are still valid as the L2 cache size is
unchanged and as the number of reusable entries ncs is the same for both algorithms.
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Once again, we observe the impact of the memory access pattern of the default imple-
mentation on the throughput especially for small ensemble sizes. As opposed to the case
of the update, we observe that the throughput of the inner products for larger ensem-
ble sizes reaches 80% of the theoretical limit. This is due to the overhead cost of the
parallel reduce. The performance of the proposed implementation is better for all en-
semble sizes due to both the memory access pattern and the strategy used to reduce the
synchronization cost of the shared memory.
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Figure 4.9: Comparison of throughput of the inner products in GMRES when using
the default Trilinos implementation and our tiled approach.

In parallel to this work, KokkosKernels has recently1 included an implementation
of the GEMV for the inner products based on two nested parallel loops using a team-
based approach. This approach relies on a parallel for which loops over the rows which
associates a full row to a team. Each team performs a parallel reduce over the entries
of their associated row. The memory access pattern of this approach is illustrated in
Fig. 4.10b. This approach has a better memory access pattern than the default GEMV
tested in this thesis but has two drawbacks:

• the number of threads that can be used depends on the number of threads per team

1https://github.com/trilinos/Trilinos/commit/b4316dfd25c8ba29798d406ccf86657c196f2ff2
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and the number of rows j. If j is too small, the number of threads used will be too
small resulting in a reduced memory bandwidth.

• the probability of reusing entries of Z from the L2 cache depends on the size of n.
If n is small, Z will be kept in cache, otherwise, if n is large and if j is sufficiently
large such that a team of threads is required to compute at least a second row,
entries of Z will have to be streamed from the main memory again.

j

n

(a) Default GEMV tested for the inner products: SingleLevelTransposeGEMV.

j

n

(b) New KokkosKernels GEMV for the inner products: TwoLevelTransposeGEMV .

j

n

(c) Tiled approach.

Figure 4.10: Illustration of the memory access patterns to read C::` from the main
memory with the default GEMV and the tiled approach. The arrows represent the
memory access pattern of a thread (one color per thread) in the case of the tested
default GEMV, SingleLevelTransposeGEMV, and of a team of thread in the case of
the new KokkosKernels GEMV, TwoLevelTransposeGEMV, and the tiled approach.
The dashed red line represents the left layout. The colored dots represent the starting
point of the memory access pattern of a team. The first GEMV implementation suffers
from jumps in the memory address moving from one row to the next one. The two
others follow the layout. However, TwoLevelTransposeGEMV has less opportunity to
use a larger number of threads for small j and has a lower probability to reuse entries
of Z from the L2 cache for larger n.

4.2.3 Influence of hyper-threading

For the results discussed in this chapter, the hyper-threading of Intel CPUs has been
used, i.e. each physical core has been used with 2 threads. Although the performance
of our ensemble GEMV reaches full memory bandwidth, performances of other parts of
the full-simulation code can be reduced due to the use of hyper-threading. Therefore,
in this subsection, we revisit the results discussed previously without hyper-threading to
highlight its effect on our ensemble GEMV.

Before discussing the throughput of ensemble GEMV, we first show the measured
memory bandwidth without hyper-threading on one NUMA region in Fig. 4.11 with a
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best memory bandwidth of 102.8772 GB/s. We observe the same memory bandwidth as
previously with hyper-threading (see Fig. 4.1).

With this measurement in mind, we can now measure the throughput and cache misses
as illustrated in Fig. 4.8 but without hyper-threading; those are illustrated in Fig. 4.12.
We see from those graphs that, as there is now only one thread per CPU core, each thread
can use scaled ncs two times larger before starting to face reduced performance.

Another comment is that the maximal scaled nmax
c s deduced with hyper-threading

continues to be efficient without hyper-threading whereas the opposite is not true and
may lead to a large drop in the performance. This is due to the correction (4.4) as this
correction results in the following cases:

• if n ≥ N nmax
c , then, due to (4.4), we have that nmax

c

2
≤ n?c ≤ nmax

c which is a region
of good performance as illustrated by the blue area in Fig. 4.12,

• if n < N nmax
c , then, increasing nmax

c does not influence n?c .

In other words, if we use the same nmax
c as in the hyper-threading case or if we double

it 2nmax
c , for small number of degrees of freedom (n < N nmax

c ) it does not influence n?c and
for larger number of degrees of freedom, the performance is good with nmax

c

2
≤ n?c ≤ nmax

c .
To conclude these remarks; the implemented ensemble GEMV has good performance

regardless of the use of hyper-threading with the maximal scaled tile size deduced with
two threads per core. While not using the hyper-threading, this maximal scaled tile size
can be at most double.

As discussed in this section, the performance of ensemble GEMV is not influenced
by the use of the hyper-threading. However, we observed that another part of the code,
the sparse matrix-vector product with double, can have deteriorated performances using
the hyper-threading. To measure meaningful speed-ups, we decided to disable the hyper-
threading in Chapters 7 and 8.
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Figure 4.11: Benchmarked STREAM Triad Memory Bandwidth on a Skylake node
with 1 Intel(R) Xeon(R) Platinum 8160 CPU with a problem size of 2.4 GB and no
hyper-threading.
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Figure 4.12: Influence of the scaled ncs on the L1, L2, and L3 cache misses per sample
without hyper-threading. The blue region corresponds to the scaled ncs such that
nmax
c
2 ≤ n?c ≤ nmax

c using nmax
c computed with hyper-threading. For large values of

the scaled ncs, the cache misses of all level tend to the same value because the entries
of W(t:t+nc−1): are not reused from cache. For smaller values, we see a correlation
between L2 cache misses and the throughput of the tiled algorithm. We observe that
the blue region has good performance and, therefore, the values of nmax

c can be chosen
independently of the use of the hyper-threading.
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4.2.4 Comparison with reduction

In this section, we compare the performance of GEMV without reduction with the per-
formance of GEMV with reduction to illustrate that their throughput and CPU cost are
similar. The goal of this comparison is to deduce that the difference in the performance
of ensemble GMRES with and without reduction is only influenced by the number of
iterations to converge. This is predictable as both GEMV with and without reduction
have the same time complexity, i.e. the number of elementary operations performed by
the algorithm, O(njs), i.e. the same number of floating-point operations, and the same
arithmetic intensity 2 flops per loaded cik`.

First, we show in Fig. 4.13 and Fig. 4.14 the wall-clock time and throughput respec-
tively of the update of GMRES with and without reduction on a problem of size n = 32000
with nmax

c chosen as in Table 4.1. The update with reduction has been computed using the
MKL GEMV. We see that both approaches have similar throughput and wall-clock time
(in this particular example, our implementation is even slightly faster than MKL). This
is consistent with the fact that they both have the same time complexity and the same
arithmetic intensity. As a consequence the wall-clock time of one iteration of GMRES is
similar with and without reduction.

Finally, we show in Fig. 4.15 and Fig. 4.16 the wall-clock time and throughput re-
spectively of the inner products of GMRES with and without reduction on a problem of
size n = 32000 with nmax

c chosen as in Table 4.1. The inner products with reduction have
been computed using the Intel MKL GEMV. As observed for the update case, we see that
both approaches have similar throughput and wall-clock time. In Fig. 4.16, we observe
two different behaviors for j ≤ 100 and j > 100, we think that this two behaviors are
potentially explained by the fact that the MKL GEMV has at least two implementations
one for smaller matrix j ≤ 100 and one for larger matrix j > 100. In the later, we observe
a periodicity of 48 in the throughput, we think that this periodicity is explained by an
uneven distribution of the work among the threads in the second implementation; We
think that the rows are distributed among the threads and that if there is a number of
rows which can be divided by 48 each thread has the same amount of work to compute.
However, if there is one extra row, all the threads except one will have to wait for the
completion of the work of the last thread. This belief is consistent with the plateau of
Fig. 4.15. Those beliefs cannot be easily verified as we do not have access to the source
code of the MKL GEMV.

The fact that both inner products and update in GMRES have CPU costs which are
independent of the use of reduction leads to the same wall-clock time of one iteration
of GMRES. As a consequence, we know that the wall-clock time of GMRES without
reduction will be smaller than the wall-clock time of GMRES with reduction due to
faster convergence of GMRES without reduction compared to GMRES with reduction as
discussed in Chapter 3.
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Figure 4.13: Wall-clock time of the update in GMRES with and without reduction.
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Figure 4.14: Throughput of the update in GMRES with and without reduction. We
observe that both approaches have the similar throughput.
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Figure 4.15: Wall-clock time of the inner products in GMRES with and without
reduction.
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Figure 4.16: Throughput of the inner products in GMRES with and without reduction.
We observe that both approaches have roughly the same throughput.
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4.3 Controlling control-flow divergence with masks

As introduced in section 1.1.3 and section 2.1, control-flow divergence [Coutinho et al.,
2011] occurs when the samples of an ensemble want to follow different code branches.
Such cases occur when the result of a comparison operation does not return the same
value for each sample.

In this section we discuss the use of masks as an alternative to the EnsembleTrait, a
strategy introduced by Phipps et al. [2017] to manage occurrences of control-flow diver-
gence. In section 4.3.1, we review the EnsembleTrait. In section 4.3.2, we propose a C++
interface for the mask class, in other words, the features of the mask and how they can
be used. Section 4.3.3 is more technical and is dedicated to a proposed implementation
of the class and its member functions. Finally, in section 4.3.4, we use the mask class to
manage occurrences of control-flow divergence in GMRES without reduction.

4.3.1 EnsembleTrait strategy

Before introducing the masks and how to use them, we first recall how the control-flow
divergence was solved in [Phipps et al., 2017] with a so-called type trait, one of the C++
utilities to support template metaprogramming as discussed in [Stroustrup, 2000]. The
type trait is a generic programming strategy useful when the data types used as template
parameters are too different from each other. In the considered case of embedded ensemble
propagation, we use ensemble data types which have s entries instead of standard data
types such as double. The ensemble types come with member functions to access the
entry of a given sample or to get the ensemble size s. Those member functions are not
defined for the standard types inside the standard library, therefore, it is not generic to
call those member functions explicitly in the code as it would prevent the compilation
of the code with standard data type. The workaround used in [Phipps et al., 2017] is to
define a type trait called EnsembleTrait which encapsulates those member functions for
ensemble types and which provides default behavior for standard data type; for example,
the ensemble size returned by the EnsembleTrait for double is s = 1 and accessing the
first sample of the double returns its value. This EnsembleTrait allows one to manage
the control-flow divergence by looping explicitly over the samples in a generic way which
remains valid for standard data type. The EnsembleTrait is illustrated in Listing 4.1.

1 // Base template definition of EnsembleTrait (used for "double")

2 template <typename T>

3 struct EnsembleTrait

4 {

5 typedef T value_type;

6 static const int ensemble_size = 1;

7 static const T &coeff(const T &x, const int i) { return x; }

8 static T &coeff(T &x, const int i) { return x; }

9 };

10 // Specialization of EnsembleTrait for Ensemble

11 template <typename T, int s>

12 struct EnsembleTrait<Ensemble<T, s>>

13 {

14 typedef T value_type;

15 static const int ensemble_size = s;

16 static const T &coeff(const Ensemble<T, s> &x, const int i) { return x[i]; }

17 static T &coeff(Ensemble<T, s> &x, const int i) { return x[i]; }

18 };
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Chapter 4. Efficient ensemble GMRES without ensemble reduction

�
Listing 4.1: EnsembleTrait as defined in [Phipps et al., 2017].

As an example, we recall the example used in [Phipps et al., 2017] to highlight en-
semble divergence. Assuming that we want to compute y such that:

y` =

{
x` + x2

` , if x` > 0

x`, if x` ≤ 0
, for all ` = 1, . . . , s, (4.6)

the implementation using EnsembleTrait proposed in [Phipps et al., 2017] is the one
shown in Listing 4.2 where the implementation explicitly loops over the samples, does
the sample-wise comparison x` > 0, and performs the correct operation depending on
the result of the comparison. In Listing 4.2 and in the remainder of this section, T is the
stored data type that can be double or Ensemble.

1 typedef EnsembleTrait<T> ET;

2 typedef typename ET::value_type ScalarValue;

3 const int s = ET::ensemble_size;

4 T x = ...

5 T y;

6 for (int l = 0; l < s; ++l)

7 {

8 const ScalarValue &xl = ET::coeff(x, l);

9 ScalarValue &yl = ET::coeff(y, l);

10 if (xl > 0)

11 yl = xl + xl * xl;

12 else

13 yl = xl;

14 } �
Listing 4.2: Ensemble divergence with EnsembleTrait.

We have noticed that implementations based on the EnsembleTrait where we loop over
the samples explicitly are not always autovectorized correctly by the compiler. In order
for the loop over the samples to be autovectorized, “The loop must contain straight-line
code (a single basic block). There should be no jumps or branches, but masked assign-
ments are allowed.” [Jeffers et al., 2016]. While using the EnsembleTrait it is possible
to implement loops for which the body includes jumps or branches, the compiler can
vectorize such loops if it can automatically generate the masked assignment which is
not always the case. For instance, on an Intel architecture supporting AVX-512 (Intel
Xeon Phi KNL) with the Intel compiler, we have observed that one assembly code gen-
erated by the autovectorization of a loop including branches in its body implemented
with EnsembleTrait was using AVX2 instructions instead of AVX-512 instructions. This
results in performance issues as AVX2 instructions have smaller throughput.

A second strategy introduced in [Phipps et al., 2017] to deal with the control-flow
divergence was the definition of the ensemble comparisons. Those ensemble comparisons
return a boolean value which corresponds to the result of the comparison evaluated for
the first sample of the ensemble only. If the results of the comparison of the other samples
are different, this leads to a potentially incorrect code path.
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4.3. Controlling control-flow divergence with masks

4.3.2 Mask interface

In this section, we will show how masking can be used in the context of ensemble prop-
agation as an alternative to the EnsembleTrait in order to improve performance and to
control the followed code path. Masking removes the requirement of looping explicitly
over the samples in the code with EnsembleTrait by relying on masked assignments. The
use of masking results in more concise implementations that can be vectorized more eas-
ily by the compiler as the jumps and the branches discussed in the previous section are
removed using the masks.

Masking, in the vectorization context, is a technique which enables the execution of
conditional branching instructions inside a vectorized loop [Lorie and Strong Jr, 1984].
The CPU, depending on boolean values loaded in a mask register, evaluates only the
correct branch for each entry of the vector type using only one machine instruction. The
compiler can generate masking instructions while autovectorizing the code as long as
the computational work inside the branches is sufficiently simple as discussed in [Jeffers
et al., 2016]. On Intel architectures, the masking instructions can be called explicitly from
C++ codes using Intel Intrinsics [Lomont, 2011], a set of C++ functions that the compiler
replaces with the proper assembly vector instructions. The main drawbacks of using Intel
Intrinsics explicitly everywhere in the code are the portability, the amount of work that
has to be done to update the code for larger vector sizes in the future as larger vector
sizes come with new Intel intrinsics requiring to replace all the Intel intrinsics calls, and
the fact that the code cannot be templated anymore. To overcome these issues, several
implementations of intrinsics wrappers have been introduced such as, among others, Vc
[Kretz and Lindenstruth, 2012], Boost.SIMD [Estérie et al., 2014], Cyme [Ewart et al.,
2014], UME::SIMD [Karpiński and McDonald, 2017], and MIPP [Cassagne et al., 2015].
In particular, Vc has led to the submission of a proposal to the C++ standards committee
to include SIMD data types.

As an alternative, with some inspiration from Kretz and Lindenstruth [2012], we have
overloaded the comparison operators of the ensemble types to return a Mask object. This
new Mask object contains, as member data, the results of the sample-wise comparison.

This new object can be used to do masked assignments and logical reductions; the
masked assignment is a conditional assignment which assigns different values depending
on the value of a conditional and the logical reduction is a logical operation applied on a
set of booleans.

Masked assignment

For example, the masked assignment can be used to rewrite the code of Listing 4.2 in
Listing 4.3 where the comparison x>0 creates a Mask object with the result of the sample-
wise comparison. This Mask is then used to assign values to y; if, for a given sample,
the corresponding value of Mask is true, the corresponding value of y is equal to the
corresponding value of x+pow(x,2), otherwise, it is equal to the corresponding value of x
by default. This implementation is more concise, can improve the readability, and eases
the vectorization by the compilers.

1 T x = ...

2 T y;

3 MaskAssign(x > 0, y) = {x + pow(x, 2), x}; �
Listing 4.3: Ensemble divergence with masked assignment.

67



Chapter 4. Efficient ensemble GMRES without ensemble reduction

The implemented masked assignments have been motivated by some of the available
Intel intrinsic instructions. For example, we have implemented the masked assignment
MaskAssign(m, a)/= {b, c, d} which computes:

a` =

{
b`
c`
, if m`

d`, otherwise
, for all ` = 1, . . . , s, (4.7)

based on the Intel intrinsic instruction _mm512_mask_div_pd.
We think that such interfaces are good candidates as they provide the possibility to

specify all the arguments in one line of code; for example, b`, c`, and d` of (4.7) can be
specified in one line.

Logical reduction

The logical reduction allows more complex ensemble comparisons than the one introduced
in section 4.3.1. For instance, it is possible to write with logical reduction the examples
of Listing 4.4 where all_positive is true if x` > 0 for all ` = 1, . . . , s and false

otherwise and all_negative is true if x` <= 0 for all ` = 1, . . . , s and false otherwise.
It is important to note that if all_positive is false, the value of all_negative is not
necessarily true.

1 T x = ...

2 bool all_positive = AND(x > 0);

3 bool all_negative = AND(x <= 0); �
Listing 4.4: Examples of logical reduction.

4.3.3 Implementation of masks

The new Mask object is implemented in Listing 4.5. Its member data is an array of
unsigned char which is equivalent to an array of __mask8, the mask of size 8 defined
in AVX-512. This way, if we build with AVX-512 support, the masked Intel Intrinsics
instruction can be directly called as long as we use ensemble types with double as the
value type.

We have used an approach with some inspiration from [Kretz and Lindenstruth,
2012] for AVX2 to implement the mask and the masked assignment. Kretz and Lin-
denstruth [2012] proposed to define a mask type which stores the results of a comparison
of SIMD data types element-wise and, then, use this mask type inside a Vc::Common::

WriteMaskedVector class to do the masked assignment depending on the booleans stored
in the mask. In our work we define two classes: one for the mask in Listing 4.5 and one
for the masked assignment in Listing 4.6. The work of Kretz and Lindenstruth [2012]
covers broader discussion on SIMD data types and is not limited to the mask and the
masked assignment. Some of the differences of the presented work with their mask and
their masked assignment are that the interface and the implementation of the classes are
different and, here, we use ensemble sizes that can be larger than the width of the vector
instruction2, we use AVX-512 instruction sets, and, as AVX-512 defines a mask type,

2Kretz [2018] has discussed that aspect. They have defined two types: fundamental, a SIMD data
type which has a length equal to the width of the vector instruction, and arbitrary, a SIMD data type
which has an arbitrary length chosen by the user.
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4.3. Controlling control-flow divergence with masks

we want our mask type to be as close as possible to the AVX-512 mask type but keep
the possibility to use larger ensemble sizes such as 32 and not restrict ourselves to the
ensemble size equal to the width of the vector instruction.

There are two implementations of the mask and masked assignment: one which re-
lies on Intel Intrinsics AVX-512 instructions, and a default one which accesses the data
sample-wise. If the AVX-512 instructions are used, two utility functions are used data=

M512D_EP_LOAD(a,i) and M512D_EP_STORE(a,i,data). The first one loads a vector of type
__mm512d from the entries a8 i, . . . , a8 i+7 of the ensemble a and the second one stores a
vector of type __mm512d in the entries a8 i, . . . , a8 i+7 of the ensemble a.

In the presented listing KOKKOS_INLINE_FUNCTION is a Kokkos macro to define inline
functions that can be compiled both on the CPU and the GPU. If built on the CPU
only, KOKKOS_INLINE_FUNCTION is equivalent to inline whereas KOKKOS_INLINE_FUNCTION

is equivalent to inline __device__ __host__ if built with CUDA support. The macro
STOKHOS_HAVE_AVX_512 is defined if the current build supports AVX-512 and is, therefore,
not defined if built for GPU.

The macros STOKHOS_HAVE_PRAGMA_IVDEP, STOKHOS_HAVE_PRAGMA_VECTOR_ALIGNED, and
STOKHOS_HAVE_PRAGMA_UNROLL are defined if Stokhos is built using the pragmas ivdep

, vector aligned, and unroll respectively. The pragmas ivdep, vector aligned, and
unroll instruct the compiler to ignore assumed vector dependencies, to use aligned data
movement instructions for all array references when vectorizing, and to unroll a counted
loop [Intel, 2019].

1 // Mask type

2 template <typename T>

3 class Mask

4 {

5 static const int s = EnsembleTrait<T>::size;

6

7 public:

8 static const int size_uc = s / sizeof(unsigned char);

9 unsigned char data[size_uc];

10

11 KOKKOS_INLINE_FUNCTION

12 bool get(int i)

13 {

14 int j1 = i / sizeof(unsigned char);

15 int j2 = i % sizeof(unsigned char);

16 // Return the j2th bit of the j1th unsigned char:

17 return (this->data[j1] >> j2) & 1;

18 }

19

20 KOKKOS_INLINE_FUNCTION

21 void set(int i, bool b)

22 {

23 int j1 = i / sizeof(unsigned char);

24 int j2 = i % sizeof(unsigned char);

25 // Change the j2th bit of the j1th unsigned char:

26 if (b)

27 this->data[j1] |= 1 << j2;

28 else

29 this->data[j1] &= ~(1 << j2);

30 }

31

32 Mask(bool a)

69
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33 {

34 for (int i = 0; i < s; ++i)

35 this->set(i, a);

36 }

37 };

38

39 //Overload of the ensemble comparisons

40 template <typename T, int s>

41 KOKKOS_INLINE_FUNCTION

42 Mask<Ensemble<T, s>>

43 operator<=(const Ensemble<T, s> &a1, const Ensemble<T, s> &a2)

44 {

45 Mask<Ensemble<T, s>> mask;

46 #ifdef STOKHOS_HAVE_AVX_512

47 #ifdef STOKHOS_HAVE_PRAGMA_UNROLL

48 #pragma unroll

49 #endif

50 for (int i = 0; i < mask.size_uc; ++i)

51 mask.data[i] =

52 _mm512_cmp_pd_mask(M512D_EP_LOAD(a1, i), M512D_EP_LOAD(a2, i), 2);

53 #else

54 #ifdef STOKHOS_HAVE_PRAGMA_IVDEP

55 #pragma ivdep

56 #endif

57 #ifdef STOKHOS_HAVE_PRAGMA_VECTOR_ALIGNED

58 #pragma vector aligned

59 #endif

60 #ifdef STOKHOS_HAVE_PRAGMA_UNROLL

61 #pragma unroll

62 #endif

63 for (int i = 0; i < s; ++i)

64 mask.set(i, a1.dat[i] <= a2.dat[i]);

65 #endif

66 return mask;

67 }

68 // ... �
Listing 4.5: Mask type and overloads of the ensemble comparisons.

As said in section 4.3.2, the implemented masked assignments have been motivated
by some of the available Intel intrinsic instructions. For example, the masked assignment
inspired by _mm512_mask_div_pd is implemented in Listing 4.6. In Listing 4.6, if the AVX-
512 instructions are not used, the utility function get(i) of the Mask object is used to
access the value of the comparison for the sample i as implemented in Listing 4.5.

1 template <typename T>

2 class MaskAssign

3 {

4 private:

5 T &data;

6 Mask<T> m;

7

8 public:

9 MaskAssign(Mask<T> m_, T &data_) : m(m_), data(data_){};

10

11 KOKKOS_INLINE_FUNCTION

12 MaskAssign<T> &operator/=(const std::initializer_list<T> &st)

13 {
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14 auto st_array = st.begin();

15 #ifdef STOKHOS_HAVE_AVX_512

16 #ifdef STOKHOS_HAVE_PRAGMA_UNROLL

17 #pragma unroll

18 #endif

19 for (int i = 0; i < m.size_uc; ++i)

20 M512D_EP_STORE(data, i,

21 _mm512_mask_div_pd(

22 M512D_EP_LOAD(st_array[2], i),

23 m.data[i],

24 M512D_EP_LOAD(st_array[0], i),

25 M512D_EP_LOAD(st_array[1], i)));

26 #else

27 typedef EnsembleTrait<T> ET;

28 const int size = ET::ensemble_size;

29 #ifdef STOKHOS_HAVE_PRAGMA_IVDEP

30 #pragma ivdep

31 #endif

32 #ifdef STOKHOS_HAVE_PRAGMA_VECTOR_ALIGNED

33 #pragma vector aligned

34 #endif

35 #ifdef STOKHOS_HAVE_PRAGMA_UNROLL

36 #pragma unroll

37 #endif

38 for (int i = 0; i < size; ++i)

39 if (m.get(i))

40 ET::coeff(data, i) =

41 ET::coeff(st_array[0], i) / ET::coeff(st_array[1], i);

42 else

43 ET::coeff(data, i) = ET::coeff(st_array[2], i);

44 #endif

45 return *this;

46 }

47 //...

48 }; �
Listing 4.6: Mask assignments.

An example of logical reduction is the AND function which takes a mask as input and
returns a boolean which is true only if the mask stores true for every sample. This
function is implemented in Listing 4.7. The logical reductions are used to control the
code path followed by the ensemble and not to decide the followed path based on the first
sample as discussed in [Phipps et al., 2017].

1 template <typename T>

2 KOKKOS_INLINE_FUNCTION bool AND(Mask<T> m)

3 {

4 const unsigned char all_true = 255;

5 for (int i = 0; i < m.size_uc; ++i)

6 if (m.data[i] != all_true)

7 return false;

8 return true;

9 }

10 //... �
Listing 4.7: Logical reduction.
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4.3.4 Masks in ensemble GMRES

As discussed in the previous chapter, the control-flow divergences occur in GMRES during
the lucky breakdown, the normalization process, and testing the stopping criterion. There
are other occurrences of control-flow divergences occuring in some functions called by
GMRES such as the ROTG and the TRSM functions which compute the Givens rotations
and the solution of a lower triangular system respectively as those functions have if-then-
else statements. In this section we do not discuss all the possible occurrences of ensemble
divergence, we restrict ourselves to illustrating the use of the masks in the normalization
process lines 8–11 of Algo. 4 and in the stopping criterion lines 19–21 of Algo. 4. Other
occurrences have been treated with similar strategies.

Normalization

For the normalization of GMRES, we will first illustrate the use of EnsembleTrait and
then the masked assignment. In both cases, we use a temporary variable norm_inv which
is the inverse of the norm of the vector if the norm is not 0 for a given sample and 0
otherwise.

We illustrate in Listing 4.8 how EnsembleTrait can be used to normalize the vector if
its norm is not 0. In this case, each sample can follow a different code path.

In the second approach, we use the masked assignment MaskAssign(m,a)/={b,c,d}

as discussed in section 4.3.2 and 4.3.3 and implemented in Listing 4.6 to compute the
temporary variable norm_inv as follows: MaskAssign(norm>0,norm_inv)/={1.,norm,0.} .
The code is shown in Listing 4.9 for the normalization process.

1 typedef EnsembleTrait<T> ET;

2 const int s = ET::ensemble_size;

3

4 T norm_inv;

5 for (int l = 0; l < s; ++l)

6 if (ET::coeff(norm, l) > 0)

7 ET::coeff(norm_inv, l) = 1. / ET::coeff(norm, l);

8 else

9 ET::coeff(norm_inv, l) = 0.;

10

11 for (int i = 0; i < n; ++i)

12 v[i] *= norm_inv; �
Listing 4.8: Normalisation with EnsembleTrait.

1 T norm_inv;

2 MaskAssign(norm > 0, norm_inv) /= {1., norm, 0.};

3

4 for (int i = 0; i < n; ++i)

5 v[i] *= norm_inv; �
Listing 4.9: Normalisation with masked assignment.
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Both of those implementations have exactly the same output, however, the second
implementation is more concise and relies directly on Intel Intrinsics.

Stopping criterion

For the stopping criterion, we do the same too; we illustrate the use of EnsembleTrait

and mask to test if all samples have converged or not. The first approach consists in
looping over all the samples explicitly and check their norm as illustrated in Listing 4.10.
The second approach consists in using a mask and a logical reduction AND as shown in
Listing 4.11.

1 typedef EnsembleTrait<T> ET;

2 const int s = ET::ensemble_size;

3 // GMRES iterations

4 for (int j = 0; j < j_max; ++j)

5 {

6 // ...

7 bool has_converged = true;

8 for (int l = 0; l < s; ++l)

9 // Test if at least one sample has a residual norm

10 // strictly larger than the tolerance

11 if (ET::coeff(norm, l) > tol)

12 {

13 has_converged = false;

14 break;

15 }

16 if (has_converged)

17 break;

18 } �
Listing 4.10: Stopping criterion with EnsembleTrait.

1 // GMRES iterations

2 for (int j = 0; j < j_max; ++j)

3 // ...

4 // Test if all the samples have a residual norm

5 // smaller than the tolerance

6 if (AND(norm <= tol))

7 break; �
Listing 4.11: Stopping criterion with mask and logical reduction.

