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The assessment of the consciousness level of Unresponsive Wakefulness Syndrome

(UWS) patients often depends on a subjective interpretation of the observed spontaneous

and volitional behavior. To date, the misdiagnosis level is around 30%. The aim of

this study was to observe the behavior of UWS patients, during the administration of

noxious stimulation by a Trace Conditioning protocol, assessed by the Galvanic Skin

Response (GSR) and Heart Rate Variability (HRV) entropy. We recruited 13 Healthy

Control (HC) and 30 UWS patients at 31 ± 9 days from the acute event evaluated

by Coma Recovery Scale–Revised (CRS-R) and Nociception Coma Scale (NCS). Two

different stimuli [musical stimulus (MUS) and nociceptive stimulus (NOC)], preceded,

respectively by two different tones, were administered following the sequences (A) MUS1

– NOC1 – MUS2 – MUS3 – NOC2 – MUS4 – NOC3 – NOC∗, and (B) MUS1∗, NOC1∗,

NOC2∗, MUS2∗, NOC3∗, MUS3∗, NOC4∗, MUS4∗. All the (∗) indicate the only tones

administration. CRS-R and NCS assessments were repeated for three consecutive

weeks. MUS4, NOC3, and NOC∗ were compared for GSRwave peak magnitude, time to

reach the peak, and time of wave’s decay by Wilcoxon’s test to assess the Conditioned

Response (CR). The Sample Entropy (SampEn) was recorded in baseline and both

sequences. Machine Learning approach was used to identify a rule to discriminate the

CR. The GSR magnitude of CR was higher comparing music stimulus (p < 0.0001) and

CR extinction (p < 0.002) in nine patients and in HC. Patients with CR showed a higher

SampEn in sequence A compared to patients without CR. Within the third and fourth

weeks from protocol administration, eight of the nine patients (88.9%) evolved into MCS.

The Machine-learning showed a high performance to differentiate presence/absence of

CR (≥95%). The possibility to observe the CR to the noxious stimulus, by means of

the GSR and SampEn, can represent a potential method to reduce the misdiagnosis in

UWS patients.

Keywords: pain, unresponsive wakefulness syndrome, disorders of consciousness, trace conditioning, HRV (heart

rate variability), entropy, conditional learning, Galvanic Skin Response (GSR)
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INTRODUCTION

Disorders of Consciousness (DOC) are a spectrum of pathologies
affecting one’s ability to interact with the external world. They
are increasingly becoming a worldwide health concern, whether
due to a traumatic (Meaney et al., 2014; Roebuck-Spencer and
Cernich, 2014) or non-traumatic cause (Gitler et al., 2017;
Erkkinen et al., 2018), with its share of ethically challenging
questions (Fins, 2005; Demertzi et al., 2011; Riganello et al.,
2016), including life and death decisions. Indeed, differential
diagnosis of the clinical entities of disorders of consciousness
raises important ethical and medical issues, including pain
treatment and end-of-life decisions.

Despite a unifying term being used, these disorders do in fact
cover a broad population of very heterogeneous pathologies with
diverse etiologies, injuries, and outcomes. This heterogeneity can
make them hard to distinguish in the clinical practice (Fins,
2005), leading the examiners to a possible misdiagnosis, that is
reported around 30% (Andrews et al., 1996; Bosco et al., 2010;
Peterson et al., 2015; van Erp et al., 2015).

Unresponsive Wakefulness Syndrome (UWS) (Laureys et al.,
2010) and Minimally Conscious State (MCS) (Giacino et al.,
2002) are two of the possible conditions following an acquired
brain injury. The MCS patients exhibit minimal but discernible
signs of non-reflex behaviors which occur reproducibly (yet
inconsistently) as a response to visual, auditory, tactile, or
noxious stimuli; conversely, UWS (Laureys et al., 2010) condition
is characterized by a spontaneous opening of the eyes and no
sign of consciousness, but reflexive responses to external stimuli
(Jennett, 2002; Dolce et al., 2010).

The clinical assessment of UWS condition is based on clinical
consensus and behavioral scales, such as the Coma Recovery
Scale-Revised (CRS-R) (Giacino et al., 2004). The difficulty in
the assessment of the consciousness level of UWS patients
often depends on a subjective interpretation of the observed
spontaneous and volitional behavior (Cortese et al., 2014). In
the absence of speech, the motor response is the only observable
behavior. The behavioral response to nociceptive stimulation,
relying on a wide brain network linked to the consciousness,
can help the examiner to evaluate the change in the level of
consciousness (Schnakers et al., 2010; Riganello et al., 2014;
Chatelle and Laureys, 2015). However, in the absence of any
possible cognitive output, it represents a strong challenge in
detecting the conscious perception of the pain in UWS patients
(Chatelle and Thibaut, 2014; Naro et al., 2015; Schnakers and
Zasler, 2015; Garcia-Larrea and Bastuji, 2018).

It has been observed that nociceptive stimuli elicit the
activation of an extensive cortical network that includes
somatosensory, insular, cingulate, frontal, and parietal areas
(Pain Matrix) (Coghill et al., 2003; Iannetti and Mouraux, 2010;
Chatelle et al., 2014).

The nociceptive stimulation activates the nociceptors, and via
the spinothalamic tract, the information reaches the thalamus
and the cortex, where the midbrain and thalamus are thought to
be involved in the modulation of reflex responses to nociceptive
stimuli (Loeser and Treede, 2008). The secondary somatosensory
(S2) cortex, with the posterior insula (lateral network), are also

involved, taking part in the sensory–discriminative features of
pain processing (Ploner et al., 2002; Lockwood et al., 2013).

However, the concept of “Pain Matrix” is often used to
explain the generation of the conscious experience of pain. Pain
experience is defined as “an unpleasant sensory or emotional
experience that is associated with actual or potential tissue
damage, or which can be described in terms of such damage.”
(Loeser and Treede, 2008). Given the subjective nature of pain,
and the impossibility for a UWS patient to discuss it, it is not
possible to report his/her response to a nociceptive stimulus as
pain sensation [nociception refers to the perception -conscious or
not- of nociceptive stimuli (Loeser and Treede, 2008)], although
it is also not possible to exclude it (Naro et al., 2015; Calabrò et al.,
2017).

Pioneering studies attempted to quantify the nociception in
patients with DOC (Schnakers et al., 2010). The Nociception
Coma Scale (NCS) (Schnakers et al., 2010; Chatelle et al.,
2014; Riganello et al., 2014), a behavioral tool, was developed
specifically for DOC patients and measures eye-opening,
breathing, and grimace-like or crying-like behaviors (Schnakers
and Zasler, 2007).

In clinical practice, electroencephalography (EEG) recordings
(Gantner et al., 2012; Fernández-Espejo and Owen, 2013) and
neuroimaging approaches (Schiff et al., 2005; Turner-Stokes et al.,
2012) have been proposed, and are often used, as complementary
tools to help in assessment, diagnosis, prognosis, and decision
making in DOC patients (Cruse et al., 2011; Di Perri et al., 2014;
Demertzi et al., 2015). Both fMRI and EEG recordings are hardly
doable, because of movement artifacts (Havsteen et al., 2017;
Jiang et al., 2019) or, in the case of EEG recordings, because of
the presence of craniotomy (Reis et al., 2014).

Several studies investigated the extent to which the pain
matrix responded to nociceptive stimuli in patients with DOC by
a laser-evoked EEG response (LEPs) (Tommaso et al., 2013; de
Tommaso et al., 2015; Naro et al., 2016), suggesting the presence
of covert pain processing also in subjects with low Nociception
Coma Scale-Revised (NCS-R) scores.

Neuroimaging studies suggest that UWS patients could
maintain primary and/or more complex cortical activation
in response to noxious stimuli, but this would occur as an
isolated and disconnected phenomenon preventing a conscious
perception of pain (Laureys et al., 2002; Kassubek et al., 2003;
Kotchoubey et al., 2013; Markl et al., 2013). However, cortical
activation encompassing primary and associative areas [e.g.,
anterior cingulate and anterior insula cortices (Ingvar, 1999;
Boly et al., 2008; Shackman et al., 2011; Chatelle and Thibaut,
2014)] together with their preserved functional connectivity,
have been observed in MCS patients, suggesting the possibility
of integrated conscious processing of the pain. Nevertheless,
these techniques are generally very expensive, complex,
and time-consuming.

Alternative methods, based on the analysis of the Autonomic
Nervous System (ANS), such as probing physiological signals of
peripheral organs like the heart (Riganello and Sannita, 2009;
Ryan et al., 2011; Riganello et al., 2012; Koenig et al., 2014) and
skin conductance (Storm, 2008) have been proposed to overcome
these issues.
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By means of the GSR and HRV analysis, it is possible to
observe the autonomic response to the nociceptive stimulation.

HRV is defined as the fluctuation in the time intervals
between adjacent heartbeat and reflects at any moment the
complex interactions with the ANS. It mirrors to a substantial
extent the cardiorespiratory control system and is regarded as
a reliable index of the sympathetic/parasympathetic functional
interplay (Thayer, 2007; Riganello et al., 2012; Mather and
Thayer, 2018). As the sequence of heartbeats is non-linear,
the HRV is better described by the mathematical chaos as the
HRV entropy analysis. Reduced HRV entropy suggests a less
complex autonomic response to noxious stimuli in UWS patients
(Riganello et al., 2018a; Tobaldini et al., 2018) and discriminates
them fromMCS patients (Riganello et al., 2018b).

Separately, the GSR measures the conductance of the skin
that is related to the autonomic innervation of the sweat glands
and reflects the activity of the sympathetic nervous system
(Critchley, 2002).

Several studies highlight the potential of measuring the GSR
following auditory (Hildebrandt et al., 1998; Keller et al., 2007;
Dolce et al., 2008) or nociceptive stimuli in DOC patients
(Venturella, 2018). Notwithstanding, these measures were not
used in a systematic way to explore the pain perception in
these patients.

Calabrò et al. (2017) combining EEG and HRV in an LEP
study found preserved cortical activation and lower HRV in all
MCS and in two UWS patients. Pain-related stimulation was
also associated with a delta parietal response, lower left frontal
activation, and increased GSR and heart rate (Venturella, 2018).

These measures do not require the person’s collaboration
or behavioral feedback, and have been proposed as a reliable
indicator of nociceptive pain processing in different studies using
hypnosis or analgesia in healthy individuals (Rainville et al., 1999;
Jeanne et al., 2009).

In our study, we explored the possibility to observe the
autonomic response related to a Trace Conditioning learning
experiment, by means of a nociceptive stimulus in UWS patients,
and if such learning may have a significance in the recovery of
the consciousness.

Classical conditioning works by an associative process
beginning with the presentation of a contingency between
Conditioned Stimulus (CS) and Unconditioned Stimulus (US),
in which a neutral (conditioned) stimulus (e.g., a tone) acquires a
motivational feature after being paired with another, biologically
evocative (unconditioned), stimulus (e.g., nociceptive stimulus)
eliciting an unconditioned response (UR). In this way, the CS
elicits a Conditioned Response (CR), despite the absence of the
US (Çevik, 2014; Eelen, 2018).

Further, if two stimuli are presented together, only
one will acquire the function of signal. Pavlov (1927)
defined the difference between the stimuli as “saliency,”
and Kelley and Michela (1980) considered it as the
attribution of “an effect to the most salient cause in the
perceptual field at the time the effect is observed.” Some
interpretations suggested the idea that an effect referred
to the first cause coming to mind or providing sufficient
justifications. It seems possible that the saliency effect is

mediated by the superior memory for the salient cause
(Kelley and Michela, 1980).

The classical conditioning is an example of non-declarative
or unconscious memory (hippocampus-independent), expressed
by performance and without access to conscious memory
(hippocampus-dependent), or awareness that memory is used
(Clark, 1998).

The trace conditioning is a different version of classical
conditioning, characterized by a short time interval between the
conclusion of the CS and the presentation of the US (Pavlov,
1927), and is considered an adequate method to assess the
consciousness presence without a verbal report (Bekinschtein
et al., 2009).

The capability to form an internal representation of
environmental contingency, in a symbolic or propositional way,
makes it conscious. However, there is no clear agreement about
the contingency awareness –i.e., the knowledge that a specific
CS predicts a specific US– that is considered necessary but not
sufficient by some reviewers and both necessary and sufficient by
others (Lovibond and Shanks, 2002).