Once again, both implementations have exactly the same output, however, the second
implementation is more concise and potentially more readable.

4.4 Conclusions

In section 4.2, we have proposed a new implementation for the ensemble GEMV which
takes place in GMRES without reduction and have discussed its implementation using
a standard tiling strategy. This work leads to richer implementations than those that
were available as default implementations in KokkosKernels. We have shown that this
tiling strategy is able to reach very good performance similar to the Intel MKL imple-
mentation and have shown how the ensemble size impacts the choice of the tile size and
the performance of the algorithm. In particular, we have discussed the fact that the
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expected speed-up of the orthogonalization process due to ensemble propagation is 1 for
large problems and that it should be independent of the use of reduction. This implies
that the wall-clock time of GMRES without reduction will be smaller than the wall-clock
time of GMRES with reduction due to faster convergence of GMRES without reduction
compared to GMRES with reduction as discussed in Chapter 3.

After that, in section 4.3, we have proposed to use masks with some inspiration
from Kretz and Lindenstruth [2012] and the Intel intrinsic instructions for AVX-512 in
ensemble propagation as an alternative to the EnsembleTrait. This alternative avoids
looping explicitly on the samples and relying on the autovectorization, and it improves
the readability of the code. Finally, we have illustrated how to use it to tackle the
control-flow divergence in GMRES without reduction.

Although that we think that this alternative is promising as it eases the work of the
compiler and may lead to more optimized code, this alternative requires more investiga-
tions. Those investigations include,

• a study of the combined use of expression templates and Intel intrinsic instructions;
the mask implementation based on the EnsembleTrait supports the expression tem-
plates,

• the addition of SIMD intrinsics of other compiler vendors,

• the study of the best implementation with CUDA,

• a deep performance analysis on different architectures and compilers.

There is another important point to investigate. A current effort of Kretz [2018] is to
define SIMD data types in the C++ standard, this effort includes the definition of mask
in the C++ standard. This raises questions such as should the ensemble types rely or
not on the future C++ standard and should the ensemble types use the standard mask?

The work of this chapter is tested on finite element models in Chapter 7.
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Chapter 5
Mathematical formulation of the problems

In this thesis, we are interested in problems with non-symmetric or indefinite matrices
arising from the discretization of PDEs. This chapter describes mathematically the two
classes of problems considered in this work: contact problems and thermomechanical
problems.

Section 5.1 describes contact problems and mesh-tying problems which have indef-
inite matrices. Being non-linear, contact problems raise new occurrences of ensemble
divergence which have to be tackled. Those are discussed in the section 5.1.7.

Section 5.2 describes thermomechanical problems which have non-symmetric matrices
due to the one-way coupling between the temperature and displacement fields.

Moreover, this chapter describes the preconditioners used in the two classes of prob-
lems.

The majority of the content of this chapter, including the theory, is not novel; this
chapter is mainly a summary of existing references. However, the work discussed in
section 5.1.7 is novel and relies on other sections of this chapter. The reading of the
content of this chapter is not required to understand the results of the following chapters
and the reader might want to move forward.
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5.1 Mechanical problems including contact

The first class of problems considered in this work is the contact problems and the mesh-
tying problems.

5.1.1 Strong form

The content of this section is based on [Wohlmuth, 2011, chap. 2], [Wriggers, 2006,
chap. 3-4], and [Wiesner, 2015, chap. 5].

In this section, we assume an elastic behavior with small displacement assumptions
and isotropic materials.

Two-bodies contact problem

We first name one of the bodies the master which constrains the slave, the other body. We
denote by Ωs and Ωm the d-dimensional open bounded domain of Rd occupied by the de-
formable slave and master body in the undeformed configuration respectively. Moreover,
we denote by Ω the union of Ωs and Ωm.

The boundaries of Ωs and Ωm are denoted by Γs and Γm respectively and are decom-
posed into six subsets Γs

u,Γ
s
σ,Γ

s
c,Γ

m
u ,Γ

m
σ , and Γm

c such that:

Γs = Γ̄s
u ∪ Γ̄s

σ ∪ Γ̄s
c, (5.1)

Γm = Γ̄m
u ∪ Γ̄m

σ ∪ Γ̄m
c , (5.2)

Γu = Γ̄s
u ∪ Γ̄m

u , (5.3)

Γσ = Γ̄s
σ ∪ Γ̄m

σ , (5.4)

Γc = Γ̄s
c ∪ Γ̄m

c , (5.5)

where Γu, Γσ , and Γc stand respectively for the part of the boundary where Dirichlet
boundary conditions are applied, the part of the boundary where Neumann boundary
conditions are applied, and the potential contact surface. We denote by n the external
outward unit normal.

To each point x of the potential contact interface Γs
c, we can associate γ(x) a point

of Γm
c :

γ(x) = arg min
y∈Γm

c

‖x− y‖2, on Γs
c, (5.6)

where ‖.‖2 stands for the Euclidean norm. If Γs
c and Γm

c describe two locally convex
regions, we can prove that this association is unique [Wriggers, 2006, p. 59] for each
point x of the potential contact interface Γs

c.

This association (x,γ(x)) is useful to define the contact non-penetration condition
which will be introduced later in this section. If the assumption of small deformations
and small displacements does not hold, we have to update γ(x) based on the deformed
configuration. However, if the assumption holds, we can compute this association on the
undeformed configuration as written above and γ(x) can be computed once for all and
will not depend on the displacements.

This association is not the only way to define the contact condition introduced later
in this section. For example, in the literature, others define a gap function directly as
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follows [Pantuso et al., 2000]:

g(x) = inf
y∈Γm

c

‖x− y‖2, on Γs
c. (5.7)

Another association found in the literature is defined using the intersection of a
straight line through the point x parallel to the vector n and the surface Γm

c . It can
be shown that this intersection is equivalent to γ(x) for sufficiently simple geometry.

The different notations are represented in Fig. 5.1.

Ωs

Γs
c

Γs
uΓs

σ

n

x

γ(x)

Ωm

Γm
uΓm

σ

Γm
c

Figure 5.1: Geometrical configuration of the two bodies problem.

The mechanical stresses have to fulfill the local balance of momentum:

divx σ + f = 0 in Ω, (5.8)

where σ is the Cauchy stress tensor and f represents the external load per unit volume.
We assume small deformations, small displacements, and linear elastic isotropic be-

havior and we can write:

σ = C(εx u) in Ω, (5.9)

εx u =
1

2

(
Dx u + (Dx u)T

)
in Ω, (5.10)

where C is the fourth-order elasticity tensor, εx u the strain tensor associated to the
displacement u, and Dx is the gradient operator.

Neumann and homogenous Dirichlet boundary conditions are respectively represented
as follows:

σ(n) = t on Γσ, (5.11)

u = 0 on Γu, (5.12)

where t represents the surface load per unit surface.
In order to introduce the contact conditions, we introduce the gap between the two

points (x,γ(x)) after displacement:

g(x) = (x + u(x)− γ(x)− u(γ(x))) · n(x) = [u(x)] · n(x)− g0 on Γs
c, (5.13)

where [u(x)] = u(x) − u(γ(x)) and g0 = (x − γ(x)) · n(x) is the initial gap, i.e., the
gap when the body is not deformed and x + u(x) is the position of the point x after the
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deformation.

We decompose the contact traction l as follows:

− σ(n) = l = l n + lT on Γc, (5.14)

where l n and lT stand respectively for the normal and tangential parts of the contact
surface force. The presence of the minus sign implies that the value of l represents the
contact pressure.

Contact can either have or not have friction. If a frictional contact is assumed, where
the contact is locally closed, tangential forces are transferred between the master body
and the slave one. In this case, in transient responses, the two bodies at a closed surface
can either be sticking or sliding in the tangential direction. Such behavior introduces a
second conditional statement compared to the frictionless contact conditions where no
tangential forces are transferred. This new occurrence of ensemble divergence would have
to be tackled in future work.

In this thesis, we have implemented two sets of contact conditions: the frictionless
contact conditions in steady state and the sticking contact conditions in steady state.
To ease the theoretical discussion, we only present the theory for the frictionless contact
conditions in steady state:

• The slave body cannot penetrate into the master body:

g ≤ 0 on Γs
c. (5.15)

• The stresses in normal direction developed on Γs
c have to be compressive stresses

or have to vanish:

l ≥ 0 on Γs
c. (5.16)

• The stresses in normal direction developed on Γs
c have to vanish when the gap is

locally open, i.e. g < 0, and the gap has to be closed, i.e. g = 0, when the stresses
in normal direction are compressive stresses:

l g = 0 on Γs
c. (5.17)

• The stresses in tangential directions developed on Γs
c have to vanish if we assume

frictionless contact, and the deformable body can move freely according to the
tangential directions:

lT = 0 on Γs
c. (5.18)

The combination of the first three conditions enforces (g(x), l(x)) to be such as rep-
resented in Fig. 5.2 for all x ∈ Γs

c.

l(x)

g(x)0

Figure 5.2: Admissible (g(x), l(x)) in green represented in R2.
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The case of a rigid body is a particular case of the two-body contact problems where
u(γ(x)) = 0. The slave body is the deformable body and the master body the rigid body.
This notation can be interpreted as when we move the master surface in the direction
of the slave surface, this slave surface has to be deformed to verify the non-penetration
condition.

Mesh-tying problem

Mesh-tying problems can be seen as two body contact problems where the two bodies are
glued together. In other words, the gap in all directions:

g(x) = x + u(x)− γ(x)− u(γ(x)) = [u(x)] on Γs
c, (5.19)

must be zero.

l(x)

g(x)0

Figure 5.3: Admissible (g(x), l(x)) in green represented in R2.

5.1.2 Weak form

From the strong form we will derive variational inequalities such that the solution of the
strong form is always a solution of the variational inequalities but the converse is not
necessarily true.

First, we denote by V the space of sufficiently regular displacement fields on Ω that
satisfy the homogeneous Dirichlet boundary condition on Γu.

And we define a subset K of V of sufficiently regular displacement fields on Ω that
satisfy the homogeneous Dirichlet boundary condition on Γu and also the contact condi-
tion g0 − [v] · n ≥ 0 on Γs

c. The subset K is convex as for all v,w ∈ K, we have that
αv+(1−α) w verify the homogeneous Dirichlet boundary condition for any α ∈ [0, 1] and
we have that g0− [v] ·n ≥ 0 and g0− [w] ·n ≥ 0 and therefore g0− [αv+(1−α) w] ·n ≥ 0
is true for any α ∈ [0, 1].

Starting with the balance law in strong form (5.8), we multiply it with (v−u), where
u is the solution to the strong form and v is in K and then we use the divergence theorem:

∫

Ω

C(εx u) : εx(v − u)dV =

∫

Ω

f · (v − u)dV +

∫

Γσ

t · (v − u)dS +

∫

Γc

−l n · (v − u)dS.

(5.20)

The last term of (5.20) can be rewritten as follows:

∫

Γc

−l n · (v − u)dS =

∫

Γs
c

−l n · (v − u)dS +

∫

Γm
c

−l n · (v − u)dS (5.21)

=

∫

Γs
c

−l n · ([v]− [u])dS (5.22)
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Now, we can use the fact that u is the solution of the strong form, v is kinematically
admissible, and the contact conditions to deduce that:

− l n · ([v]− [u]) = − l ([v] · n− g0 + g0 − [u] · n) (5.23)

= − l ([v] · n− g0)− l (g0 − [u] · n) (5.24)

= l (g0 − [v] · n) (5.25)

≥ 0, (5.26)

Therefore, we can bound the last term of (5.20) and deduce the following inequality:

∫

Ω

C(εx u) : εx(v − u)dV ≥
∫

Ω

f · (v − u)dV +

∫

Γσ

t · (v − u)dS. (5.27)

Therefore, we can write the problem as follows:

Find u ∈ K such that
∫

Ω

C(εx u) : εx(v − u)dV ≥
∫

Ω

f · (v − u)dV +

∫

Γσ

t · (v − u)dS, ∀v ∈ K.

(5.28)

We can write the previous variational inequality more abstractly as follows:

Find u ∈ K such that

a(u,v − u) ≥ f(v − u), ∀v ∈ K. (5.29)

where a is the functional that associates to any displacement field v in V and virtual
displacement field w in V the internal virtual work:

a(v,w) =

∫

Ω

C(εx v) : εxwdV, (5.30)

and f is the functional that associates to any virtual displacement field w in V the
external virtual work:

f(v) =

∫

Ω

f · vdV +

∫

Γσ

t · vdS. (5.31)

A variational inequality of this type, which involves seeking a solution in a convex
set such that an inequality is satisfied for all test functions in that convex set, is called
a variational inequality of the first kind in the literature [Glowinski, 1984, P1]. The
Lions and Stampacchia theorem can be used to show the existence and uniqueness of the
solution of this variational inequality [Glowinski, 1984, Theorem 3.1].

We can, now, introduce the indicator functional χK of K defined as follows:

χK(v) =

{
+∞ if v /∈ K
0 if v ∈ K

. (5.32)

We can use the indicator functional to write the variational inequality of the first kind
as a variational inequality of the second kind:
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Find u ∈ V such that

a(u,v − u) + χK(v)− χK(u) ≥ f(v − u), ∀v ∈ V . (5.33)

Any variational inequality of the first kind can be written as a variational inequality of
the second kind. However, the set of variational inequalities of the second kind is larger
than the set of variational inequalities of the first kind because it includes variational
inequalities for which the functional χK is replaced by a more complex functional.

Once again, this variational inequality has a unique solution following [Glowinski,
1984, Theorem 4.1].

Minimization problem

We can define the potential energy functional J(v) as follows:

J(v) =
1

2
a(v,v)− f(v). (5.34)

We can show now that the potential energy functional at all v ∈ K is bounded by the
potential energy functional at the solution of the variational inequality of the first kind:

J(v) =
1

2
a(u + v − u,u + v − u)− f(u + v − u) (5.35)

= J(u) + a(u,v − u)− f(v − u) +
1

2
a(v − u,v − u) (5.36)

≥ J(u) + a(u,v − u)− f(v − u) ≥ J(u). (5.37)

Therefore, we can write the variational inequality of the first kind as an equivalent
minimization problem:

Find u ∈ K such that

J(u) ≤ J(v), ∀v ∈ K. (5.38)

The previous energy-minimization problem can be written as follows:

Find u ∈ V such that

u = arg inf
v∈V

1

2

∫

Ω

C(εx v) : εxvdV −
∫

Ω

f · vdV −
∫

Γσ

t · vdS (5.39)

such that [v] · n− g0 ≤ 0 on Γs
c (5.40)

Saddle-point problem

We introduce a Lagrange multiplier z ≥ 0 on Γs
c. If v ∈ K, we have that, for any Lagrange

multiplier z ≥ 0 on Γs
c, we have:

∫

Γs
c

([v] · n− g0) z dS ≤ 0. (5.41)
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Moreover, we know that there exist at least one z ≥ 0 on Γc such that:
∫

Γs
c

([v] · n− g0) z dS = 0, (5.42)

as it would be true for z = 0 on Γs
c which obviously verifies z ≥ 0 on Γs

c.
Therefore, we can write that:

sup
z≥0 on Γs

c

∫

Γs
c

([v] · n− g0) z dS = 0, ∀v ∈ K. (5.43)

Moreover, if we consider v ∈ V \K, we have that v · n − g0 > 0 at some points on
Γcs and we can deduce that:

sup
z≥0 on Γs

c

∫

Γs
c

([v] · n− g0) z dS = +∞, ∀v ∈ V \K. (5.44)

These observations allow us to write the previous problem as follows:

Find u ∈ V such that

u = arg inf
v∈V

sup
z≥0 on Γs

c

1

2

∫

Ω

C(εx v) : εxvdV −
∫

Ω

f · vdV −
∫

Γσ

t · vdS

+

∫

Γs
c

([v] · n− g0) zdS

(5.45)

which leads us to the saddle-point problem:

Find u ∈ V and l ≥ 0 on Γs
c such that

∫

Ω

C(εx u) : εxvdV +

∫

Γs
c

[v] · n ldS =

∫

Ω

f · vdV +

∫

Γσ

t · vdS, ∀v ∈ V (5.46)

∫

Γs
c

([u] · n− g0) (z − l)dS ≤ 0, ∀z ≥ 0 on Γs
c (5.47)

We can write the previous saddle-point problem more abstractly as follows:

Find u ∈ V and l ≥ 0 on Γs
c such that

a(u,v) + b(v, l) = f(v) ∀v ∈ V , (5.48)

b(u, z − l) ≤ g(z − l) ∀z ≥ 0 on Γs
c (5.49)

where a and f are defined in (5.30) and (5.31) respectively, b is the functional that
associates to any displacement field v and contact force z their virtual work,

b(v, z) =

∫

Γs
c

[v] · zdS, (5.50)

and g is as follows:

g(z) =

∫

Γs
c

g0 z · ndS. (5.51)
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Mesh-tying problem

The main difference between the mesh-tying problem and the contact problem is that
the set K of sufficiently regular displacement fields on Ω that satisfy the homogeneous
Dirichlet boundary condition on Γu and also the mesh-tying condition is a linear space
and not only a convex cone as in the contact problem case.

Therefore, following the same approach as in the previous subsection, we can deduce
the mesh-tying problem in saddle-point formulation:

Find u ∈ V and l such that

a(u,v) + b(v, l) = f(v) ∀v ∈ V , (5.52)

b(u, z) = 0 ∀z (5.53)

where a, b, and f are defined in (5.30), (5.50), and (5.31) respectively.

5.1.3 Discretization

We note T h,s and T h,m a mesh of Ωs and Ωm respectively as shown in Fig. 5.4 with a
mesh characteristic size denotes by h, P h,s and P h,m the set of all vertices of T h,s and
T h,m not being on Γ̄s

u and Γ̄m
u respectively, P h,s

u and P h,m
u the set of all vertices of T h,s and

T h,s on Γ̄s
u and Γ̄m

u respectively, and P h,s
c the set of all vertices of P h,s on Γ̄s

c as illustrated
in Fig. 5.4.

slave nodes, P h,s
c ,

slave inner nodes,

Dirichlet slave nodes, P h,s
u ,

master nodes, P h,m
c ,

master inner nodes,

Dirichlet master nodes, P h,m
u .

Figure 5.4: Mesh of the two-body contact problem.

The Mortar Finite Element Method is a mixed (or hybrid) FEM where both the
displacement u (primal variable) and the surface forces on the potential contact surface
l (dual variable) are discretized using shape functions. For the primal variable, we use
linear finite elements and we denote by S1(Ω, T h) the finite element space for linear finite
elements associated with T h

For the primal variable, we use linear finite elements and we denote by S1(Ω, T h,s)×
S1(Ω, T h,m) the finite element space for linear finite elements associated with T h,s and
T h,m.

The variables are discretized as follows:

uh =
∑

p∈Ph,s

up φp +
∑

p∈Ph,m

up φp, vh =
∑

p∈Ph,s

vp φp +
∑

p∈Ph,m

vp φp, (5.54)

lh =
∑

p∈Ph,s
c

lp ψp, zh =
∑

p∈Ph,s
c

zp ψp, (5.55)
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where φp is the standard scalar first-order nodal basis function associated to the vertex
p, i.e. the usual d-dimension hat function, and ψp will be defined in the next section.

It can be seen that the primal variables are discretized on both volumes and the
Lagrange multipliers are only discretized on the slave side. This can be explained by the
fact that the constraint q ≤ 0 is only defined on Γs

c.
The discrete saddle point-problem can now be written as follows:

Find uh and lh with lT,p = 0 and lp · n ≥ 0, ∀p ∈ P h,s
c such that

a(uh,vh) + b(vh, lh) =f(vh) ∀vh, (5.56)

b(uh, zh − lh) ≤g(zh − lh) ∀zh : zT,p = 0, zp · n ≥ 0, ∀p ∈ P h,s
c . (5.57)

Writing u and l the column vector corresponding to the concatenation of the up and
lp, we can write the previous problem as follows:

Find u and l such that
{
Ku+Gl = f

gq ≤ 0, gq lq = 0, lq ≥ 0, lT,q = 0, ∀q ∈ P h,s
c

, (5.58)

where

gq :=

∫

Γs
c

([uh] · n− gh0 )ψqdS, (5.59)

and K, G, f are defined such that

wTKu = a(wh,uh), (5.60)

wTGl = b(wh, lh), (5.61)

wT f = f(wh). (5.62)

Mesh-tying problem

In the case of the mesh-tying problem, the previous problem is written as follows:

Find u and l such that [
K G
GT 0

] [
u
l

]
=

[
f
0

]
, (5.63)

where K, G, f are defined such that

wTKu = a(wh,uh), (5.64)

wTGl = b(wh, lh), (5.65)

wT f = f(wh). (5.66)

5.1.4 Lagrange multipliers shape functions

We will now discuss possible choices for ψp.
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In this section, even if we have always assumed that Γ̄c ∩ Γ̄u = ∅, we will discuss the
modification of the shape functions if this assumption is not verified to link with previous
literature on the Mortar method.

Standard shape function

The first shape function that has been used in the Mortar method, [Bernardi et al., 1993],
is the so-called standard shape function ψp.

The standard shape function ψp is defined as the trace on Γs
c of the d-dimensional

scalar standard nodal basis function φp used in the body and associated to the node p:

ψp := φp |Γs
c
, ∀p ∈ P h,s

c . (5.67)

They are shown in Fig. 5.5. These shape functions have been used in [Puso, 2004],[Puso
and Laursen, 2004a], and [Puso and Laursen, 2004b].

0

1
ψp=φp |Γc

0

1 ψp=φp |Γc

Figure 5.5: Standard shape functions in 2D and 3D: in both cases the shape function
of the Lagrange multiplier ψp is equal to the trace on Γs

c of the d-dimensional scalar
standard nodal basis function φp used in the body and associated to the node p.

As we have restricted ourselves on the case of scalar standard first-order nodal basis
function, one advantage of these shape functions is that they are positive or null on their
support.

In order to not have an overconstrained problem, we cannot associate Lagrange shape
functions to the nodes constrained with Dirichlet boundary conditions. However, we
want our discretization to be able to reproduce the constant force between the body
and the rigid body, i.e. we need a partition of unity, to guarantee optimal convergence
[Flemisch and Wohlmuth, 2007]. Therefore, we need to modify the shape functions in
the neighborhood of the Dirichlet nodes. A possible way is to replace the part of the
shape function on the element including a Dirichlet node by a constant unitary function
divided by the number of non-Dirichlet constrained nodes of the mesh on this element.
Therefore we will have:

∑

p∈Ph,s
c

ψp(x) = 1,∀x ∈ Γs
c. (5.68)

Such modifications are shown in Fig. 5.6.
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0

1

0

1

Figure 5.6: Modified standard shape functions in 2D and 3D: Dirichlet conditions
are applied at the green point in 2D and on the green line in 3D. The Lagrange
multiplier shape functions are represented in red. In both cases, the modifications
of the Lagrange multiplier shape functions are such that the sum of all the shape
functions equals 1 everywhere. In the 3D example, the plateau has to be equal to 0.5
as 2 shape functions contribute to each half of this plateau.

It can be shown that such shape functions verify the discrete inf-sup condition [Bel-
gacem, 1999] and that they lead to a convergenceO(h) in the energy norm a(u−uh,u−uh)
for frictionless problems where h is the mesh characteristic size.

Dual discontinuous shape function

After that, a second type of shape functions has been introduced in [Wohlmuth, 2000].
These new functions ψp have been built such that they have the following property:

• They verify a biorthogonality property with the primal shape function φp:

∫

Γs
c

φp ψq dS = δpq

∫

Γs
c

φp dS, ∀p ∈ P h,s
c ,∀q ∈ P h,s

c (5.69)

where δpq is the Kronecker delta. This property enforces the partition of unity.

• They have the same support as the standard shape function:

supp(φp) ∩ Γs
c ≡ supp(ψp), ∀p ∈ P h,s

c . (5.70)

• They are not necessarily continuous at the vertices. Continuity enforcement, as
in the standard shape function case, is not necessary to have a stable method
[Wohlmuth, 2000, p. 992].

There exist different choices of basis functions which satisfy the previous constraints.
In this thesis we will focus on the most popular choice, the so-called dual discontinuous
shape function introduced in [Wohlmuth, 2000]. These functions are obtained by an
element-wise biorthogonalization process of the local nodal finite elements followed by a
node-wise glueing step [Wohlmuth, 2011].

We can do the element-wise biorthogonalization process writing for an element e of
the interface:

ψq |e:=
∑

p∈Pe

cpq φp |e, ∀q ∈ Pe, (5.71)

where Pe stands for the set of all mesh nodes included in the element e, f |e for the
restriction of f on the element e, and where the coefficients cpq should verify, i.e. be the
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solution of the element mass matrix system:

∑

r∈Pe

(∫

e

φr φp dS

)
crq = δpq

∫

e

φp dS. (5.72)

Then, we can do the node-wise glueing step:

ψq :=
∑

e

ψq |e . (5.73)

This gives us the dual discontinuous shape functions shown in Fig. 5.7.

−1
0

1

2

ψp

φp |Γc

−1
0

1

2

Figure 5.7: Dual discontinuous shape functions in 2D and 3D.

As in the previous case, we have to change the shape functions in the neighborhood
of the Dirichlet nodes as shown in Fig. 5.8. Such a modification allows the partition
of unity without violating the biorthogonality property. We have to stress the fact that
the biorhogonality property has to be verified for each couple (p, q) ∈ P h,s

c × P h,s
c and

P h,s
c has been defined as a subspace of P h,s where none Dirichlet nodes are included.

Therefore, a modification on the neighborhood of the Dirichlet nodes does not violate the
biorthogonality property.

0

1

−1

2

−1
0

1

2

Figure 5.8: Modified dual discontinuous shape functions in 2D and 3D.

The main advantage of this approach is that the biorthogonality is useful to simplify
the system to solve and the active set strategy discussed later in section 5.1.5. The
biorthogonality property enforces the diagonality of the coupling matrix between pri-
mal and dual variables, this makes the problem sparser and even allows the analytical
computation of the inverse of the coupling matrix.

The inf-sup condition is theoretically proved for the discontinuous dual shape func-
tions, proof in [Wohlmuth, 2000] and the method continues to converge in O(h) in the
energy norm for frictionless problems [Wohlmuth, 2000].

There exist two difficulties concerning the use of dual shape functions, which are not
shared with standard shape functions known in the literature [Popp et al., 2013b]. The
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main issue is when the mesh is not sufficiently fine on a curved interface, this issue has
been observed in [Flemisch et al., 2005] and [Flemisch and Wohlmuth, 2007] too. A
possible solution for this issue is to use a Petrov-Galerkin formulation and use standard
shape functions for the weight Lagrange multiplier z [Popp et al., 2013b]. The problem
is no longer a standard saddle-point problem, but we unify the advantages of both shape
functions [Popp et al., 2013b]. It can be at least partially proved theoretically that the
good properties of the problem are preserved and therefore, we keep the validation of the
inf-sup condition and good convergence property. However, using Petrov-Galerkin, we
lose the symmetry of the system.

5.1.5 Active set strategy

In this section we will derive the algorithm to solve the discrete problem:
{
Ku+Gl = f

gq ≤ 0, gq lq = 0, lq ≥ 0, lT,q = 0, ∀q ∈ P h,s
c

. (5.74)

As (5.74) has inequalities, the system is nonlinear and cannot be solved directly using a
linear solver.

We will derive an iterative strategy based on a semi-smooth nonlinear complementary
function and a semi-smooth Newton method.

We introduce a positive constant c and we rewrite (5.74) as follows:

{
Ku+Gl = f

C(lq,u
h) = 0, lT,q = 0, ∀q ∈ P h,s

c

, (5.75)

where C(lq,u
h) is a semi-smooth complementary function defined as follows:

C(lq,u
h) := lq −max(0, lq + c gq). (5.76)

We have that x 7→ max(0, x) is Lipschitz continuous and nondifferentiable at the
origin, however, as it is semi-smooth we can define its derivative as follows:

d

dx
max(0, x) =

{
0 if x ≤ 0

1 if x > 0
. (5.77)

Based on the definition (5.76) and the derivative (5.77), we can define two different
sets of node indices which regroup the nodes where the derivatives of max(0, lq + c gq)
will be zero and non-zero; they are respectively named the inactive set I and the active
set A :

I =
{
q ∈ P h,s

c : lq + c gq ≤ 0
}
, (5.78)

A =
{
q ∈ P h,s

c : lq + c gq > 0
}
. (5.79)

For a given inactive set and active set, we can deduce a block partition ofG as follows:

G = [GI | GA ], (5.80)

where GI and GA stand for the columns of G associated to the degrees of freedom of
all nodes of I and A respectively.
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5.1. Mechanical problems including contact

We can now derive the semi-smooth Newton method to solve (5.75). For that we start

from an initial guess
[
u0T

l0I
T
l0A

T
]T

which has to be iteratively corrected:




uk+1

lk+1
I

lk+1
A


 =




∆uk

∆lkI
∆lkA


+




uk

lkI
lkA


 , (5.81)

to impose that:

C(lkq ,u
hk) + ∆C(lkq ,u

hk) = 0. (5.82)

Based on the status of a node q, either active or inactive, i.e. either closed or open
gap, the expression (5.82) imposes different corrections. Therefore, we will first derive
the two corrections and then regroup the results:

• If the gap is closed at node q, node q is active and q ∈ A :

C(lkq ,u
hk) + ∆C(lkq ,u

hk) = 0 (5.83)

⇒
gk+1
q = 0 (5.84)

⇒
NA ∆uk = − (NA uk − g0,A ), (5.85)

where gk+1
q is gq at the Newton iteration k + 1.