The relation between trace conditioning and conscious access
to the CS or UC is debated. As reported, both comatose patients
(Juan et al., 2016) and individuals during deep sleep (Arzi et al.,
2012; Züst et al., 2019) were shown to be able to perform
associative learning in the absence of consciousness.

The trace conditioning implies the involvement of the
neocortex and hippocampus to represent and retain, respectively,
the relationship between CS and US. Furthermore, the
cerebellum warrants the performance of the Conditioned
Response (CR) (Clark, 1998), i.e., the learned response to the
previously neutral stimulus.

Bekinschtein et al. (2009) in a trace conditioning study
on Disorders of Consciousness (DOC) patients, through the
association of a tone with an air puff to the cornea to elicit an eye
blink, reported that the patients might have a partially preserved
conscious process.

In this study by the use of GSR and HRV entropy, for the first
time, we wanted to observe the behavior of UWS patients during
the administration of a noxious stimulus in a frame of trace
conditioning, in order to discover an eventual consciousness
activity.We hypothesized to find: (1) a higher GSRmagnitude for
the CR, (2) the extinction of CR, (3) the CR in UWS patients as
a possible better prognosis, (4) higher values of HRV entropy in
healthy controls (HC) if compared to the patients, and (5) higher
values of HRV entropy in patients with CR if compared to the
patients without CR.

METHODS

Participants
We recruited 13 HC (7 females, mean age 34± 11, 6 males, mean
age 35 ± 7) and 37 UWS patients at 31 ± 9 days from the acute
event, of which seven were excluded because of signal artifacts,
due to the movements during the recording. Of the 30 selected
patients (Table 1), 13 were females (5 Hemorrhagic, 6 Traumatic,
2 Anoxic, mean age 44 ± 17, score range CRS-R [3–6], score
range NCS [1–5]) and 17 males (5 Hemorrhagic, 9 Traumatic,
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TABLE 1 | Demographic information of groups, test results and CRS-R/NCS assessments of UWS patients.

Protocol result CRS-R/NCS

Patient Diagnosis Age Etiology Time from event (days) CR response Week I Week II Week III Week IV Final diagnosis

1 UWS 50–55 HEM 27 1 4/3 4/3 8/4 8/4 MCS

2 60–65 HEM 39 1 6/5 7/7 9/6 11/7 MCS

3 16–20 TBI 28 1 4/1 4/1 7/3 8/3 MCS

4 66–70 TBI 25 1 6/5 6/5 10/8 12/7 MCS

5 60–65 TBI 26 1 4/3 5/3 9/5 8/5 MCS

6 30–35 TBI 21 1 5/2 5/2 8/4 10/5 MCS

7 66–70 TBI 39 1 4/4 8/3 8/5 8/5 MCS

8 16–20 TBI 25 1 4/2 8/3 14/5 14/7 MCS

9 36–40 ANOX 21 1 4/3 6/2 4/3 6/4 UWS

10 66–70 HEM 23 0 4/4 7/3 4/3 7/5 UWS

11 40–45 HEM 55 0 4/1 4/1 4/1 4/1 UWS

12 46–50 HEM 32 0 4/1 3/4 3/3 5/4 UWS

13 56–60 HEM 24 0 5/3 4/3 5/3 5/3 UWS

14 56–60 HEM 35 0 4/3 4/3 4/3 6/3 UWS*

15 56–60 HEM 39 0 3/1 5/3 5/3 6/3 UWS

16 66–70 HEM 58 0 5/3 5/3 6/3 6/3 UWS

17 60–65 HEM 34 0 5/3 6/3 5/3 4/4 UWS

18 56–60 TBI 30 0 5/1 5/4 4/3 5/4 UWS

19 46–50 TBI 23 0 2/1 7/5 5/3 5/5 UWS

20 60–65 TBI 33 0 6/3 6/3 6/3 6/3 UWS

21 56–60 TBI 36 0 5/2 5/2 5/2 7/5 UWS

22 20–25 TBI 27 0 5/2 6/2 6/4 6/4 UWS

23 20–25 TBI 27 0 4/3 6/4 6/3 5/3 UWS

24 26–30 TBI 28 0 6/3 5/4 5/4 7/4 UWS

25 26–30 TBI 23 0 6/5 6/5 7/6 7/5 UWS

26 20–25 TBI 21 0 5/3 6/3 7/4 7/4 UWS*

27 66–70 ANOX 25 0 5/4 6/4 6/5 7/7 UWS

28 60–65 ANOX 23 0 5/1 5/2 4/2 4/2 UWS

29 26–30 ANOX 31 0 3/3 3/3 6/3 6/3 UWS

30 40–45 ANOX 37 0 4/1 5/2 6/2 5/3 UWS

1 HC 50–55

2 20–25

3 20–25

4 30–35

5 36–40

6 26–30

7 36–40

8 20–25

9 36–40

10 36–40

11 40–45

12 26–30

13 40–45

MCS, Minimally Conscious State; UWS, Unresponsive Wakefulness Syndrome; UWS*, patients without CR that change the level of consciousness after 6 months from the onset; HEM,

Hemorrhagic; TBI, Traumatic Brain Injury; ANOX, Anoxic; CR, Conditional Response (0 = absent; 1 = present); CRS-R, Coma Recovery Scale–Revised; NCS, Nociception Coma Scale;

Week (I-IV), Successive weeks during which the patients were assessed by CRS-R and NCS. In bold patients with Trace Conditioning.

3 Anoxic, mean age 50 ± 20, score range CRS-R [2–6], score
range NCS [1–5]). The enrolled patients were hospitalized in
a special rehabilitation unit for UWS patients at the S. Anna
Institute of Crotone (Italy). The inclusion criteria were: (1)

age more than 16, (2) no administration of neuromuscular
blockers or sedation within 24 h of enrolment, (3) eyes opening
(indicating wakefulness and rest cycles), (4) diagnosis of UWS,
based on behavioral assessments by way of CRS-R (Giacino
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FIGURE 1 | Sequence of the stimuli: two short grave notes anticipate the musical stimulus; two short grave notes and one long acute note at an interval of 5th

anticipate the noxious stimulus. From Sequence (A) 1 to 7 the stimuli were associated to the tones; the eighth without stimulus administration to verify the CR;

Sequence (B) from 9 to 16 only tones for the extinction of the stimulus.

et al., 2004), (5) stable clinical condition, and (6) time of
recruiting no more than 30 days from the injury. Exclusion
criteria were: (1) documented history of prior brain injury; (2)
functional disability resulting from premorbid developmental,
psychiatric, or neurologic illness; (3) upper and lower limb
contusions, fractures, or flaccid paralysis; (4) neurological or
psychiatric disease; and (5) administration of pharmacological
drugs interacting with the level of consciousness.