Using the constraint on the tangential part of the multiplier, we have:

TA ∆lkA = −TA l
k
A (5.86)

where N , T are defined as follows:

vT
s N l =

∫

Γs
c

vh · n lh dS, (5.87)

z T l =

∫

Γs
c

zhT · lhT dS, (5.88)

and g0 is a vector corresponding to the concatenation of
∫

Γs
c
gh0 ψqdS for all q ∈ P h,s

c .

• If the gap at node q is open, node q is inactive and q ∈ I :

C(lkq ,u
hk) + ∆C(lkq ,u

hk) = 0 (5.89)

⇒
lk+1
q = 0 (5.90)

⇒
∆lkI = − lkI . (5.91)

Using the constraint on the tangential part of the multiplier, we have:

∆lkI = −lkI (5.92)
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To summarize, we have:




K GI GA

0 II 0
NT

A 0 0
0 0 TA







∆uk

∆lkI
∆lkA


 = −




K GI GA

0 II 0
NT

A 0 0
0 0 TA






uk

lkI
lkA


+




f
0
g0,A

0


 . (5.93)

Using (5.81) in (5.93), we deduce that:




K GI GA

0 II 0
NT

A 0 0
0 0 TA






uk+1

lk+1
I

lk+1
A


 =




f
0
g0,A

0


 . (5.94)

Finally, using the fact that the tangential part of the active Lagrange multipliers is
zero, we can write the previous system as follows:



K NI NA

0 II 0
NT

A 0 0





uk+1

lk+1
I

lk+1
A


 =



f
0
g0,A


 . (5.95)

Therefore, we can derive the following Algorithm 10 by choosing an initial guess for the
active set A0, construct the system (5.95), solve it, update the active set and continue
until convergence occurs. This algorithm is known in the literature as the active set
strategy. In the algorithm, we used the fact that:

gk+1
q = b(uh(k+1), ϕq)− g(ϕq) (5.96)

= eT
q

(
NTuk+1 − g0

)
, (5.97)

to write:

lk+1
q + c gk+1

q = lk+1
q + c eT

q

(
NTuk+1 − g0

)
. (5.98)

Algorithm 10: Active set strategy

1 k ← 0
2 Choose an initial guess for the active set Ak

3 do
4 Given Ak, compute the solution of



K NI NA

0 II 0
NT

A 0 0





uk+1

lk+1
I

lk+1
A


 =



f
0
g0,A


 . (5.99)

5 Ak+1 ←
{
q ∈ P h

c : lk+1
q + c eT

q

(
NTuk+1 − g0

)
> 0
}

6 k ← k + 1

7 while Ak 6= Ak−1
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5.1.6 Numerical solution strategy

In this section, we present the numerical solution strategy used to solve the linear system
(5.95).

The linear system is solved using the right-preconditioned GMRES method discussed
in section 3.1.1. As already discussed, using a preconditioner can reduce the number of
iterations required to converge.

In this thesis, we consider multigrid preconditioners as discussed in more details in
Appendix C. Multigrid methods are motivated by the observation that relaxation-based
methods typically converge slowly for error modes with low-frequency. Using a relaxation-
based method directly as the preconditioner would damp high-frequency error modes
but not the low-frequency ones. The idea of the multigrid methods is to use a so-
called smoother, a method that damps high-frequency modes, such as relaxation-based
methods, on systems of different sizes. The multigrid method relies on two phases: the
multigrid setup where a hierarchy of increasingly smaller linear systems called levels is
computed and the multigrid apply phase where the method visits the levels and applies
the smoothers on the linear system on each level.

This way, when applying the preconditioner, even low-frequency error modes can be
damped as a low-frequency mode on a higher level can be seen as a higher-frequency
mode on a lower level.

In this thesis we restrict ourselves to the use of the algebraic multigrid methods (AMG)
which construct the multigrid hierarchy from the graph of the operator of the finest level.
We restricted ourselves to those preconditioners as they were already implemented in the
MueLu package which supports embedded ensemble propagation. When evaluating the
preconditioner for an ensemble, the results are mathematically equivalent to applying the
preconditioner to each sample individually.

Preconditioner

In this work, we use the full aggregation-based algebraic multigrid strategy for struc-
tural contact problems in saddle-point formulation using a Mortar approach proposed
by Wiesner [2015] as a right preconditioner which can be seen as a Monolithic AMG
preconditioner, in particular as a AMG(SIMPLE), as discussed in [Verdugo and Wall,
2016].

This is a multigrid strategy as discussed in Appendix C that maintains the block struc-
ture of the block operator by aggregating both displacement and Lagrange multipliers as
illustrated in Fig. 5.9.

K
B
T 2

B 1

C

K
B
T 2

B 1

C

K
B
T 2

B 1

C

K
B
T 2

B 1

C

Figure 5.9: Illustration of the multigrid hierarchy of the Monolithic AMG precon-
ditioner for contact problem. The finest level is represented on top of the coarsest
levels.
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On intermediate multigrid levels, a SIMPLE relaxation [Benzi et al., 2005; Li and
Vuik, 2004] is used as blocked smoother.

The SIMPLE smoother for contact problem

A :=

[
K B1

BT
2 C

]
, (5.100)

where, B1 =
[
NI NA

]
, B2 =

[
0 NA

]
, and C =

[
II 0
0 0

]
, has block preconditioning

matrix M :

M :=

[
K 0
BT

2 R

] [
I D−1B1

0 1
β
I

]
=

[
K KD−1B1

BT
2

1
αβ
C + (1− 1

αβ
)BT

2D
−1B1

]
, (5.101)

where D is an approximation of K, R := 1
α
C − 1

α
BT

2D
−1B1 is an approximation of

the Schur complement, and α and β are damping factors chosen in the interval ]0, 1]
discussed in [Elman et al., 2008]. In this example, we use the matrix diagonal of K as
the approximation D.

In the particular case of the mesh-tying problem, we have:

A :=

[
K G
GT 0

]
, (5.102)

has block preconditioning matrix M :

M :=

[
K 0
GT R

] [
I D−1G
0 1

β
I

]
=

[
K KD−1G
GT (1− 1

αβ
)GTD−1G

]
, (5.103)

For both cases, contact problems and mesh-tying problems, there exist cases where
the saddle-point problem is well posed but the matrix K is singular. This happens for
instance in the example discussed in section 7.3. This may have an impact on the results;
the results may be different if a preconditioner had been chosen that is better able to
deal with the singularity of the main matrix block.

The parameters used for these multigrid preconditioners are discussed in the results
section.

5.1.7 Ensemble divergence

When applying ensemble propagation on the active set strategy of Algorithm 10, two
new potential occurrences of ensemble divergences are introduced:

• A new occurrence of loop divergence: different samples of an ensemble may require
a different number of active set iterations to converge,

• A new if-then-else divergence: the set of active Lagrange multipliers Ak+1 is now
sample dependent, this impacts the sparsity pattern of the matrix of the system.

Whereas the new loop divergence can be solved using a previously used strategy: to
wait for the last sample to converge; two subproblems arise from that strategy as, we
now have two nested iterative processes the active set strategy and the GMRES method:
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• Let’s assume that the active set strategy has converged for a first sample `1 but
has not converged for a second sample `2. As we are waiting for the last sample to
converge and as `2 has not converged, the active set strategy requires at least one
more iteration. Therefore, we have to update the activity and solve the updated
linear system for all the samples. However, the active set strategy has already
converged for `1 and, therefore, we already have a converged solution of the updated
linear system for `1 as this linear system is the same as the one of the previous
active set iteration. As a consequence, the initial guess for GMRES used to solve
the updated linear system for `1 has already a small absolute norm. However, as we
are using relative residual norms, even for `1, the initial relative norm is 1. During
this current GMRES solver, the relative residual norm associated to `1 will continue
to decrease. We must avoid the case where the sample `1 is the limiting sample for
the new GMRES solver, i.e. we need to enforce that `1 is not the slowest sample to
converge in the new GMRES solver in the sense of the relative norm,

• If we make the same assumption, i.e. if we assume that sample `1 has converged at
the previous active set iteration but not `2, as discussed in the previous subproblem,
the sample `1 continues to be updated in a following GMRES solver. The norm of
the residual of sample `1 continues to decrease. However, this norm can be reduced
up to a point where the implicit and explicit residual are no more coherent leading
to loss of accuracy described just below.

As already said, the implicit norm is equal to the explicit norm in infinite precision.
However, in practice the condition number of the matrix of the linear system in-
fluences the difference between the two norms. What can happen is that GMRES
may converge in the sense of the implicit norm but not in the sense of the explicit
norm (this depends both on the tolerance and the condition number), this issue is
named as loss of accuracy.

The first problem is solved updating the tolerance of GMRES for the converged samples
and setting it to 1. This enforces the fact the initial guess of each converged sample has
already converged, in the sense of the relative norm of the residual of the new GMRES
solver, and the associated sample is not the limiting sample. The second problem cannot
be avoided but does not impact the precision of the results nor the number of iterations
to converge.

The new if-then-else divergence, the sample dependence of the activity, is more chal-
lenging than the above-mentioned loop divergence as this if-then-else divergence can
potentially impact the sparsity pattern and the data layout. This if-then-else divergence
can be treated using a strategy used in the context of contact mechanics with the as-
sumptions of small deformations and small displacements without ensemble propagation.
We first explain this standard strategy without ensemble propagation and, then, explain
how it can be used to resolve the if-then-else divergence.

Although the activity of Lagrange multipliers cannot be known a priori, the small
deformations and small displacements assumptions allow us to compute once for all the
association (x,γ(x)) defined in (5.6). The independence of this association with respect
to the activity of the Lagrange multipliers allows us to precompute a sparsity pattern
which includes the sparsity patterns of all possible contact configurations. The sparsity
pattern of the blocked operator of (5.95) is always included in the sparsity pattern of the
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block matrix:
[
K N
NT I

]
. (5.104)

In other words, it is possible to compute, based on the mesh and the definition of Γs
c and

Γm
c , a sparsity pattern which will include all sparsity patterns of any active set. In order

not to have too large Mortar matrices, Γs
c and Γm

c should be close to the actual contact
interface.

In the case of contact problems with ensemble propagation, assuming the sample inde-
pendence of the mesh, we have that the association (x,γ(x)) is sample independent too.
Therefore, we can, once again, compute the smallest union of all feasible sparsity patterns
that might be encountered during the active set strategy with ensemble propagation as
illustrated in Fig. 5.10.

This approach suppresses ensemble divergence but it has the drawback of increasing
the amount of memory used as zero values are stored for inactive contact.

In practice, we use masked assignments as introduced in section 4.3 to implement this
strategy in section 6.4.3.

Sample dependent matrices Sample dependent graphs Union of the graphs

Figure 5.10: Local contact status changes the graph of the Mortar matrices of the
contact formulation. Samples of the same ensemble can have different graphs. This
ensemble divergence is managed by using the union of all feasible graphs.

5.2 Thermomechanical problems

The second class of problems considered in this work is the thermomechanical problems.

5.2.1 Strong form

First, as done in the previous section, we denote by Ω the d-dimensional open bounded
domain of Rd occupied by the deformable body in the undeformed configuration.

In this study, we assume small deformations, small displacements, and a linear ther-
moelastic behavior. We can write the stress tensor as follows:

σ = Cεx u−D (T − Tref ) in Ω, (5.105)

where D is a second-order tensor called stress-temperature modulus, T is the temperature,
and Tref is the reference temperature for thermal expansion.
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We can write the following balance laws:

∇ · (Cεx u−D (T − Tref )) + f = 0 in Ω, (5.106)

k∆T + r = 0 in Ω, (5.107)

where k is the isotropic thermal conductivity and r is the internal heat generation per
unit volume.

The boundary of Ω is denoted by Γ and is decomposed into four subsets Γu, Γσ, Γq,
and ΓT such that:

Γ = Γ̄u ∪ Γ̄σ, (5.108)

Γ = Γ̄q ∪ Γ̄T , (5.109)

where Γu, Γσ, Γq, and ΓT stand respectively for the part of the boundary where Dirichlet
boundary conditions are applied on the displacement fields, the part of the boundary
where surface tractions are applied, the part of the boundary where Dirichlet boundary
conditions are applied on the temperature field, and the part of the boundary where heat
fluxes are applied.

Neumann and Dirichlet boundary conditions are represented as follows:

σ(n) = t on Γσ, u = 0 on Γu, (5.110)

q · n = h on Γq, T = 0 on ΓT , (5.111)

where t represents the surface load per unit surface and h the heat flux imposed.

5.2.2 Discretization

After discretization using the finite element method we deduce the non-symmetric system:
[
K S
0 L

] [
u
t

]
=

[
f
l

]
, (5.112)

where K is the stiffness matrix, L the matrix linked to the discretization of the heat
problem, S the coupling matrix linked to the thermal expansion, f the vector of external
forces, l the vector of external heat generation, u the mechanical degree of freedom, and t
the value of the temperature minus the reference temperature Tref . The shape functions
used to discretize the temperature field are the standard shape functions used for the
discretization of the displacement fields discussed earlier in this chapter.

The matrices K, L, and S and the vectors f and l are defined such that:

wTKu =

∫

Ω

C(εx wh) : εxu
h dV, (5.113)

wT S t =−
∫

Ω

DT h : εx wh dV, (5.114)

vTLt =

∫

Ω

k∇ vh · ∇T h dV, (5.115)

wT f =−
∫

Ω

DTref : εx wh dV +

∫

Ω

f ·wh dV +

∫

Γσ

t ·wh dS, (5.116)

vT l =

∫

Ω

r vh dV −
∫

Γq

hvh dS. (5.117)
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5.2.3 Numerical solution strategy

As in the case of the contact problems, we use the right-preconditioned GMRES method
discussed in section 3.1.1.

Once again, we use a multigrid precondtioner as discussed in section 5.1.6, in Ap-
pendix C, and below.

In the case of thermomechanical problems, we consider, in addition to the GMRES
stopping criterion based on the norm of the residual, stopping criteria based on the norm
of the residual of each block to enforce the convergence of each physics individually.

Preconditioner

For thermomechanical problems, we use a Monolithic AMG preconditioner which ac-
counts for the coupling between temperature and displacement field at all multigrid levels
as discussed in [Verdugo and Wall, 2016] and illustrated in Fig. 5.11. All levels of the
multigrid hierarchy have both the temperature and displacement fields. As proposed and
defined in [Verdugo and Wall, 2016], we use backward block Gauss-Seidel iterations as a
block level smoother.

K
0

S
L

K
0

S
L

K
0

S
L

K
0

S
L

Figure 5.11: Illustration of the multigrid hierarchy of the Monolithic AMG precon-
ditioner for thermomechanical problem. The finest level is represented on top of the
coarsest levels.

5.3 Conclusions

In this chapter, we have formally described the two classes of problems used as examples
for ensemble GMRES in the remainder of this thesis.

Body 1
A

Body 2
B

Sample 1

Body 1

Body 2

Sample 2

Body 1

Body 2

Figure 5.12: Linear elasticity contact problems with large displacements: the bodies
are modelled as elastic bodies with small strain theory and their contact can be either
locally closed or open. Due to the large sliding, the point A of Body 1 can be in
contact with point B (Sample 1) or with any other point of the surface of Body 2
(Sample 2) .

Moreover, we have discussed how to solve ensemble divergence arising in the contact
problems using the union of the graph of potential contact configuration.

As future work, it would be interesting to consider contact problems with large sliding
as it raises new type of ensemble divergence as the potential contact interfaces are a priori
unknown and can change from one sample to another as illustrated in Fig. 5.12.
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Chapter 6
Implementation details

In this chapter, we describe Katoptron1: the software developed and used during this
thesis. Katoptron is a FE solver implemented in the Waves framework using the Trilinos
library with the aim of computing thermomechanical deformations of mirrors.

1https://gitlab.uliege.be/am-dept/waves

97

https://gitlab.uliege.be/am-dept/waves


Chapter 6. Implementation details

6.1 Waves

Waves is an open-source code which has been developed by Romain Boman since 2014
with the purpose of being a toolbox for PhD students to develop PDEs solvers in the
department of Aerospace and Mechanical Engineering at University of Liège.

The architecture of Waves is based on two sets of libraries:

• a set of common necessary libraries which give common features such as gmsh mesh
[Geuzaine and Remacle, 2009] input supports, VTK [Schroeder et al., 2004] output
writers, time monitor, Gauss-point definitions;

• a set of finite element solvers such as the “waves” solver used to solve the wave
equation on imported meshes. This solver was the first one developed and gave its
name to the software.

Waves is mainly written in C++ and wrapped in Python with SWIG [Beazley, 2003].
Waves can be compiled using CMake [Martin and Hoffman, 2010] and supports CTest.

The models, such as finite element discretization of the wave problem, are defined in
Python where the mesh and an arbitrary number of boundary conditions and material
properties are set. Afterwards, the C++ compiled functions take those data as inputs,
construct the matrices and vectors of the linear systems to solve, solve them, and extract
results with different output types such as VTK, gmsh, or text file. The post processing
is then pursued in Python where the user can extract values of the solution along lines,
cuts, at points, or even use in situ visualization.

6.2 Trilinos

Trilinos [Heroux et al., 2005] is a software component library developed by Sandia Na-
tional Laboratories with the aim of breaking down PDEs solvers into common building
blocks, optimizing those blocks, and constructing optimized solvers based on those blocks.

6.3 Katoptron

In order to test ensemble propagation, we have implemented a finite element code based
on the Tpetra solver stack from Trilinos in the Waves framework. The Tpetra solver
stack is discussed in more details in the remainder of this chapter.

The simulation can be decomposed into five main steps:

1. preprocessing

2. assembling the linear system to solve,

3. solution of the linear system,

4. active set update and potentially the requirement to solve a new linear system,

5. postprocessing.
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Steps 1 and 5 follow the standard of Waves and do not require more explanation.
The step 3 relies on the Belos GMRES solver [Bavier et al., 2012], with the modifications
discussed in Chapter 4, and MueLu multigrid preconditioners [Prokopenko et al., 2014]
as discussed in Appendix C and, therefore, is fully based on Trilinos. Both the steps 2
and 4 require use of Trilinos data types, in particular Tpetra sparse matrices and vectors,
to be able to use the above-mentioned solvers. These two steps have required more
implementation work and are explained in detail in the next section.

The code is fully templated on the data type to use embedded ensemble propagation
and relies on Tpetra and Kokkos for the MPI+X parallelization where X is OpenMP or
CUDA.

The implementation work done during this thesis has been included into two codes:
Waves and Trilinos. The part of the code included in Trilinos has been tested with CUDA.
The part of the work included in Waves, i.e. the implementation of Katoptron, has not
been developed nor tested with CUDA supports. This is due to the fact that some Trilinos
packages used in Katoptron, such as Moertel and PyTrilinos, do not support Kokkos nor
CUDA yet.

Katoptron can solve problems with the following properties:

1. mechanical or thermomechanical problems,

2. linear elasticity and no dependence of the material parameters on the temperature,

3. with or without mesh-tying and contact interface,

4. meshed with 3D elements with either hexahedrons or tetrahedrons,

5. with Dirichlet and Neumann boundary conditions.

6.4 Hybrid parallelism

The hybrid parallelization of GMRES, the multigrid preconditioner, and the level smoothers
are inherited from the Tpetra solver stack which relies on the Petra Object Model (POM)
[Boman et al., 2004; Heroux et al., 2005; Baker and Heroux, 2012] for the distributed
parallelism and the KokkosKernels package for the node-level parallelism [Deveci et al.,
2016b].

The hybrid parallelism that had to be implemented in Katoptron were located into
steps 2 and 4 discussed in the previous section.

In order to describe precisely the approach used, it is necessary to introduce the POM.

6.4.1 Petra Object Model

Distributed sparse linear algebra in Trilinos is based on the Petra programming model.
The word Petra stands for foundation in Greek.

There are currently two maintained implementations of Petra; Epetra and Tpetra
which stand for Essential Petra and Templated Petra respectively.

Both implementations rely on the Petra Object Model, an abstract model which
describes matrices and vectors distributed over MPI processes.

The POM defines the following abstractions:
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• Map defines how the global elements of distributed objects, such as entries of a
distributed vector or rows of a distributed matrix, are distributed across a system
and the mapping between local elements of a given compute node to global elements,

• Import and Export define the communication patterns between two maps, they can
be precomputed once and be reused several times; given two maps, we can compute
once the Import from one to another one and use this communication pattern to
transform several vectors defined using one map to vectors defined using the second
map,

• Vector and MultiVector define dense vectors and dense blocked vectors, i.e. a col-
lection of vectors stored together which is typically used in blocked Krylov methods,
distributed across a system following a given map,

• Operator is an abstraction for linear operators from one Vector/MultiVector to
another.

6.4.2 Matrix assembly

We will restrict ourselves to the discussion of the matrix assembly of the primal variables
as the computation of the Mortar matrix G has been done using the Moertel package
[Heroux et al., 2005] which supplies capabilities for nonconforming mesh-tying and contact
formulations using Mortar methods. In the current version of the code, the computation
of the Mortar matrix does not leverage Kokkos directly and thus is single threaded.

Mesh partitioning

First we want to partition the mesh and associate a partition to each MPI process. Two
properties are required for the partitions:

• The amount of computational work on each partition has to be comparable other-
wise some process will wait for others and the HPC machine will not be optimally
used. This means that, if the mesh has elements of the same type, the number of
elements of each partition has to be roughly the same. However, if the mesh has
tetrahedra and hexaedra, for example, the partition will not have the same number
of elements as tetrahedra require less wall-clock time than hexahedrons.

• The number of connections between partitions has to be as small as possible such
that the cost of sending and receiving information between MPI processes is as
small as possible.

The mesh partition has been made using METIS [Karypis, 2011] which uses multilevel
recursive-bisection, multilevel k-way, and multi-constraint partitioning schemes [Karypis
and Kumar, 1998a; Schloegel et al., 1998; Karypis and Kumar, 1998b], methods developed
in the Department of Computer Science & Engineering at the University of Minnesota.
METIS can be directly used in gmsh. Another possibility would have been to use Chaco,
a tool developed at Sandia Labs 2 or Zoltan a package of Trilinos. In this work we only
used the multilevel k-way directly through gmsh.

The multilevel k-way is based on three phases:

2http://www.cs.sandia.gov/CRF/chac_p2.html
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• Coarsening phase: The size of the graph is iteratively decreased.

• Initial partition phase: The smallest graph is partitioned in k partitions.

• Uncoarsening phase: The partitioning of the coarsest mesh is projected on the next
finer mesh and the partitions are refined, the projected partitioning may not be
optimal.

The idea is to coarsen the graph iteratively and to partition the graph on the coarsest
level into k parts such that each one has a comparable amount of work and such as
the interface work is minimized. After that, the graph is uncoarsed iteratively and the
partition is prolongated from a coarse level to a finer level [Karypis and Kumar, 1998b],
after the prolongation the solution is reoptimized to minimized the interface work as
illustrated moving from the coarsest level to one finer level in Fig. 6.1.

Figure 6.1: Representation of the multilevel 2-way partitioning algorithm

Distributed-memory parallelism

There are two approaches to compute the sparse matrix based on the partitioned mesh
illustrated in Fig. 6.2: using MPI communication to sum the contributions of different
MPI processes at their interface or using ghost elements which are, for a given partition,
all the elements included in another partition such that they share at least one node with
the given partition.

We first describe the approach without ghost elements. We associate one partition to
each MPI process and associate one MPI process to each element as illustrated in Fig. 6.3;
every element is included in only one mesh partition and, therefore, associated to only
one MPI process. Due to the fact that the interface between the partition is shared by
at least two MPI processes, we cannot directly associate one MPI process to each node
and, therefore, to each degree of freedom. Therefore, we construct a Map of nodes with
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overlaps due to the nodes on the interfaces of the partition which are associated to at
least two processors as illustrated in Fig. 6.4. A second Map of nodes is built based on the
previous Map of nodes with overlaps such that the new one is 1-to-1 using the function
createOneToOne. The new Map without overlaps is illustrated in Fig. 6.5.

Based on those two Maps of nodes and the number of degrees of freedom per node,
we can build two last Map associated to the degrees of freedom with and without overlaps.

Figure 6.2: Representation of the partitioned mesh. The colors represent the mesh
partitions.

Figure 6.3: Representation of the distribution of the elements on the MPI processes.
The elements of a mesh partition are associated to one MPI process.

Figure 6.4: Representation of the distribution of the nodes on the MPI processes with
overlaps. As the nodes on the interface of the mesh partitions are shared between at
least two MPI processes, we create a Map of nodes which includes the overlaps. The
nodes in green are the nodes of the overlap. Those nodes are stored in the memory
associated to each MPI process.

Figure 6.5: Representation of the distribution of the nodes on the MPI processes
without overlaps. The nodes of the overlaps of Fig. 6.4 are distributed among the
MPI processes in order to have a Map of nodes which is 1-to-1.

Each MPI process computes its assembly matrix associated to its mesh partition and
stores it in a distributed sparse matrix with the Map of degrees of freedom with overlaps as
the Row Map. The sum of the contributions of different MPI processes at the interface is
then done using an Export to the Map of degrees of freedom without overlap and summing
the entries with the same global IDs as illustrated in Fig. 6.6.

This first approach has the advantage that the element matrix of each element is only
computed once. However, it requires MPI communication to sum the contribution of
each MPI process to the rows associated to the nodes of the overlaps and it requires more
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memory to store the contribution of the MPI processes to the interface nodes which can
be freed at the end of the assembly after the summation.





 7−→





 .

Figure 6.6: Representation of the summation of the contribution of the MPI processes
to the row of the matrix associated to the degrees of freedom of the nodes included in
the overlaps. The arrow 7−→ represents a POM export operation.

A second approach relies on the use of ghost elements as illustrated in Fig. 6.7. Know-
ing the information of the ghost elements such as their node positions and their consti-
tutive parameters, it is possible for the MPI process associated to the given partition
to evaluate the elemental matrix associated to the ghost elements and add their contri-
butions to the rows associated with the degrees of freedom of the current MPI process.
The two main advantages are that no MPI communication is required during the matrix
assembly and that less memory is required but the wall-clock time of evaluating the el-
ement matrices increases due to the fact that the same computation is repeated by at
least 2 MPI processes for the ghost elements.

Figure 6.7: Representation of the ghost elements. The elements in blue are the ghost
elements associated to the mesh partition in blue of Fig. 6.2 which are taken into
account by the MPI process associated to the mesh partition in red to compute the
entries of the matrix associated to its associated nodes illustrated in Fig. 6.5.

We have implemented and tested both approaches in the code. We did not observe a
large impact of the chosen approach on the wall-clock time of the solver and decided to
use the second approach to reduce the memory requirement.

Shared-memory parallelism

For a given MPI process, Kokkos is used to parallelize the assembly process of a given
mesh partition using shared-memory parallelism.

A Kokkos parallel-for loop is used to loop over the finite elements of the partition,
each thread computes the elemental matrix associated to the element, and sums its
contribution into the local assembly matrix while avoiding data race between threads.
This is done by forcing the use of atomic add when summing the contribution of the
current element matrix to the assembly matrix associated to the mesh partition.

A fully standalone example that combines both parallelism and only relies on Trilinos
is illustrated in https://github.com/kliegeois/FEAssembly.

103

https://github.com/kliegeois/FEAssembly


Chapter 6. Implementation details

6.4.3 Active set update

The primal variables and dual variables are distributed on different MPI processes. In
order to update the activity of the constraints and to check the convergence, it is necessary
to know whether at least one of the dual variables has to be updated on at least one of
the MPI processes or not. The following strategy is applied:

• each MPI process updates locally its dual variables if needed and computes the
number of updated dual variables as illustrated in Listing 6.1,

• the MPI processes sum the number of updated dual variables accross all processes
using an MPI Allreduce,

• if the sum of the number of updated dual variables is zero, the MPI processes leave
the non-linear system solution and write results on disk; otherwise, they start a
new linear solve.

1 // Number of updated Lagrange multipliers

2 int n_local_Lag = 0;

3

4 // Compute lambda+c (N^T u - g) and stores it in the array lambda_plus_c

5 scalar *lambda_plus_c;

6 //...