All recruited patients were evaluated by acoustic evocated
potential to exclude any sensorial acoustic impairment.

The study was approved by the Ethics Committee and written
informed consent was obtained by the HC and the patients’
legal representative.

Protocol
The patients were enrolled within 10 days from the
hospitalization and evaluated 1 week before the start of the
protocol by means of CRS-R, in order to verify the UWS
condition, and by NCS to select the best responsive limb to the
nociception stimulation.

The CRS-R consists of 23 hierarchically arranged items and
comprises six subscales addressing arousal, auditory, visual,
motor, oromotor/verbal, and communication functions. The
NCS is structured in a similar way and consists of 16
hierarchically arranged items and comprises four subscales:
visual, motor, verbal, and facial expression.

The lowest item on each subscale represents reflexive activity
while the highest item represents cognitively-mediated behaviors.

The GSR and ECG were recorded by Nexus 10 (www.
mindmedia.com). The GSR signal was acquired by two AgCl ring
finger electrodes positioned on the index and medium fingers,
with a 24-bit resolution able to register changes of < 0.0001
microsiemens, at a sample rate of 32Hz. The ECG was recorded
by adhesive electrodes positioned on the chest of the patients at a
sample rate of 128 Hz.

Two different stimuli were administered: (1) a musical
stimulus (MUS) and (2) a noxious stimulus (NOC).

Each stimulus was associated with a specific tone listened
to before the administration. Different tones were associated

with musical and noxious stimuli. We administered three
nociceptive stimuli (none were administered after the
fourth tone) to verify the presence of conditional learning
(Figure 1). As in the fear conditioning (Hermans et al.,
2006), it has been sufficient to use a limited amount
of noxious stimuli in order to verify the occurrence of
learnin‘g. The associative model was previously tested on
voluntary HC.

The scheme consists of 16 stimuli (organized in 2 consecutive
sequences A and B) administered, in one session, as follow: (A)
MUS1 – NOC1 – MUS2 – MUS3 – NOC2 – MUS4 – NOC3
– NOC∗ and (B) MUS1∗, NOC1∗, NOC2∗, MUS2∗, NOC3∗,
MUS3∗, NOC4∗, MUS4∗, where the (∗) indicates the only tones
administration (Figure 2). In order to confirm the efficacy of the
protocol and verify the presence of the association, the scheme
was administered to the HC group.

Because of the conductance level of GSR (the start increases
rapidly and decreases until to the baseline in an asymptotic
way, following a slow exponential decay), the interval between
consecutive stimuli was set on 25 s, to avoid overlapping with any
of the GSR signals (Dawson et al., 2007; Breska et al., 2011).

Each stimulus was preceded by two different tones: (1) two
short grave notes for the musical stimulus and (2) two short grave
notes and one high long note at an interval of 5th (i.e., do-sol)
for the noxious stimulus. The interval inter-stimuli was 1 s. The
administered musical stimulus was the first movement of the
Beethoven’s Symphony no. 6, played by two speakers positioned
behind the subject, and fading out during the last 5 s (Figure 3).
The noxious stimuli were interposed with musical stimuli in
order to reduce the arousal level (Khalfa et al., 2002; Lee, 2003)
and to avoid a prolonged silence period (Blain et al., 2010; Lui
and Grunberg, 2017), interfering with the GSR signal.

The noxious stimulus was administered by a Newton-
meter (Force Dial, FDN 200 model; Connecticut, USA; www.
wagnerinstruments.com) which allows the examiner to gauge the
amount of pressure applied to the patient (Schnakers et al., 2010)
following the procedure described by the NCS (i.e., pressure on
the nail bed for a maximum of 5 s, or interrupted at the first
behavioral response of the subject).
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FIGURE 2 | Protocol and data analysis: in the central line of the figure (between dashed lines) the entire sequence of the protocol (baseline, sequence A to test the

conditional response (CR), and sequence B to test the extinction of the CR). From each sequence Galvanic Skin Response (GSR) and Electrocardiogram (ECG) were

extracted. From the ECG the Inter-Beats Interval (distance between peak to peak of RR ECG signal) was extracted (Bottom the figure—HRV analysis) and Sample

Entropy (SampEn) analyzed, then compared between and within groups. GSR was observed in baseline to exclude artifact movements. GRS analysis (above) was

performed considering peak magnitude, time to reach the peak, and decay of the GSR signal in the last three phases of the sequence A (black box and black line

MUS4, NOC3, and NOC*). It was considered the CR only if the GSR was present in NOC3 and NOC* (circle white filled). Finally, CR’s (red box) extinction was

observed in the sequence B. Similarly, for the SampEn, the GSR components (magnitude, time to reach the peak, and decay) were compared between and within

groups (black line) and the extinction was compared for wave peak magnitude (red line).

The second part of the scheme (sequence B) aimed at
observing the extinction of the CR (Figure 2).

During the recordings, HC were sitting comfortably on a chair
with eyes closed and relaxed hands positioned on a small table,
while the patients were sitting in a wheel-chair or in the bed.
The protocol of stimulation was preceded by a 5-min baseline,
in absence of any transient noise in order to reach a relaxed
condition and a stable GSR signal.

All the recordings occurred in a condition of constant
luminosity, humidity, temperature (24◦C), in the absence of
transient noise, and avoiding any influence from nursing and
feeding or rehabilitative programmes. Scales administrations and
the protocol of the trace conditioning were planned between
09:30 a.m. and 11:00 a.m., in order to obtain the best possible
response and avoid differences due to the different moments of
the day (Candelieri et al., 2011; Cortese et al., 2014).

Data Extraction
A week before the protocol administration, the consciousness
level of the patients and the response to noxious stimulus were
assessed by means of CRS-R and NCS, respectively. Further, the
assessments were repeated during the protocol administration
and for 3 consecutive weeks.

The phasic wave signal of the GSR was extracted by Ledalab
(Benedek, 2016). The last three stimuli of the sequence A (i.e.,
MUS4, NOC3, and NOC∗) were considered to verify the CR.

The GSR and ECG signals were previously controlled, in
order to avoid the presence of movement artifacts and missing
data, respectively.

For each phase, the wave peak magnitude, wave’s decay time,
and time to reach the peak following the acoustic stimulus
were extracted (Figure 4). The presence of CR was considered
significant if the peak magnitude -within 10 s from stimulus
administration- was higher in NOC∗ than MUS 4 and higher in
NOC3 than in NOC∗.

The tachogram (the series of consecutive intervals between
heartbeats) was extracted from the electrocardiogram, and
the Sample Entropy (SampEn) was analyzed for the baseline,
sequence A, and sequence B using the HRV Advanced Analysis
software (Tarvainen et al., 2014).

SE(m, r,N) = −ln
øm+1(r)

øm(r)

Equation 1: SE: Sample Entropy; m: distance between time series
points to be compared; r: radius of similarity; N: length of the
time series; φ: probability that points m distance apart would be
within the distance r.
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FIGURE 3 | Phasic components of GSR in the sequence A. The bold line is the mean of the GSR signal, and the filled area is the standard error. In blue the HC, green

UWS patients with CR, and red UWS patients without CR. Vertical black continuous lines are the start of nociception stimulus, dashed black lines are the start of

musical stimulus, vertical red line is the start of CR. MUS4, NOC3, and NOC* were considered in the statistical analysis to verify the conditional learning.

FIGURE 4 | Characteristics of the wave in the GSR signal. After the stimulus, the time to reach the peak of max magnitude is calculated. The magnitude is different

between values of peak and values at the start of the stimulus. The time of the wave’s decay is the phase of decreasing after reaching the peak.
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Sample entropy (Equation 1) has been suggested to be
independent from data length and shows consistency over broad
ranges of possible data sequence length to be compared (m),
tolerance (r), and total RR (interval from the R peaks of ECG
QRS complex) interval data length (N) (Richman and Moorman,
2000; Yentes et al., 2013). The parameters m and r were set to 2
and 0.15, respectively, as used in previous studies (Costa et al.,
2005; Costa and Goldberger, 2015).

Statistical Analysis
Because of the dimension of our sample size and the violation
of the homogeneity of variance, non-parametric tests were used.
The exact test was used because it would be more accurate in
the case of a small sample, or when the tables are sparse or
unbalanced. Further, to extract the model useful to detect the
presence/absence of CR by GSR, and test it (by the 10-fold-cross-
validation), the Machine Learning method was used.

In order to verify the CR in NOC∗, peak magnitude, time to
reach the peak, and time of wave’s decay were compared using
Wilcoxon’s test in MUS4, NOC3, and NOC∗.

The effect size r was calculated as absolute value of Z/
√
(N)

where Z is the Z-statistic (Rosenthal, 1991; Fritz et al., 2012) of
the statistical test and N is the total number of subjects. The effect
size results were considered: r < 0.1 not significant; 0.1≤ r < 0.3
low; 0.3 ≥ r < 0.5 medium; r ≥ 0.5 high (Fritz et al., 2012).

The UWS patients’ group was divided into two subgroups: (1)
UWS0: patients without CR at NOC∗; (2) UWS1: patients with
CR to NOC∗, then MUS4, NOC3, and NOC∗ were compared as
in HC for wave peak magnitude, time to reach the peak, and time
of wave’s decay using Wilcoxon’s test.

The same parameters were used to compare HC, UWS0, and
UWS1 groups between them using Mann-Whitney test.

To evaluate the extinction of the CR, MUS1∗, and NOC1∗

of the sequence B were compared with NOC∗ and MUS4 of the
sequence A for wave peak magnitude using Wilcoxon’s test. The
p-value of the test was set to p < 0.005 for multiple comparisons.

The different scores of CRS-R and NCS in the 4 weeks were
compared using Wilcoxon’s test.

The results of the model (number of UWS patients with CR
that changed level of consciousness) were evaluated for sensitivity
(rate of patients with change in level of consciousness correctly
classified); specificity (rate of patients without change in the level
of consciousness correctly classified); precision (rate of correct
prediction in the change of level of consciousness), false positive
and negative rates in the classification of change of the level of
consciousness, and accuracy (predicted conditions of change and
no change in the level of consciousness).

HC, UWS0, and UWS1 groups were compared among them
for SampEn in baseline, sequence A, and sequence B using
Mann-Whitney’s test. Moreover, baseline vs. sequence A, and
sequence A vs. sequence B were compared in all groups using
Wilcoxon’s test.

We used WEKA (Waikato Environment for Knowledge
Analysis), an open source toolbox for machine learning analysis,
and the One-R classifier to generate the simplest rule for
discriminating the presence/absence of the CR, by means of

SampEn or GSR parameters recorded in MUS4, NOC3, and
NOC∗. One-R (Holte, 1993) is a fast and very simple algorithm
deriving a one-level decision tree. It operates by generating a
separate rule for each individual attribute of the dataset based on
error rate. To generate the rule, each attribute is discretized into
bins calculating the percentage that each class (presence/absence
of the CR) appears within each bin. Finally, the rule for the final
decision tree is chosen by selecting the attribute with minimum
error to perform the classification.

The whole data set was used to generate the model (training
test), then the 10-fold cross-validation test was used to assess
the performance of the model in generalization. The results of
the training and 10-fold cross-validation tests were calculated by
several metrics: sensitivity (rate of conditional learning correctly
classified), specificity (rate of no conditional learning correctly
classified), false positive and negative rates of conditional and
no conditional learning classification, accuracy (conditional
learning and no conditional learning predicted conditions),
precision (rate of correct prediction in the assessment of
conditional learning), and F1-score [a measure of the test’s
accuracy that takes in consideration the harmonic mean of
sensitivity and its precision—ranging values: (0—worst precision
and sensitivity: 1–perfect precision and sensitivity)].