7

8 // loop over the local Lagrange multipliers

9 for (int i = 0; i < i_max; ++i)

10 {

11 // Test the new activity of the Lagrange multipliers and store it into a mask

12 auto new_activity = (lambda_plus_c[i] > 0.);

13 // Test if the activity has changed for at least one sample

14 if (!AND(new_activity == old_activity[i]))

15 {

16 ++n_local_Lag;

17 // Extract the matrix entries of B on the row i

18 Teuchos::ArrayView<const local_ordinal_type> local_indices;

19 Teuchos::ArrayView<const scalar> values;

20 scalar tmp;

21 B->getLocalRowView(i, local_indices, values);

22

23 // Loop over the entries of B_2^T of (5.100) to update the activity

24 for (int j = 0; j < local_indices.size(); ++j)

25 {

26 MaskAssign(new_activity, tmp) = {values[j], 0.};

27 B_2->replaceLocalValues(i, tuple(local_indices[j]), tuple(tmp));

28 }

29 // Update the activity of C (the block 11)

30 MaskAssign(new_activity, tmp) = {0., 1.};

31 C->replaceLocalValues(i, tuple(0), tuple(tmp));

32 // Update the activity of g_2 (the right-hand side)

33 MaskAssign(new_activity, tmp) = {g[i], 0.};

34 g_2->replaceLocalValues(i, tmp);

35 // Update the old activity

36 old_activity[i] = new_activity;

37 }

38 } �
Listing 6.1: Active set update on one MPI process with mask and logical reduction.
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6.5 Overview of the algorithm and its implementa-

tion

In this section, we split the algorithm used into components, discuss how they are imple-
mented, if they are parallelized, and give them tags to be referenced in results sections.

We first look at the full simulation algorithm illustrated using a flow chart in Fig. 6.8a.
Each computational task with hybrid parallelism is represented in green, all tasks which
are only parallelized using distributed memory are illustrated in orange, and all tasks
which are not parallelized are illustrated in red. First, each MPI process reads its cor-
responding mesh partition during the task (I). After that, the required matrices are
computed in (II): the primal matrices (K, S, and L) are computed in (II.I), this task
is described in detail in a previous section of this chapter, and the computation of the
Mortar matrices in (II.II) which relies on Moertel which is not parallelized using shared
memory. The computation of the matrices is followed by the setup of the multigrid pre-
conditioner (III). During this step, the hierarchy of levels is built using an AMG strategy
as discussed in Appendix C. This task is done using Muelu. The preconditioned system is
then solved using GMRES in task (IV). We discuss it in more details later in this section.
When the linear solver has converged, the activity of the constraints is updated (V) as
discussed in the previous section and if the problem has at least one Lagrange multiplier
for which the activity has changed, we have to solve a new preconditioned linear system.
At the end, results are written on disk (VI) using VTK.

Zooming in on GMRES (IV), we have the flow chart of Fig. 6.8b which illustrates
Algo. 2. The first step is the computation of the initial residual (IV.I) which corresponds
to line 1 of Algo. 2. This residual is then normalized (IV.II) and is the first Arnoldi vector
of the Krylov subspace as written in lines 2 and 3 of Algo. 2. After that, the iterative
process starts by applying the preconditioner (IV.III) to the previous Arnoldi vector as
done in line 5 of Algo. 2. The next step is to apply the sparse matrix to the resulting
vector (IV.IV) as done in line 5 of Algo. 2. The orthogonalization process (IV.X) tries
to orthonormalize the resulting vector with the previous Arnoldi vectors computing the
inner products of the vector with the previous Arnoldi vectors (IV.V) and removing their
contribution (IV.VI) before normalizing the vector (IV.VII) if its norm is not 0. We use
a classical Gram-Schmidt’s approach with a second orthogonalization process (DGKS) if
needed to improve the stability as introduced in [Daniel et al., 1976]. The status tests are
then evaluated to check if the iterative process should continue or not. When the iterative
process has converged, the least square problem is solved. This step is not parallelized
but is typically very small. This process has been implemented in this work as a partial
template specialization of Belos classes [Bavier et al., 2012].

Finally, a third flow chart is provided in Fig. 6.9 to highlight the main CPU cost con-
tribution of applying the multigrid preconditioner used in this work and discussed in Ap-
pendix C: the coarse smoother (IV.III.I), the pre-smoother (IV.III.II), the residual com-
putation (IV.III.III), the restriction (IV.III.IV), the prolongation (IV.III.V), and the post-
smoother (IV.III.VI). The multrigrid preconditioners used are implemented with MueLu
[Prokopenko et al., 2014] and the smoothers are implemented in Ifpack2 [Prokopenko
et al., 2016].
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(b) Flow chart of GMRES.

Figure 6.8: Flow charts of the non-linear and linear solvers.
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6.6 Conclusions

In this chapter, Katoptron, a finite element solver which supports ensemble propagation,
based on the Tpetra solver stack, and implemented in the Waves framework, has been
described. This solver is used in the following chapters to generate the numerical results
and the performance analysis.
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Chapter 7
Numerical results on academic problems

In this chapter, we evaluate the performance of ensemble GMRES with and without
ensemble reduction on four academic problems on the Blake system described in Ap-
pendix A.

In the first section, section 7.1, we illustrate with a tensile test on a cube how ensemble
reduction can influence the convergence of ensemble GMRES as previously discussed in
section 3.4.2. In particular, we discuss how the use of a preconditioner and the choice of
the initial guess can influence ensemble divergence inside ensemble GMRES with reduc-
tion. This discussion is independent of the HPC system used.

The second section, section 7.2, is dedicated to the speed-up of the different compo-
nents of GMRES. This section does not include ensemble divergence analysis and answers
the question of which speed-up can be achieved on 1 CPU of Blake and how the problem
size influences this speed-up.

In the third section, section 7.3, we evaluate the performance of ensemble GMRES
on a mesh-tying problem. This time, both ensemble divergence and the speed-up play a
role in the analysis.

The last section, section 7.4, is dedicated to the evaluation of ensemble GMRES on a
contact problem, this is the first time in the whole literature that ensemble propagation
is used to solve a non-linear parametric contact problem. The section includes some
discussion on the grouping strategy which can be used to improve the speed-up.

Finally, the chapter ends with a conclusion which recalls the key aspects of this chap-
ter.
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7.1 Tensile test on a cube

In order to illustrate the impact of ensemble reduction on the convergence of ensemble
GMRES as done in section 3.4.2, we look into a problem with a symmetric positive
definite matrix: a linear elastic cube with the small displacement and small deformation
approximation.

This problem leads to a disctretized linear system:

Ku = f . (7.1)

where K is the stiffness matrix and f the external loads.
In this section, we consider a deformable cube with edge length c = 10 mm pulled

along a fixed direction at a given side and clamped on the other side as illustrated in
Fig. 7.1. The cube is disctretized with 4 elements in each direction. The Poisson ratio is
0.2 for all the tests of this section.

We consider 3 different cases:

• Varying Young’s modulus and fixed surface load (test case 1),

• Fixed Young’s modulus and varying surface load (test case 2),

• Varying Young’s modulus and varying surface load (test case 3).

ex
ey

ez

Figure 7.1: Mesh and geometry of the cube. The cube is pulled with a surface force
in red. The quantity of interest is the displacement in blue.

These cases are deliberately simple for educational purposes. They are sufficiently
simple to understand the influence of the reduced inner product even without the spectral
theory used in section 3.4.2. This theory is then used to support the predicted behavior.

7.1.1 Varying Young’s modulus

We consider 3 ensembles of 8 samples each. The first ensemble includes 8 samples for
which the Young’s modulus is linearly spaced from 0.75 MPa to 1.25 MPa. The second en-
semble includes 8 samples for which the Young’s modulus is linearly spaced from 0.95 MPa
to 1.05 MPa. The third ensemble includes 8 samples for which the Young’s modulus is
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7.1. Tensile test on a cube

linearly spaced from 1.2 MPa to 1.3 MPa. For the 3 ensembles we fix the surface force to
0.1 MPa.

When we consider the GMRES method to solve a linear system, we have that the
convergence in the sense of the relative norm of the residual is not impacted by the
multiplication of the left-hand side matrix by a scaling factor α. This is due to the fact
that the Krylov subspace is independent of α. Therefore, in this example, every sample
propagated alone shares the same convergence. We will observe that this is true for
ensemble propagation without reduction too but not for ensemble reduction as the block
diagonal matrix of (3.40) is now multiplied by different scaling factors for the different
blocks.
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Figure 7.2: Quantity of interest of the 3 considered ensembles of test 1. The first
ensemble is centered on E = 1 MPa and has a range width of 0.5 MPa. The second
ensemble is centered on E = 1 MPa too but has a range width of 0.1 MPa. The last
ensemble is centered on E = 1.25 MPa and has a range width of 0.1 MPa.

We can reach the same theoretical result using the spectral theory of section 3.4.2.
We know that the eigenvalues of two different samples are the same up to a constant
multiplier α. Therefore, every sample propagated alone share the same convergence as
being independent of the constant multiplier.

First the quantity of interest, the vertical displacement of the point at the center of
the pulled surface, is shown as a function of the Young’s modulus in Fig. 7.2. We observe
the predictable behavior: the larger the Young’s modulus the smaller the displacement.

The eigenvalues of the stiffness matrix are represented in Fig. 7.3 for the smallest,
mean, and largest value of the Young’s modulus of the first considered ensemble. As
already said, we observe that the spectra are scaled by the factor α changing the Young’s
modulus.

Finally, the convergence of ensemble GMRES is represented in Fig. 7.4. We observe,
as discussed, that the gathering of the spectrum decreases the convergence of ensemble
GMRES with ensemble reduction as the number of iterations required for ensemble 1,
2, and 3 to converge increases while using ensemble reduction. However, this increase is
different for the 3 ensembles and two phenomena can be highlighted. For a fixed centered
value, the larger the variability in the Young’s modulus, the larger the required number
of iterations to converge. If the variability decreases, for instance comparing ensemble 1
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Figure 7.3: Spectra of the stiffness matrix for Young’s modulus equal to 0.75 MPa,
1.MPa, and 1.25 MPa. The spectrum is the same for the 3 values up to a constant
multiplier.

and 2, the spectra of each sample inside a same ensemble become closer which accelerates
the convergence of ensemble GMRES with reduction. The second phenomenon is that
increasing the centered value improves the convergence. This is due to the fact that this
increased centered value decreases the relative variability: moving from the ensemble 2 to
3, the relative variability decreases from 0.1/1 to 0.1/1.2. The convergence of ensemble 2
and 3 would have been the same if the range width of ensemble 3 was 0.12 MPa instead
of 0.1 MPa for the same reason as in the discussion of section 3.4.2.

When not using ensemble reduction, each sample individually converges as fast as
without ensemble propagation.
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Figure 7.4: Convergence of the 3 ensembles of the test 1 with and without ensemble
reduction. The convergence of each sample propagated alone is identical to the conver-
gence without reduction and represented in blue. The range width and the centered
value of the Young’s modulus of the ensemble impact the convergence using ensemble
reduction: the smaller the relative range, the smaller the number of iterations required
to converge.
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7.1.2 Varying surface load

In this case, we consider one ensemble of size 8 for which we fix the Young’s modulus to
1 MPa and use a surface load which varies linearly between 0.075 MPa and 0.125 MPa.
The quantity of interest is shown in Fig. 7.5.

For this example, starting with a zero initial guess and multiplying the right-hand side
by a scaling factor α, we have, once again, that the Krylov subspace is not modified. In
this case, we even have the property that the coefficients of the projection of the solution
on the Arnoldi vectors are independent of the scaling factor α. As a consequence, we can
predict that the convergence of each sample of this example is independent of the use of
ensemble reduction and is the same as propagating the sample alone. Once again, we can
deduce the same behavior using the convergence theory.

We observe, on Fig. 7.6 the expected behavior; the convergence with ensemble reduc-
tion is as fast as each sample individually.
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Figure 7.5: Quantity of interest of test 2 with 1 ensemble of size 8 for which we use a
surface load which varies linearly between 0.075 MPa and 0.125 MPa.
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Figure 7.6: Convergence of test 2: using ensemble reduction does not impact the
convergence as the sample share the same spectrum and have the same projection on
the eigenvectors.

113



Chapter 7. Numerical results on academic problems

7.1.3 Varying Young’s modulus and surface load

Finally, we scale both the surface force and the Young’s modulus proportionally, leading
to a sample-independent solution as illustrated by the quantity of interest in Fig. 7.7.
Although the solutions are sample independent, the spectra of the sample matrix are
sample dependent as discussed in section 7.1.1 and illustrated in Fig. 7.3.

Therefore, while using ensemble reduction, we have a poorer convergence as seen in
Fig. 7.8.
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Figure 7.7: Quantity of interest of test 3: we use one ensemble of size 8 with a surface
load which varies linearly between 0.075 MPa and 0.125 MPa and the Young’s modulus
which varies linearly between 0.75 MPa and 1.25 MPa. The quantity of interest is
sample independent.
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Figure 7.8: Convergence of test 3 for one ensemble of size 8 with a surface load which
varies linearly between 0.075 MPa and 0.125 MPa and the Young’s modulus which
varies linearly between 0.75 MPa and 1.25 MPa. Even if the quantity of interest is
sample independent, the spectra of the sample matrix are sample dependent leading
to a slower convergence of ensemble GMRES with ensemble reduction.
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7.1.4 Comments on the use of a preconditioner

Preconditioners are used in Krylov methods to improve their convergence as discussed in
section 3.1.1. Using a Jacobi preconditioner on this example would fully remove the sam-
ple dependencies by rescaling the eigenvalues of the matrices. With such a preconditioner,
ensemble divergence due to a scaling of the eigenvalues is suppressed and, therefore, con-
vergence of ensemble GMRES with reduction is improved. To illustrate and confirm that,
the convergence of the first ensemble of size 8 defined in section 7.1.1 using one Jacobi
iteration as preconditioner is illustrated in Fig. 7.9. We observe that ensemble divergence
is fully removed by the preconditioner in this simple case. Although finding a precondi-
tioner that fully removes the sample variability is easy for this example, this is typically
not the case for more complex problems. Moreover, such a property is not necessarily
inherited from preconditioners studied in the context of deterministic problems.
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Figure 7.9: Convergence of the first ensemble of test case 1 using a Jacobi precondi-
tioner. Using this preconditioner allows ensemble GMRES with reduction to converge
as fast as GMRES applied on each sample alone.

7.1.5 Comments on the choice of the initial guess

In the previous tests, GMRES has always started with a zero initial guess. If the samples
of a same ensemble are close to each other and if we start from a zero initial guess,
GMRES with ensemble reduction will converge fast. First, it will converge towards an
average value which can be close to the actual solutions for the different samples. If now,
instead of starting from a zero initial guess, we start from the solution of the mean case,
the initial residual for the different samples becomes more different from one to each other
as the mean solution has been removed; we illustrate in this section the impact on the
convergence of ensemble GMRES with reduction.

As opposed to the previous examples, this one cannot be explained directly by simpler
intuitions as it is not straightforward to understand how the solution for each sample is
different from the mean solution. Therefore, we restrict ourselves to the analysis with
the convergence theory. In order to interpret the following results, we have to highlight
that the theorem of section 3.4.1 assumes that the initial guess is zero. However, it is
still possible to use this theorem by replacing the system (3.36) by the system:

Ay = b−Ax(0), (7.2)

where x(0) is the non-zero initial guess and y = x − x(0) is the difference between the
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solution x of the initial system (3.36) and the initial guess x(0). With such a modification,
the formulas (3.37) and (3.38) can still be used with the modification that, now:

ωij = |eTijc|2 with c = Φ?r(0) = Φ?b−Φ?Ax(0) = Φ?b−Λ Φ? x(0). (7.3)

Therefore, even if Φ is sample independent in this case and therefore the weights ωij are
sample independent if starting from a zero initial guess, the weights ωij are now sample
dependent if GMRES starts from a non-zero initial guess as Λ is sample dependent.
This results in the fact that the convergence of each sample propagated alone has not
necessarily the same convergence curve as the other samples.

The fact that both the spectra of each sample and the projection of their initial resid-
ual on the eigenvectors are sample dependent reduces the convergence rate of ensemble
GMRES with ensemble reduction compared to GMRES applied to each sample one at a
time or to ensemble GMRES without ensemble reduction. This is illustrated in Fig. 7.10
for the first ensemble of the test case 1 where we start from the solution for E = 1 MPa.
We observe that, indeed, the convergence curve of each sample alone is sample dependent.
The norms of residual shown in this figure are relative to the norm of the initial residual.
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Figure 7.10: Convergence of the first ensemble of test case 1 starting from the solution
for E = 1 MPa. The non-zero initial guess leads to a sample dependent projection of
the initial residual on the eigenvectors which leads to potential different convergence
for each sample propagated alone.

7.1.6 Conclusion

These very simple tests illustrate how ensemble reduction can impact the convergence
of ensemble GMRES by coupling samples together. The results presented show that
ensemble GMRES without ensemble reduction is always more efficient, or at least not
slower, in terms of the number of iterations to converge in the sense of the relative norm
of the residual, than ensemble GMRES with ensemble reduction. Those simple cases and
predicted behavior are consistent with the theory discussed in section 3.4.2.

The effect of ensemble reduction on the convergence depends on how different the
projections of the initial residual of each sample on the eigenvectors of their associated
matrices are and on the difference of the sample spectra. Preconditioners can help re-
duce ensemble divergence or even to suppress it in simple cases. The initial guess can
influence the performance of ensemble GMRES with reduction by increasing the number
of iterations required to converge.
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7.2. Speed-up test

7.2 Speed-up test

In this second example, we illustrate speed-up of ensemble GMRES with identical sam-
ples, i.e. with no sample variance to remove the effect of convergence on the speed-up.

The goal of this example is to highlight the speed-up of the different parts of ensemble
GMRES as a function of the number of degrees of freedom per sample and the ensemble
size.

To do so, we consider the same problem as the previous example where, now, the
mesh has 9× 9× nh hexahedra and nh the number of hexahedra along the z direction is
changed to cover a large range of numbers of degrees of freedom n = 300 (nh + 1).

As an illustration, Fig. 7.11 includes two different meshes with nh = 9 and nh = 36.
Such a mesh refinement influences the aspect ratio of the elements. This is, however,

not an issue for this example as we do not take into account the convergence of the GM-
RES method; we only measure speed-up of the different parts for a number of iterations
fixed.

ex
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Figure 7.11: Examples of two meshes with nh = 9 (left) and nh = 36 (right).

In the following subsections, we investigate the speed-up of the sparse matrix-vector
product (IV.IV in Fig. 6.8b), applying Gauss-Seidel iterations, a relaxation-based method
as a preconditioner (IV.III in Fig. 6.8b), and the orthogonalization process (IV.X in
Fig. 6.8b) running the example on one NUMA region of the Blake system described in
Appendix A without hyper-threading. Each test has been run once with 24 threads.

7.2.1 Sparse matrix-vector product

As explained in section 2.2, Phipps et al. [2017] studied intensively the sparse matrix-
vector product with ensemble propagation with sparse matrices in compressed row storage
format. They derived optimistic and pessimistic throughput bounds for the sparse matrix-
vector product that we recall here.

Assuming that the data type of each entry of the matrix is stored with bdata bytes,
that the vectors are using the same data type and that the integers used to store the
graph of the matrix are stored with bint bytes, we have the following throughput bounds
for the throughput of the sparse matrix-vector product without ensemble propagation
[Phipps et al., 2017]:
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• Pessimistic bound: for a given entry of the sparse matrix, the column index as-
sociated to this entry, the entry itself, and the value of the vector associated to
the column index are not in the cache hierarchy and must be streamed from main
memory. The total number of bytes that must be streamed is:

2 bdata + bint. (7.4)

• Optimistic bound: for a given entry of the sparse matrix, the value of the vector
associated to its column index can be reused from cache because it has been used
not too long ago. The total number of bytes that must be streamed is:

bdata + bint. (7.5)

The throughput of the algorithm is therefore in the range:

Bandwidth×
[

2 FLOPS

bdata + bint

,
2 FLOPS

2 bdata + bint

]
. (7.6)

In the case of the ensemble sparse matrix-vector product, because the column index
is shared by all the samples, per stream, it is used s times and we have the throughput:

Bandwidth×
[

2 sFLOPS

bdata s+ bint

,
2 sFLOPS

2 bdata s+ bint

]
. (7.7)

Those bounds rely on the assumption that the largest cache is not sufficiently large to
fully store all the data needed for the computation of the sparse matrix-vector product.
As a consequence of the increased memory usage due to ensemble propagation, there
are matrix sizes for which the assumption is not true without ensemble propagation
and true with ensemble propagation. For such cases, speed-up of ensemble propagation
can be expected to be smaller than 1 as all the data needed for the computation of
the sparse matrix-vector product can be stored into the largest cache not using ensemble
propagation. However, for sufficiently large matrices the derived bounds predict speed-up
larger than 1.
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Figure 7.12: Wall-clock time of the matrix-vector product.
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We now illustrate the accumulated wall-clock time of the sparse matrix-vector product
of ensemble GMRES with 50 iterations for different ensemble sizes and numbers of degrees
of freedom per sample in Fig. 7.12 where the dashed lines represent the wall-clock time
bounds based on the throughput and the time complexity of the sparse matrix-vector
product1. The related speed-up are illustrated in Fig. 7.13.

As stated before, we observe that for cases with less than 41097 degrees of freedom
per sample, represented as the dashed green line in Fig. 7.12, the speed-up of ensemble
propagation can be smaller than 1 due to the fact that data fit in cache for s = 1 but not
necessarily for larger s.

For larger matrices, we observe that both the wall-clock time with and without en-
semble propagation mainly follow the wall-clock time curve deduced by the optimistic
bounds which lead to a speed-up of about 1.5 as bdata = 8 and bint = 4 in our case.
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Figure 7.13: Speed-up of the sparse matrix-vector product.

7.2.2 Gauss-Seidel iterations

Concerning the preconditioner, here we restrict ourselves to using the threaded Gauss-
Seidel of Ifpack2 [Prokopenko et al., 2016] which calls the threaded Gauss-Seidel of the
KokkosKernels package based on graph coloring [Deveci et al., 2016a]. This brings us im-
portant information on the speed-up of ensemble propagation of multigrid preconditioners
which we will use in the next examples.

We observe on Fig. 7.14 that the wall-clock time of the threaded Gauss-Seidel decreases
with larger problem sizes for s = 1 with about 104 degrees of freedom. We suspect this
behavior to be due to the fact that, for the smaller problems with s = 1, the number
of threads is too large leading to potential overhead costs such as false sharing. Extra
information about false sharing and the impact of ensemble propagation on it can be
found in Appendix D. The threaded Gauss-Seidel used in this work is based on a graph
coloring strategy to parallelize the loop over the rows. First, the algorithm colors the

1The time complexity, i.e. the number of elementary operations performed by the algorithm, of the
sparse matrix-vector product used here is O(nnz) where nnz is the number of non zero entries of the
sparse matrix.
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Figure 7.14: Wall-clock time of the threaded Gauss-Seidel iteration.

rows of the matrixA such that each row i does not have the same color as any related row
j, i.e. if aij 6= 0, i and j do not share the same color. This first step aims to have as few
colors as possible. The second step replaces the loop over the rows of the Gauss-Seidel
by two nested loops: a serial loop over the colors and a threaded loop over the rows of
a given color. The potential false sharing is occurring during the parallel computation
of the values of a same graph color and disappears for s = 8, s = 16, and s = 32 as
the scalar type fills the cache line and prevents false sharing. In order to investigate this
statement, we have evaluated the performance of the threaded Gauss-Seidel applied on
a diagonal matrix and the performance of a threaded Jacobi preconditioner and have
observed the same behavior: for small problems with s = 1, the wall-clock time decreases
when increasing the problem size. This, hand in hand with Appendix D, highly suggests
that the decrease of the wall-clock time of the threaded Gauss-Seidel with larger problem
sizes is due to false sharing as the coloring of a diagonal matrix only requires one color.
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Figure 7.15: Speed-up of the Gauss-Seidel iteration.

The jump in wall-clock time for s = 1 at about 41097 degrees of freedom is explained
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by the fact that the matrix cannot be fully stored anymore in cache.
The speed-up illustrated in Fig. 7.15 is larger for smaller problem sizes. This ob-

servation is interesting for multigrid preconditioners as the problem size decreases when
moving to coarser levels.

7.2.3 Orthogonalization process

Finally, the wall-clock time and speed-up of the orthogonalization process illustrated in
Fig. 7.16 and 7.17 are as expected; the speed-up is 1 provided that the problem size is
sufficiently large. Otherwise, a larger speed-up can be observed due to the fact that the
GEMV of the MKL does not reach the full memory bandwidth for those problem sizes.
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Figure 7.16: Wall-clock time of the orthogonalization process.
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Figure 7.17: Speed-up of the orthogonalization process.
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7.2.4 Relative CPU costs

The speed-up of a fixed number of iterations of ensemble GMRES depends on the speed-
ups of each computational parts alone, which have been illustrated in the above subsec-
tions, and on their relative size in terms of CPU costs; the longer its duration, the larger
the influence of its speed-up.

In this subsection we illustrate the average wall-clock time contributions of the differ-
ent computational parts of ensemble GMRES for the studied example with 50, 100, and
200 iterations of ensemble GMRES in Fig. 7.18.
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Figure 7.18: CPU contributions of the computational parts of GMRES with 6.027 105

degrees of freedom per sample.

As expected, we observe that using ensemble propagation increases the relative contri-
bution of the orthogonalization process as its speed-up is the smallest. As expected too,
increasing the number of iterations of GMRES increases the relative contribution of the
orthogonalization process as its cost per iteration grows with the number of iterations.
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7.2.5 Conclusions

Finally, this example illustrated speed-up of ensemble propagation on the different parts
of an ensemble GMRES with a given preconditioner. In order to deduce the speed-up of
the full ensemble GMRES the convergence has to be taken into account as it impacts the
speed-up of ensemble GMRES in two ways:

• The larger the number of iterations required to converge, the larger the relative cost
of the orthogonalization CPU cost as its cost per iteration grows with the number
of iterations. This results in a larger, in terms of wall-clock time, relative part of
ensemble GMRES with less good speed-up and reduces the expected speed-up of
the full ensemble GMRES. This issue can be mitigated using a GMRES restart
strategy.

• The increase of the number of iterations either due to ensemble reduction or due to
different trip count values for different samples of an ensemble increases the number
of iterations leading to a reduced speed-up too.

In terms of wall-clock time, ensemble GMRES differs from the ensemble CG studied
in [Phipps et al., 2017] mainly by the inclusion of an orthogonalization process. Moreover,
as the orthogonalization process has a speed-up which tends to 1, we can deduce that,
for a fixed number of Krylov iterations, the speed-up of the ensemble CG is better than
the speed-up of ensemble GMRES for problems that can be solved both with CG and
GMRES. Although both the first two examples presented in this work could have been
solved with ensemble CG, the following ones do not have symmetric positive definite
matrices and ensemble CG cannot be applied anymore.
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7.3 Mesh-tying problem

In this section, we illustrate on an indefinite problem the equivalent wall-clock time of one
iteration of ensemble GMRES with and without reduction thanks to the implementation
of the previous sections. We illustrate the accelerated convergence of ensemble GMRES
without reduction and the improved speed-up of ensemble propagation.

The example is a mesh-tying problem in saddle-point formulation which is symmetric
but not positive definite. This example is a first step towards ensemble propagation
applied to non-linear contact problems with Mortar formulation.

The example has been run on 1 NUMA region of the Blake system described in
Appendix A with hyper-threading, i.e. with 48 threads.

7.3.1 Equations of the mesh-tying problem seen as a saddle-
point problem

In this section we are interested in a mesh-tying problem seen as a saddle-point problem
as described in section 5.1.3 and in [Wohlmuth, 2001]:

[
K G
GT 0

] [
u
l

]
=
[
f
0

]
, (7.8)

where K is the stiffness matrix, G is the Mortar matrix arising from the discretization
of the coupling between the displacement u and the Lagrange multipliers l which enforce
continuity constraints at the mesh-tying interface, and f is the vector including the
external forces.

7.3.2 Mechanical Lamé parameters represented using a random
field

Uncertainties are introduced in the model by using a log-normal random field for the
shear modulus µ:

µ(x) = exp

[
log

(
g√

1 + δ2

)
+
√

log (1 + δ2)χµ(x)

]
, (7.9)

where g is the mean value of the shear modulus, δ the coefficient of variation, and χµ(x) is
a Gaussian random field realized by using a spectral approach with a Gaussian covariance
function based on equation (39) in [Poirion and Soize, 1995] with a correlation length L.

The first Lamé parameter λ is then computed as follows:

λ(x) =
2µ(x)ν

1− 2ν
, (7.10)

where ν is the Poisson’s coefficient which is constant and sample independent.

7.3.3 Preconditioner for the saddle-point problem

In this work, we use the preconditioner of section 5.1.6 with threaded Gauss-Seidel it-
erations as sub-smoothers for the block K with 3 sweeps and a damping factor of 0.8,
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Figure 7.19: Illustration of the plate with a hole example where the plate is pulled
along the ey direction with a surface force t on both opposite surfaces.

and Basker [Booth et al., 2017], a sparse-direct solver that is built into Trilinos, as the
smoother of the block R and as the coarsest level solver.

The multigrid preconditioner used is implemented in the MueLu package [Prokopenko
et al., 2014]. We used two multigrid levels and a SIMPLE smoother with α = 0.8 and
β = 1 on the fine level.

7.3.4 Plate with a hole example

The example considered is a plate with a hole as shown in Fig. 7.19. The plate is a
10 cm × 10 cm × 1 cm with a hole of radius 2 cm at the center. The plate is pulled
along the ey direction with a surface force t on both opposite surfaces with a magnitude
of 700 MPa on each side. The average Young’s modulus is 70000 MPa and the Poisson’s
coefficient is 0.35. The plate is clamped as illustrated in Fig. 7.19: the point p0 is clamped
in all directions, p1 in the directions ex and ey, and p2 in the direction ey.

We are not taking into account the symmetry of the geometry to mesh it as the
random field, which represents the Lamé parameters, does not share the same symmetry
property.

A 3D hexahedral mesh has been used with finer hexahedra in a domain close to the
hole as shown on the cut in Fig. 7.20. This problem has 32088 degrees of freedom per
sample including 2088 Lagrange multipliers.

The displacement along ey and the equivalent von Mises stress of the cut for the mean
case are shown in Fig. 7.21 and 7.22 respectively.

As discussed before, we introduce variability between samples using a 2D log-normal
random field which is constant along ez. We consider the six cases described in Table 7.1.
In Fig 7.23 and 7.24, we illustrate six realizations of the shear modulus µ for the test
cases 2 and 6 respectively.

125



Chapter 7. Numerical results on academic problems

Figure 7.20: Cut of the 3D hexahedron mesh with finer elements in a region of width
1 cm close to the hole.

−7.97 · 10−2

0.15

Figure 7.21: Vertical displacement of the mean sample in cm.

0

3,100

Figure 7.22: Equivalent von Mises stress in average per element of the mean sample
in MPa.
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Sample 1 Sample 2
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Figure 7.23: Six samples of the test case 2 with a correlation length of L = 20 cm and
δ = 0.3.

127



Chapter 7. Numerical results on academic problems

Sample 1 Sample 2

Sample 3 Sample 4

Sample 5

10.24 52.25

Shear modulus [GPa]

Sample 6

Figure 7.24: Six samples of the test case 6 with a correlation length of L = 2 cm and
δ = 0.3.
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δ = 0.1 δ = 0.3
L = 20 cm Test case 1 Test case 2
L = 5 cm Test case 3 Test case 4
L = 2 cm Test case 5 Test case 6

Table 7.1: Different test cases with different correlation lengths L (in both ex and ey
directions) and different coefficients of variation.
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Figure 7.25: Numerical von Mises stresses in average per element for 10 cm× 10 cm×
1 cm plate and 90 cm×90 cm×1 cm plate, and theoretical von Mises stresses computed
using Kirsch equations.

7.3.5 Convergence of the solution for the mean case

In order to validate the mesh and to show that it has converged, we have extracted the
von Mises stress on the line ex passing by the point p3 and illustrate them in Fig. 7.25.
In Fig. 7.25 we have added the theoretical von Mises stress computed using the Kirsch
equations [Kirsch, 1898] which assume an infinite plate in one directional tension. The
numerical results in blue have larger stresses close to the hole and smaller stresses close
to the boundary on the line y = 5 cm we found that such differences are due to the fact
that the hole in the plate has a significant radius compared to the dimension of the plate.
This has been highlighted using the mesh shown in Fig. 7.20 surrounded by a uniform
mesh such that the plate is now 90 cm × 90 cm × 1 cm and we have noticed that the
results converged to the one of the Kirsch equations as illustrated by the yellow curve in
Fig. 7.25. This demonstrates that the mesh is sufficiently refined to represent correctly
the von Mises stresses.

7.3.6 Results

The most interesting speed-up of using ensemble propagation is the speed-up of the
full simulation to answer the question of how much time we can save using ensemble
propagation or how many more samples can we evaluate in the same wall-clock time
compared to not using ensemble propagation.
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In these results, we use 64 Monte Carlo samples for each case just to study the
performance.

Speed-up of each computational part

In order to remove the influence of the rate of convergence of GMRES, we discuss the
speed-up for a fixed number of 200 iterations without taking into account a stopping
criterion. Moreover, by removing the influence of the convergence of GMRES, the differ-
ent cases described in Table 7.1 do not influence the speed-up here as exactly the same
floating-point operations have to be computed independently of the values of the random
field.

We split the total wall-clock time in four categories: the matrix assembly process
where the saddle-point matrix is computed (II in Fig. 6.8a), the sparse matrix-vector
product that is evaluated while applying the matrix to the previous Arnoldi vector in
GMRES (IV.IV in Fig. 6.8b), the application of the preconditioner (IV.III in Fig. 6.8b),
and the orthogonalization process of GMRES (IV.X in Fig. 6.8b).

Looking first at the speed-up of the orthogonalization process listed in Fig. 7.26, we
observe that the speed-up is almost independent of whether ensemble reduction is used or
not. This is consistent with the results of Fig. 4.14 and Fig. 4.13 from the Chapter 4 and
confirms that the wall-clock time of one iteration of ensemble GMRES with and without
reduction is equivalent thanks to the performance of the ensemble GEMV discussed in
the previous section.
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Figure 7.26: Speed-up of the inner products (IV.V in Fig. 6.8b), the update (IV.VI in
Fig. 6.8b), and the full orthogonalization process (IV.X in Fig. 6.8b) with and without
reduction.

In section 4.2, we have explained that GEMV is memory bound and, therefore, the
speed-up of applying ensemble propagation on the update has to be close to 1.0 providing
that both the update without ensemble propagation and the one with ensemble propaga-
tion have maximal theoretical performance. However, we see from the results in Fig. 7.26
that the speed-up of both the update and the inner product are larger than 1.0. This
is explained by the fact that, while not applying ensemble propagation, the measured
throughput of the GEMV of the MKL with a matrix stored using a left layout and a size
of 32000× 300 is 19 GFLOPS. The throughput is, however, increased with larger matrix
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size; for example, if ensemble reduction is used and the ensemble size is 8, the throughput
of the update applied on a (8× 32000)× 300 matrix is now 24 GFLOPS. Therefore, the
speed-up which are larger than 1.0 are explained by the fact that the tested problem
has too few degrees of freedom for one sample to reach maximal throughput of the MKL
GEMV on the CPU considered.

The speed-up of the remaining parts, the assembly process, the sparse matrix-vector
product, and the preconditioner are independent of whether ensemble reduction is used
or not. The results of those categories are listed in Fig. 7.27. The speed-up of the
matrix assembly process is large because the computation of the Mortar matrix is sample
independent and, therefore, is only computed once per ensemble. This Mortar matrix
is sample independent because the samples share the same mesh. The wall-clock time
of the full simulation listed in Table 7.2 lists the wall-clock time to compute the Mortar
matrix with and without ensemble propagation; we see the impact of only computing
the matrix once per ensemble and its influence on the speed-up of the matrix assembly
process.
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Figure 7.27: Speed-up of the matrix assembly (II in Fig. 6.8a), sparse matrix-vector
product (IV.IV in Fig. 6.8b), and the preconditioner (IV.III in Fig. 6.8b).

The speed-up of the sparse matrix-vector product and the preconditioner are similar to
measured speed-up in [Phipps et al., 2017] on Haswell CPUs for the conjugated gradient
for problems with symmetric positive definite matrices.

GMRES iteration count

For the impact of ensemble propagation on the convergence of GMRES, we list the
number of iterations to reach the convergence with a relative tolerance of 10−7 for the
six test cases with and without reduction for the different ensemble sizes in Fig. 7.28
and Fig. 7.29 respectively. The samples are grouped using a natural ordering based on
the order in which they are generated: the first s generated samples are grouped in the
first ensemble. In other words, there is no particular effort to group the samples to
reduce ensemble divergence in this case; this favors ensemble GMRES without ensemble
reduction compared to ensemble GMRES with ensemble reduction.

We see from those results that when ensemble reduction is used, the samples are
coupled and, therefore, the number of iterations required depends on the variability of
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the samples inside the given ensemble. Increasing the coefficient of variation increases
the number of iterations to converge. This is due to the fact that an increased coefficient
of variation leads to an increased variation of the spectra which are coupled by ensemble
reduction. In particular, for the test case 6, the number of iterations to converge for
s = 32 is multiplied by 2.3 compared to the largest number of iterations of one sample
to converge.

However, when ensemble reduction is not used, ensemble GMRES waits for the slowest
sample of a given ensemble to converge before stopping the update of this ensemble as
expected. The variability of the samples inside a given ensemble has no other influence
on the convergence without reduction.

Those results illustrate the accelerated rate of convergence of ensemble GMRES with-
out reduction compared to ensemble GMRES with reduction. The acceleration is partic-
ularly significant for the test case 6 where the first ensemble of size 32 converges in 258
iterations with reduction and 131 without reduction.

The relative increase in computational work R, defined in [Phipps et al., 2017] as

R =
s
∑Ns

e=0 J
(e)

∑N
`=0 j

(`)
, (7.11)

where J (e) is the number of iterations to reach convergence of GMRES for the ensemble
e, Ns is the number of ensembles of size s, and j(`) the number of iterations to reach
convergence of GMRES for the sample ` alone, is another way to highlight the impact of
ensemble propagation on the convergence of GMRES.

The relative increase in computational work over the ensembles of fixed size is shown
in Fig. 7.30 for the six cases with and without ensemble reduction. From those results, we
observe, as expected, larger relative increases in computational work for ensemble with
reduction as more iterations are needed to converge. As ensemble GMRES without reduc-
tion waits for the slowest sample to converge, R is close to 1 which will lead to improved
speed-up. Moreover, we can observe that increasing the coefficient of variation increases
R when using ensemble reduction but has a lower influence on R without reduction. In
other words, the variability of the samples has a lower influence on the convergence of
ensemble GMRES without reduction.

Total speed-up

The total speed-up is determined by both the speed-up of each computational part and
by the relative increase in computational work. The results of the total speed-up are
listed in Fig. 7.31.

Ensemble GMRES with ensemble reduction avoids ensemble divergence and allows to
use optimized BLAS implementations such as MKL but increases the number of itera-
tions to converge which leads to the speed-up shown in Fig. 7.31. On the other hand,
ensemble GMRES without reduction avoids the coupling of the spectra leading to an
improved speed-up providing that occurrences of ensemble divergence are tackled and
high-performing ensemble GEMV is implemented as discussed in this work.
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Figure 7.28: Number of iterations to converge with ensemble reduction for the 6 cases.
The blue dots represent the required number of iterations of GMRES to converge for
each sample propagated alone. The orange lines, yellow lines, and purple lines repre-
sent the required number of iterations of ensemble GMRES with ensemble reduction
to converge with ensemble of size 8, 16, and 32 respectively. We observe that using
ensemble GMRES with ensemble reduction requires more iterations than propagating
the samples alone. This effect is particularly visible for the cases 4 and 6.
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Figure 7.29: Number of iterations to converge without ensemble reduction for the 6
cases. The blue dots represent the required number of iterations of GMRES to con-
verge for each sample propagated alone. The orange lines, yellow lines, and purple
lines represent the required number of iterations of ensemble GMRES without en-
semble reduction to converge with ensemble of size 8, 16, and 32 respectively. We
observe that using ensemble GMRES without ensemble reduction requires to wait for
the slowest sample to converge.
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Figure 7.30: Relative increase in computational work for the six cases with and without
reduction.
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Figure 7.31: Speed-up of the full simulation for the six cases with and without reduc-
tion.

Finally, the total speed-up without reduction is equal to 3.5 for the test case 1, 2, 3,
and 5 and equal to 3 for the test case 4 and 6 for which the relative increase R is larger.
This speed-up is similar to the results of D’Elia et al. [2020] with the CG with ensemble
propagation keeping in mind that no grouping strategy is used in this work.

Although grouping strategies are beyond the scope of this thesis, the effect of such
strategies can be deduced from the results presented. The goal of a grouping strategy is
to group similar samples in the same ensemble. Depending on the grouping strategy used,
the meaning of similar samples is different. In the presented example, we have illustrated
the effect of the coefficient of variation δ. This coefficient controls the deviation of the
samples from the mean case. Therefore, reducing this coefficient reduces the difference
between samples of the same ensemble and simulates the effect of a grouping strategy.
As a consequence, the comparison between results with δ = 0.3 and with δ = 0.1 shows
that the use of a grouping strategy reduces the relative increase in computational work
R for both GMRES with and without ensemble reduction. This improves the speed-up
for both ensemble GMRES but has a larger impact on the speed-up of ensemble GMRES
with ensemble reduction.
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Tag With reduction Without reduction
Ensemble size 1 8 16 32 8 16 32
Matrix assembly
K assembly II.I 0.153 0.360 0.496 1.152 0.448 0.544 1.216
G assembly II.II 0.900 0.904 0.896 0.992 0.984 1.008 0.992

Total II 1.053 1.264 1.392 2.144 1.432 1.552 2.208
Preconditioner setup
Total III 0.232 0.264 0.288 0.352 0.264 0.304 0.352
GMRES

Orthogonalization IV.X 0.110 1.760 4.448 10.848 0.600 1.328 2.848
Matrix-vector product IV.IV 0.115 0.784 1.536 4.320 0.448 0.848 2.240
Preconditioner
Block K smoother 0.303 2.176 4.384 9.376 1.288 2.432 4.832
Block R smoother 0.385 2.744 4.256 9.280 1.872 2.816 5.760
Restriction IV.III.IV 0.033 0.072 0.096 0.128 0.040 0.048 0.064
Prolongation IV.III.V 0.042 0.152 0.272 0.512 0.088 0.144 0.256
Residual computation IV.III.III 0.132 0.792 1.568 3.360 0.456 0.864 1.728
Coarse solver IV.III.I 0.246 2.656 5.776 12.448 1.704 3.456 7.072
Total IV.III 1.558 10.471 19.707 43.528 6.599 11.708 24.120

Total IV 1.828 13.264 26.048 59.168 7.784 14.064 29.440
Total 3.162 14.888 27.968 61.888 9.504 16.096 32.192

Table 7.2: Average wall-clock time in seconds per ensemble for the test case 6 where
the tags refer to Fig. 6.8a, Fig. 6.8b, and Fig. 6.9.

Tag With reduction Without reduction
Ensemble size 1 8 16 32 8 16 32
Matrix assembly
K assembly II.I 1. 3.400 4.935 4.250 2.732 4.500 4.026
G assembly II.II 1. 7.965 16.071 29.032 7.317 14.286 29.032

Total II 1. 6.665 12.103 15.716 5.883 10.856 15.261
Preconditioner setup
Total III 1. 7.030 12.889 21.091 7.030 12.211 21.091
GMRES

Orthogonalization IV.X 1. 0.500 0.396 0.324 1.467 1.325 1.236
Matrix-vector product IV.IV 1. 1.173 1.198 0.852 2.056 2.170 1.643
Preconditioner
Block K smoother 1. 1.114 1.106 1.034 1.882 1.993 2.007
Block R smoother 1. 1.122 1.447 1.328 1.645 2.188 2.139
Restriction IV.III.IV 1. 3.667 5.500 8.250 6.600 11.000 16.500
Prolongation IV.III.V 1. 2.211 2.471 2.625 3.818 4.667 5.250
Residual computation IV.III.III 1. 1.333 1.347 1.257 2.318 2.444 2.444
Coarse solver IV.III.I 1. 0.741 0.681 0.632 1.155 1.139 1.113
Total IV.III 1. 1.175 1.249 1.131 1.888 2.129 2.066

Total IV 1. 1.103 1.123 0.989 1.879 2.080 1.987
Total 1. 1.699 1.809 1.635 2.661 3.143 3.143

Table 7.3: Speed-up for the test case 6 where the tags refer to Fig. 6.8a, Fig. 6.8b,
and Fig. 6.9.
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The wall-clock times of the test case 6 are listed in Table 7.2 and the corresponding
speed-up in Table 7.3 to improve the understanding of the speed-up. It can be deduced
from those measures that, as already said, the matrix assembly process and the pre-
conditioner setup are independent of using ensemble reduction. Moreover, we observe a
large speed-up for the matrix assembly process due to the large reuse of the computa-
tion of the Mortar matrix. The speed-up of the preconditioner setup is interesting too
and is due to the amortized computation of the aggregates and the prolongation and
restriction operators. In ensemble GMRES with reduction, the relative wall-clock time
spent in the orthogonalization increases as more iterations are needed to converge and as
the time complexity of the GEMV depends more than linearly on the Krylov subspace
dimension. Concerning the preconditioner application, although the restriction and pro-
longation operations and the residual computation have good speed-up, their impact on
the speed-up of applying the preconditioner is reduced by their relatively small wall-clock
time compared to the smoothers.

Uncertainty quantification study

Finally, we tested ensemble GMRES without reduction on 6400 samples to compute the
probability density function of the equivalent von Mises stress at the point p3 of Fig. 7.19,
the point on the hole boundary where the stress is theoretically maximal, for the test case
6. To highlight the fact that the results of the uncertainty quantification are not modified
by the use of ensemble propagation, we have computed a probability density function of
the quantity of interest with data propagated with and without ensemble propagation.
The computed probability density functions are shown in Fig. 7.32 and are identical with
and without ensemble propagation.
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Figure 7.32: Probability density function of the quantity of interest: the Equivalent
von Mises stress at the point p3 of Fig. 7.19, computed without ensemble propagation
(s = 1) and with ensemble propagation with ensembles of size 32 for the test case 6.

Fig. 7.33 illustrates the cumulative speed-up for the 200 ensembles of size 32 and the
convergence of the speed-up to 3.1352 on 1 NUMA region of the Blake system described
in Appendix A with hyper-threading, i.e. with 48 threads. Without using ensemble
propagation, the evaluation of the 6400 samples took 5.66 hours of wall-clock time; this
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wall-clock time has been reduced to 1.8 hours using ensemble propagation with ensembles
of size 32. The measured speed-up over the 6400 samples is 3.1352 which is consistent
with results of Fig. 7.31.
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Figure 7.33: Cumulated speed-up of the full simulation for the test case 6 without
ensemble reduction and ensemble of size 32.

138



7.4. Beam contact problem

7.4 Beam contact problem

The example that we propose to study with contact and ensemble propagation is a uni-
formly loaded beam fixed at both ends above a rigid surface as illustrated in Fig. 7.34.
The beam has a length 2L, a height H, and a width W . The material of the beam is
linear elastic and has a Young’s modulus E and a Poisson ratio ν. A pressure p is applied
on the top of the beam and the rigid surface is located at a distance d below the bottom
surface of the beam. Due to the symmetry of the problem, we can restrict ourselves to
the computation of one half of the beam as shown in Fig. 7.35 where the green surface
represents the surface where symmetry constraints are imposed. We do not take into
account the symmetry along the ey direction in order to simplify the discretization of the
Lagrange multipliers as discussed in section 7.4.3. This problem is partially treated in
[Kikuchi and Oden, 1988, p. 146] and named as the beam contact problem.

2L

Figure 7.34: Beam fixed at both ends above a rigid surface.

The example has been run on 1 NUMA region of the Blake system described in
Appendix A with hyper-threading.

W
L

d

H

p

exey

ez

Figure 7.35: Geometrical configuration of one half of the uniformly loaded beam.

This example can have different states depending on whether the pressure is sufficient
to make a partial contact between the beam and the ground, or not. In the next sub-
section, we will derive the analytical solutions using the beam theory. After that, in the
second subsection, we will discuss the model and parameter values.
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7.4.1 Theoretical results

The theory of this section is partially treated in [Kikuchi and Oden, 1988, p. 146] where
they considered a cantilever beam fixed at one end and where the other end was free. The
symmetry constrains considered in this example impact the boundary conditions and the
solutions.

We start with the Euler-Bernoulli equation to compute the deflection w of the beam:

d2

dx2

(
E I

d2

dx2
w

)
= q(x), (7.12)

where E is the Young’s modulus, I is the area moment of inertia of the cross section,
and q(x) the external load per unit length applied at position x where the position x is
shown in Fig. 7.36 where green color is used to show where the symmetry constrains are
imposed.

0 x

w

Figure 7.36: Coordinate system of the beam deflection problem.

As we have a rectangular cross section, we know that:

I =
W H3

12
. (7.13)

No contact state

In this case, we have the external load per unit length:

q(x) = pW, (7.14)

and the following boundary conditions:

w(0) = 0, (7.15) d

dx
w(0) = 0, (7.16)

d

dx
w(L) = 0, (7.17)

d3

dx3
w(L) = 0. (7.18)

Therefore, we can solve (7.12) using (7.14) and the conditions (7.15), (7.16), (7.17),
and (7.18):

w(x) =
pW

24E I

(
x4 − 4Lx3 + 4L2 x2

)
. (7.19)
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Using (7.19), we deduce that this solution is valid as long as:

max
x∈[0,L]

w(x) ≤ d, (7.20)

which is true as long as:

w(L) ≤ d, (7.21)

and therefore as long as p ≤ p1 where:

p1 =
24E I d

W L4
. (7.22)

An example of deflection without contact is shown in Fig. 7.37.

Figure 7.37: Deflection w of the uniformly loaded beam with no contact.

Partial contact state

First, we assume that there is an a ∈]0, L[ such that the contact is closed for all x ∈ [a, L]
and open for any x ∈ [0, a[ as shown in Fig. 7.38.

This leads us to the following external load per unit length:

q(x) =

{
pW, if x < a,

0, if x ≥ a,
(7.23)

and the following boundary conditions:

w(0) = 0, (7.24) d

dx
w(0) = 0, (7.25)

w(a) = d, (7.26) d

dx
w(a) = 0, (7.27)

d2

dx2
w(a) = 0. (7.28)

The fact that q(x) = 0 if x ≥ a is due to the reaction force of the rigid surface on the
beam which cancels the applied pressure.

Therefore, we can solve (7.12) using (7.23) and the conditions (7.24), (7.25), (7.27),
and (7.28):

w(x) =

{
pW

24E I

(
x4 − 8

3
a x3 + 2 a2 x2

)
, if x < a

d, if x ≥ a
. (7.29)
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Using (7.29) and (7.26), we find that a has to be:

a = 4

√
72
E I d

pW
. (7.30)

These assumptions are valid as long as a ≤ L, and therefore, using (7.30), we deduce
that a ≤ L is verified provided that p ≥ p2 where:

p2 =
72E I d

W L4
. (7.31)

a

Figure 7.38: Deflection w of the uniformly loaded beam and definition of a.

7.4.2 Model and parameters

We will use a 3D finite element model with hexahedra as shown in Fig. 7.39 with nL ×
nW ×nH hexahedra where nL, nW , and nH stand respectively for the number of elements
along the length, the width, and the height of the beam. The previous section on the
beam theory will not be used to group samples in ensembles or to derive meshes, etc. but
will be used to analyze the results.

Now, we will introduce numerical values based on [Kikuchi and Oden, 1988, p. 146]
and define the random parameters and quantities of interest:

• L = 50 cm, W = 1 cm, H = 5 cm, d = 1 cm, and ν = 0.29,

• nL = 60, nW = 6, and nH = 6,

• p is random and varies uniformly in the range [0.5 kN/cm2, 2.5 kN/cm2],

• E is random and varies uniformly in the range [2.05 104 kN/cm2, 2.15 104 kN/cm2],

• The deflection of the point (L, 0, H/2) is the first quantity of interest2,

• The deflection of the point (L/2, 0, H/2) is the second quantity of interest.

Based on the beam theory subsection, we deduce that such uncertainty ranges lead
to each of the three states with a non-zero probability.

2The origin of the axes is the middle point of the clamped side as illustrated in Fig. 7.36.
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Figure 7.39: Mesh of the beam.

7.4.3 Discretization of the Lagrange multipliers

In this case, we can either use modified or unmodified shape functions as the contact
will never be locally closed in the neighborhood of the Dirichlet boundary condition.
Therefore, the Lagrange multipliers will be zero and the modification has no influence.

A possible mesh of the potential contact interface is shown in Fig. 7.40. In the case
of unmodified shape functions, all the potential contact nodes have standard and dual
shape functions as shown in Fig. 5.5 and Fig. 5.7 respectively. In the case of modified
shape functions, all the black nodes of Fig. 7.40 have standard and dual shape functions
as shown in Fig. 5.5 and Fig. 5.7 respectively, all the Dirichlet constrained nodes, the red
nodes shown in Fig. 5.5 have no Lagrange multipliers, and the green nodes have modified
shape functions as shown in Fig. 5.6 and Fig. 5.8 respectively.

ex

ey

Figure 7.40: Mesh of the potential contact surface. The black dots represent the
nodes for which the shape functions of the Lagrange multipliers do not need to be
modified. The red dots represent the nodes of the potential contact surface where
Dirichlet boundary conditions are applied. The green dots represent the nodes for
which a modification of the shape function of the Lagrange multipliers can be applied.

7.4.4 Sampling strategy

In this example, we are using a Quasi-Monte Carlo strategy based on a Halton sequence of
640 samples. Those samples are illustrated in Fig. 7.41 where the dashed lines represent
the boundary between the three states identified in section 7.4.1.
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Figure 7.41: 640 samples of the beam contact problem, the dashed lines represent the
theoretical pressure p1 and p2 as described in section 7.4.1.

7.4.5 Preconditioner and stopping criterion

We use, for this problem, the multigrid preconditioner as introduced for the problem of
section 7.3 and a stopping criterion with relative tolerance of 10−8.

7.4.6 Results

For this example, we consider both the use of ensemble propagation with and without
grouping [D’Elia et al., 2018, 2020]. We first start with the results without grouping
before discussing results with grouping.

Without grouping

First, we illustrate the quantities of interest of the evaluated samples in Fig. 7.42 and
7.43. We observe that those values are consistent with the beam theory which predicts
p1 in (7.22).

Afterwards, the samples have been evaluated using ensemble GMRES with and with-
out ensemble reduction and ensemble sizes of 8, 16, and 32. As done for the previous
numerical example, we investigate the effect of the ensemble sizes and ensemble reduction
on the convergence by looking at the number of Krylov iterations to converge. Here, as
the problem is now non-linear, we look at the sum of the number of iterations of all
the linear solves performed during the active set strategy and illustrate them in Fig.7.44.
Once again, we observe that ensemble reduction increases the number of iterations to con-
verge compared to not using ensemble reduction. Concerning ensemble GMRES without
reduction, we observe that the total number of iterations can be slightly larger than the
maximal value of the total number of iterations among the samples of a given ensemble
as illustrated in the zoomed part of Fig.7.44. This is explained by the fact that for each
of the linear systems we wait for the slowest sample to converge; however, for differ-
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Figure 7.42: Deflection at point (L, 0, H/2), the dashed lines represent the theoretical
pressure p1 and p2 as described in section 7.4.1.
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Figure 7.43: Deflection at point (L/2, 0, H/2).
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Figure 7.44: Total number of iterations to converge with and without ensemble re-
duction. The blue dots represent the required total number of iterations of GMRES
to converge for each sample propagated alone. The orange lines, yellow lines, and
purple lines represent the required total number of iterations of ensemble GMRES to
converge with ensembles of size 8, 16, and 32 respectively. We observe that ensemble
GMRES without ensemble reduction converges faster than ensemble GMRES with
ensemble reduction for all ensembles.
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Figure 7.45: Number of active set iterations with and without ensemble reduction. The
blue dots represent the required number of active set iterations to converge for each
sample propagated alone. The orange lines, yellow lines, and purple lines represent
the required number of active set iterations to converge with ensembles of size 8, 16,
and 32 respectively. We observe that the required number of active set iterations is
independent of the use of ensemble reduction for all ensembles.
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ent consecutive linear systems of the active set iteration, the slowest sample is different
impacting the total number of iterations.

Once again, the impact of ensemble reduction on the convergence influences the speed-
up of the full simulation as illustrated in Fig. 7.46. If we now compare the reached
speed-up with the ones of the mesh-tying example, we observe that the speed-ups of the
beam contact problem are larger although the number of iterations is increased. This
is explained by the fact that, although the total number of iterations has increased, the
number of iterations per linear solve has decreased and by the fact that the number of
degrees of freedom is smaller in this example. The last explanation relies on the results of
section 7.2 which illustrated that the speed-up of the different parts of ensemble GMRES
are usually larger for smaller problems.
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Figure 7.46: Speed-up of the full simulation with and without reduction.

The wall-clock time of the different parts of the simulation are listed in table 7.4 and
their corresponding speed-ups are listed in table 7.5.

With grouping

What we can observe from the convergence of the samples in Fig. 7.44 is that, typically,
five different numbers of total iterations are reached 140, 200, 280, 330, and 400. From
such an observation, we can wonder what would be the impact of propagating samples
that converge in 140 iterations together, etc. In other words, what is the impact of
grouping the samples together based on their total number of iterations? Grouping
strategies and their influences are outside the scope of this thesis, however, we think that
it is interesting to illustrate its impact here in order to open the door to future research.

Therefore, we have indexed the 640 quasi-Monte Carlo samples in such a way that
they are ordered such that their total number of iterations if propagated alone grows with
the sample index. After that, we have propagated those samples again both with and
without ensemble reduction. The convergence results are illustrated in Fig. 7.47.