RESULTS

All subjects of the HC group showed a CR in the NOC∗.
A Wilcoxon’s test for the GSR magnitude of CR was higher
compared to MUS4 (Z = −3.180, p < 0.0001, r = 0.62) and
lower compared to NOC3 (Z = −3.110, p = 0.001, r = 0.61).
No significant difference was found in the time to reach the peak
between NOC3 and NOC∗ (Z = −2.900, p = 0.001, r = 0.61),
while the time of wave’s decay was higher in NOC3 (Z =−2.621,
p= 0.003, r = 0.44) (Figure 5, Table 2).

Of the 30 patients, nine (30%) showed a CR to the noxious
stimulus (UWS1) with superimposable results at Wilcoxon’s test,
with a higher GSR magnitude of CR compared to MUS4 (Z =
−2.666 p = 0.002, r = 0.63) and lower compared to NOC3 (Z =
−2.701, p= 0.002, r= 0.64), and time to reach the peak shorter in
NOC3 compared to NOC∗ (Z =−2.803, p= 0.001, r = 0.66). In
patients without CR (UWS0), significant differences were found
between NOC3 and NOC∗ for magnitude (Z = −3.337, p <

0.0001, r = 0.51) and time to reach the peak (Z = −2.864, p =
0.001, r = 0.44) (Figure 5, Table 2).

The extinction of CR in the GSR signal was observed in HC
(Z =−3.180, p < 0.0001, r = 0.88) and UWS1 (Z =−2.666, p=
0.002, r = 0.60) comparing NOC∗ and NOC1∗ (Figure 6).

No significant difference was found comparing UWS1 and
HC for all wave’s components of the GSR. Conversely, significant
differences were found comparing UWS0 vs. UWS1 in NOC3
and NOC∗ for peak magnitude (−3.614≤ Z ≤−2.801; 0.0001≤
p≤ 0.003; r = 0.66), and in NOC3 for wave’s decay (Z =−2.949;
p = 0.001). Comparing HC vs. UWS0 differences in NOC3 and
NOC∗ were found for peak magnitude and wave’s decay (Z <

−4.205; p < 0.001).
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FIGURE 5 | Sequence A: boxplot of the GSR waves components. Time to reach the peak (left), wave’s magnitude (center) and wave’s decay (right) of each group

were compared among them in MUS4, NOC3, and NOC* (diamond markers), and the groups (HC, UWS1, and UWS0) were compared among them for each session

(point markers). The box represents the first and third quartile, the whiskers are the 1.5 interquartile range, the black lines are the medians, and points are outliers.

Significant statistical difference: •p = [0.002–0.003]; ••p = 0.001; •••p < 0.0001; circle: Statistical difference between groups.

Higher SampEn was found comparing UWS1 vs. UWS0
in the sequence A, and in HC vs. UWS0 sequence A and
sequence B (Mann-Whitney’s test: Z ≥ −2.726; p ≥ 0.005; r ≥
0.47). Significant differences were found for SampEn in UWS0
comparing sequence A vs. sequence B (Wilcoxon’ test: Z =
−2.573, p= 0.004; r = 0.40) (Figure 7, Table 2).

AtWilcoxon’s test UWS0 and UWS1 were different for CRS-R
and NCS in the third (CRS-R: Z = −3.512; p < 0.0001 – NCS:
Z = −2.964; p = 0.001) and fourth week (CRS-R: Z = −3.566;
p < 0.0001 – NCS: Z = −2.214; p = 0.015) (Figure 8). In this
range of time, eight of the nine patients (88.9%) with a positive
conditional learning to the noxious stimulus showed behaviors
according to MCS (Table 1). Only two of the UWS0 patients
showed an evolution of the level of consciousness, but only after
6 months from the onset.

The CR observed by the protocol showed a high prognostic
power to predict the change of the level of consciousness, with a
sensitivity of 100%, specificity of 95%, accuracy of 97%, precision
of 90%, and a false positive and negative rate of 5 and 0%,
respectively (Table 3).

By means of One-R classifier ofWEKA, the peakmagnitude of
the GSR in NOC∗ was selected for the best correct classification
of the CR and groups. The classifier showed a high performance
in the training test to differentiate presence/absence of CR,
with a sensitivity, specificity, accuracy, and precision between
95 and 96%, and values of F1 score equal to 0.95. The correct
classification was also high at the 10-fold cross-validation test
with a sensitivity, specificity, accuracy, and precision between
86 and 95%, F1 score 0.93 (Table 3). Additionally, the correct
classification by means of the peak magnitude NOC3 and of the
SampEn in the sequence A was also tested (Table 3).

DISCUSSION

As of today, the UWS condition represents as an ethically
troublesome condition which is hard to fully understand. The
principal methods for the diagnosis of the patients with severe
DOC are based on behavioral scales, such as CRS-R. About the
evaluation of the pain perception, the NCS represents a valid
instrument to differentiate a generalized response from a specific
response to the nociceptive stimulus (Schnakers et al., 2010;
Riganello et al., 2014; Chatelle and Laureys, 2015). However,
there is a higher probability of a diagnostic error when the patient
does not present any cognitive output. In fact, themisdiagnosis of
DOC patients is again around 30% (Andrews et al., 1996; Bosco
et al., 2010; van Erp et al., 2015).

EEG and neuroimaging tools and studies help the clinicians in
the diagnosis, prognosis, and decision making in DOC patients
(Gantner et al., 2012; Fernández-Espejo and Owen, 2013; Di
Perri et al., 2014; Demertzi et al., 2015), and provide evidence
for the correlation between cortical activation and response to
the noxious stimulus (Kassubek et al., 2003; Markl et al., 2013;
Tommaso et al., 2013; Chatelle and Thibaut, 2014; Naro et al.,
2016). However, these approaches are not always possible or
practicable in DOC patients with clinical conditions because, as
for the fMRI, they are expensive, complex, and time-consuming.

The association of the GSR to the nociceptive assessment,
and in particular the conditional learning, can represent
a complementary instrument to increase the suitability of
assessment of patients with DOC.

By means of the HRV entropy analysis, and specifically
the Complexity Index, a recent study showed that the Central
Autonomic Network (CAN) [a brain-heart integrated model
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TABLE 2 | Statistic results for GSR in MUS4, NOC3, and NOC* and for SampEn in Baseline, sequence A and sequence B.