From Fig. 7.47, we observe that both ensemble GMRES with and without reduction
converge faster due to the grouping strategy. In particular, ensemble GMRES without
reduction has nearly exactly the same behavior as samples propagated alone. This faster
convergence for both approaches improves their speed-up as illustrated in Fig. 7.49 by
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Tag With reduction Without reduction
Ensemble size 1 8 16 32 8 16 32
Matrix assembly
K assembly II.I 0.005 0.074 0.100 0.125 0.074 0.100 0.135
G assembly II.II 0.197 0.200 0.200 0.200 0.200 0.200 0.200

Total II 0.202 0.274 0.3 0.325 0.274 0.300 0.335
Preconditioner setup
Total III 0.496 0.747 0.823 0.917 0.509 0.556 0.633
GMRES

Orthogonalization IV.X 0.175 0.486 1.192 3.396 0.335 0.642 1.347
Matrix-vector product IV.IV 0.173 0.718 1.254 2.472 0.556 0.867 1.565
Preconditioner IV.III
Block K smoother 0.925 1.716 3.266 7.654 1.234 2.264 4.732
Block R smoother 0.010 0.061 0.107 0.206 0.048 0.074 0.145
Restriction IV.III.IV 0.069 0.154 0.191 0.249 0.118 0.130 0.161
Prolongation IV.III.V 0.077 0.207 0.330 0.544 0.167 0.227 0.317
Residual computation IV.III.III 0.199 0.768 1.294 2.501 0.597 0.899 1.591
Coarse solver IV.III.I 0.112 0.797 1.597 3.398 0.658 1.198 2.311

Total IV 2.097 5.972 10.198 20.297 4.637 7.247 13.110
Total 3.255 8.620 14.427 28.535 6.639 10.137 17.915

Table 7.4: Average wall-clock time in second per ensemble.

Tag With reduction Without reduction
Ensemble size 1 8 16 32 8 16 32
Matrix assembly
K assembly II.I 1. 0.541 0.800 1.280 0.541 0.800 1.185
G assembly II.II 1. 7.880 15.760 31.520 7.880 15.760 31.520

Total II 1. 5.898 10.773 19.889 5.898 10.773 19.296
Preconditioner setup
Total III 1. 5.312 9.643 17.309 7.796 14.273 25.074
GMRES

Orthogonalization IV.X 1. 2.880 2.349 1.649 4.179 4.361 4.157
Matrix-vector product IV.IV 1. 1.928 2.207 2.239 2.489 3.193 3.537
Preconditioner IV.III
Block K smoother 1. 4.312 4.531 3.867 5.997 6.537 6.255
Block R smoother 1. 1.311 1.495 1.553 1.667 2.162 2.207
Restriction IV.III.IV 1. 3.584 5.780 8.867 4.678 8.492 13.714
Prolongation IV.III.V 1. 2.976 3.733 4.529 3.689 5.427 7.773
Residual computation IV.III.III 1. 2.073 2.461 2.546 2.667 3.542 4.003
Coarse solver IV.III.I 1. 1.124 1.122 1.055 1.362 1.496 1.551

Total IV 1. 2.809 3.290 3.306 3.618 4.630 5.119
Total 1. 3.021 3.610 3.650 3.922 5.138 5.814

Table 7.5: Speed-up per ensemble.
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Figure 7.47: Total number of iterations to converge with and without ensemble reduc-
tion when grouping the samples. The blue dots represent the required total number
of iterations of GMRES to converge for each sample propagated alone. The orange
lines, yellow lines, and purple lines represent the required total number of iterations
of ensemble GMRES to converge with ensembles of size 8, 16, and 32 respectively.
As for the case without grouping, we observe that ensemble GMRES without ensem-
ble reduction converges faster than ensemble GMRES with ensemble reduction for all
ensembles.
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Figure 7.48: Number of active set iterations with and without ensemble reduction. The
blue dots represent the required number of active set iterations to converge for each
sample propagated alone. The orange lines, yellow lines, and purple lines represent
the required number of active set iterations to converge with ensembles of size 8, 16,
and 32 respectively. We observe once again that for any ensemble the required number
of active set iterations is independent of the use of ensemble reduction. Moreover, we
observe that the grouping strategy used has grouped samples with similar required
number of active set iterations together.
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reducing the wall-clock time of their computational parts as listed in table 7.6. The
corresponding speed-ups are listed in table 7.7.
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Figure 7.49: Speed-up of the full simulation with grouping with and without reduction.

As conclusion of this grouping subsection, we have observed that using a perfect group-
ing strategy, i.e. in the sense that using a grouping strategy which relies on information
which are not available a priori, improves the speed-up of both approaches but that
ensemble GMRES without reduction remains the fastest approach. D’Elia et al. [2020]
proposed to build and use a surrogate model to predict the number of iterations required
for a sample to converge. This surrogate allows one to group the samples with similar
predicted number of iterations into an ensemble. The surrogate is built and trained with
the number of iterations of the previously run samples and can be updated after each
ensemble evaluation with the new information.
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7.4. Beam contact problem

Tag With reduction Without reduction
Ensemble size 1 8 16 32 8 16 32
Matrix assembly
K assembly II.I 0.005 0.074 0.100 0.125 0.074 0.100 0.135
G assembly II.II 0.197 0.200 0.200 0.200 0.200 0.200 0.200

Total II 0.202 0.274 0.300 0.325 0.274 0.300 0.335
Preconditioner setup
Total III 0.496 0.747 0.823 0.917 0.509 0.556 0.633
GMRES

Orthogonalization IV.X 0.175 0.345 0.804 1.901 0.245 0.451 0.926
Matrix-vector product IV.IV 0.173 0.499 0.829 1.498 0.405 0.605 1.064
Preconditioner
Block K smoother 0.925 1.220 2.376 4.79 0.904 1.576 3.211
Block R smoother 0.010 0.042 0.072 0.128 0.036 0.053 0.099
Restriction IV.III.IV 0.069 0.107 0.125 0.151 0.086 0.091 0.110
Prolongation IV.III.V 0.077 0.144 0.217 0.332 0.122 0.159 0.215
Residual computation IV.III.III 0.199 0.534 0.854 1.511 0.435 0.630 1.083
Coarse solver IV.III.I 0.112 0.560 1.064 2.097 0.478 0.834 1.571

Total IV 2.097 4.158 6.942 12.452 3.395 5.067 8.927
Total 3.255 6.128 9.962 17.57 5.061 7.286 12.435

Table 7.6: Average wall-clock time in second per ensemble after grouping.

Tag With reduction Without reduction
Ensemble size 1 8 16 32 8 16 32
Matrix assembly
K assembly II.I 1. 0.541 0.800 1.280 0.541 0.800 1.185
G assembly II.II 1. 7.880 15.760 31.520 7.880 15.760 31.520

Total II 1. 5.898 10.773 19.889 5.898 10.773 19.296
Preconditioner setup
Total III 1. 5.312 9.643 17.309 7.796 14.273 25.074
GMRES

Orthogonalization IV.X 1. 4.058 3.483 2.946 5.714 6.208 6.048
Matrix-vector product IV.IV 1. 2.774 3.339 3.696 3.417 4.575 5.203
Preconditioner
Block K smoother 1. 6.066 6.229 6.180 8.186 9.391 9.218
Block R smoother 1. 1.905 2.222 2.500 2.222 3.019 3.232
Restriction IV.III.IV 1. 5.159 8.832 14.623 6.419 12.132 20.073
Prolongation IV.III.V 1. 4.278 5.677 7.422 5.049 7.748 11.46
Residual computation IV.III.III 1. 2.981 3.728 4.214 3.660 5.054 5.880
Coarse solver IV.III.I 1. 1.600 1.684 1.709 1.874 2.149 2.281

Total IV 1. 4.035 4.833 5.389 4.941 6.622 7.517
Total 1. 4.249 5.228 5.928 5.061 7.148 8.376

Table 7.7: Speed-up per ensemble after grouping.
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7.5 Conclusions

To summarize, in this chapter, we have applied ensemble GMRES on four academic prob-
lems. The results illustrated that the number of iterations required for the convergence
of ensemble GMRES with ensemble reduction is larger than the number of iterations
required for the convergence of ensemble GMRES without ensemble reduction. We have
brought insight into the speed-up of the different computational parts regardless of the
use of ensemble reduction and we have illustrated that the orthogonalization process,
for a fixed number of iterations, has a similar CPU cost with and without ensemble re-
duction. The consequence of those two observations is that the speed-up of ensemble
GMRES without ensemble reduction is better than the speed-up of ensemble GMRES
with ensemble reduction.

Finally, we have illustrated the speed-up of ensemble propagation on two uncertainty
quantification studies with problems with indefinite matrices: a mesh-tying problem and
a contact problem. We have illustrated, once again, that ensemble reduction deteriorates
the speed-up of the parametric computation by increasing the number of iterations re-
quired for the convergence of ensemble GMRES and we have illustrated a first example
of the impact of grouping strategy on ensemble GMRES.
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Chapter 8
Application to a diagnostic mirror for ITER

The work presented in this chapter has been done in collaboration with the research
group of Philippe Mertens from FZ Jülich, Germany. They are interested in the design of
the front mirror of the Charge eXchange Recombination Spectroscopy (CXRS) diagnostic
system of ITER as discussed in section 1.1.1.

In this chapter, we investigate the performance of embedded ensemble propagation to
simulate the behavior of the CXRS front mirror [Mertens, 2018; Krasikov et al., 2015].

In particular, we evaluate the performance in the context of a model problem with
uncertainty related to modifications of the material properties due to neutron irradiation.

The considered tests of this chapter are thermomechanical problems without contact.
They are used to evaluate the performance of the code with a large number of degrees of
freedom (about 107) and are the only tests of this thesis which use distributed-memory
parallelism.

The developed code and one of the examples of this chapter have been used to generate
a result included in [Mertens et al., 2019].

Finally, the model problem is used to perform an uncertainty quantification analysis to
evaluate the temperature on the mirror surface, the deformation of the reflective surface,
and the preload loss in the studs due to the thermal expansion using embedded ensemble
propagation.
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8.1 Description of the problem

8.1.1 Context

In the complex system which ITER is, as much information as possible on the state of
the plasma is needed in order to tune correctly the different parameters of the magnetic
confinement and of the heating of the plasma. Several diagnostics will be used to measure
different physical quantities, such as the density and the temperature of the plasma.

This study addresses the core charge-exchange recombination spectroscopy (cCXRS)
diagnostic which is planned to be located in one of the upper port plugs as illustrated
in Fig. 8.1. This system uses the principle of active spectroscopy activated by hydrogen
beams. The diagnostic neutral beam reduces by one the charge of ions in the hot plasma.
These particles are excited: they have a state of higher energy than the ground state and
decay by emitting visible radiation. If this radiation is measured, the density of specific
impurities in the plasma or the ion temperature can be deduced. From the spectral
intensities and widths, physical parameters like concentration and velocity of specific
ions can be deduced.

Upper port plug

First mirror location

Figure 8.1: ITER, upper port plug, and first mirror location. Picture by courtesy of
ITER Organization.

The system will be made of a chain of mirrors, the purpose of which is to transport
the optical signal from the vessel to spectrometers outside the reactor. Then the spec-
trometers will decompose the optical signal according to the wavelength and a computer
can compare the decomposed signal to the spectrum of known particles.

The mirror studied in this chapter is the first mirror of the optical chain and is the one
located closest to the plasma. Being the closest to the plasma, this mirror is exposed to
high radiation and fluxes of particles which escape the plasma and is the most vulnerable
in-vessel optical component being subject to both erosion and deposition of impurities.

Due to this high radiation and these fluxes, the temperature of the first mirror in-
creases which deforms the reflecting surface of the mirror and may lead to blurred images
at the end of the optical chain. Moreover, due to the irradiation by the neutrons, material
properties of some parts of the mirror assembly are uncertain.
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In such a context, we set up a model problem representative of parametric computa-
tions useful to evaluate the robustness of the mirror with uncertainty related to irradiated
material. This model problem is used to evaluate the performance of ensemble GMRES
on a non-academic problem.

8.1.2 Geometry

The studied geometry has been supplied by FZ Jülich and is illustrated in Fig. 8.2 and
Fig 8.3. In this work, we restrict ourselves to a sub-assembly illustrated in Fig. 8.4 of the
full assembly of Fig. 8.2 except in section 8.5 where the full assembly is considered. The
main components of the mirror assembly are:

• The mirror: The mirror is a thin plate with a flat optical surface the role of which is
to reflect the incoming optical signal. It is not actively cooled; there are no cooling
channels going directly through it. The mirror surface is 167 mm long and 84 mm
wide.

• The mirror substrate: The mirror plate is bound to a second component: the mirror
substrate which is machined with threads to be bolted to the holder.

• The holder: The holder plays the role of a heat sink for the mirror system. It has
a water cooling channel passing through it and is cooled by forced convection.

• The studs and nuts: The mirror is bolted to the holder with three bolts, two
M16 bolts and one M24 bolt. These bolts play a key structural role since they
should ensure a good thermal contact between the heated mirror and the actively
cooled holder. The stiffness and strength of these bolts should allow relatively high
preloading in order to keep good thermal contact and prevent dynamic detachment
of the bolted parts. The nuts have a second role, they must electrically isolate the
mirror from the holder to prevent large eddy current loop across the parts and to
enable the use of the mirror as cathode during mirror cleaning discharges.

• The spacers: spacers with lowest possible thermal resistivity are added between the
holder and the mirror substrate to improve the heat transfer from the mirror to the
cooling channel. Those spacers have a sufficiently high electrical resistance for the
same reason as the nuts.

• The washers: finally, the washers are introduced to help the preloading of the studs
during the assembly process.

The components of the assembly are illustrated in two cuts shown in Fig. 8.5 and
Fig. 8.6. The cut illustrated of Fig. 8.5 which is illustrated again in Fig. 8.7 will be used
in the results section.

8.1.3 Mesh

Although this assembly includes contact between parts, we have restricted ourselves to
simulate the full assembly without taking into account the fact that contact can be
decreased or lost between components. Due to this restriction, we have fused the meshes
of the different components at their interface to have a conforming discretization at the
interfaces. As opposed to the previously shown examples, this mesh is a full tetrahedron
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300 mm

Incoming photons

Figure 8.2: Front mirror assembly.

Incoming photons

Figure 8.3: Front mirror assembly seen from the bottom. The reflective surface is
represented in blue.
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Figure 8.4: Sub-assembly of the front mirror which will be used for the numerical
study.

mesh and is shown in Fig. 8.8. The characteristic length of the tetrahedra is 1.5 mm. We
have meshed the different volumes in such a way that their common interfaces share the
same nodes.

The main reason why we have not tested this model with contact constraints is that
not all the components of the assembly are clamped, i.e. Dirichlet boundary conditions
are not applied on all the components. This implies that the stiffness matrix is singular
even if the full system is well posed. This singularity impacts the numeral strategy such
as the preconditioner which merits deeper investigation.

8.2 Materials properties

The material properties of this section can be found in the ITER material database
[Barabash, 2013] (Collection of material properties for material usually used in ITER
design) or were given by FZ Jülich. Those values are assumed to not be temperature
dependent in this work.

As explained in [Mertens et al., 2019], the mirror is made of rhodium, its parameters
are listed in Table 8.1. The mirror substrate (the holder welded to the mirror) and
the metallic spacers are in a tungsten-copper alloy (Table 8.2). Previously, an actively
cooled holder in stainless steel (Table 8.3) was considered but the temperature field of
the simulation was too high, therefore, in discussion with FZ Jülich, we have chosen to
use CuCrZr (Table 8.5) for the actively cooled holder. The heat conducting spacers are
in AlN ceramic (Table 8.4). The studs and the washers are in Inconel 718 (Table 8.6).
In order to electrically isolate the mirror from the holder, both the nuts and the WCu
spacers are isolated using a ceramic surface coating.

Young’s Modulus 379 000 MPa
Poisson’s coefficient 0.26
Thermal conductivity 0.150 kW/(m K)
Linear coefficient of thermal expansion 0.781 10−05 1/K

Table 8.1: Rhodium (Rh).
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Figure 8.5: Cut 1 of the assembly with components.
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Figure 8.6: Cut 2 of the assembly with components and labeling of the studs.
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Figure 8.7: Cut 1 of the assembly with components.
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Figure 8.8: Mesh of the assembly with 329057 nodes and 1.7 million tetrahedra.

Young’s Modulus 280 000 MPa
Poisson’s coefficient 0.298
Thermal conductivity 0.180 kW/(m K)
Linear coefficient of thermal expansion 0.88 10−05 1/K

Table 8.2: Tungsten-copper alloy W(80%)Cu(20%) (WCu).

Young’s Modulus 200 000 MPa
Poisson’s coefficient 0.3
Thermal conductivity 0.0153 kW/(m K)
Linear coefficient of thermal expansion 1.57 10−05 1/K

Table 8.3: Stainless steel 55316 used in section 8.5.

Young’s Modulus 320 000 MPa
Poisson’s coefficient 0.24
Thermal conductivity 0.180 kW/(m K)
Linear coefficient of thermal expansion 0.48 10−05 1/K

Table 8.4: AlN ceramic.

Young’s Modulus 118 000 MPa
Poisson’s coefficient 0.33
Thermal conductivity 0.345 kW/(m K)
Linear coefficient of thermal expansion 1.8 10−05 1/K

Table 8.5: Copper-chromium-zirconium alloy (CuCrZr).
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Young’s Modulus 183 000 MPa
Poisson’s coefficient 0.31
Thermal conductivity 0.0158 kW/(m K)
Linear coefficient of thermal expansion 1.38 10−05 1/K

Table 8.6: Inconel 718.

8.2.1 Thermal loads

The thermal loads are induced by the particle fluxes that reach the assembly. Particles are
emitted by the plasma. These particles have high energy and can transfer their energy to
components of the reactor by elastic or inelastic collisions, which are respectively energy
transfer of the incoming particles to nuclei or electrons ([Naujoks, 2006], p. 68-71). These
particles have a property called the penetration depth, also named mean depth ([Naujoks,
2006], p. 68), which corresponds to their normal mean penetration into the matter. In
the current study, three different types of particles play an important role: the photons,
the fast charge exchange neutrals, and the neutrons.

The neutrons have a mean depth bigger than the dimensions of the assembly of the
first mirror and the holder. This means that to model this loading, it can be described
as a uniform volumetric heat generation depending only on the probability of collision.
This probability of collision between neutrons and the nuclei or electrons depends on the
material, values are listed in Table 8.7. Those values are peak values and correspond to
a conservative approach; if the mirror is able to deal with the steady state at peak value,
it will be able to not blur the image with smaller values of the load.

Rh 20.00 MW/m3

WCu 2.45 MW/m3

Stainless steel 0.70 MW/m3

AlN 0.30 MW/m3

CuCrZr 0.60 MW/m3

Inconel 718 0.80 MW/m3

Table 8.7: Assumed neutron volumetric heating for each material at peak value.

The mean depth of photons and fast charge exchange neutrals is small in comparison
to the dimensions of the assembly. This allows their influence to be seen as a heat flux:
the particles transfer energy and heat the material, but they do so only in a spatial
region near the surface of the first mirror. These two types of particle fluxes can be seen
as surface heating. We estimate the integrated photons and fast charge exchange neutral
heating on the mirror surface to 20 W (around 1.65 kW/m2).

Water channels are modeled imposing 70◦C on their surfaces.

Radiation between the components of the assembly is neglected. Taking that radiation
into account would reduce the temperature of the mirror leading to smaller thermal
deformation; not taking it into account is a conservative approach as fulfilling the optical
criteria without radiation leads to fulfilling the optical criteria with radiation.
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8.2.2 Boundary conditions

Even if we have more than one body, only 6 rigid body modes have to be prevented as
we have fused the meshes together. The choice of a clamping strategy is not conceptually
easy as the holder will be bolted to a second holder which will be able to thermally
expand. We consider two clamping strategies: a first one which may be too constraining
and a second one which may be too loose. The reality should be between those two
strategies. Using those two strategies, we will illustrate the fact that the deformation
of the reflective surface is similar in both cases. However, we will illustrate that the
position of this surface will be impacted by the clamping option. Therefore, to evaluate
more precisely this position, it will be necessary to model the second holder as discussed
in section 8.5.

Radial clamping

Normal clamping

Figure 8.9: Option A: Surfaces on which normal and radial clamping are applied for
one bolt (same conditions for the other two bolts).

x
y

Point clamped in all directions

Point clamped in the z and y direction

Point clamped in the z direction

Figure 8.10: Option B: Second clamping strategy, one point clamped in all direc-
tions, one clamped in the z (out of plane) direction, and a last point clamped in two
directions.

In the clamping strategy A, the 6 rigid body modes are suppressed by enforcing zero
displacements that model the bolting of the first actively cooled holder to the second one.
We enforce zero displacements along all directions except the axial direction of the three
cylindrical surfaces one per bolt (where the bolts are supposed to be) and enforcing a zero
normal displacement on six surfaces, two per bolt, as shown in Fig. 8.9. This strategy is,
however, too constraining as it prevents the thermal expansion of the assembly creating
internal compressive stresses. This explains why we consider a second clamping option
too.

In the clamping strategy B, the 6 rigid body modes are suppressed by enforcing zero
displacement along all directions at one point and zero displacement along two directions
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at another point, and zero displacement along one direction at a last point as illustrated
in Fig. 8.10.

The clamping strategy does not influence the thermal distribution but influences both
displacement and stresses.

8.2.3 Influence of the deformation on the optical performance

When the thermal distortion of the mirror surface is computed, we have to evaluate its
impact on the optical performance and deduce whether the measurement is blurred or
not. Although it is possible to import directly geometry with node-wise coordinates into
ray tracing softwares, it has two main disadvantages:

• The ray tracing software uses the outward normal of reflecting surfaces to compute
the reflected ray. Importing the nodal position of deformed points computed with
finite elements does not enforce the smoothness of the outward normal at the edges
between elements.

• The amount of data per sample that has to be transferred to the optical software is
relatively large and does not allow the user to directly identify how the mirror has
been deformed. Moreover, importing surfaces node-wise prevents some sensitivity
analysis of ray tracing software.

Therefore, instead of importing the surface node-wise, the researchers at FZ Jülich use
another strategy: the construction of an approximation of the deformation of the mirror
surface with Zernike polynomials. The computed coefficients can then be introduced in
the ray tracing software to deform the mirror surface and compute the impact of the
deformation on the optical quality. Although those polynomials provide a suitable way
to easily communicate between software, those coefficients should be interpreted with
caution. The Zernike polynomials are orthogonal on the unit disk but not on the consid-
ered mirror surface. This lack of orthogonality impacts both the numerical strategy to
compute the coefficients and the interpretation that can be drawn from them. Typically,
when considering mirrors with disk surface, the coefficients can be computed project-
ing the deformation on the polynomials and the coefficients can be interpreted as piston
mode, rotation, curvature change, and higher order deformation of the mirror surface.
Due to the lack of orthogonality, we use a weighted least-squares fitting [Draper and
Smith, 1998] where the weight of each nodal value is the area of the surface associated
to this node to compute the first four Zernike coefficients. The computed coefficients can
be seen as the approximation of the piston mode, the approximations of the rotations,
and the approximation of the curvature change. The remaining deformation is left as
irregularity as illustrated in Fig. 8.11. Those values can, afterwards, be used to deduce
whether the image of the optical system is blurred or not.

Based on optical sensitivity analysis admissible values for the deformation [Krasikov
et al., 2017], change of position, and orientation of the front mirror have been defined.
Those values are listed in Table 8.8. These optical tolerances are based on the decom-
position of the mirror deformation shown in Fig. 8.11 where the values to be compared
with tolerance values for curvature and irregularity correspond respectively to distances
d1 and d2. It is important to emphasize that the spatial frequency of the irregularity
change should be checked too: if d2 is smaller than the tolerance and if the irregularity is
sufficiently smooth without any high frequency space distribution, then the irregularity
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will not blur the image; if one of the previous conditions is not fulfilled, the image will
be blurred.

Translation Rotation Rotation Curvature Irregularity
along z along x along y
±2 mm ±1.75 mrads ±1.75 mrads ±100 fringes1 ±100 fringes

Table 8.8: Optical tolerances.

Deformation
of the surface

≡

Rigid body
motion

+

Curvature
change

+

Irregularity
change

d1
d2

Figure 8.11: Decomposition of the deformation of the mirror surface in rigid body mo-
tion, change in curvature, and change in irregularity. The blue dotted line corresponds
to the initial configuration of the mirror surface. The quantities d1 and d2 correspond
to the values which have to be compared with the curvature and irregularity tolerance
respectively.

8.2.4 Uncertain parameters

In this subsection, we discuss the choice of the uncertain parameters and the chosen
uncertainty quantification strategy.

Due to neutron irradiation, material properties of the parts used of the assembly
evolve during their lifetime. In particular, the heat conductivity of the AlN spacers
decreases when those spacers are irradiated. The heat conductivity of the AlN ceramic
before irradiation is known to be 180 W/mK and, at the end of the lifetime of ITER,
is estimated to be at 30 W/mK. Such a reduction of the heat conductivity results in
increased temperature on the mirror and larger deformation of the reflective surface.

The mirror assembly has three AlN spacers, two thin spacers and a thicker spacer
located closer to the plasma. In order to ease the illustration of the results, we restrict
ourselves to 2 uncertain parameters by assuming that the two thin spacers associated with
studs 1 and 2 of Fig. 8.6 have the same heat conductivity k1 and that the thickest spacer
associated with stud 3 of Fig. 8.6 has potentially another heat conductivity k2. Moreover,
the thickest spacer, the one associated with stud 3 of Fig. 8.6, is located closer to the
plasma, therefore, we expect that it will be more irradiated than the thinnest spacers and
and that k2 ≤ k1. From all those physical considerations, we have chosen to model the
uncertain parameters (k1, k2) as two random variables with uniform probability density
function in the triangle with vertices (30 W/mK,30 W/mK), (180 W/mK,180 W/mK),
and (180 W/mK,30 W/mK).

1A fringe corresponds to the distance between two points of maximal luminous intensity in the Michel-
son interferometer in the case of He laser. In other words, two fringes equal 632.8 nm. Then, 100 fringes
correspond to 0.0316 mm.
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Concerning the uncertainty quantification strategy, we build a polynomial chaos ex-
pansion surrogate model [Arnst and Ponthot, 2014; Le Mâıtre and Knio, 2010]:

qoi ≈
d∑

m=0

d−m∑

n=0

cm,nφm,n(k1, k2), (8.1)

where d is the maximal degree of the polynomials used.

The samples are chosen following the strategy of [Xiao and Gimbutas, 2010] which
computes weights and locations of samples to have precise numerical integrations of poly-
nomials up to a certain degree; as an example, the 453 samples related to the integration
of polynomials of degree 50 are illustrated in Fig. 8.12.

In this work, we have chosen to use orthogonal functions φm,n such that:

∫ 180

30

∫ k1

30

φm,n(k1, k2)φo,p(k1, k2)dk2dk1, (8.2)

is zero if m 6= o or n 6= p. To do so, we use the orthogonal basis for all polynomials of
degrees at most d:

Km,n(u, v) = Pm

(
2u+ v + 1

1− v

)(
1− v

2

)m
P 2m+1,0
n (v), (8.3)

with m and n two positive or null integers such that m + n ≤ d, Pα,β
n the nth degree

Jacobi polynomial corresponding to parameters α and β, and Pm the mth degree Leg-
endre polynomial. The functions Km,n(u, v) are defined on the triangle with vertices
(-1,-1),(-1,1), and (1,-1) and are orthogonal with respect to the uniform weight function
[Koornwinder, 1975; Xiao and Gimbutas, 2010].

In order to transform from the triangle with vertices (30 W/mK,30 W/mK), (180
W/mK,180 W/mK), and (180 W/mK,30 W/mK) to the triangle with vertices (-1,-1),
(-1,1), and (1,-1), we use this transformation:

u = 1− k1 − 30 W/mK

75 W/mK
, (8.4)

v = −1 +
k1 − 30 W/mK

75 W/mK
. (8.5)

8.2.5 Quantities of interest

The chosen quantities of interest are the maximal, mean, and minimal temperature
reached on the mirror surface, the displacement of the mirror surface: the value of the
piston mode, both rotations, the curvature change, and the irregularity, and the preload
loss in the studs.

The preload loss is evaluated computing the integral of σzz through the cut of the
stud by cutting every tetrahedron of the stud with a cutting plane, triangularizing the
2D shapes, looping on the newly defined triangles, and computing the sum over those
triangles of the product of their area and their vertical stress.
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Figure 8.12: 453 samples of the mirror problem based on [Xiao and Gimbutas, 2010]
to integrate polynomials of degree 50.

8.2.6 Preconditioner

For this problem, we use the multigrid preconditioner described in section 5.2.3 with
1 iteration of the backward block Gauss-Seidel with a damping factor equal to 1 as
level smoother, the threaded Gauss-Seidel as smoother of the two blocks, and 3 levels
with sizes listed in Table 8.9. The smoother of the first block is 20 iterations of the
threaded Gauss-Seidel with a damping factor equal to 0.97 and the smoother of the
second block is 20 iterations of the threaded Gauss-Seidel with a damping factor equal to
1.04. The damping factors of the threaded Gauss-Seidel have been computed minimizing
the spectral radius of the Successive Over Relaxation iteration matrix. The spectral radii
have been computed with a power method [Golub and Van Loan, 2012].

level rows non-zero non-zero coarsening level
entries entries per row ratio smoother

0 1 316 228 60 551 257 46 BGS
1 82 048 5 985 434 43.74 16.04 BGS
2 6 560 301 834 38.32 12.51 Klu

Table 8.9: Multigrid information.