Galvanic Skin Response

Time to reach weave’s peak Wave’s peak magnitude Wave’s decay

Music Nociception Test Music Nociception Test Music Nociception test

UWS0 vs.

UWS1

ns ns ns ns Z = −3.345,

p = •••,

r = H

Z = −3.614,

p = •••,

r = H

ns Z = −2.949,

p = ••,

r = H

ns

UWS1 vs.

HC

ns ns ns ns ns ns ns ns ns

UWS0 vs.

HC

ns ns ns ns Z = −4.533

p = •••,

r = H

Z = −4.880,

p = •••,

r = H

ns Z = −4.312

p = •••,

r = H

Z = −4.205,

p = •••,

r = H

UWS0 UWS1 HC

Time to reach

weave’s peak

Wave’s peak

magnitude

Wave’s decay Time to reach

weave’s peak

Wave’s peak

magnitude

Wave’s

decay

Time to reach

weave’s peak

Wave’s peak

magnitude

Wave’s decay

Music vs.

Nociception

ns ns ns Z = −2.803,

p = ••,

r = H

Z = −2.803,

p = ••,

r = H

Z = −2.803,

p = ••

r = H

Z = −2.900,

p = ••,

r = H

Z = −3.180,

p < •••,

r = H

Z = −3,180,

p = •••

r = H

Nociception vs.

Test

Z = −2.864,

p = ••,

r = M

Z = −3.337,

p = •••,

r = H

ns Z = −2.803,

p = ••,

r = H

Z = −2.701,

p = •,

r = H

Z = −2.666,

p = •,

r = H

ns Z = −3.110,

p = ••,

r = H

Z = −2.621,

p = •,

r = M

Music vs.

Test

ns ns ns Z = −2.666,

p = •,

r = H

Z = −2.666

p = •,

r = H

Z = −2.666

, p = •,

r = H

Z = −3.040

p = ••,

r = H

Z = −3.180,

p < •••,

r = H

Z = −3,110

, p = •••,

r = H

Heart Rate Variability—Sample Entropy

UWS0 vs. UWS1 HC vs. UWS1 UWS0 vs. HC Baseline vs. trace conditioning Trace conditioning vs. extinction

Baseline ns ns ns UWS0 ns Z = −2.527,

p = •,

r = M

Trace

Conditioning

(Sequence A)

Z = −3.036,

p = ••,

r = H

ns Z = −4.237,

p = •••,

r = H

UWS1 ns ns

Extinction

(Sequence B)

ns ns Z = −2.726,

p = •,

r = M

HC ns ns

UWS0, Unresponsive Wakefulness syndrome patients with no Conditional Response; UWS1, Unresponsive Wakefulness syndrome patients with Conditional Response.

p-value: ••• p < 0.0001, r-value: M (effect size Medium 0.3≤ r < 0.5).

p-value: ••p = 0.001, r-values: H (effect size High r ≥ 0.5).

p-value: 0.002 ≤ p ≤ 0.004.
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FIGURE 6 | Sequence B: boxplot of GSR magnitude. MUS4 vs. MUS1* and NOC* vs. NOC1* were compared. Only in the HC and UWS1 groups a significant

difference between NOC* and NOC1* was observed (***HC: Z = −3.180, p < 0.0001, r = 0.88; **UWS1: Z = −2.666; p = 0.002; r = 0.60). The box represents the

first and third quartile, the whiskers are the 1.5 interquartile range, the black lines are the medians, and points are outliers.

FIGURE 7 | Boxplot of the SampEn. In the figure: baseline (white), sequence A (dark gray) and sequence B (light gray). Significant statistical difference:

*p = [0.003–0.005]; **p = [0.001]; ***p < 0.0001.

(Riganello, 2016) in which neural structures are involved in
cognitive, affective, and autonomic regulations] modulates a
different response to the noxious stimulus, among HC, MCS, and
UWS patients. The clear decreasing modulation in UWS patients
supported the idea of a correlation with the reduced level of
consciousness (Riganello et al., 2018a).

Again, a resting-state fMRI study showed a correlation
between HRV complexity and the level of consciousness, in
particular with the Fronto-Insular cortex, Superior Frontal
Gyrus, Paracingulate cortex, Insular cortex, Dorso-Lateral
Prefrontal Cortex, Superior Parietal Lobule, and Superior
Temporal Gyrus (Riganello et al., 2018b).
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FIGURE 8 | Boxplot of the CRS-R and NCS. UWS0 (dark gray) and UWS1 (white) groups are compared for CRS-R and NCS. The box represents the first and third

quartile, the whiskers are the 1.5 interquartile range, the black lines are the medians, and points are outliers. The statistical difference between groups is significant at

the 3rd week (CRS-R: Z = −3.512; p < 0.0001 – NCS: Z = −2.964; p = 0.001) and 4th week (CRS-R: Z = −3.566; p < 0.0001 – NCS: Z = −2.214; p = 0.015).

TABLE 3 | Results of the prognostic power the CR observed by the protocol, and results of the One-R classifier in the correct classification of the presence/absence of

the CR.

Correct Classification of presence/absence

of the CR based on One-R

Parameter:

Peak magnitude NOC*

Rule: magnitude<0.05→no CR

Parameter:

Peak magnitude NOC3

Rule:

magnitude<0.105→no CR

Parameter:

SampEn

Rule: SampEn <1.245→no CR

Sequence A

Presence of the nociceptive conditional

learning and change in the level of

consciousness in UWS patients

Training

test

10-fold

cross-validation

test

Training

test

10-fold

cross-validation

test

Training

test

10-fold

cross-validation test

Sensitivity (%) 100 Sensitivity (%) 96 95 95 86 86 71

Specificity (%) 95 Specificity (%) 95 95 95 85 86 67

Accuracy (%) 97 Accuracy (%) 95 91 91 86 84 72

Precision (%) 90 Precision (%) 95 86 86 86 82 77

False Positive Rate (%) 5 False Positive Rate

(%)

5 13 13 14 18 26

False Negative Rate (%) 0 False Negative

Rate (%)

5 5 5 14 14 29

F1 score [0:1] 0.95 0.94 0.9 0.86 0.84 0.74

The best performance in bold (Peak magnitude NOC*). Additionally, the results with the parameters Peak magnitude NOC3 and SampEn.

In this study, we analyzed the CR to the nociceptive stimulus
in UWS patients in the early phase of hospitalization, and its
prognostic valence. The most evident result was the different
responses obtained in terms of the wave’s magnitude. The
HC group showed a greater GSR at NOC3 when compared
to the UWS patients. Moreover, although CRS-R and NCS
were not significantly different, the UWS1 group had a
higher GSR at NOC3 if compared to UWS0. No significant
difference between the HC and UWS1 groups was found
in the SampEn, while it was higher in UWS1 compared
to UWS0. Further, this last group showed lower values of

the SampEn in the sequence A (trace conditioning), when
compared to sequence B (extinction of CR), confirming the
results reported in previous studies and suggesting a less
complex autonomic response to noxious stimuli in UWS patients
without CR.

The UWS1 patients showed behaviors overlapping with MCS
within the following 4 weeks. Only one anoxic patient did
not show any change, probably due to a worsening of the
clinical conditions.

Separately to the HRV that is correlated to both
parasympathetic and sympathetic branches of the ANS, the
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GSR is correlated only to the sympathetic system and is
technically simple to use.

The GSR signal depends on the change of the skin
conductance in response to sweat secretion (Roy et al., 2012).
The sweat glands are innervated by post-ganglionic sudomotor
fibers that trigger their activity (Kennedy et al., 1994; Riedl et al.,
1998). The skin conductance response corresponds to the burst
of the sudomotor nerve, that is linearly related to the number
of recruited sweat glands and to the amplitude of the GSR
(Freedman et al., 1994; Dawson et al., 2007).

The GSR is influenced by several brain regions with distinct
anatomical contributions in the control of skin conductance
response. In the behavioral emotional response, the ventromedial
prefrontal cortex is involved in the GSR anticipatory response
and the amygdala is implicated in the response to the learned
association between stimulus and reinforcement (Critchley,
2002). The Anterior Cingulate Cortex (ACC) plays a role in
integrating autonomic bodily states with behaviors, with the
anticipatory response in the risk context and with volitional
modulation (Critchley, 2002; Critchley et al., 2003; Roy et al.,
2012).

In the pain matrix, the ACC within the prefrontal cortex
also plays the role of encoding affective–cognitive information
(Medford and Critchley, 2010).

The presence of conditional learning to the nociceptive
stimulus might indicate a subcortical-cortical and cortico-
cortical preserved brain areas activation.

However, the amplitude of the GSR presents inter- and intra-
individual variability (Baba et al., 1988; Arunodaya and Taly,
1995) and is influenced by several factors, such as ambient
temperature (Yokota et al., 1959), skin temperature (Fujimori,
1956; Levy et al., 1992), stimulus strength (Yokota et al., 1959;
Hoeldtke et al., 1992; Arunodaya and Taly, 1995), mental
emotional status (Knezevic and Bajada, 1985), and arousing
stimulus and habituation (Elie and Guiheneuc, 1990).

To control these potential sources of variability, the
environment setting of stimulation was maintained to ensure
a constant level for noise, temperature, light, and humidity, in
order to link the signal of the patient’s response to the stimulus.
Moreover, the patients were stimulated in the morning to avoid
possible differences in the response due to fluctuation of the
consciousness level (Candelieri et al., 2011; Cortese et al., 2014).

The detection, by the GSR signal, to the CR implies a more
complex level of functioning of the ANS, as found by the higher
SampEn observed in the UWS1 group.

The machine learning model, by mean of the One-R classifier,
confirmed the validity of results, with very high values of
suitability in the training test as well as in the 10-fold cross
validation test. The level of sensitivity, specificity, and accuracy
of the protocol provided evidence for the potentiality to discover
potential covert consciousness activity in an early period, not
otherwise observable with the current behavioral scales.

In our study, the patients that changed the level of
consciousness in MCS showed low values at CRS-R total scores,
but a conditional learning to the nociceptive stimulus, regardless
of the etiology. The difficulty for the examiner to assess and
objectivate the residual cognitive function could be due to the

inconsistent, minimal, and difficult output to be detected (Owen
et al., 2007; Bayne et al., 2016).

Differently from the study of Bekinschtein et al. (2009) (where
the conditional learning in UWS patients was evaluated by 140
trials, [70 tones paired with as air-puff and 70 unpaired tones]
evidencing as they may have preserved conscious process), our
study is based on a protocol consisting of two consecutive
sequences (A and B), administered in one session and on the
evaluation of the response to the nociceptive stimulus already
assessed by NCS. Further, the possibility to observe in the early
period of hospitalization the presence of conditional learning
to the nociceptive stimulus could contribute to a more correct
diagnosis and prognosis in DOC patients and help in the
rehabilitative phase (de Tommaso et al., 2015; Chatelle et al.,
2018).

Although some variables have been considered and controlled,
others such as etiology and correlated damage of the Central
Nervous System could alter the sensorial sensibility of the
patients and then the generation of a normal GSR signal
(Vetrugno et al., 2003).

The lack of the GSR baseline with only tones (preceding the
entire protocol administration) may be a limitation of the study,
however, no variations have been detected to the GSR signal
during the sequence B (extinction phase). The observation of the
SampEn in the three different moments of the protocol (baseline,
sequence A, and sequence B) represents a point of strength. The
possible variation of entropy due to age (HRV entropy decreases
with the age) and gender (HRV entropy is higher in females)
(Umetani et al., 1998; Corrales et al., 2012; Voss et al., 2012)
suggests that more studies are needed. The results show that the
GSR is a good tool picking up eight out of the ten patients, that
ultimately evolve toMCS. This suggests that other markers might
be needed to completely reduce actual misdiagnosis.

The accurate and reliable evaluation of the level of
consciousness is important for a more effective rehabilitative
project. In this frame, the evaluation of the CR to the nociceptive
stimulus can represent a complementary and simple tool to
add to the behavioral assessment and clinical consensus. It
provides a simple way to observe a response and formulates
a possible prognosis in patients that may have a preserved
conscious process, but where the response is undetectable
because of the impossibility to exhibit intentional movements or
verbal responses.
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