8.2.7 GMRES stopping criteria

For this problem, we use the combination of four stopping criteria to enforce the conver-
gence of GMRES for the temperature and displacement fields. The strategy used is to
require the enforcement of the stopping criteria sequentially; the first stopping criterion
has to be fulfilled before evaluating the second one, etc. The four stopping criteria are
the following:

• An implicit stopping criterion:

qT
:(j+1)e1 ≤ 10−5, (8.6)

this criterion is based on (3.9). This is an implicit stopping criterion, as discussed
in section 3.1, as it does not require the computation of the residual nor the solution
vector.
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• An explicit stopping criterion based on the relative norm of the residual linked to
the temperature field:

‖Lt(j) − l‖
‖Lt(0) − l‖ ≤ 10−7, (8.7)

• An explicit stopping criterion based on the relative norm of the residual linked to
the displacement fields:

‖Ku(j) + St(j) − f‖
‖Ku(0) + St(0) − f‖ ≤ 10−6, (8.8)

• An explicit stopping criterion based on the absolute norm of the residual linked to
the vertical displacement field of the mirror:

‖W
(
Ku(j) + St(j) − f

)
‖ ≤ 10−3, (8.9)

where W is a diagonal weight matrix with 0 on the diagonal and 1 on the diagonal
for the degrees of freedom associated to the vertical displacement of the mirror.
The units of the weight matrix are chosen to nondimensionalize the vector f .

8.3 Numerical results

Before looking at the results of the uncertainty quantification, we will investigate the two
extreme cases where the irradiation has not already reduced the heat conductivity of AlN
ceramic and where it has reduced it to 30 W/(m K).

8.3.1 Material before irradiation

The temperature field computed for the case where all the AlN ceramic spacers have a
heat conductivity of 180 W/(m K) is illustrated in Fig. 8.13 and in Fig. 8.14 and Fig. 8.15
for the cut 1 and 2 respectively.

We observe that the actively cooled holder is the coolest part and has a temperature
which is close to the water temperature of 70 ◦C. This is due to the good heat conductivity
of the CuCrZr. The hottest part, as illustrated in the two cuts, is the mirror itself and the
hottest point of the reflective surface is located in the closest region to the plasma; on the
edge of the surface on the side of the thickest spacer as illustrated in Fig. 8.20. The AlN
spacers need to conduct all the heat generated by the emitted particles which reach the
mirror and the mirror substrate to the holder as we observe that the studs themselves
do not conduct the main part heat as expected. This explains the high temperature
gradients inside the AlN spacers.

We can illustrate the associated displacement field for the clamping option A in the
cut in Fig. 8.16 and Fig. 8.17 and for the clamping option B in the cut in Fig. 8.18 and
Fig. 8.19. We observe that the mirror surface Fig. 8.21 has faced a positive displacement
along the z axis away from the plasma and negative displacement closer to the plasma
for the clamping option A whereas, for the clamping option B, we observe a positive
displacement at each point of the mirror surface Fig. 8.22.
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70 80 90 100 110 120.94

Temperature [ ◦C]

Figure 8.13: Temperature of the assembly before irradiation.

8.3.2 Material after irradiation

When the heat conduction of AlN is decreased due to neutron irradiation, the maximal
temperature is increased as seen in Fig. 8.23, 8.24, and 8.29 because the spacers have to
extract the same heat from the mirror and mirror substrate but with a heat conduction
divided by 6 leading to a temperature difference multiplied by 6 inside the spacers.

This increased temperature impacts the displacement field in both clamping strategies
as illustrated in Fig. 8.25, 8.26, Fig. 8.30, Fig. 8.27, 8.28, and 8.31.

When comparing Fig. 8.30 and 8.31 with Fig. 8.21 and Fig. 8.22 respectively, we
observe that the increased temperature gradient due to the increased temperature of the
mirror surface leads to an increased curvature change.

In table 8.10, we list the coefficients extracted from the mirror displacement for the
two cases before and after irradiation with the two clamping options. We observe that,
regardless of the clamping option, the mirror with non-irradiated AlN ceramic fulfils
the optical criteria whereas the case with fully irradiated AlN ceramic has too large
a curvature change leading to blurred measurement of the optical device. In the next
section, based on the uncertainty quantification study, we will investigate intermediate
states.
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Temperature [ ◦C]

Figure 8.14: Temperature of the first cut before irradiation.

70 80 90 100 110 120

Temperature [ ◦C]

Figure 8.15: Temperature of the second cut before irradiation.

−0.1 −7 · 10−2 −4 · 10−2 −1 · 10−2 2 · 10−2 5 · 10−2

Displacement along z [mm]

Figure 8.16: Displacement along z of the first cut before irradiation for the clamping
option A.
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−0.1 −7 · 10−2 −4 · 10−2 −1 · 10−2 2 · 10−2 5 · 10−2

Displacement along z [mm]

Figure 8.17: Displacement along z of the second cut before irradiation for the clamping
option A.

−5 −3 −1 1 3 5

·10−2Displacement along z [mm]

Figure 8.18: Displacement along z of the first cut before irradiation for the clamping
option B.

−5 −3 −1 1 3 5

·10−2Displacement along z [mm]

Figure 8.19: Displacement along z of the second cut before irradiation for the clamping
option B.
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Figure 8.20: Temperature of the mirror surface before irradiation.

−4.06 −2.8 −1.53 −0.27 0.99 2.25

·10−2Displacement along z [mm]

Figure 8.21: Normal displacement (normal initially aligned along the z axis) of the
mirror surface for clamping option A before irradiation.

0.6 0.86 1.11 1.37 1.63 1.89

·10−2Displacement along z [mm]

Figure 8.22: Normal displacement (normal initially aligned along the z axis) of the
mirror surface for clamping option B before irradiation.
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Figure 8.23: Temperature of the first cut after irradiation.
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Temperature [ ◦C]

Figure 8.24: Temperature of the second cut after irradiation.

−0.1 −7 · 10−2 −4 · 10−2 −1 · 10−2 2 · 10−2 5 · 10−2
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Figure 8.25: Displacement along z of the first cut after irradiation for the clamping
option A.
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−0.1 −7 · 10−2 −4 · 10−2 −1 · 10−2 2 · 10−2 5 · 10−2

Displacement along z [mm]

Figure 8.26: Displacement along z of the second cut after irradiation for the clamping
option A.

−5 −3 −1 1 3 5

·10−2Displacement along z [mm]

Figure 8.27: Displacement along z of the first cut after irradiation for the clamping
option B.

−5 −3 −1 1 3 5

·10−2Displacement along z [mm]

Figure 8.28: Displacement along z of the second cut after irradiation for the clamping
option B.
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Figure 8.29: Temperature of the mirror surface after irradiation.

−5.87 −4.22 −2.57 −0.92 0.73 2.38

·10−2Displacement along z [mm]

Figure 8.30: Normal displacement (normal initially aligned along the z axis) of the
mirror surface for clamping option A after irradiation.

−1.27 −0.29 0.69 1.66 2.64 3.62

·10−2Displacement along z [mm]

Figure 8.31: Normal displacement (normal initially aligned along the z axis) of the
mirror surface for clamping option B after irradiation.
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Tolerance Before irradiation After irradiation
option A option B option A option B

Translation along z [mm] ±2 -0.01501 0.01110 -0.01824 0.00752
Rotation around y [mrads] ±1.75 0.35026 0.04512 0.60480 0.31118
Rotation around x [mrads] ±1.75 -0.04077 -0.00387 -0.08064 -0.04135
Curvature change [mm] ±0.0316 0.01090 0.00832 -0.04723 -0.04990
Irregularity change [mm] ±0.0316 0.00688 0.00553 0.00742 0.00891

Table 8.10: Optical tolerances of the two extreme cases with the two clamping options.

8.3.3 Uncertainty quantification

Now that the two extreme cases have been discussed in detail, we have evaluated the
convergence of the surrogate model with respect to the degree d. To do so, we have
evaluated the expectation:

E
{
‖q(d+1) − q(d)‖2

}
, (8.10)

where q(d) is the surrogate model built with polynomials of degree smaller or equal to d
of the quantity of interest:

q(d)(k1, k2) =
d∑

m=0

d−m∑

n=0

cm,nφm,n(k1, k2). (8.11)

Fig. 8.32 illustrates the expectation E
{
‖q(d+1) − q(d)‖2

}
as a function of the degree d for

the curvature change for the clamping option A. Those results illustrate the fact that
the surrogate model converges. Due to the already small value of E

{
‖q(d+1) − q(d)‖2

}

for d = 10 and because the number of points that have to be evaluated grows more than
linearly with d, we choose d = 10.

1 5 10 15
10−18

10−14

10−10

10−6

10−2

Degree d

E
{ ‖
q(

d
+
1
)
−
q(

d
) ‖

2
} Curvature change

Figure 8.32: Convergence of the surrogate model.

We have evaluated the finite element model for the 79 samples for d = 10 and list
their quantities of interest for both clamping strategies in Fig. 8.33, Fig. 8.34, Fig. 8.35,
Fig. 8.36, and Fig. 8.37. We construct the surrogate models with d = 10 using the
quantities of interest of the computed samples and illustrate them in Fig. 8.38, 8.39,
8.40, 8.41, and 8.42.
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Figure 8.33: Quantities of interest.
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Figure 8.34: Optical quantities of interest for clamping option A.
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Figure 8.35: Optical quantities of interest for clamping option B.
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Figure 8.36: Preload loss for clamping option A.
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Figure 8.37: Preload loss for clamping option B.
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Figure 8.38: Surrogate models of the maximal, minimal, and mean temperature on
the mirror surface.
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Figure 8.39: Surrogate models for the optical quantities of interest for clamping option
A.
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Figure 8.40: Surrogate models for the optical quantities of interest for clamping option
B.
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Figure 8.41: Surrogate models for preload loss for clamping option A.
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Figure 8.42: Surrogate models for preload loss for clamping option B.
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With such surrogate models, we can illustrate how probability of having a blurred
image can be computed. The resulting computed probability listed in this section have
no engineering meaning as they are computed based on a model problem which does not
include all the complexity of the mirror assembly and as the probability density functions
of the input parameters are rather arbitrary. To do so, we generate random samples with
uniform probability density function on the triangle, evaluate the surrogate model of each
optical related quantity of interest. Based on those values, we can evaluate the optical
criteria to test whether each sample is blurred or not. After that, the probability of
having a blurred image is approximated by the ratio between the number of samples
with a blurred image over the total number of drawn samples. With such a strategy,
we have a converged probability for a number of 100000 samples on the triangle. The
converged probability are 0.915% for option A and 1.410% for option B. Once again, those
probabilities have no engineering meaning and are just discussed in order to illustrate the
use of the surrogate models.

As previously announced, we observe from Fig. 8.39 and 8.40, that the curvature
change and the irregularity change are not very sensitive to the choice of the clamping
option. However, the translation and the two rotations are sensitive to the choice of
the clamping option. To evaluate position of the reflective surface more precisely, it is
required to use a more complex model such as the one as discussed in section 8.5.
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8.4 Speed-up results

Finally, we discuss in this section the speed-up of applying ensemble propagation to eval-
uate the 79 samples. In contrast to previous examples of the use of ensemble propagation
discussed in this work, we have here a number of samples which is fixed by the degree d
of the considered polynomials. As we have chosen d = 10, we have a total of 79 samples
which is not a multiple of 32. Therefore, we will discuss speed-up over the first 64 samples
and, afterwards, discuss how to evaluate the remaining 15 samples.

8.4.1 Speed-up of the 64 first samples

In this section, we discuss the speed-up of using ensemble GMRES for the clamping
option A on 2 compute nodes with two MPI processes per node (one per CPU) of the
Blake system described in Appendix A without hyper-threading. This is the first example
of this thesis with more than 1 MPI process.

First, as done in the previous examples, we illustrate the speed-up of the different parts
of GMRES per iteration in Fig. 8.43. We observe that the speed-ups of the matrix-vector
product and the orthogonalization process are consistent with the results of section 7.2:
the speed-up of the sparse matrix-vector product is about 1.3 and the speed-up of the or-
thogonalization process is about 1. However, the speed-up of applying the preconditioner
is not directly explained by section 7.2 as the preconditioner of section 7.2 is just some
threaded Gauss-Seidel iterations without mutigrid, whereas the mirror example uses a
3-level multigrid preconditioner with a direct solver on the coarsest level. It is, therefore,
interesting to illustrate the speed-up of the smoothers on each level as shown in Fig. 8.44.
Those curves can be explained with section 7.2: the speed-up of the threaded Gauss-
Seidel highly depends on the multigrid level as the multigrid level impacts the matrix
size and the matrix size impacts the speed-up of the threaded Gauss-Seidel as discussed
in section 7.2. Moreover, we observe that the speed-ups are smaller than the speed-ups of
the mesh-tying problem of section 7.3 which is consistent with the fact that the speed-ups
decrease with the problem size as illustrated in section 7.2. Another observation is that
the speed-up of the smoother on the level 0 decreases from s = 8 to s = 32 but this is
not the case on the level 1. This is linked to the fact that we observed a reduced memory
bandwidth for larger memory size. Finally, we observe that the total speed-up of the
preconditioner of Fig. 8.43 is mainly deduced by the speed-up of the smoother on the
finest level. The speed-up of the two costs outside of GMRES are listed in Fig. 8.45.

We can now discuss the effect of ensemble reduction on the convergence. Once again,
ensemble GMRES with reduction increases the required number of iterations to fulfill the
stopping criteria compared to ensemble GMRES without ensemble reduction as illustrated
in Fig. 8.46. This increased number of iterations results in higher CPU cost for ensemble
GMRES with ensemble reduction compared to ensemble GMRES without reduction as
listed in table 8.11 and reduced speed-up as listed in table 8.12 and Fig. 8.47. The
speed-up of the full simulation is 2.021, 2.032, and 1.763 for s = 8, s = 16, and s = 32
respectively, without ensemble reduction.

In this particular example, we observe that the ensemble size leading to the best
speed-up is s = 16. This is due to the observed reduced memory bandwidth for larger
memory size. If the memory bandwidth was fully independent of the memory size, the
speed-up of s = 32 would be larger and at least as good as the speed-up of s = 16.
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Figure 8.43: Speed-up of the different steps of GMRES
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Figure 8.44: Speed-up of the smoothers at the different levels of the preconditioner.
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Figure 8.45: Speed-up of the fixed cost.
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Figure 8.46: Number of iterations to converge with and without ensemble reduction.
The blue dots represent the required number of iterations of GMRES to converge
for each sample propagated alone. The orange lines, yellow lines, and purple lines
represent the required number of iterations of ensemble GMRES to converge with
ensembles of size 8, 16, and 32 respectively. We observe that ensemble GMRES
without ensemble reduction converges faster than ensemble GMRES with ensemble
reduction for all ensembles.
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Tag With reduction Without reduction
Ensemble size 1 8 16 32 8 16 32
Matrix assembly
Total II 1.406 2.763 3.850 6.4 2.825 3.900 6.300
Preconditioner setup
Total III 0.985 1.124 1.234 1.545 1.123 1.219 1.536
GMRES

Orthogonalization IV.X 0.699 8.900 22.083 50.400 5.325 10.655 22.926
Matrix-vector product IV.IV 0.643 4.702 9.820 21.583 3.788 7.230 15.471
Preconditioner IV.III 21.880 115.349 253.274 610.662 91.654 186.211 438.057
Level 0 smoother 16.270 96.994 217.273 535.488 76.819 159.257 383.200
Level 1 smoother 3.793 7.171 13.169 26.962 5.659 9.710 19.343
Level 2 smoother 0.575 4.440 9.350 19.592 3.679 7.286 15.012

Total IV 23.416 131.188 290.821 695.161 101.707 205.985 480.326
Total 27.017 136.513 297.600 705.700 106.950 212.750 490.350

Table 8.11: Average wall-clock time in second per ensemble.

Tag With reduction Without reduction
Ensemble size 1 8 16 32 8 16 32
Matrix assembly
Total II 1. 4.072 5.844 7.031 3.982 5.769 7.143
Preconditioner setup
Total III 1. 7.015 12.776 20.409 7.022 12.936 20.536
GMRES

Orthogonalization IV.X 1. 0.628 0.506 0.444 1.050 1.049 0.975
Matrix-vector product IV.IV 1. 1.095 1.048 0.954 1.359 1.424 1.331
Preconditioner IV.III 1. 1.517 1.382 1.147 1.910 1.880 1.598
Level 0 smoother 1. 1.342 1.198 0.972 1.694 1.635 1.359
Level 1 smoother 1. 4.232 4.609 4.502 5.362 6.251 6.275
Level 2 smoother 1. 1.035 0.983 0.939 1.249 1.262 1.225

Total IV 1. 1.428 1.288 1.078 1.842 1.819 1.560
Total 1. 1.583 1.453 1.225 2.021 2.032 1.763

Table 8.12: Speed-up.
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Figure 8.47: Total speed-up of the parametric computation of the mirror problem with
and without ensemble reduction on 1, 2, and 4 compute nodes of the Blake system.

8.4.2 Influence of the number of compute nodes

For a fixed problem size, the number of compute nodes allocated for the evaluation of
one ensemble influences the speed-up of the simulation. Increasing the number of nodes
decreases the problem size per node which results in a smaller memory size used per node
and better speed-up of the different components as illustrated in section 7.2. However,
the fact that the speed-up increases while increasing the number of compute nodes is not
sufficient to decide that more nodes should be used per ensemble. Indeed, it depends on
the parallel efficiency Ep [Eijkhout, 2013] of the simulation without ensemble propagation:

Ep =
T1

pTp
, (8.12)

where p is the number of compute nodes and T1 and Tp are the wall-clock time to solve
the problem on 1 and p nodes respectively. If Ep is small, the speed-up increase will not
be sufficient to improve the throughput. Solving one ensemble of size s on p compute
nodes is faster than solving ps samples without ensemble propagation on p nodes with
an embarrassingly parallel strategy where each node computes s samples one by one if:

Ep Ssp > 1, (8.13)

where Ssp is the speed-up associated to ensemble propagation which depends both on the
ensemble size s and the number of nodes p.

To illustrate that, we have done the parametric computations with p = 1, 2, and
4 and list the wall-clock time per second per ensemble in table 8.13. It has not been
possible to run the simulation with s = 32 and p = 1; the simulation has not been able
to allocate enough contiguous memory to store the Arnoldi vectors of ensemble GMRES.
Based on those wall-clock time measurements, we can compute the parallel efficiency Ep
without ensemble propagation and the speed-up S of the different ensemble sizes. Those
results are listed in table 8.14 and the speed-ups are illustrated in Fig. 8.47. If we only
use the parallel efficiency to select the number of nodes, we would have chosen p = 1
whereas, if we only use the speed-up to select the number of nodes, we would have chosen
p = 4 or even higher. However, taking both information into account leads to the results
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of table 8.15 where we observe that the optimal strategy to follow here is p = 2 with
s = 16 and without ensemble reduction. Finally, even if we do not choose the optimal
parameters p = 2 and s = 16, using embedded ensemble propagation reduces the total
wall-clock time as all the speed-up of table 8.14 are greater than 1.

Ep With reduction Without reduction
H
HHH

HHp
s

1 8 16 32 8 16 32

1 52.128 - 294.550 682.325 - 227.550 489.275 -
2 27.017 0.965 136.513 297.600 705.700 106.95 212.75 490.350
4 19.072 0.683 75.525 149.575 327.200 58.588 108.700 226.400

Table 8.13: Average total wall-clock time in seconds per ensemble.

Ep With reduction Without reduction
HH

HHHHp
s

1 8 16 32 8 16 32

1 1 - 1.416 1.222 - 1.833 1.705 -
2 1 0.965 1.583 1.453 1.225 2.021 2.032 1.763
4 1 0.683 2.020 2.040 1.865 2.604 2.807 2.696

Table 8.14: Speed-up Ssp and the efficiency Ep is indicated in the third column.

With reduction Without reduction
H
HHH

HHp
s

1 8 16 32 8 16 32

1 1 1.416 1.222 - 1.833 1.705 -
2 0.965 1.528 1.402 1.182 1.950 1.961 1.701
4 0.683 1.380 1.393 1.274 1.779 1.917 1.841

Table 8.15: Product of the efficiency and the speed-up EpSsp. We observe that the
fastest strategy to solve this parametric computation is to use s = 16 and 2 compute
nodes per ensemble.

With reduction Without reduction
H
HHH

HHp
s

1 8 16 32 8 16 32

1 834.048 589.017 682.527 - 455.018 489.178 -
2 864.298 545.843 594.899 705.624 705.624 425.318 490.328
4 1221.154 604.383 598.742 654.669 468.830 435.080 453.041

Table 8.16: Total wall-clock time in seconds to evaluate the 64 samples on a system
with 4 compute nodes. The total time is equal to 52.128× 64/(4× EpSsp).

8.4.3 Strategy to solve the remaining samples

Given a fixed ensemble size s and a total number of samples n, there are two ways to
evaluate the mod(n, s) last samples. Either, we can loop over them one by one propagat-
ing them without ensemble propagation, or we can add s −mod(n, s) identical samples
to complete an ensemble of size s. The most effective approach depends on mod(n, s)
and the speed-up S. If the speed-up S is smaller than the ratio between s and mod(n, s),
the additional cost of evaluating the identical samples is not amortised by the speed-up
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of ensemble propagation and it is more effective to propagate each sample one by one.
Otherwise, if the speed-up S is larger than the ratio between s and mod(n, s), it is better
to propagate those samples with some identical samples.

If s is sufficiently large such that smaller ensemble can be propagated, we may want
to reduce the ensemble size. For example, if s is 32 and mod(n, s) is 8 or 16, it will
probably be more effective to propagate the last remaining samples inside an ensemble
of smaller size. Given s and n, we can compute the most effective ensemble size s? for
the remaining samples as follows:

s? = arg min
x∈[1,s]

⌈
mod(n,s)

x

⌉
x/mod(n, s)

S(x)
, (8.14)

where
⌈

mod(n,s)
x

⌉
is the number of ensembles of size x needed to solve the mod(n, s) last

samples and S(x) is the speed-up of ensemble of size x.
In practice, we typically do not have access to S(x) beforehand, therefore, to deduce

s? it is required either to run some tests with different ensemble sizes or to use data from
previously run examples.
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8.5 Speed-up on the full assembly

In this section, we consider embedded ensemble propagation on the full assembly illus-
trated in Fig. 8.2 in order to illustrate the performance on a larger problem. The holder
and the pipes are in Stainless steel 55316 (Table 8.3) and the bolts are in Inconel 718
(Table 8.6). The mesh used has 2 288 050 nodes leading to 9 152 200 degrees of freedom
per sample and 12.8 millions of tetrahedra. As the problem has about 7 times more
degrees of freedom compared to the previous case, we have tested ensemble GMRES on
16 compute nodes instead of 2 to increase the available memory. The temperature field
before irradiation is illustrated in Fig. 8.48.
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Figure 8.48: Temperature of the full assembly before irradiation.

For this example, we use the preconditioner as described in section 8.2.6 and in ta-
ble 8.17. The tolerance of the stopping criteria of the three first criteria have been updated
to 10−5, 10−7, and 10−5 and the last criterion has be dropped.

level rows non-zero non-zero coarsening level
entries entries per row ratio smoother

0 9 152 200 435 215 794 47.55 BGS
1 509 636 23 592 647 46.29 17.96 BGS
2 35 304 1 470 196 41.64 14.44 Klu

Table 8.17: Multigrid information of the preconditioner.

The resulting wall-clock time in second on the first 32 samples are listed in table 8.18
without ensemble reduction and the speed-ups are listed in table 8.19 and are illustrated
in Fig. 8.49. We observe that the speed-ups are similar with the speed-ups of the previous
case: the speed-up of the orthogonalization process is about 1, the speed-up of the sparse
matrix-vector product is about 1.35 , but the speed-up of the preconditioner is a bit
smaller for this example. This is explained by the fact that the size of the coarsest level
is larger in this case leading to a relative larger wall-clock time spend applying the Klu
solver as listed in table 8.18 which has the poorest speed-up as illustrated in table 8.19.
The speed-up of this example can be improved using a 4–level multigrid preconditioner
instead of this 3–level multigrid preconditioner. The maximal total speed-up is close to
2, as in the previous case, but with p = 16 and s = 8.

195



Chapter 8. Application to a diagnostic mirror for ITER

Tag
Ensemble size 1 8 16 32
Matrix assembly
Total II 1.600 3.000 3.600 7.200
Preconditioner setup
Total III 1.167 1.274 1.404 1.619
GMRES

Orthogonalization IV.X 2.699 22.045 43.623 88.367
Matrix-vector product IV.IV 1.654 9.574 18.507 39.423
Preconditioner IV.III 67.049 313.855 709.347 1405.960
Level 0 smoother 40.043 197.311 475.509 953.720
Level 1 smoother 13.477 19.612 30.640 58.476
Level 2 smoother 9.850 81.298 166.614 337.892

Total IV 72.518 351.332 792.731 1557.679
Total 89.500 369.900 811.300 1582.800

Table 8.18: Average wall-clock time in second per ensemble for the full mirror assem-
bly.

Tag
Ensemble size 1 8 16 32
Matrix assembly
Total II 1. 4.267 7.111 7.111
Preconditioner setup
Total III 1. 7.327 13.296 23.051
GMRES

Orthogonalization IV.X 1. 0.979 0.990 0.977
Matrix-vector product IV.IV 1. 1.382 1.430 1.342
Preconditioner IV.III 1. 1.709 1.512 1.526
Level 0 smoother 1. 1.624 1.347 1.344
Level 1 smoother 1. 5.497 7.038 7.375
Level 2 smoother 1. 0.969 0.946 0.933

Total IV 1. 1.651 1.464 1.490
Total 1. 1.936 1.765 1.809

Table 8.19: Speed-up for the full mirror assembly.
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Figure 8.49: Total speed-up of the full mirror assembly.
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8.6 Conclusions

In this chapter, we have investigated the effect of the irradiation of AlN ceramic on the
optical measurement using a model problem and a surrogate-based approach. Moreover,
we have used ensemble propagation in order to reduce the wall-clock time of the largest
CPU cost of the method: the wall-clock time needed to evaluate the high-fidelity model
to train and build the surrogate model. With ensemble propagation, we have divided the
CPU cost by a factor 2 and, therefore, have multiplied the throughput of the parametric
computation by 2 taking as reference a GMRES without ensemble propagation with state-
of-the-art computational kernels. We have discussed the impact of the number of MPI
processes on the speed-up. We have illustrated similar speed-up on a larger example with
about 107 degrees of freedom.

Finally, we have shown that the two clamping options provide similar deformation of
the mirror surface but different position of this surface. We have discussed the need of
using a more complex model to evaluate this position more precisely.

197





Chapter 9
Conclusions

The work presented in this thesis aimed to accelerate the parametric computations of
problems with non-symmetric or indefinite matrices on high performance computing ar-
chitectures. To do so, we have contributed to embedded ensemble propagation by intro-
ducing ensemble GMRES without reduction, implementing it, and comparing it with the
already existing ensemble GMRES with reduction.

9.1 Summary

In this work, we have extended ensemble GMRES not to use ensemble reduction. To do so,
we started by describing the possible occurrence of ensemble divergence inside ensemble
GMRES. After that, we described formally the already existing approach to manage
those occurrences of ensemble divergence: ensemble GMRES with ensemble reduction. In
particular, we discussed how the reduction impacts the convergence of ensemble GMRES.
Thereafter, we introduced an alternative approach: ensemble GMRES without ensemble
reduction. For this second approach, we tackled both the function-call divergence and
the control-flow divergence of ensemble GMRES without reduction. The function call
divergence was solved implementing the tensor contraction as a GEMV for the ensemble
type. We developed a simple high-performing GEMV implementation for ensembles. We
highlighted the impact of ensemble propagation on GEMV and, in particular, the impact
of the ensemble size on the optimal tile size. This resulted in an equivalent wall-clock
time per iteration of GMRES for both methods, i.e. with and without reduction.

The control-flow divergence was solved using masks to perform masked assignment
and logical reduction. Alongside this work, we revisited the mathematical formulation of
ensemble propagation using tensor notation.

The two approaches, i.e. the existing ensemble GMRES with ensemble reduction and
ensemble GMRES without ensemble reduction as introduced in this work, have been
compared on four academic problems and a thermomechanical simulation. The examples
showed that the wall-clock time of one iteration of ensemble GMRES was independent of
the use of the reduction and illustrated a faster convergence of ensemble GMRES without
reduction. Those two points led to improved performance of ensemble propagation with-
out ensemble reduction as ensemble reduction increases the number of iterations required
to converge.

Finally, we have illustrated the speed-up of ensemble GMRES on one industrial prob-
lem relevant for the design of an optomechanical system for ITER and have illustrated
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an increased throughput due to the use of ensemble GMRES compared to not using en-
semble propagation. Using ensemble GMRES allowed to reduce the wall-clock time of
evaluating the high-fidelity model for the different samples by up to 50%.

9.2 Directions for future work

• Preconditioner for the mesh-tying problem: in the mesh-tying problem, we have
used Gauss-Seidel iterations as smoother for the stiffness matrix which is not posi-
tive definite but is positive semi-definite. For this kind of matrix, we should inves-
tigate better options such as using an augmented Lagrange formulation to have a
symmetric positive definite block 00 matrix [Benzi and Wathen, 2008]. This would
enforce the convergence of the Gauss-Seidel iterations used as smoother.

• Memory bandwidth: we observe a reduced memory bandwidth when streaming
large arrays on Blake running the STREAM Triad Memory Bandwidth benchmark
[McCalpin, 1995] with large vectors. This effect varies from one node to another
and starts typically when streaming arrays of about 30 Gb. It would be interesting
to better understand this observation as it has a direct impact on the performance
of embedded ensemble propagation for large problems.

• Investigate preconditioner strategies for contact problems with singular stiffness
matrix. This investigation will allow to consider the contact constraints in the
mirror example and to investigate the contact losses. This is closely related to the
first direction presented in this section.

9.3 Broader directions for future work

9.3.1 Grouping strategy for non-linear problems

As illustrated with the beam contact problem, grouping strategies can improve the per-
formance of ensemble GMRES. In fact, this might even be more important for ensemble
GMRES than the ensemble CG as extra iterations of ensemble GMRES are getting more
and more expensive where the extra iterations of the ensemble CG have a fixed cost per
iteration. Therefore, grouping strategies for ensemble GMRES should be studied as a
way to improve even further the performances.

To apply efficiently embedded ensemble propagation requires the study of the grouping
of samples in ensembles of size s that minimizes ensemble divergence as discussed in
[D’Elia et al., 2020] for linear systems. However, when we consider non-linear problems
or transient problems, there is more than one linear system per evaluation of the model.
Such a study requires first the definition of a metric that measures ensemble divergence
of a given ensemble. As a starting point, we suggest associating to each sample ` a
vector c` in Nn where N is the set of natural numbers and n is the maximal number of
linear systems in the simulation (the maximum number of time steps times the maximum
number of non-linear steps per time step) such that its entries c`1, . . . , c`n correspond to
the number of iterations of the Krylov method associated with each corresponding linear
solve. Using those vectors, given two samples `1 and `2, it is possible to compute the total
number of iterations of the Krylov method where only one of `1 and `2 has not converged
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by computing ‖c`1−c`2‖1 where ‖.‖1 is the l1–norm. As a consequence, we can introduce
a first measure of ensemble divergence d of a given ensemble of samples {`1, . . . , `s} as:

d = max
(i,j)∈{1,...,s}2

‖c`i − c`j‖1. (9.1)

Using this first definition, we can see the grouping problem as a discrete minimization
problem with l1–norm during which we seek a combination of the samples that minimizes
the average divergence.

However, the vector c` is not known a priori and, therefore, we suggest using a sur-
rogate model to estimate c` based on the previous computation as done in [D’Elia et al.,
2020] for linear systems.

A difficulty with this approach is that the estimation of c` for the first samples are
not accurate as the surrogate model use for the estimation has not been trained with
a sufficiently large number of samples. Therefore, a possibility would be to not fix the
ensemble size s during the simulation, starting with a small s while the surrogate model is
imprecise to reduce the probability of having a bad speed-up due to ensemble divergence,
and increasing the ensemble size at the end when the surrogate model predicts ensemble
divergence accurately.

9.3.2 GMRES

It would be interesting to investigate more the influence of the preconditioner on the
convergence of ensemble GMRES with ensemble reduction. In particular, it would be
interesting to draw recommendations on the choices of the preconditioner and its param-
eters to reduce the differences between the spectra to improve the convergence of the
coupled samples. It would help to understand better when ensemble reduction has a
critical impact on the convergence of ensemble GMRES.

Another interesting work is to study the link between ensemble GMRES without
reduction with the block GMRES method [Saad, 2003] which uses the Krylov subspace:

Km(A,R(0)) ≡ span
{
R(0),AR(0), . . . ,Am−1R(0)

}
. (9.2)

In ensemble GMRES without reduction, we use the Krylov subspace (3.24) (not taking
into account a preconditioner):

Km(A ,R(0)) ≡ span
{
R(0),A(R(0)), . . . , (A)m−1(R(0))

}
. (9.3)

These subspaces are identical if A is not sample dependent. It would be interesting to
understand the link between the two subspaces when A is sample dependent. This would
allow the possibility to use existing developments studied in the context of the block
GMRES method for ensemble GMRES with ensemble reduction.

9.3.3 Implementation of the remaining kernels

There are other kernels than the GEMV that require to be implemented efficiently for
ensemble propagation such as the level 3 BLAS function GEMM or LAPACK functions.
To have a portable and efficient implementation of those functions is important to al-
low the user of embedded ensemble propagation use algorithms with ensemble reduction
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and without ensemble reduction without having to implement themselves the kernels.
Such research and implementation work should be carried out at the KokkosKernels level
and is closely related to the Compact BLAS research [Kim et al., 2017]. This will al-
low the efficient use of other Krylov methods such as the block GMRES with ensemble
propagation.

9.3.4 Scheduling and load balancing

In this thesis, we have highlighted that ensemble propagation improves the throughput of
parametric computations. Moreover, we have illustrated that the saved wall-clock times
depend on the size of the problems per compute node and on the number of threads used.
Therefore, another direction for future research is, for a given parametric computation
and a given computational system, to study the optimal strategy to evaluate the samples.
Is it better to have a larger speed-up reducing the size of the computational model per
node or is it better to have more instances of the computational model running in parallel?

Such a study and the need of grouping strategy are both opportunities to study the
scheduling strategy of the instances of the computational models with ensemble propa-
gation. Künzner et al. [2019] proposed a strategy to minimize the idle CPU time of the
embarrassingly parallel evaluations of a computational model, without ensemble propa-
gation, using a surrogate model to predict the wall-clock time of a new evaluation of the
model. They have illustrated a speed-up of about 2 on a real-world evacuation scenario
in pedestrian dynamics. It would be interesting to combine such a strategy with the use
of embedded ensemble propagation with grouping strategy to combine both speed-ups.

9.3.5 Adaptive ensemble size

As discussed in this work, ensemble divergence can occur during loops such as time inte-
gration. It is possible that at some point the iterative method has converged for a subset
of the samples but not for the remaining. A possible way to improve the performance of
the remaining iterations is to drop the already converged samples and to use an ensemble
of smaller size or even to propagate one sample alone. Doing so has, however, an overhead
cost due to the need of reindexing the samples of the ensemble and modifying the layout
of the data accordingly. Whether the fact that this strategy is interesting or not in the
sense of the wall-clock time will depend on the amount of the memory that has to be
reordered and on the number of remaining iterations. It would be interesting to study
criteria to decide whether this strategy is interesting or not for a given architecture.

9.3.6 Other non-linear problems

The first direction for future work is to consider other non-linear problems or other types
of non-linearity with ensemble propagation. For example, in the example of the front
mirror of the ITER diagnostic system, we might want to take into account influence of
the temperature on the material properties; this results in a non-linear thermomechanical
problem. Typically a Newton–Raphson strategy is typically used to solve those non-
linear problems. Therefore, it is necessary to compute the derivative of functions such
as the constitutive laws which are functions of the temperature. The computation of
such derivatives with ensemble propagation can be done using automatic differentiation
[Phipps and Pawlowski, 2012]. There is, however, one challenge doing so with ensemble
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propagation; they are new possible occurrences of ensemble divergence. The influence of
the temperature on the material properties are typically given to FEM software defining
a table of empirical experiments with some temperature and the value of the material
properties at those temperatures. The FEM software can, using those data, create a
piecewise-defined linear function which interpolate those data to have a function that
can be evaluated for any temperature. Such approach leads to control-flow divergence as
samples of an ensemble might not be in the same interval of the function’s domain.

9.3.7 Time integration

Another direction for future work is to consider time integration scheme with ensemble
propagation. In the simplest cases, the samples of an ensemble can share the same time
discretization and the time integration with ensemble propagation will just add an extra
loop without any extra ensemble divergence. However, if time adaptive methods are
considered some questions are risen: should we enforce the same time step for all the
samples and therefore take the smallest of the adapted time step? Should we allow the
algorithm to have different time steps for the different samples? Those questions impact
the total number of linear systems to solve and, therefore, the speed-up of using ensemble
propagation.

9.3.8 Contact problem with friction

Using frictional contact conditions, two bodies at a closed surface can either be sticking or
sliding in the tangential direction. There are two conditional statements: Is the contact
locally closed? Is the locally closed contact sliding or sticking? Therefore, considering
frictional contact conditions introduce a new occurrence of ensemble divergence due to
this last conditional statement.

9.3.9 Contact problem with large displacement

In the case of the large sliding contact problems, the fact that potential contact interfaces
are a priori unknown and sample dependent adds another occurrence of such ensemble
divergence. This ensemble divergence is challenging as it is the first case where meshes
are sample dependent and is challenging for both the computation of the entries and their
storage.

The computation of the Mortar matrices is based on three steps: the global search
of segment-to-segment interactions, the projection and the clipping of a segment on the
other, and the integration on the clipped polygon. These processes introduce ensemble
divergence as two elements can have a segment-to-segment interaction for a given sample
but not for another one or the clipped polygon can have different shapes for every sample.

Following the same approach as the one in section 5.1.7 for the storing of the entries
is doable but it will fill a large amount of the memory with zeros as the feasible graphs
are more different.

The first step is to study the global search for contact element pairs that can be
touching. This step can be efficiently implemented using a strategy based on hierarchical
global search trees and bounding volumes as described in [Yang and Laursen, 2008; Popp
et al., 2013a; Hansen et al., 2016]. Moreover, there is already such an implementation
based on Kokkos at Sandia National Laboratories made by Hansen et al. [2016]. Such
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a strategy can be extended to ensemble propagation as samples will have the same tree
topology, but different tree node information as the node connectivity of the mesh is
assumed to be sample independent. Therefore, it makes sense to build one tree per
contact face for one ensemble. The search across those trees can then be either computed
for each sample individually or using ensembles but dealing with ensemble divergence.
The first approach would minimize the amount of work that has to be done while the
second would possibly improve the throughput. Those tree strategies are used in fields
such as ray tracing and video games and are well suited to be computed on GPU. Thus, the
computation of Mortar matrices can be seen as an opportunity to use the heterogeneity
of the compute node: while the CPU is computing the stiffness matrices of the bodies,
the GPU can compute the Mortar matrices.

The next steps, the projection, the clipping, the triangularization, and the integration
are challenging too in the context of ensemble propagation as all of them are impacted
by ensemble divergence. However, those steps can be implemented with small size tensor
computations with ensemble propagation.

9.3.10 Ice sheet problems

Another direction for future work is to apply the developed ensemble GMRES without
ensemble reduction on ice sheet problems seen as contact problems [Bosten, 2019]. Those
problems are of particular interest for the research group of the supervisor of this thesis.
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Appendix A
Blake

Blake is a HPC server located at Sandia National Laboratories, Albuquerque. It consists
in 40 compute nodes connected with Intel OmniPath and made of 2 Intel(R) Xeon(R)
Platinum 8160 CPU at 2.10GHz per node [Hammond et al., 2018]. Each Intel(R) Xeon(R)
Platinum 8160 CPU has 24 cores which supports hyper-threading and AVX-512. Each
node has 192GB of 2666MT/s DDR4 memory (96GB with 6 memory channels per CPU).

The maximal memory bandwidth is therefore 2.666×8×6 = 127.97 GB/s per NUMA
region.

The cache hierarchy is listed in Table A.1.

Level Size Associativity Distributed Total size
L1 32kB 8-way No 768kB
L2 1MB 16-way No 24MB
L3 33MB 11-way Yes 33MB

Table A.1: Cache hierarchy
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Appendix B
Discussion on the speed-up

In this section, we review the definition of the speed-up of ensemble propagation, discuss
how it can be compared to the embarrassingly parallel strategy, and illustrate it on an
example.

The reduction of the total wall-clock time due to embedded ensemble propagation is
measured by the notion of speed-up defined in [Phipps et al., 2017] as:

S =

∑s
`=1 T

(`)

T (e)
, (B.1)

where, for a given ensemble, s is the ensemble size, T (`) is the wall-clock time of evaluating
the sample ` alone, and T (e) the wall-clock time of evaluating the ensemble. As discussed
in section 2.1, this definition assumes that the CPU costs T (`) and T (e) have been measured
on the same CPU power, i.e. the same number of compute nodes, with the same number
of MPI process per node, and the same number of threads per MPI process. Therefore,
this speed-up does not bring information on how faster embedded ensemble propagation
is compared to running multiple samples in parallel on a same compute node for instance.

In this section, we illustrate that embedded ensemble propagation is still faster than
the previously mentioned strategy on an example. The considered example is the example
of section 7.2 (tensile test on a cube) with a 10 × 10 × 300 mesh and 200 iterations of
GMRES.

We considered 4 strategies on the Blake system:

1. The serial reference test: running 1 sample on 1 CPU of a compute node of the
Blake system with 1 thread,

2. The threaded reference test: running 1 sample on 1 CPU of a compute node of the
Blake system with 24 threads,

3. Embarrassingly parallel strategy: running 1 sample per core on 1 CPU of a compute
node of the Blake system with 1 thread,

4. Embedded ensemble propagation: running 1 ensemble of size 8 on 1 CPU of a
compute node of the Blake system with 24 threads.

The wall-clock time of the different parts are listed in table B.1 and the corresponding
speed-up, with the second strategy as the reference, are listed in table B.2. We observe
that the embarrassingly parallel strategy and embedded ensemble propagation have nearly
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the same speed-up for the orthogonalization; this was expected as this computation is
limited by the memory bandwidth and because both approaches have to stream the same
amount of memory. However, the speed-up of all the remaining parts are larger for the
ensemble propagation approach. In particular, the matrix-vector product has a larger
speed-up for ensemble propagation even if this kernel is limited by the memory band-
width too. This is explained by the data of the graph reused as discussed in section 7.2.1;
even if both approaches, i.e. the embarrassingly parallel strategy and embedded ensemble
propagation, are both limited by the memory bandwidth, embedded ensemble propaga-
tion is faster as it needs to stream less data than the embarrassingly parallel strategy.
The speed-up of parts of the code which are less impacted by the memory bandwidth
such as the matrix assembly or the preconditioner setup are larger for embedded ensemble
propagation.

Overall, although the orthogonalization process reduces the difference between the
wall-clock time of the embarrassingly parallel strategy and embedded ensemble propaga-
tion, embedded ensemble propagation is faster on the Blake system for this test.

Finally, as illustrated in this example the value of the speed-up does not tell us
how fast is embedded ensemble propagation compared with the embarrassingly parallel
strategy. It does tell us how fast is embedded ensemble propagation compared with
running each sample one at a time with the same CPU power. Taking the embarrassingly
parallel strategy as the reference for the speed-up computation would reduce the speed-up
from 1.577 to 1.287 in this case. Therefore, using the embarrassingly parallel strategy
as the reference could reduce the measured speed-up included in this thesis, however,
this strategy requires more memory than both the threaded reference strategy and the
embedded ensemble propagation. Depending on the memory requirement of the test
considered, this can increase the speed-up.
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Tag
Strategy number 1 2 3 4
Strategy Serial Threaded Embarrassingly Embedded

reference reference parallel ensemble
test test strategy propagation

Matrix assembly
Total II 432.000 28.800 18.300 12.300
Preconditioner setup
Total III 335.650 19.212 16.947 2.635
GMRES

Orthogonalization IV.X 503.182 62.767 55.010 57.087
Matrix-vector product IV.IV 161.054 18.168 15.966 13.619
Preconditioner IV.III 955.258 136.867 122.182 97.046

Total IV 1626.334 223.277 196.811 168.880
Total 2474.400 295.200 240.900 187.200

Table B.1: Average wall-clock time in second to evaluate 24 samples.

Tag
Strategy number 1 2 3 4
Matrix assembly
Total II 0.067 1. 1.574 2.341
Preconditioner setup
Total III 0.057 1. 1.134 7.290
GMRES

Orthogonalization IV.X 0.125 1. 1.141 1.100
Matrix-vector product IV.IV 0.113 1. 1.138 1.334
Preconditioner IV.III 0.143 1. 1.120 1.410

Total IV 0.137 1. 1.134 1.322
Total 0.119 1. 1.225 1.577

Table B.2: Speed-up of the four strategies with the second strategy as the reference.
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Appendix C
Multigrid preconditioners

This appendix describes in more detail the multigrid preconditioners used in this thesis.

The main motivation to use multigrid methods is the observation that relaxation-
based methods such as Richardson iteration, Jacobi iteration, or Gauss-Seidel iteration
typically converge slowly for error modes with low-frequency. The idea is then to con-
struct a hierarchy of increasingly smaller linear systems called levels and to apply those
relaxation-based methods and damp different error modes on each level.

A multigrid method has two phases: the setup phase, discussed in section C.1, where
the hierarchy of levels is constructed and the solve phase, discussed in section C.2, where
the multigrid is applied to a given vector.

C.1 Preconditioner setup

When the multigrid method is used as a preconditioner for GMRES, the setup is typically
done once before starting GMRES and the multigrid grid is called once per iteration.

The setup phase consists in the construction of the hierarchy of levels. The multigrid
method starts from the matrix of the linear system solved with GMRES A0 where the
subscript 0 is used to specify that A0 is the level matrix of the level 0, the finest level.

There are two types of multigrid methods to generate the hierarchy of levels: the geo-
metric (GMG) and algebraic multigrid methods (AMG). The GMG creates the hierarchy
using different meshes for each level defined by the user. The AMG creates the hierarchy
from the graph of the operator of the finest level, i.e. from the graph of the linear system
of interest.

In this work, we only used aggregation-based AMG methods that rely on the compu-
tation of aggregates, a node of the next level using interaction of nodes on the current
level.

When those aggregates have been constructed for all levels, the coarse level matrix
Al+1 can be constructed using two operators: the prolongation P l+1 and restriction Rl+1

operators:

Al+1 = Rl+1AlP l+1, (C.1)

which leads to the multigrid hierarchy A0, A1, . . . , AL−1 where L is the total number of
levels as illustrated in Fig. C.1.
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A 3

A 2

A 1

A 0

Figure C.1: Illustration of a multigrid hierarchy with 4 levels.

C.2 Preconditioner application

Now that the multigrid hierarchy is computed, we can apply the multigrid strategy. This
application is based on a cycle which visits the different levels of the hierarchy starting
and finishing from the finest level. On each level, the preconditioner applies a so-called
smoother, a strategy used to damp some of the error modes such as a relaxation-based
method, before moving to the next level of the cycle. There are different multigrid cycles
such as the V-cycle, the W-cycle, or the F-cycle. In this work, we have limited ourselves
to the V-cycle which can be seen as a recursive process written as follows:

Procedure V-cycle(xl, bl, l, L)

1 if l == L− 1 then
2 xl = Coarse(xl, bl)
3 return xl

4 else
5 xl = preS(xl, bl)
6 rl = Alxl − bl
7 rl+1 = Rl+1rl
8 el+1 = V-cycle (0, rl+1, l + 1, L)
9 xl = xl − P l+1el+1

10 xl = postS(xl, bl)
11 return xl

12

Coarsest smoother

Pre-smoother
Residual computation

Restriction
Coarse correction

Prolongation
Post-smoother

where Coarse(xl, bl), preS(xl, bl), and postS(xl, bl) are the coarse smoother, the pre-
smoother, and the post-smoother respectively. Those are the 3 smoothers used in the
V-cycle:

• The pre-smoother is the smoother applied before restricting the residual on the
coarser level,

• The post-smoother is the smoother applied after prolongating the correction com-
puted on the coarser level,

• The coarse smoother is the smoother applied on the coarsest level. Typically, as
the coarsest level matrix AL−1 has a smaller size, it can be useful to use a direct
solver as the coarsest smoother: when the V-cycle reaches the coarsest level, a direct
solver can be used to compute the solution of the system on the coarsest level.

As already said, the idea is to start with the fine level problem, apply a smoother
(called pre-smoother because it happens before the restriction operator) such as some
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Gauss-Seidel iterations, then compute the residual of the system and restrict it to the
coarser level. Then the algorithm moves to the coarser level, if this is the last level, the
coarse level smoother is used and return the solution to the one level finer. Otherwise,
once again, a pre-smoother is applied and algorithm goes one level coarser. When moving
from a coarser level to a finer level, the prolongation of the solution on the coarser level
is used to update the solution on the current level, as this process can reintroduce higher
frequency error mode, a post-smoother is used before sending the solution to the next
finer level.

In this work, the right preconditioner M−1 used in Algo. 2 is used as follows:

M−1 v: j := V-cycle(0,v: j, 0, L). (C.2)

C.3 Multigrid for blocked matrices

The content of this section comes from [Wiesner, 2015; Verdugo and Wall, 2016]. When
the matrix A0 is a blocked matrix, for instance due to the discretization of a system of
PDEs, there are two main approaches to use multigrid methods:

• Monolithic AMG preconditioner [Verdugo and Wall, 2016] also called Full multigrid
approach in [Wiesner, 2015]: this approach consists in applying the multigrid on the
blocked matrix to create a hierarchy of blocked matrices and, as level smoothers,
use blocked smoothers such as block Gauss Seidel, block Jacobi, or SIMPLE for
instance. This approach has the advantage that the coupling between the different
fields is done on all the levels of the hierarchy which has improved convergence of
strongly coupled problems in [Verdugo and Wall, 2016].

• Nested multigrid approach [Wiesner, 2015]: this second approach consists in de-
coupling the fields on the finest level using a block smoother such as a block Gauss
Seidel and, then, using multigrid methods as the smoother of the block. This strat-
egy is typically easier to implement as discussed in [Verdugo and Wall, 2016] but
the main drawback is that the different fields are treated separately except on the
finest level.

C.3.1 Block Gauss-Seidel

The block Gauss-Seidel is an iterative solver used to solve system with N × N block
structure such as: 


A11 · · · A1N

...
. . .

...
AN1 · · · ANN




︸ ︷︷ ︸
A



x1
...
xN




︸ ︷︷ ︸
x

=



b1
...
bN




︸ ︷︷ ︸
b

. (C.3)

The idea is to use an approximation of the inverse of a triangular block matrix, either
the lower block triangular matrix in the case of the forward BGS or the upper block
triangular matrix in the case of the backward BGS:

M f
BGS :=



A11 · · · 0

...
. . .

...
AN1 · · · ANN


 , Mb

BGS :=



A11 · · · A1N

...
. . .

...
0 · · · ANN


 . (C.4)
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The strategy is then to apply the iterations:

x(k) = x(k−1) +M−1
BGS

(
b−Ax(k−1)

)
, k = 1, . . . , kmax, (C.5)

where x(0) is the initial guess.
In practice, the inverse of MBGS is not explicitly computed, the approach is to use,

in the case of the forward BGS:

x
(k)
i = A−1

ii

[
bi −

i−1∑

j=1

Aijx
(k)
j +

N∑

j=i+1

Aijx
(k−1)
j

]
for i = 1, . . . , N, (C.6)

and, in the case of the backward BGS:

x
(k)
i = A−1

ii

[
bi −

N∑

j=i+1

Aijx
(k)
j +

i−1∑

j=1

Aijx
(k−1)
j

]
for i = 1, . . . , N. (C.7)

Once again, the inverse of the matrices Aii are not computed explictly and are approxi-
mated with a smoother such as Gauss-Seidel iterations.

In this thesis, we use a backward block Gauss-Seidel as the level smoother for ther-
momechanical simulation. It is more interesting to use a backward approach as the
thermomechanical system block matrix is an upper block triangular matrix:

[
K S
0 L

] [
u
T

]
=

[
f
l

]
. (C.8)

C.3.2 SIMPLE

The SIMPLE smoother is a block smoother for systems with 2× 2 block structure such
as:

[
A11 A12

A21 A22

]

︸ ︷︷ ︸
A

[
x1

x2

]

︸ ︷︷ ︸
x

=

[
b1

b2

]

︸︷︷︸
b

. (C.9)

The iterative process is as follows:

x(k) = x(k−1) +M−1
SIMPLE

(
b−Ax(k−1)

)
, k = 1, . . . , kmax, (C.10)

with x(0) the initial guess and the matrix MSIMPLE is the following block factorization of
A:

MSIMPLE :=

[
A11 0
A21 R

][
I
(
Ã11

)−1

A12

0 I

]
, (C.11)

where Ã11 is an approximation of A11 which is easy to invert (such as the diagonal of
A11 for instance) and R is the corresponding approximation of the Schur complement

associated with this Ã11:

R := A22 −A21

(
Ã11

)−1

A12. (C.12)
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Once again, the computation of the inverse of MSIMPLE is not done explicitly and,
instead, four steps are computed:

∆x
(k−1)
1 = A−1

11

[
b1 −A12x

(k−1)
2

]
, (Predictor equation)

∆x
(k−1)
2 = R−1

[
b2 −A21∆x

(k−1)
1 −A22x

(k−1)
2

]
, (Schur equation)

x
(k)
2 = x

(k−1)
2 + ∆x

(k−1)
2 , (Update)

x
(k)
1 = x

(k−1)
1 −

(
Ã11

)−1

A12∆x
(k−1)
2 . (Update)

(C.13)

The SIMPLE smoother for contact problems

A :=

[
K B1

BT
2 C

]
, (C.14)

has block preconditioning matrix M :

M :=

[
K 0
BT

2 R

] [
I D−1B1

0 1
β
I

]
=

[
K KD−1B1

BT
2

1
αβ
C + (1− 1

αβ
)BT

2D
−1B1

]
, (C.15)

where D is an approximation of K, R := 1
α
C − 1

α
BT

2D
−1B1 is an approximation of

the Schur complement, and α and β are damping factors chosen in the interval ]0, 1]
discussed in [Elman et al., 2008]. In this example, we use the matrix diagonal of K as
the approximation D.
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Impact of ensemble propagation on the false
sharing

In this section, we discuss the impact of ensemble propagation on the false sharing. To
do so, we first start by reviewing what the false sharing is and illustrate it by an example
and how to avoid it. After that, we revisit the example with ensemble propagation and
show how it has impacted the results.

This appendix is related to section 7.2.2 where we observed the speed-up of the
threaded Gauss-Seidel iterations. We observed a better speed-up than expected, this
can be partially explained by the impact of ensemble propagation on the false sharing
discussed in this appendix.

D.1 False sharing

False sharing is a performance issue on shared memory multiprocessor, where each pro-
cessor has a local cache. The performance issue happens when at least two threads on
different cores (and therefore which have different local cache) modify different variables
stored on a same cache line. This is called false sharing as the two threads do not modify
a shared data but they modify a same cache line. This results in a performance issue as
the coordination required to ensure the cache line consistency can be avoided having the
data on different cache lines.

D.2 Example of false sharing

As an example of false sharing, we compute the sum of all the entries of a matrix in such
a way that each thread computes the sum over a tile of the matrix and store it in a local
temporary variable. A first implementation is illustrated in Listing D.1 which presents
false sharing due to the fact that the entries result[p] are located on the same cache
lines. A way to avoid the issue is to use a padding strategy: to allocate more memory
for the array result such that the local entries are not on the same cache line. For
architecture with cache line of 64 bytes and with data stores on 8 bytes, we can allocate
8 times more data as proposed in Listing D.2.

The wall-clock time and speed-up of the threaded implementation are illustrated in
Fig. D.1 and Fig. D.2 respectively. We observe, as expected, that the first implementation
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is not significantly faster using more threads than one as false sharing occurs. This
impacts the speed-up of the threaded implementation which remains close to 1. The
second implementation has a better speed-up as the false sharing is removed.

Those results have been generated with a code compiled without any optimization as
the compiler is able to find some false sharing and pad the data automatically.
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Figure D.1: Wall-clock time of the example without ensemble propagation (s = 1)
and with ensemble propagation with one ensemble of size 32 (s = 32).
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Figure D.2: Speed-up of the example without ensemble propagation (s = 1) and with
ensemble propagation with one ensemble of size 32 (s = 32).

D.3 Impact of ensemble propagation

Due to the fact the ensemble size is chosen to be equal to 8, 16, or 32, there is no
possibility for two ensembles to be stored on a same cache line. Therefore, this prevents
the possibility of false sharing even in the first implementation.
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1 template <typename scalar>

2 void example(scalar *matrix, const int DIM, const int NUM_THREADS, scalar &sum)

3 {

4 scalar result[NUM_THREADS];

5

6 #pragma omp parallel num_threads(NUM_THREADS)

7 {

8 int p = omp_get_thread_num();

9

10 result[p] = 0;

11 int chunkSize = DIM / NUM_THREADS + 1;

12 int myStart = p * chunkSize;

13 int myEnd = min(myStart + chunkSize, DIM);

14 for (int i = myStart; i < myEnd; ++i)

15 for (int j = 0; j < DIM; ++j)

16 result[p] += matrix[i * DIM + j];

17 }

18

19 sum = 0;

20 for (int p = 0; p < NUM_THREADS; ++p)

21 sum += result[p];

22 } �
Listing D.1: Example of false sharing.

1 template <typename scalar>

2 void example(scalar *matrix, const int DIM, const int NUM_THREADS, scalar &sum)

3 {

4 scalar result[NUM_THREADS][8];

5

6 #pragma omp parallel num_threads(NUM_THREADS)

7 {

8 int p = omp_get_thread_num();

9

10 result[p][0] = 0;

11 int chunkSize = DIM / NUM_THREADS + 1;

12 int myStart = p * chunkSize;

13 int myEnd = min(myStart + chunkSize, DIM);

14 for (int i = myStart; i < myEnd; ++i)

15 for (int j = 0; j < DIM; ++j)

16 result[p][0] += matrix[i * DIM + j];

17 }

18

19 sum = 0;

20 for (int p = 0; p < NUM_THREADS; ++p)

21 sum += result[p][0];

22 } �
Listing D.2: Example with padding to avoid false sharing.
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